51
|
Kim MK, Han SH, Park TG, Song SH, Lee JY, Lee YS, Yoo SY, Chi XZ, Kim EG, Jang JW, Lim DS, van Wijnen AJ, Lee JW, Bae SC. The TGFβ→TAK1→LATS→YAP1 Pathway Regulates the Spatiotemporal Dynamics of YAP1. Mol Cells 2023; 46:592-610. [PMID: 37706312 PMCID: PMC10590711 DOI: 10.14348/molcells.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 09/15/2023] Open
Abstract
The Hippo kinase cascade functions as a central hub that relays input from the "outside world" of the cell and translates it into specific cellular responses by regulating the activity of Yes-associated protein 1 (YAP1). How Hippo translates input from the extracellular signals into specific intracellular responses remains unclear. Here, we show that transforming growth factor β (TGFβ)-activated TAK1 activates LATS1/2, which then phosphorylates YAP1. Phosphorylated YAP1 (p-YAP1) associates with RUNX3, but not with TEAD4, to form a TGFβ-stimulated restriction (R)-point-associated complex which activates target chromatin loci in the nucleus. Soon after, p-YAP1 is exported to the cytoplasm. Attenuation of TGFβ signaling results in re-localization of unphosphorylated YAP1 to the nucleus, where it forms a YAP1/TEAD4/SMAD3/AP1/p300 complex. The TGFβ-stimulated spatiotemporal dynamics of YAP1 are abrogated in many cancer cells. These results identify a new pathway that integrates TGFβ signals and the Hippo pathway (TGFβ→TAK1→LATS1/2→YAP1 cascade) with a novel dynamic nuclear role for p-YAP1.
Collapse
Affiliation(s)
- Min-Kyu Kim
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Sang-Hyun Han
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Tae-Geun Park
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Soo-Hyun Song
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Ja-Youl Lee
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - You-Soub Lee
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Seo-Yeong Yoo
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Xin-Zi Chi
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Eung-Gook Kim
- Department of Biochemistry, College of Medicine and Medical Research Center, Chungbuk National University, Cheongju 28644, Korea
| | - Ju-Won Jang
- Department of Biomedical Science, Cheongju University, Cheongju 28503, Korea
| | - Dae Sik Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | - Jung-Won Lee
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Suk-Chul Bae
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
52
|
Jahan H, Khudr MS, Arafeh A, Hager R. Exposure to heat stress leads to striking clone-specific nymph deformity in pea aphid. PLoS One 2023; 18:e0282449. [PMID: 37883483 PMCID: PMC10602343 DOI: 10.1371/journal.pone.0282449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/15/2023] [Indexed: 10/28/2023] Open
Abstract
Climatic changes, such as heatwaves, pose unprecedented challenges for insects, as escalated temperatures above the thermal optimum alter insect reproductive strategies and energy metabolism. While thermal stress responses have been reported in different insect species, thermo-induced developmental abnormalities in phloem-feeding pests are largely unknown. In this laboratory study, we raised two groups of first instar nymphs belonging to two clones of the pea aphid Acyrthosiphon pisum, on fava beans Vicia faba. The instars developed and then asexually reproduced under constant exposure to a sub-lethal heatwave (27°C) for 14 days. Most mothers survived but their progenies showed abnormalities, as stillbirths and appendageless or weak nymphs with folded appendages were delivered. Clone N116 produced more deceased and appendageless embryos, contrary to N127, which produced fewer dead and more malformed premature embryos. Interestingly, the expression of the HSP70 and HSP83 genes differed in mothers between the clones. Moreover, noticeable changes in metabolism, e.g., lipids, were also detected and that differed in response to stress. Deformed offspring production after heat exposure may be due to heat injury and differential HSP gene expression, but may also be indicative of a conflict between maternal and offspring fitness. Reproductive altruism might have occurred to ensure some of the genetically identical daughters survive. This is because maintaining homeostasis and complete embryogenesis could not be simultaneously fulfilled due to the high costs of stress. Our findings shine new light on pea aphid responses to heatwaves and merit further examination across different lineages and species.
Collapse
Affiliation(s)
- Hawa Jahan
- Faculty of Biology, Medicine and Health, Division of Evolution, Infection and Genomics, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Faculty of Biological Sciences, Department of Zoology, University of Dhaka, Dhaka, Bangladesh
| | - Mouhammad Shadi Khudr
- Faculty of Biology, Medicine and Health, Division of Evolution, Infection and Genomics, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Ali Arafeh
- Faculty of Science and Engineering, Chemical Engineering, James Chadwick Building, The University of Manchester, Manchester, United Kingdom
| | - Reinmar Hager
- Faculty of Biology, Medicine and Health, Division of Evolution, Infection and Genomics, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
53
|
Pei T, Zhang T, Zhang M, Nwanade CF, Wang R, Wang Z, Bai R, Yu Z, Liu J. Molecular characterization and modulated expression of histone acetyltransferases during cold response of the tick Dermacentor silvarum (Acari: Ixodidae). Parasit Vectors 2023; 16:358. [PMID: 37817288 PMCID: PMC10566034 DOI: 10.1186/s13071-023-05955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/28/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Histone acetylation is involved in the regulation of stress responses in multiple organisms. Dermacentor silvarum is an important vector tick species widely distributed in China, and low temperature is a crucial factor restricting the development of its population. However, knowledge of the histone acetyltransferases and epigenetic mechanisms underlying cold-stress responses in this tick species is limited. METHODS Histone acetyltransferase genes were characterized in D. silvarum, and their relative expressions were determined using qPCR during cold stress. The association and modulation of histone acetyltransferase genes were further explored using RNA interference, and both the H3K9 acetylation level and relative expression of KAT5 protein were evaluated using western blotting. RESULTS Three histone acetyltransferase genes were identified and named as DsCREBBP, DsKAT6B, and DsKAT5. Bioinformatics analysis showed that they were unstable hydrophilic proteins, characterized by the conserved structures of CBP (ZnF_TAZ), PHA03247 super family, Creb_binding, and MYST(PLN00104) super family. Fluorescence quantitative PCR showed that the expression of DsCREBBP, DsKAT6B, and DsKAT5 increased after 3 days of cold treatment, with subsequent gradual decreases, and was lowest on day 9. Western blotting showed that both the H3K9 acetylation level and relative expression of KAT5 in D. silvarum increased after treatment at - 4, 4, and 8 °C for 3 and 6 days, whereas they decreased significantly after a 9-day treatment. RNA interference induced significant gene silencing, and the mortality rate of D. silvarum significantly increased at the respective semi-lethal temperatures. CONCLUSION These results imply that histone acetyltransferases play an important role in tick adaptation to low temperatures and lay a foundation for further understanding of the epigenetic regulation of histone acetylation in cold-stressed ticks. Further research is needed to elucidate the mechanisms underlying histone acetylation during cold stress in ticks.
Collapse
Affiliation(s)
- Tingwei Pei
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Tianai Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Miao Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Chuks F. Nwanade
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN USA
| | - Ruotong Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Zihao Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Ruwei Bai
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 China
| |
Collapse
|
54
|
Zu G, Sun Z, Chen Y, Geng J, Lv J, You Z, Jiang C, Sheng Q, Nie Z. The acetyltransferase BmCBP changes the acetylation modification of BmSP3 and affects its protein expression in silkworm, Bombyx mori. Mol Biol Rep 2023; 50:8509-8521. [PMID: 37642757 DOI: 10.1007/s11033-023-08699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Protein acetylation is an important post-translational modification (PTM) that widely exists in organisms. As a reversible PTM, acetylation modification can regulate the function of proteins with high efficiency. In the previous study, the acetylation sites of silkworm proteins were identified on a large scale by nano-HPLC/MS/MS (nanoscale high performance liquid chromatography-tandem secondary mass spectrometry), and a total of 11 acetylation sites were discovered on Bombyx mori nutrient-storage protein SP3 (BmSP3). The purpose of this study was to investigate the effect of acetylation level on BmSP3. METHODS AND RESULTS In this study, the acetylation of BmSP3 was further verified by immunoprecipitation (IP) and Western blotting. Then, it was confirmed that acetylation could up-regulate the expression of BmSP3 by improving its protein stability in BmN cells. Co-IP and RNAi experiments showed acetyltransferase BmCBP could bind to BmSP3 and catalyze its acetylation modification, then regulate the expression of BmSP3. Furthermore, the knock-down of BmCBP could improve the ubiquitination level of BmSP3. Both acetylation and ubiquitination occur on the side chain of lysine residues, therefore, we speculated that the acetylation of BmSP3 catalyzed by BmCBP could competitively inhibit its ubiquitination modification and improve its protein stability by inhibiting ubiquitin-mediated proteasome degradation pathway, and thereby increase the expression and intracellular accumulation. CONCLUSIONS BmCBP catalyzes the acetylation of BmSP3 and may improve the stability of BmSP3 by competitive ubiquitination. This conclusion provides a new functional basis for the extensive involvement of acetylation in the regulation of nutrient storage and utilization in silkworm, Bombyx mori.
Collapse
Affiliation(s)
- Guowei Zu
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Zihan Sun
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Yanmei Chen
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Jiasheng Geng
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Jiao Lv
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Zhengying You
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Caiying Jiang
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China
| | - Zuoming Nie
- College of Life Sciences and Medicine, Zhejiang provincial key laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| |
Collapse
|
55
|
Xiang Y, Mou C, Shi K, Chen X, Meng X, Bao W, Chen Z. SADS-CoV nsp1 inhibits the IFN-β production by preventing TBK1 phosphorylation and inducing CBP degradation. J Med Virol 2023; 95:e29104. [PMID: 37721411 DOI: 10.1002/jmv.29104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/07/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Swine acute diarrhea syndrome (SADS) is first reported in January 2017 in Southern China. It subsequently causes widespread outbreaks in multiple pig farms, leading to economic losses. Therefore, it is an urgent to understand the molecular mechanisms underlying the pathogenesis and immune evasion of Swine acute diarrhea syndrome coronavirus (SADS-CoV). Our research discovered that SADS-CoV inhibited the production of interferon-β (IFN-β) during viral infection. The nonstructural protein 1 (nsp1) prevented the phosphorylation of TBK1 by obstructing the interaction between TBK1 and Ub protein. Moreover, nsp1 induced the degradation of CREB-binding protein (CBP) through the proteasome-dependent pathway, thereby disrupting the IFN-β enhancer and inhibiting IFN transcription. Finally, we identified nsp1-Phe39 as the critical amino acid that downregulated IFN production. In conclusion, our findings described two mechanisms in nsp1 that inhibited IFN production and provided new insights into the evasion strategy adopted by SADS-CoV to evade host antiviral immunity.
Collapse
Affiliation(s)
- Yingjie Xiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety,The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kaichuang Shi
- Guangxi Center for Animal Disease Control and Prevention, Nanning, Guangxi, China
| | - Xiang Chen
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety,The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
56
|
Gioukaki C, Georgiou A, Gkaralea LE, Kroupis C, Lazaris AC, Alamanis C, Thomopoulou GE. Unravelling the Role of P300 and TMPRSS2 in Prostate Cancer: A Literature Review. Int J Mol Sci 2023; 24:11299. [PMID: 37511059 PMCID: PMC10379122 DOI: 10.3390/ijms241411299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer is one of the most common malignant diseases in men, and it contributes significantly to the increased mortality rate in men worldwide. This study aimed to review the roles of p300 and TMPRSS2 (transmembrane protease, serine 2) in the AR (androgen receptor) pathway as they are closely related to the development and progression of prostate cancer. This paper represents a library-based study conducted by selecting the most suitable, up-to-date scientific published articles from online journals. We focused on articles that use similar techniques, particularly those that use prostate cancer cell lines and immunohistochemical staining to study the molecular impact of p300 and TMPRSS2 in prostate cancer specimens. The TMPRSS2:ERG fusion is considered relevant to prostate cancer, but its association with the development and progression as well as its clinical significance have not been fully elucidated. On the other hand, high p300 levels in prostate cancer biopsies predict larger tumor volumes, extraprostatic extension of disease, and seminal vesicle involvement at prostatectomy, and may be associated with prostate cancer progression after surgery. The inhibition of p300 has been shown to reduce the proliferation of prostate cancer cells with TMPRSS2:ETS (E26 transformation-specific) fusions, and combining p300 inhibitors with other targeted therapies may increase their efficacy. Overall, the interplay between the p300 and TMPRSS2 pathways is an active area of research.
Collapse
Affiliation(s)
- Charitomeni Gioukaki
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Alexandros Georgiou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Christos Kroupis
- Department of Clinical Biochemistry, Attikon University Hospital, National and Kapodistrian University of Athens, 12461 Athens, Greece
| | - Andreas C Lazaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Alamanis
- 1st Urology Department, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Eleni Thomopoulou
- Cytopathology Department, Attikon University Hospital, National and Kapodistrian University of Athens, 12461 Athens, Greece
| |
Collapse
|
57
|
Pike JW, Lee SM, Meyer MB. Molecular insights into mineralotropic hormone inter-regulation. Front Endocrinol (Lausanne) 2023; 14:1213361. [PMID: 37441497 PMCID: PMC10334211 DOI: 10.3389/fendo.2023.1213361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The regulation of mineral homeostasis involves the three mineralotropic hormones PTH, FGF23 and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Early research efforts focused on PTH and 1,25(OH)2D3 and more recently on FGF23 have revealed that each of these hormones regulates the expression of the other two. Despite early suggestions of transcriptional processes, it has been only recently that research effort have begun to delineate the genomic mechanisms underpinning this regulation for 1,25(OH)2D3 and FGF23; the regulation of PTH by 1,25(OH)2D3, however, remains obscure. We review here our molecular understanding of how PTH induces Cyp27b1 expression, the gene encoding the enzyme responsible for the synthesis of 1,25(OH)2D3. FGF23 and 1,25(OH)2D3, on the other hand, function by suppressing production of 1,25(OH)2D3. PTH stimulates the PKA-induced recruitment of CREB and its coactivator CBP at CREB occupied sites within the kidney-specific regulatory regions of Cyp27b1. PKA activation also promotes the nuclear translocation of SIK bound coactivators such as CRTC2, where it similarly interacts with CREB occupied Cyp27b1 sites. The negative actions of both FGF23 and 1,25(OH)2D3 appear to suppress Cyp27b1 expression by opposing the recruitment of CREB coactivators at this gene. Reciprocal gene actions are seen at Cyp24a1, the gene encoding the enzyme that degrades 1,25(OH)2D3, thereby contributing to the overall regulation of blood levels of 1,25(OH)2D3. Relative to PTH regulation, we summarize what is known of how 1,25(OH)2D3 regulates PTH suppression. These studies suggest that it is not 1,25(OH)2D3 that controls PTH levels in healthy subjects, but rather calcium itself. Finally, we describe current progress using an in vivo approach that furthers our understanding of the regulation of Fgf23 expression by PTH and 1,25(OH)2D3 and provide the first evidence that P may act to induce Fgf23 expression via a complex transcriptional mechanism in bone. It is clear, however, that additional advances will need to be made to further our understanding of the inter-regulation of each of these hormonal genes.
Collapse
Affiliation(s)
- J. Wesley Pike
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Seong Min Lee
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Mark B. Meyer
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
58
|
Amin SA, Khatun S, Gayen S, Das S, Jha T. Are inhibitors of histone deacetylase 8 (HDAC8) effective in hematological cancers especially acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL)? Eur J Med Chem 2023; 258:115594. [PMID: 37429084 DOI: 10.1016/j.ejmech.2023.115594] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
Histone deacetylase 8 (HDAC8) aberrantly deacetylates histone and non-histone proteins. These include structural maintenance of chromosome 3 (SMC3) cohesin protein, retinoic acid induced 1 (RAI1), p53, etc and thus, regulating diverse processes such as leukemic stem cell (LSC) transformation and maintenance. HDAC8, one of the crucial HDACs, affects the gene silencing process in solid and hematological cancer progressions especially on acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). A specific HDAC8 inhibitor PCI-34051 showed promising results against both T-cell lymphoma and AML. Here, we summarize the role of HDAC8 in hematological malignancies, especially in AML and ALL. This article also introduces the structure/function of HDAC8 and a special attention has been paid to address the HDAC8 enzyme selectivity issue in hematological cancer especially against AML and ALL.
Collapse
Affiliation(s)
- Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India; Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal, India.
| | - Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Sanjib Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
59
|
Dahlgren M, Lettiero B, Dalal H, Mårtensson K, Gaber A, Nodin B, Gruvberger-Saal SK, Saal LH, Howlin J. CITED1 as a marker of favourable outcome in anti-endocrine treated, estrogen-receptor positive, lymph-node negative breast cancer. BMC Res Notes 2023; 16:105. [PMID: 37322548 PMCID: PMC10268435 DOI: 10.1186/s13104-023-06376-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
OBJECTIVE To investigate CITED1 as a potential biomarker of anti-endocrine response and breast cancer recurrence, given its previously determined role in mediating estrogen-dependant transcription. The study is a continuation of earlier work establishing the role of CITED1 in mammary gland development. RESULTS CITED1 mRNA is associated with estrogen-receptor positivity and selectively expressed in the GOBO dataset of cell lines and tumours representing the luminal-molecular subtype. In patients treated with tamoxifen, higher CITED1 correlated with better outcome, suggesting a role in anti-estrogen response. The effect was particularly evident in the subset of estrogen-receptor positive, lymph-node negative (ER+/LN-) patients although noticeable divergence of the groups was apparent only after five years. Tissue microarray (TMA) analysis further validated the association of CITED1 protein, by immunohistochemistry, with favourable outcome in ER+, tamoxifen-treated patients. Although we also found a favourable response to anti-endocrine treatment in a larger TCGA dataset, the tamoxifen-specific effect was not replicated. Finally, MCF7 cells overexpressing CITED1 showed selective amplification of AREG but not TGFα suggesting that maintenance of specific ERα-CITED1 mediated transcription is important for the long-term response to anti-endocrine therapy. These findings together confirm the proposed mechanism of action of CITED1 and support its potential use as a prognostic biomarker.
Collapse
Affiliation(s)
- Malin Dahlgren
- Translational Oncogenomics, Faculty of Medicine, Department of Clinical Sciences Lund and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Barbara Lettiero
- Translational Oncogenomics, Faculty of Medicine, Department of Clinical Sciences Lund and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Hina Dalal
- Translational Oncogenomics, Faculty of Medicine, Department of Clinical Sciences Lund and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Kira Mårtensson
- Translational Oncogenomics, Faculty of Medicine, Department of Clinical Sciences Lund and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Alexander Gaber
- Therapeutic Pathology, Faculty of Medicine, Department of Clinical Sciences Lund and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Björn Nodin
- Therapeutic Pathology, Faculty of Medicine, Department of Clinical Sciences Lund and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Sofia K Gruvberger-Saal
- Translational Oncogenomics, Faculty of Medicine, Department of Clinical Sciences Lund and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Lao H Saal
- Translational Oncogenomics, Faculty of Medicine, Department of Clinical Sciences Lund and Lund University Cancer Center, Lund University, Lund, Sweden
| | - Jillian Howlin
- Translational Oncogenomics, Faculty of Medicine, Department of Clinical Sciences Lund and Lund University Cancer Center, Lund University, Lund, Sweden.
| |
Collapse
|
60
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
61
|
Pasqualucci L. The germinal center in the pathogenesis of B cell lymphomas. Hematol Oncol 2023; 41 Suppl 1:62-69. [PMID: 37294970 DOI: 10.1002/hon.3141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
The adaptive immune system has evolved to allow effective responses against a virtually unlimited number of invading pathogens. This process requires the transient formation of germinal centers (GC), a dynamic environment that ensures the generation and selection of B cells capable to produce antibodies with high antigen affinity, or to maintain the memory of that antigen for life. However, this comes at a cost, as the unique events accompanying the GC reaction pose a significant risk to the genome of B cells, which must endure elevated levels of replication stress, while proliferating at high rates and undergoing DNA breaks introduced by somatic hypermutation and class switch recombination. Indeed, the genetic/epigenetic disruption of programs implicated in normal GC biology has emerged as a hallmark of most B cell lymphomas. This improved understanding provides a conceptual framework for the identification of cellular pathways that could be exploited for precision medicine approaches.
Collapse
Affiliation(s)
- Laura Pasqualucci
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| |
Collapse
|
62
|
Barreto-Galvez A, Niljikar M, Gagliardi J, Zhang R, Kumar V, Juruwala A, Pradeep A, Shaikh A, Tiwari P, Sharma K, Gerhardt J, Cao J, Kataoka K, Durbin A, Qi J, Ye BH, Madireddy A. Acetyl transferase EP300 deficiency leads to chronic replication stress mediated by defective fork protection at stalled replication forks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.29.538781. [PMID: 37163075 PMCID: PMC10168362 DOI: 10.1101/2023.04.29.538781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mutations in the epigenetic regulator and global transcriptional activator, E1A binding protein (EP300), is being increasingly reported in aggressive hematological malignancies including adult T-cell leukemia/lymphoma (ATLL). However, the mechanistic contribution of EP300 dysregulation to cancer initiation and progression are currently unknown. Independent inhibition of EP300 in human cells results in the differential expression of genes involved in regulating the cell cycle, DNA replication and DNA damage response. Nevertheless, specific function played by EP300 in DNA replication initiation, progression and replication fork integrity has not been studied. Here, using ATLL cells as a model to study EP300 deficiency and an p300-selective PROTAC degrader, degrader as a pharmacologic tool, we reveal that EP300-mutated cells display prolonged cell cycle kinetics, due to pronounced dysregulations in DNA replication dynamics leading to persistent genomic instability. Aberrant DNA replication in EP300-mutated cells is characterized by elevated replication origin firing due to increased replisome pausing genome-wide. We demonstrate that EP300 deficiency results in nucleolytic degradation of nascently synthesized DNA at stalled forks due to a prominent defect in fork stabilization and protection. This in turn results in the accumulation of single stranded DNA gaps at collapsed replication forks, in EP300-deficient cells. Inhibition of Mre11 nuclease rescues the ssDNA accumulation indicating a dysregulation in downstream mechanisms that restrain nuclease activity at stalled forks. Importantly, we find that the absence of EP300 results in decreased expression of BRCA2 protein expression and a dependency on POLD3-mediated error-prone replication restart mechanisms. The overall S-phase abnormalities observed lead to under-replicated DNA in G2/M that instigates mitotic DNA synthesis. This in turn is associated with mitotic segregation defects characterized by elevated micronuclei formation, accumulation of cytosolic DNA and transmission of unrepaired inherited DNA lesions in the subsequent G1-phase in EP300-deficient cells. We demonstrate that the DNA replication dynamics of EP300-mutated cells ATLL cells recapitulate features of BRCA-deficient cancers. Altogether these results suggest that mutations in EP300 cause chronic DNA replication stress and defective replication fork restart results in persistent genomic instability that underlie aggressive chemo-resistant tumorigenesis in humans.
Collapse
|
63
|
Sato N, Suetaka S, Hayashi Y, Arai M. Rational peptide design for inhibition of the KIX-MLL interaction. Sci Rep 2023; 13:6330. [PMID: 37072438 PMCID: PMC10113271 DOI: 10.1038/s41598-023-32848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023] Open
Abstract
The kinase-inducible domain interacting (KIX) domain is an integral part of the general transcriptional coactivator CREB-binding protein, and has been associated with leukemia, cancer, and various viral diseases. Hence, the KIX domain has attracted considerable attention in drug discovery and development. Here, we rationally designed a KIX inhibitor using a peptide fragment corresponding to the transactivation domain (TAD) of the transcriptional activator, mixed-lineage leukemia protein (MLL). We performed theoretical saturation mutagenesis using the Rosetta software to search for mutants expected to bind KIX more tightly than the wild-type MLL TAD. Mutant peptides with higher helical propensities were selected for experimental characterization. We found that the T2857W mutant of the MLL TAD peptide had the highest binding affinity for KIX compared to the other 12 peptides designed in this study. Moreover, the peptide had a high inhibitory effect on the KIX-MLL interaction with a half-maximal inhibitory concentration close to the dissociation constant for this interaction. To our knowledge, this peptide has the highest affinity for KIX among all previously reported inhibitors that target the MLL site of KIX. Thus, our approach may be useful for rationally developing helical peptides that inhibit protein-protein interactions implicated in the progression of various diseases.
Collapse
Affiliation(s)
- Nao Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Shunji Suetaka
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Yuuki Hayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
- Environmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
- Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|
64
|
Kim T, Nosella M, Bolik-Coulon N, Harkness R, Huang S, Kay L. Correlating histone acetylation with nucleosome core particle dynamics and function. Proc Natl Acad Sci U S A 2023; 120:e2301063120. [PMID: 37011222 PMCID: PMC10104578 DOI: 10.1073/pnas.2301063120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Epigenetic modifications of chromatin play a critical role in regulating the fidelity of the genetic code and in controlling the translation of genetic information into the protein components of the cell. One key posttranslational modification is acetylation of histone lysine residues. Molecular dynamics simulations, and to a smaller extent experiment, have established that lysine acetylation increases the dynamics of histone tails. However, a systematic, atomic resolution experimental investigation of how this epigenetic mark, focusing on one histone at a time, influences the structural dynamics of the nucleosome beyond the tails, and how this translates into accessibility of protein factors such as ligases and nucleases, has yet to be performed. Herein, using NMR spectroscopy of nucleosome core particles (NCPs), we evaluate the effects of acetylation of each histone on tail and core dynamics. We show that for histones H2B, H3, and H4, the histone core particle dynamics are little changed, even though the tails have increased amplitude motions. In contrast, significant increases to H2A dynamics are observed upon acetylation of this histone, with the docking domain and L1 loop particularly affected, correlating with increased susceptibility of NCPs to nuclease digestion and more robust ligation of nicked DNA. Dynamic light scattering experiments establish that acetylation decreases inter-NCP interactions in a histone-dependent manner and facilitates the development of a thermodynamic model for NCP stacking. Our data show that different acetylation patterns result in nuanced changes to NCP dynamics, modulating interactions with other protein factors, and ultimately controlling biological output.
Collapse
Affiliation(s)
- Tae Hun Kim
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Michael L. Nosella
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Nicolas Bolik-Coulon
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Robert W. Harkness
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Shuya Kate Huang
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Lewis E. Kay
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| |
Collapse
|
65
|
Moena D, Vargas E, Montecino M. Epigenetic regulation during 1,25-dihydroxyvitamin D 3-dependent gene transcription. VITAMINS AND HORMONES 2023; 122:51-74. [PMID: 36863801 DOI: 10.1016/bs.vh.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Multiple evidence accumulated over the years, demonstrates that vitamin D-dependent physiological control in vertebrates occurs primarily through the regulation of target gene transcription. In addition, there has been an increasing appreciation of the role of the chromatin organization of the genome on the ability of the active form of vitamin D, 1,25(OH)2D3, and its specific receptor VDR to regulate gene expression. Chromatin structure in eukaryotic cells is principally modulated through epigenetic mechanisms including, but not limited to, a wide number of post-translational modifications of histone proteins and ATP-dependent chromatin remodelers, which are operative in different tissues during response to physiological cues. Hence, there is necessity to understand in depth the epigenetic control mechanisms that operate during 1,25(OH)2D3-dependent gene regulation. This chapter provides a general overview about epigenetic mechanisms functioning in mammalian cells and discusses how some of these mechanisms represent important components during transcriptional regulation of the model gene system CYP24A1 in response to 1,25(OH)2D3.
Collapse
Affiliation(s)
- Daniel Moena
- School of Bachelor in Science, Faculty of Life Sciences, Universidad Andres Bello, Concepcion, Chile
| | - Esther Vargas
- School of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Martin Montecino
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad Andres Bello, Santiago, Chile; Millenium Institute Center for Genome Regulation (CRG), Santiago, Chile.
| |
Collapse
|
66
|
The PIK3CA-E545K-SIRT4 signaling axis reduces radiosensitivity by promoting glutamine metabolism in cervical cancer. Cancer Lett 2023; 556:216064. [PMID: 36646410 DOI: 10.1016/j.canlet.2023.216064] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The mutation of glutamic acid 545 to lysine (E545K) in PIK3CA, as the most common missense mutation of this gene in various cancer types, is frequently observed in cervical cancer and has been shown to reduce cervical cancer radiosensitivity. However, the underlying mechanisms remain unclear. Here, we implicate the alterations of glutamine metabolism in PIK3CA-E545K-mediated radioresistance of cervical cancer. Specifically, PIK3CA mutation negatively regulated the expression of SIRT4 via the epigenetic regulator EP300 independently of the canonical mTORC1 pathway. PIK3CA-E545K-induced SIRT4 downregulation promoted cell proliferation, migration, and radiation-induced DNA repair and apoptosis, while SIRT4 overexpression reversed the radioresistance phenotype mediated by PIK3CA mutation. Mechanistically, SIRT4 modulated glutamine metabolism and thus cellular apoptosis by negatively regulating a glutamate pyruvate transaminase GPT1. Moreover, the PI3K inhibitor BYL719, but not mTOR inhibitors, exerted remarkable synergistic effects with radiotherapy by inhibiting glutamine metabolism in vitro and in vivo. Collectively, this study reveals the role of PIK3CA-E545K-SIRT4 axis in regulating glutamine metabolism and the radioresistance in cervical cancer, which provides a necessary preliminary basis for clinical research of PI3K inhibitors as radiosensitizing agents.
Collapse
|
67
|
Qualls D, Noy A, Straus D, Matasar M, Moskowitz C, Seshan V, Dogan A, Salles G, Younes A, Zelenetz AD, Batlevi CL. Molecularly targeted epigenetic therapy with mocetinostat in relapsed and refractory non-Hodgkin lymphoma with CREBBP or EP300 mutations: an open label phase II study. Leuk Lymphoma 2023; 64:738-741. [PMID: 36642966 PMCID: PMC10841916 DOI: 10.1080/10428194.2022.2164194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/17/2023]
Affiliation(s)
- David Qualls
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ariela Noy
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David Straus
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Matthew Matasar
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Craig Moskowitz
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Venkatraman Seshan
- Department of Epidemiology and Biostatistics, Biostatistics Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gilles Salles
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Anas Younes
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew D Zelenetz
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Connie Lee Batlevi
- Department of Medicine, Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
68
|
Effects of the Acetyltransferase p300 on Tumour Regulation from the Novel Perspective of Posttranslational Protein Modification. Biomolecules 2023; 13:biom13030417. [PMID: 36979352 PMCID: PMC10046601 DOI: 10.3390/biom13030417] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
p300 acts as a transcription coactivator and an acetyltransferase that plays an important role in tumourigenesis and progression. In previous studies, it has been confirmed that p300 is an important regulator in regulating the evolution of malignant tumours and it also has extensive functions. From the perspective of non-posttranslational modification, it has been proven that p300 can participate in regulating many pathophysiological processes, such as activating oncogene transcription, promoting tumour cell growth, inducing apoptosis, regulating immune function and affecting embryo development. In recent years, p300 has been found to act as an acetyltransferase that catalyses a variety of protein modification types, such as acetylation, propanylation, butyylation, 2-hydroxyisobutyration, and lactylation. Under the catalysis of this acetyltransferase, it plays its crucial tumourigenic driving role in many malignant tumours. Therefore, the function of p300 acetyltransferase has gradually become a research hotspot. From a posttranslational modification perspective, p300 is involved in the activation of multiple transcription factors and additional processes that promote malignant biological behaviours, such as tumour cell proliferation, migration, and invasion, as well as tumour cell apoptosis, drug resistance, and metabolism. Inhibitors of p300 have been developed and are expected to become novel anticancer drugs for several malignancies. We review the characteristics of the p300 protein and its functional role in tumour from the posttranslational modification perspective, as well as the current status of p300-related inhibitor research, with a view to gaining a comprehensive understanding of p300.
Collapse
|
69
|
Carrasco Pro S, Hook H, Bray D, Berenzy D, Moyer D, Yin M, Labadorf AT, Tewhey R, Siggers T, Fuxman Bass JI. Widespread perturbation of ETS factor binding sites in cancer. Nat Commun 2023; 14:913. [PMID: 36808133 PMCID: PMC9938127 DOI: 10.1038/s41467-023-36535-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Although >90% of somatic mutations reside in non-coding regions, few have been reported as cancer drivers. To predict driver non-coding variants (NCVs), we present a transcription factor (TF)-aware burden test based on a model of coherent TF function in promoters. We apply this test to NCVs from the Pan-Cancer Analysis of Whole Genomes cohort and predict 2555 driver NCVs in the promoters of 813 genes across 20 cancer types. These genes are enriched in cancer-related gene ontologies, essential genes, and genes associated with cancer prognosis. We find that 765 candidate driver NCVs alter transcriptional activity, 510 lead to differential binding of TF-cofactor regulatory complexes, and that they primarily impact the binding of ETS factors. Finally, we show that different NCVs within a promoter often affect transcriptional activity through shared mechanisms. Our integrated computational and experimental approach shows that cancer NCVs are widespread and that ETS factors are commonly disrupted.
Collapse
Affiliation(s)
| | - Heather Hook
- Department of Biology, Boston University, Boston, MA, USA
| | - David Bray
- Bioinformatics Program, Boston University, Boston, MA, USA
| | | | - Devlin Moyer
- Bioinformatics Program, Boston University, Boston, MA, USA
| | - Meimei Yin
- Department of Biology, Boston University, Boston, MA, USA
| | - Adam Thomas Labadorf
- Bioinformatics Hub, Boston University, Boston, MA, USA
- Boston University School of Medicine, Department of Neurology, Boston, MA, USA
| | | | - Trevor Siggers
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Biology, Boston University, Boston, MA, USA.
- Biological Design Center, Boston University, Boston, MA, USA.
| | - Juan Ignacio Fuxman Bass
- Bioinformatics Program, Boston University, Boston, MA, USA.
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
70
|
Development and Validation of a Prognostic Signature Based on the Lysine Crotonylation Regulators in Head and Neck Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4444869. [PMID: 36814797 PMCID: PMC9940974 DOI: 10.1155/2023/4444869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 02/16/2023]
Abstract
Background Lysine crotonylation (Kcr) is a newly identified posttranslational modification type regulated by various enzymes and coenzymes, including lysine crotonyltransferase, lysine decrotonylase, and binding proteins. However, the role of Kcr regulators in head and neck squamous cell carcinoma (HNSCC) remains unknown. The aim of this study was to establish and validate a Kcr-related prognostic signature of HNSCC and to assess the clinical predictive value of this signature. Methods The mRNA expression profiles and clinicopathological data from The Cancer Genome Atlas (TCGA) database were downloaded to explore the clinical significance and prognostic value of these regulators in HNSCC. The least absolute shrinkage and selection operator (LASSO) Cox regression model was used to generate the Kcr-related prognostic signature for HNSCC. Subsequently, the GSE65858 dataset from the Gene Expression Omnibus (GEO) database was used to validate the signature. The prognostic value of the signature was evaluated using the Kaplan-Meier survival, receiver operating characteristic (ROC) curve, and univariate and multivariate Cox regression analyses. Results We established a nine-gene risk signature associated with the prognosis of HNSCC based on Kcr regulators. High-risk patients demonstrated significantly poorer overall survival (OS) than low-risk patients in the training (TCGA) and validation (GEO) datasets. Then, the time-dependent receiver operating characteristic (ROC) curve analysis showed that the nine-gene risk signature was more accurate for predicting the 5-year OS than other clinical parameters, including age, gender, T stage, N stage, and histologic grade in the TCGA and GEO datasets. Moreover, the Cox regression analysis showed that the constructed risk signature was an independent risk factor for HNSCC. Conclusion Our study identified and validated a nine-gene signature for HNSCC based on Kcr regulators. These results might contribute to prognosis stratification and treatment escalation for HNSCC patients.
Collapse
|
71
|
Ramatchandirin B, Pearah A, He L. Regulation of Liver Glucose and Lipid Metabolism by Transcriptional Factors and Coactivators. Life (Basel) 2023; 13:life13020515. [PMID: 36836874 PMCID: PMC9962321 DOI: 10.3390/life13020515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) worldwide is on the rise and NAFLD is becoming the most common cause of chronic liver disease. In the USA, NAFLD affects over 30% of the population, with similar occurrence rates reported from Europe and Asia. This is due to the global increase in obesity and type 2 diabetes mellitus (T2DM) because patients with obesity and T2DM commonly have NAFLD, and patients with NAFLD are often obese and have T2DM with insulin resistance and dyslipidemia as well as hypertriglyceridemia. Excessive accumulation of triglycerides is a hallmark of NAFLD and NAFLD is now recognized as the liver disease component of metabolic syndrome. Liver glucose and lipid metabolisms are intertwined and carbon flux can be used to generate glucose or lipids; therefore, in this review we discuss the important transcription factors and coactivators that regulate glucose and lipid metabolism.
Collapse
Affiliation(s)
| | - Alexia Pearah
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ling He
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Baltimore, MD 21287, USA
- Correspondence: ; Tel.: +1-410-502-5765; Fax: +1-410-502-5779
| |
Collapse
|
72
|
Liu M, Zhang K, Li Q, Pang H, Pan Z, Huang X, Wang L, Wu F, He G. Recent Advances on Small-Molecule Bromodomain-Containing Histone Acetyltransferase Inhibitors. J Med Chem 2023; 66:1678-1699. [PMID: 36695774 DOI: 10.1021/acs.jmedchem.2c01638] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In recent years, substantial research has been conducted on molecular mechanisms and inhibitors targeting bromodomains (BRDs) and extra-terminal (BET) family proteins. On this basis, non-BET BRD is gradually becoming a research hot spot. BRDs are abundant in histone acetyltransferase (HAT)-associated activating transcription factors, and BRD-containing HATs have been linked to cancer, inflammation, and viral replication. Therefore, the development of BRD-containing HATs as chemical probes is useful for understanding the specific biological roles of BRDs in diseases and drug discovery. Several types of BRD-containing HATs, including CBP/P300, PCAF/GCN5, and TAF1, are discussed in this context in terms of their structures, functions, and small-molecule inhibitors. Additionally, progress in BRD inhibitors/chemical probes and proteolysis targeting chimeras in terms of drug design, biological activity, and disease application are summarized. These findings provide insights into the development of BRD inhibitors as potential drug candidates for various diseases.
Collapse
Affiliation(s)
- Mingxia Liu
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Kaiyao Zhang
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Qinjue Li
- West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Haiying Pang
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zhaoping Pan
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xiaowei Huang
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Lian Wang
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Fengbo Wu
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Gu He
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
73
|
Hu C, Bugbee T, Palinski R, Akinyemi IA, McIntosh MT, MacCarthy T, Bhaduri-McIntosh S, Wallace N. Beta human papillomavirus 8E6 promotes alternative end joining. eLife 2023; 12:e81923. [PMID: 36692284 PMCID: PMC9897725 DOI: 10.7554/elife.81923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
Double strand breaks (DSBs) are one of the most lethal DNA lesions in cells. The E6 protein of beta-human papillomavirus (HPV8 E6) impairs two critical DSB repair pathways: homologous recombination (HR) and non-homologous end joining (NHEJ). However, HPV8 E6 only delays DSB repair. How DSBs are repaired in cells with HPV8 E6 remains to be studied. We hypothesize that HPV8 E6 promotes a less commonly used DSB repair pathway, alternative end joining (Alt-EJ). Using CAS9-based Alt-EJ reporters, we show that HPV8 E6 promotes Alt-EJ. Further, using small molecule inhibitors, CRISPR/CAS9 gene knockout, and HPV8 E6 mutant, we find that HPV8 E6 promotes Alt-EJ by binding p300, an acetyltransferase that facilitates DSB repair by HR and NHEJ. At least some of this repair occurs through a subset of Alt-EJ known as polymerase theta dependent end joining. Finally, whole genome sequencing analysis showed HPV8 E6 caused an increased frequency of deletions bearing the microhomology signatures of Alt-EJ. This study fills the knowledge gap of how DSB is repaired in cells with HPV8 E6 and the mutagenic consequences of HPV8 E6 mediated p300 destabilization. Broadly, this study supports the hypothesis that beta-HPV promotes cancer formation by increasing genomic instability.
Collapse
Affiliation(s)
- Changkun Hu
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Division of Biology, Kansas State UniversityManhattanUnited States
| | - Taylor Bugbee
- Division of Biology, Kansas State UniversityManhattanUnited States
| | - Rachel Palinski
- Veterinary Diagnostic Laboratory, Kansas State UniversityManhattanUnited States
| | - Ibukun A Akinyemi
- Child Health Research Institute, Department of Pediatrics, University of FloridaGainesvilleUnited States
- Department of Molecular Genetics and Microbiology, University of FloridaGainesvilleUnited States
| | - Michael T McIntosh
- Child Health Research Institute, Department of Pediatrics, University of FloridaGainesvilleUnited States
| | - Thomas MacCarthy
- Laufer Center for Physical and Quantitative Biology, Stony Brook UniversityStony BrookUnited States
| | - Sumita Bhaduri-McIntosh
- Child Health Research Institute, Department of Pediatrics, University of FloridaGainesvilleUnited States
- Department of Molecular Genetics and Microbiology, University of FloridaGainesvilleUnited States
| | - Nicholas Wallace
- Division of Biology, Kansas State UniversityManhattanUnited States
| |
Collapse
|
74
|
Luo M, Zhang Y, Xu Z, Lv S, Wei Q, Dang Q. Experimental analysis of bladder cancer-associated mutations in EP300 identifies EP300-R1627W as a driver mutation. Mol Med 2023; 29:7. [PMID: 36647005 PMCID: PMC9843983 DOI: 10.1186/s10020-023-00608-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Bladder cancer (BCa) is the most common malignant tumor of the urinary system, with transitional cell carcinoma (TCC) being the predominant type. EP300 encodes a lysine acetyltransferase that regulates a large subset of genes by acetylating histones and non-histone proteins. We previously identified several bladder cancer-associated mutations in EP300 using high-throughput sequencing; however, the functional consequences of these mutations remain unclear. METHODS Bladder cancer cells T24 and TCC-SUP were infected with shEP300 lentiviruses to generate stable EP300 knockdown cell lines. The expression levels of EP300, p16 and p21 were detected by real-time PCR and western blots. The transcriptional activity of p16 and p21 were detected by dual luciferase assay. Cell proliferation assay, flow cytometric analyses of cell cycle, invasion assay and xenograft tumor model were used to measure the effect of EP300-R1627W mutation in bladder cancer. Immunoprecipitation was used to explore the relationship between EP300-R1627W mutation and p53. Structural analysis was used to detect the structure of EP300-R1627W protein compared to EP300-wt protein. RESULTS we screened the mutations of EP300 and found that the EP300-R1627W mutation significantly impairs EP300 transactivation activity. Notably, we demonstrated that the R1627W mutation impairs EP300 acetyltransferase activity, potentially by interfering with substrate binding. Finally, we show that EP300-R1627W is more aggressive in growth and invasion in vitro and in vivo compared to cells expressing EP300-wt. We also found that the EP300-R1627W mutation occurs frequently in seven different types of cancers. CONCLUSION In summary, our work defines a driver role of EP300-R1627W in bladder cancer development and progression.
Collapse
Affiliation(s)
- Mayao Luo
- grid.416466.70000 0004 1757 959XDepartment of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Yifan Zhang
- grid.416466.70000 0004 1757 959XDepartment of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Zhuofan Xu
- grid.416466.70000 0004 1757 959XDepartment of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Shidong Lv
- grid.416466.70000 0004 1757 959XDepartment of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Qiang Wei
- grid.416466.70000 0004 1757 959XDepartment of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Qiang Dang
- grid.416466.70000 0004 1757 959XDepartment of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| |
Collapse
|
75
|
Kanada R, Kagoshima Y, Suzuki T, Nakamura A, Funami H, Watanabe J, Asano M, Takahashi M, Ubukata O, Suzuki K, Aikawa T, Sato K, Goto M, Setsu G, Ito K, Kihara K, Kuroha M, Kohno T, Ogiwara H, Isoyama T, Tominaga Y, Higuchi S, Naito H. Discovery of DS-9300: A Highly Potent, Selective, and Once-Daily Oral EP300/CBP Histone Acetyltransferase Inhibitor. J Med Chem 2023; 66:695-715. [PMID: 36572866 DOI: 10.1021/acs.jmedchem.2c01641] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Histone acetylation is a post-translational modification of histones that is catalyzed by histone acetyltransferases (HATs) and plays an essential role in cellular processes. The HAT domain of EP300/CBP has recently emerged as a potential drug target for cancer therapy. Here, we describe the identification of the novel, highly potent, and selective EP300/CBP HAT inhibitor DS-9300. Our optimization efforts using a structure-based drug design approach based on the cocrystal structures of the EP300 HAT domain in complex with compounds 2 and 3 led to the identification of compounds possessing low-nanomolar EP300 HAT inhibitory potency and the ability to inhibit cellular acetylation of histone H3K27. Optimization of the pharmacokinetic properties in this series resulted in compounds with excellent oral systemic exposure, and once-daily oral administration of 16 (DS-9300) demonstrated potent antitumor effects in a castrated VCaP xenograft mouse model without significant body weight loss.
Collapse
Affiliation(s)
- Ryutaro Kanada
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Yoshiko Kagoshima
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Takashi Suzuki
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Akifumi Nakamura
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Hideaki Funami
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Jun Watanabe
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Masayoshi Asano
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Mizuki Takahashi
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo134-8630, Japan
| | - Osamu Ubukata
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo134-8630, Japan
| | - Kanae Suzuki
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Tomoya Aikawa
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Kazumi Sato
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo134-8630, Japan
| | - Megumi Goto
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Genzui Setsu
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Kentaro Ito
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Kawori Kihara
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo134-8630, Japan
| | - Mutsumi Kuroha
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo134-8630, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, 1-1 Tsukiji 5-chome, Chuo-ku, Tokyo104-0045, Japan
| | - Hideaki Ogiwara
- Division of Cancer Therapeutics, National Cancer Center Research Institute, 1-1 Tsukiji 5-chome, Chuo-ku, Tokyo104-0045, Japan
| | - Takeshi Isoyama
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Yuichi Tominaga
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Saito Higuchi
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| | - Hiroyuki Naito
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo140-8710, Japan
| |
Collapse
|
76
|
XiaoHong Z, Shuo Y, GeHong D, AnChao Y, Ce W, YunYun D, Can W, SiJie H, Feng C, WenBin L. Inflammatory brain lesions preceding primary central nervous system lymphoma: a case report and genetic analysis. Neurol Sci 2023; 44:1555-1561. [PMID: 36599976 PMCID: PMC10102048 DOI: 10.1007/s10072-022-06587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Primary central nervous system lymphoma (PCNSL) is an aggressive extranodal lymphoma exclusively occurring within the central nervous system. Inflammatory brain lesions as "sentinel lesions" of PCNSL are very rare. We present a rare case of PCNSL with preceding inflammatory lesions in an immunocompetent patient who underwent two biopsies, one craniotomy and two genetic testing. CASE REPORT A 66-year-old male patient presented with left limb weakness and ataxia. Brain magnetic resonance imaging showed a contrast-enhancing lesion with perifocal brain edema in the near midline of right frontal lobe. Histological examination of a brain biopsy specimen revealed inflammatory lesion characteristics with infiltration of T-cell dominant lymphocytes and few B-cell. Given that the patient developed cerebral hematoma after biopsy, lesion resection by craniotomy was performed. An excised sample demonstrated mixed T-cell and B-cell infiltrating inflammatory lesions. Four months after total resection of the right frontal lobe lesion, another lesion appeared in the left frontal parietal lobe, which was diagnosed as diffuse large B-cell lymphoma by biopsy. In addition, genetic testing of the lesions at two different locations was performed, and the results showed that the inflammatory lesions had the same three gene (RELN, PCLO, and CREBBP) mutations as PCNSL. Interestingly, the three mutated genes are associated with tumor. CONCLUSION Our present case is the first to demonstrate inflammatory brain lesions heralding PCNSL from genetic and pathological perspectives. This may help clinicians to select new auxiliary diagnostic methods for timely diagnosis of patients with suspected PCNSL.
Collapse
Affiliation(s)
- Zheng XiaoHong
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yin Shuo
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dong GeHong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yang AnChao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wang Ce
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Duan YunYun
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wang Can
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huang SiJie
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chen Feng
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Li WenBin
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
77
|
Ibrahim Z, Wang T, Destaing O, Salvi N, Hoghoughi N, Chabert C, Rusu A, Gao J, Feletto L, Reynoird N, Schalch T, Zhao Y, Blackledge M, Khochbin S, Panne D. Structural insights into p300 regulation and acetylation-dependent genome organisation. Nat Commun 2022; 13:7759. [PMID: 36522330 PMCID: PMC9755262 DOI: 10.1038/s41467-022-35375-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Histone modifications are deposited by chromatin modifying enzymes and read out by proteins that recognize the modified state. BRD4-NUT is an oncogenic fusion protein of the acetyl lysine reader BRD4 that binds to the acetylase p300 and enables formation of long-range intra- and interchromosomal interactions. We here examine how acetylation reading and writing enable formation of such interactions. We show that NUT contains an acidic transcriptional activation domain that binds to the TAZ2 domain of p300. We use NMR to investigate the structure of the complex and found that the TAZ2 domain has an autoinhibitory role for p300. NUT-TAZ2 interaction or mutations found in cancer that interfere with autoinhibition by TAZ2 allosterically activate p300. p300 activation results in a self-organizing, acetylation-dependent feed-forward reaction that enables long-range interactions by bromodomain multivalent acetyl-lysine binding. We discuss the implications for chromatin organisation, gene regulation and dysregulation in disease.
Collapse
Affiliation(s)
- Ziad Ibrahim
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Tao Wang
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Olivier Destaing
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Nicola Salvi
- Institut de Biologie Structurale, CNRS, CEA, UGA, Grenoble, France
| | - Naghmeh Hoghoughi
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Clovis Chabert
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Alexandra Rusu
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Jinjun Gao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Leonardo Feletto
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Nicolas Reynoird
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Thomas Schalch
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Saadi Khochbin
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Daniel Panne
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
78
|
Circ-CREBBP inhibits sperm apoptosis via the PI3K-Akt signaling pathway by sponging miR-10384 and miR-143-3p. Commun Biol 2022; 5:1339. [PMID: 36476986 PMCID: PMC9729231 DOI: 10.1038/s42003-022-04263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Male reproductive diseases are becoming increasingly prominent, and sperm quality is an important indicator to reflect these diseases. Seminal plasma extracellular vesicles (SPEVs) are involved in sperm motility. However, their effects on sperm remain unclear. Here, we identified 222 differentially expressed circRNAs in SPEVs between boars with high or low sperm motility. We found that circ-CREBBP promoted sperm motility and inhibited sperm apoptosis by sponging miR-10384 and miR-143-3p. In addition, miR-10384 and miR-143-3p can regulate the expression of MCL1, CREB1 and CREBBP. Furthermore, we demonstrated that MCL1 interacted directly with BAX and that CREBBP interacted with CREB1 in sperm. We showed that inhibition of circ-CREBBP can reduce the expression of MCL1, CREB1 and CREBBP and increase the expression of BAX and CASP3, thus promoting sperm apoptosis. Our results suggest that circ-CREBBP may be a promising biomarker and therapeutic target for male reproductive diseases.
Collapse
|
79
|
Gao X, Lai Y, Luo X, Peng D, Li Q, Zhou H, Xue Y, Guo H, Zhao J, Yang H, Kuang S, Wang Z, Zhang M, Deng C, Wu S, Rao F. Acetyltransferase p300 regulates atrial fibroblast senescence and age-related atrial fibrosis through p53/Smad3 axis. Aging Cell 2022; 22:e13743. [PMID: 36468256 PMCID: PMC9835568 DOI: 10.1111/acel.13743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/30/2022] [Accepted: 11/06/2022] [Indexed: 12/09/2022] Open
Abstract
Atrial fibrosis induced by aging is one of the main causes of atrial fibrillation (AF), but the potential molecular mechanism is not clear. Acetyltransferase p300 participates in the cellular senescence and fibrosis, which might be involved in the age-related atrial fibrosis. Four microarray datasets generated from atrial tissue of AF patients and sinus rhythm (SR) controls were analyzed to find the possible relationship of p300 (EP300) with senescence and fibrosis. And then, biochemical assays and in vivo electrophysiological examination were performed on older AF patients, aging mice, and senescent atrial fibroblasts. The results showed that (1) the left atrial tissues of older AF patients, aging mouse, and senescence human atrial fibroblasts had more severe atrial fibrosis and higher protein expression levels of p300, p53/acetylated p53 (ac-p53)/p21, Smad3/p-Smads, and fibrosis-related factors. (2) p300 inhibitor curcumin and p300 knockdown treated aging mouse and senescence human atrial fibroblasts reduced the senescence ratio of atrial fibroblasts, ameliorated the atrial fibrosis, and decreased the AF inducibility. In contrast, over-expression of p300 can lead to the senescence of atrial fibroblasts and atrial fibrosis. (3) p53 knockdown decreased the expression of aging and fibrosis-related proteins. (4) Co-immunoprecipitation and immunofluorescence showed that p53 forms a complex with smad3 and directly regulates the expression of smad3 in atrial fibroblasts. Our findings suggest that the mechanism of atrial fibrosis induced by aging is, at least, partially dependent on the regulation of p300, which provides new sights into the AF treatment, especially for the elderly.
Collapse
Affiliation(s)
- Xiao‐Yan Gao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina,Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Ying‐Yu Lai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina,Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina,Department of PharmacyThe People's Hospital of HezhouHezhouChina
| | - Xue‐Shan Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina,Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - De‐Wei Peng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina,Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Qiao‐Qiao Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina,Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Hui‐Shan Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina,Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Yu‐Mei Xue
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina,Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Hui‐Ming Guo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Jun‐Fei Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Hui Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina,Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Su‐Juan Kuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina,Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Zhao‐Yu Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina,Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Meng‐Zhen Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina,Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Chun‐Yu Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina,Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Shu‐Lin Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina,Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Fang Rao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina,Provincial Key Laboratory of Clinical Pharmacology, Research Center of Medical Sciences, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| |
Collapse
|
80
|
Varier KM, Dan G, Liu W, Wu G, Xiao C, Lei H, Ling T, Jiang Y, Chen Y, Ben-David Y, Li Y, Zhang N, Gajendran B, Shen X. Stilbene B10 induces apoptosis and tumor suppression in lymphoid Raji cells by BTK-mediated regulation of the KRAS/HDAC1/EP300/PEBP1 axis. Biomed Pharmacother 2022; 156:113887. [PMID: 36274467 DOI: 10.1016/j.biopha.2022.113887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022] Open
Abstract
Lymphoma is a cancer of the lymphoid cells that originated in matured B or T cells. The bioactive natural compounds can efficiently treat this disease with lesser side effects. Thus, in this study, a natural stilbene B10 (3-methoxy 5-hydroxy stilbene) isolated from Cajanus cajan (Pigeon Pea) was screened for its anti-proliferative efficacy against 13 cancer cell lines. B10 showed a potential effect on the human lymphoma (Raji) cells. Cytotoxicity analysis of B10 has revealed IC50 concentrations in Raji cells at low doses (18 µM) than other cancer cell lines. The B10 could significantly cause dose and time-dependent inhibition in the proliferation of Raji cells triggering intrinsic apoptosis and S/G1 phase cellular arrest. There was an increased expression of phospho-γ-H2A.X and decreased expression of cyclin D1, causing DNA damage and cell cycle arrest, post- B10 treatments. The mitochondrial membrane potential (MMP) variations observed after B10 treatment led to changes in Bax/Bcl-2 ratio, cytochrome C release, and enhanced expression of cleaved caspase3, 9, PARP-1, and APAF-1. The B10 inhibited the proliferation of Raji cells by significantly downregulating the expression of KRAS, BTK, MDM2, P-JAK2, P-STAT3, PI3K, HDAC1/2, SIRT7, and EP300. The treatment upregulated the tumor suppressor genes PEBP1 and SAP18. Thus, the study could reveal the selective inhibitory effects of B10 on lymphoma, suggesting it as a probable innovative chemotherapeutic agent.
Collapse
Affiliation(s)
- Krishnapriya M Varier
- School of Pharmaceutical Sciences/State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Gou Dan
- School of Pharmaceutical Sciences/State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, PR China
| | - Wuling Liu
- School of Pharmaceutical Sciences/State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Guoping Wu
- School of Pharmaceutical Sciences/State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, PR China
| | - Chaoda Xiao
- School of Pharmaceutical Sciences/State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, PR China
| | - Huang Lei
- School of Pharmaceutical Sciences/State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Tao Ling
- School of Pharmaceutical Sciences/State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, PR China
| | - Yanping Jiang
- Department of Dermatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, PR China
| | - Ying Chen
- School of Pharmaceutical Sciences/State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, PR China
| | - Yaacov Ben-David
- School of Pharmaceutical Sciences/State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Yanmei Li
- School of Pharmaceutical Sciences/State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China.
| | - Nenling Zhang
- School of Pharmaceutical Sciences/State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, PR China.
| | - Babu Gajendran
- School of Pharmaceutical Sciences/State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China.
| | - Xiangchun Shen
- School of Pharmaceutical Sciences/State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, PR China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, PR China.
| |
Collapse
|
81
|
McKowen JK, Avva SVSP, Maharjan M, Duarte FM, Tome JM, Judd J, Wood JL, Negedu S, Dong Y, Lis JT, Hart CM. The Drosophila BEAF insulator protein interacts with the polybromo subunit of the PBAP chromatin remodeling complex. G3 (BETHESDA, MD.) 2022; 12:jkac223. [PMID: 36029240 PMCID: PMC9635645 DOI: 10.1093/g3journal/jkac223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022]
Abstract
The Drosophila Boundary Element-Associated Factor of 32 kDa (BEAF) binds in promoter regions of a few thousand mostly housekeeping genes. BEAF is implicated in both chromatin domain boundary activity and promoter function, although molecular mechanisms remain elusive. Here, we show that BEAF physically interacts with the polybromo subunit (Pbro) of PBAP, a SWI/SNF-class chromatin remodeling complex. BEAF also shows genetic interactions with Pbro and other PBAP subunits. We examine the effect of this interaction on gene expression and chromatin structure using precision run-on sequencing and micrococcal nuclease sequencing after RNAi-mediated knockdown in cultured S2 cells. Our results are consistent with the interaction playing a subtle role in gene activation. Fewer than 5% of BEAF-associated genes were significantly affected after BEAF knockdown. Most were downregulated, accompanied by fill-in of the promoter nucleosome-depleted region and a slight upstream shift of the +1 nucleosome. Pbro knockdown caused downregulation of several hundred genes and showed a correlation with BEAF knockdown but a better correlation with promoter-proximal GAGA factor binding. Micrococcal nuclease sequencing supports that BEAF binds near housekeeping gene promoters while Pbro is more important at regulated genes. Yet there is a similar general but slight reduction of promoter-proximal pausing by RNA polymerase II and increase in nucleosome-depleted region nucleosome occupancy after knockdown of either protein. We discuss the possibility of redundant factors keeping BEAF-associated promoters active and masking the role of interactions between BEAF and the Pbro subunit of PBAP in S2 cells. We identify Facilitates Chromatin Transcription (FACT) and Nucleosome Remodeling Factor (NURF) as candidate redundant factors.
Collapse
Affiliation(s)
- J Keller McKowen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Satya V S P Avva
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mukesh Maharjan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fabiana M Duarte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14835, USA
| | - Jacob M Tome
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14835, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14835, USA
| | - Jamie L Wood
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sunday Negedu
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yunkai Dong
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14835, USA
| | - Craig M Hart
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
82
|
Tian X, Suarez D, Thomson D, Li W, King EA, LaFrance L, Boehm J, Barton L, Di Marco C, Martyr C, Thalji R, Medina J, Knight S, Heerding D, Gao E, Nartey E, Cecconie T, Nixon C, Zhang G, Berrodin TJ, Phelps C, Patel A, Bai X, Lind K, Prabhu N, Messer J, Zhu Z, Shewchuk L, Reid R, Graves AP, McHugh C, Mangatt B. Discovery of Proline-Based p300/CBP Inhibitors Using DNA-Encoded Library Technology in Combination with High-Throughput Screening. J Med Chem 2022; 65:14391-14408. [DOI: 10.1021/acs.jmedchem.2c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xinrong Tian
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Dominic Suarez
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Douglas Thomson
- Cellzome GmbH, A GlaxoSmithKline Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - William Li
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Elizabeth A. King
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Louis LaFrance
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Jeffrey Boehm
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Linda Barton
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Christina Di Marco
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Cuthbert Martyr
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Reema Thalji
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Jesus Medina
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Steven Knight
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Dirk Heerding
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Enoch Gao
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Eldridge Nartey
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Ted Cecconie
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Christopher Nixon
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Guofeng Zhang
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Thomas J. Berrodin
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Christopher Phelps
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Amish Patel
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Xiaopeng Bai
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Ken Lind
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Ninad Prabhu
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Jeffrey Messer
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Zhengrong Zhu
- New Chemical Entity Molecular Discovery, GlaxoSmithKline, 200 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Lisa Shewchuk
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Rob Reid
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Alan P. Graves
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Charles McHugh
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Biju Mangatt
- Research and Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
83
|
Dai W, Wu J, Peng X, Hou W, Huang H, Cheng Q, Liu Z, Luyten W, Schoofs L, Zhou J, Liu S. CDK12 orchestrates super-enhancer-associated CCDC137 transcription to direct hepatic metastasis in colorectal cancer. Clin Transl Med 2022; 12:e1087. [PMID: 36254394 PMCID: PMC9577262 DOI: 10.1002/ctm2.1087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatic metastasis is the primary and direct cause of death in individuals with colorectal cancer (CRC) attribute to lack of effective therapeutic targets. The present study aimed to identify potential druggable candidate targets for patients with liver metastatic CRC. METHODS The transcriptional profiles of super-enhancers (SEs) in primary and liver metastatic CRC were evaluated in publicly accessible CRC datasets. Immunohistochemistry of human CRC tissues was conducted to determine the expression level of CDK12. Cellular proliferation, survival and stemness were examined upon CDK12 inhibition by shCDK12 or a selective CDK12 inhibitor named SR-4835 with multiple in vitro and in vivo assays. RNA sequencing and bioinformatics analyses were carried out to investigate the mechanisms of CDK12 inhibition in CRC cells. RESULTS We identified CDK12 as a driver gene for direct hepatic metastasis in CRC. Suppression of CDK12 led to robust inhibition of proliferation, survival and stemness. Mechanistically, CDK12 intervention preferentially repressed the transcription of SE-associated genes. Integration of the SE landscape and RNA sequencing, BCL2L1 and CCDC137 were identified as SE-associated oncogenic genes to strengthen the abilities of cellular survival, proliferation and stemness, eventually increasing liver metastasis of CRC. CONCLUSIONS Our data highlight the potential of CDK12 and SE-associated oncogenic transcripts as therapeutic targets for patients with liver metastatic CRC.
Collapse
Affiliation(s)
- Wei Dai
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| | - Junhong Wu
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| | - Xiaopeng Peng
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| | - Wen Hou
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| | - Hao Huang
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| | - Qilai Cheng
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| | - Zhiping Liu
- Center for ImmunologyGannan Medical UniversityGanzhouJiangxiChina
| | | | | | - Jingfeng Zhou
- Department of Hematology and OncologyInternational Cancer CenterShenzhen Key LaboratoryShenzhen University General HospitalShenzhen University Clinical Medical AcademyShenzhen University Health Science CenterShenzhenChina
| | - Shenglan Liu
- School of PharmacyGannan Medical UniversityGanzhouJiangxiChina
| |
Collapse
|
84
|
Sudhahar V, Shi Y, Kaplan JH, Ushio-Fukai M, Fukai T. Whole-Transcriptome Sequencing Analyses of Nuclear Antixoxidant-1 in Endothelial Cells: Role in Inflammation and Atherosclerosis. Cells 2022; 11:2919. [PMID: 36139494 PMCID: PMC9496719 DOI: 10.3390/cells11182919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Inflammation, oxidative stress, and copper (Cu) play an important role in cardiovascular disease, including atherosclerosis. We previously reported that cytosolic Cu chaperone antioxidant-1 (Atox1) translocates to the nucleus in response to inflammatory cytokines or exogenous Cu and that Atox1 is localized at the nucleus in the endothelium of inflamed atherosclerotic aorta. However, the roles of nuclear Atox1 and their function are poorly understood. Here we showed that Atox1 deficiency in ApoE-/- mice with a Western diet exhibited a significant reduction of atherosclerotic lesion formation. In vitro, adenovirus-mediated overexpression of nuclear-targeted Atox1 (Ad-Atox1-NLS) in cultured human endothelial cells (ECs) increased monocyte adhesion and reactive oxygen species (ROS) production compared to control cells (Ad-null). To address the underlying mechanisms, we performed genome-wide mapping of Atox1-regulated targets in ECs, using an unbiased systemic approach integrating sequencing data. Combination of ChIP-Seq and RNA-Seq analyses in ECs transfected with Ad-Atox1-NLS or Ad-null identified 1387 differentially expressed genes (DEG). Motif enrichment assay and KEGG pathway enrichment analysis revealed that 248 differentially expressed genes, including inflammatory and angiogenic genes, were regulated by Atox1-NLS, which was then confirmed by real-time qPCR. Among these genes, functional analysis of inflammatory responses identified CD137, CSF1, and IL5RA as new nuclear Atox1-targeted inflammatory genes, while CD137 is also a key regulator of Atox1-NLS-induced ROS production. These findings uncover new nuclear Atox1 downstream targets involved in inflammation and ROS production and provide insights into the nuclear Atox1 as a potential therapeutic target for the treatment of inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Varadarajan Sudhahar
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30901, USA
| | - Yang Shi
- Department of Population Health Science, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jack H. Kaplan
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60607, USA
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine (Cardiology), Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30901, USA
| |
Collapse
|
85
|
New Inhibitors of the Human p300/CBP Acetyltransferase Are Selectively Active against the Arabidopsis HAC Proteins. Int J Mol Sci 2022; 23:ijms231810446. [PMID: 36142359 PMCID: PMC9499386 DOI: 10.3390/ijms231810446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Histone acetyltransferases (HATs) are involved in the epigenetic positive control of gene expression in eukaryotes. CREB-binding proteins (CBP)/p300, a subfamily of highly conserved HATs, have been shown to function as acetylases on both histones and non-histone proteins. In the model plant Arabidopsis thaliana among the five CBP/p300 HATs, HAC1, HAC5 and HAC12 have been shown to be involved in the ethylene signaling pathway. In addition, HAC1 and HAC5 interact and cooperate with the Mediator complex, as in humans. Therefore, it is potentially difficult to discriminate the effect on plant development of the enzymatic activity with respect to their Mediator-related function. Taking advantage of the homology of the human HAC catalytic domain with that of the Arabidopsis, we set-up a phenotypic assay based on the hypocotyl length of Arabidopsis dark-grown seedlings to evaluate the effects of a compound previously described as human p300/CBP inhibitor, and to screen previously described cinnamoyl derivatives as well as newly synthesized analogues. We selected the most effective compounds, and we demonstrated their efficacy at phenotypic and molecular level. The in vitro inhibition of the enzymatic activity proved the specificity of the inhibitor on the catalytic domain of HAC1, thus substantiating this strategy as a useful tool in plant epigenetic studies.
Collapse
|
86
|
Cheng X, Liu D, Ren X, Nie Y, Zhao Y, Chen R, Wang H. The β-catenin/CBP signaling axis participates in sepsis-induced inflammatory lung injury. Exp Biol Med (Maywood) 2022; 247:1548-1557. [PMID: 35665630 PMCID: PMC9554161 DOI: 10.1177/15353702221097316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sepsis-induced inflammatory lung injury is a key factor causing failure of the lungs and other organs, as well as death, during sepsis. In the present study, a caecal ligation and puncture (CLP)-induced sepsis model was established to investigate the effect of β-catenin on sepsis-induced inflammatory lung injury and the corresponding underlying mechanisms. C57BL/6 mice were randomly divided into five groups, namely, the sham, CLP, β-catenin knockout (KO) + CLP, XAV-939 + CLP, and ICG-001 + CLP groups; the XAV-939 + CLP and ICG-001 + CLP groups were separately subjected to intraperitoneal injections of the β-catenin inhibitors XAV-939 and ICG-001 for 1 week preoperatively and 2 days postoperatively, respectively. Forty-eight hours after CLP, we measured β-catenin expression in lung tissues and evaluated mouse mortality, histopathological characteristics of hematoxylin and eosin (H&E)-stained lung tissues, serum cytokine (tumor necrosis factor [TNF]-α, interleukin [IL]-10, and IL-1β) levels, lung myeloperoxidase (MPO) activity, and the number of apoptotic cells in the lung tissues. Our results indicated that both the inhibition of β-catenin expression and blockage of β-catenin/CREB-binding protein (CBP) interactions by ICG-001 effectively decreased mouse mortality, alleviated pathological lung injury, and reduced the serum TNF-α, IL-10, and IL-1β levels, in addition to reducing the lung MPO activity and the number of apoptotic cells in lung tissues of the sepsis model mice. Therefore, it can be deduced that the β-catenin/CBP signaling axis participates in regulating sepsis-induced inflammatory lung injury.
Collapse
Affiliation(s)
- Xia Cheng
- Department of Pathology, Fourth Medical Center, General Hospital of Chinese People’s Liberation Army, Jinzhou Medical University, Beijing 100048, China
| | - Dandan Liu
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Xinxin Ren
- Department of Clinical Laboratory, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - You Nie
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yibing Zhao
- Department of Oncology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Ruyu Chen
- Department of Pathology, Fourth Medical Center, General Hospital of Chinese People’s Liberation Army, Jinzhou Medical University, Beijing 100048, China
| | - Hongwei Wang
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China,Hongwei Wang.
| |
Collapse
|
87
|
Rapid genomic changes by mineralotropic hormones and kinase SIK inhibition drive coordinated renal Cyp27b1 and Cyp24a1 expression via CREB modules. J Biol Chem 2022; 298:102559. [DOI: 10.1016/j.jbc.2022.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
|
88
|
Bond KH, Sims-Lucas S, Oxburgh L. Targets for Renal Carcinoma Growth Control Identified by Screening FOXD1 Cell Proliferation Pathways. Cancers (Basel) 2022; 14:cancers14163958. [PMID: 36010951 PMCID: PMC9406217 DOI: 10.3390/cancers14163958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary FOXD1 regulates the proliferation of clear cell renal cell carcinoma (ccRCC) cells, and ccRCC cells in which FOXD1 has been inactivated do not form tumors efficiently in an animal model. Reproducing growth inhibition in tumor cells by inhibiting FOXD1 pathways presents a possible therapeutic approach for ccRCC and other cancers. We have established an analysis strategy to identify FOXD1-regulated target pathways that may be therapeutically tractable, and compounds that modulate these pathways were selected for testing. Targets in three pathways were identified: FOXM1, PME1, and TMEM167A, which were inhibited by compounds FDI-6, AMZ-30, and silibinin, respectively. The effects of these compounds on the growth of tumor cells from patients cultured in a novel 3D tumor-replica culture environment revealed that FDI-6 and silibinin had strong growth inhibitory effects. This investigation informs new therapeutic targets to control ccRCC tumor growth, and provides a strategy to compare the responsiveness of individual patient tumor replicas to growth-inhibitory compounds. Abstract Clinical association studies suggest that FOXD1 is a determinant of patient outcome in clear cell renal cell carcinoma (ccRCC), and laboratory investigations have defined a role for this transcription factor in controlling the growth of tumors through regulation of the G2/M cell cycle transition. We hypothesized that the identification of pathways downstream of FOXD1 may define candidates for pharmacological modulation to suppress the G2/M transition in ccRCC. We developed an analysis pipeline that utilizes RNA sequencing, transcription factor binding site analysis, and phenotype validation to identify candidate effectors downstream from FOXD1. Compounds that modulate candidate pathways were tested for their ability to cause growth delay at G2/M. Three targets were identified: FOXM1, PME1, and TMEM167A, which were targeted by compounds FDI-6, AMZ-30, and silibinin, respectively. A 3D ccRCC tumor replica model was used to investigate the effects of these compounds on the growth of primary cells from five patients. While silibinin reduced 3D growth in a subset of tumor replicas, FDI-6 reduced growth in all. This study identifies tractable pathways to target G2/M transition and inhibit ccRCC growth, demonstrates the applicability of these strategies across patient tumor replicas, and provides a platform for individualized patient testing of compounds that inhibit tumor growth.
Collapse
Affiliation(s)
- Kyle H. Bond
- Rogosin Institute, Room 2-43, 310 East 67th St., New York, NY 10065, USA
| | - Sunder Sims-Lucas
- Children’s Hospital of Pittsburgh, Rangos Research Building, 4401 Penn Ave, Pittsburgh, PA 15224, USA
| | - Leif Oxburgh
- Rogosin Institute, Room 2-43, 310 East 67th St., New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
89
|
Chen Z, Li J, Yang H, He Y, Shi Q, Chang Q, Liu R, Huang X, Li Y. Discovery of novel benzimidazole derivatives as potent p300 bromodomain inhibitors with anti-proliferative activity in multiple cancer cells. Bioorg Med Chem 2022; 66:116784. [PMID: 35569250 DOI: 10.1016/j.bmc.2022.116784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/27/2022] [Accepted: 04/26/2022] [Indexed: 12/01/2022]
Abstract
Adenovirus E1A-associated 300-kD protein (p300) bromodomain, which regulates gene expression by recognizing acetylated lysine (KAc) of histone, is a promising target for the treatment of cancer. Herein, a series of potent p300 bromodomain inhibitors with novel CBP30-based scaffolds was discovered through bioisosterism and conformational restriction strategies. The most promising compound 1u showed more potent inhibitory activity (IC50 = 49 nM) against p300 bromodomain and anti-proliferative activity in various cancer cell lines compared to CBP30. Moreover, 1u suppressed the expression of c-Myc and induced G1/G0 phase arrest and apoptosis in OPM-2 cells more potently than CBP30. This study provides new lead compounds for further research on the biological functions of p300.
Collapse
Affiliation(s)
- Zonglong Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jiayi Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Hong Yang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yulong He
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Qiongyu Shi
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Qi Chang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Ruiqi Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xun Huang
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Yingxia Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
90
|
Huang Z, Liu H, Nix J, Xu R, Knoverek CR, Bowman GR, Amarasinghe GK, Sibley LD. The intrinsically disordered protein TgIST from Toxoplasma gondii inhibits STAT1 signaling by blocking cofactor recruitment. Nat Commun 2022; 13:4047. [PMID: 35831295 PMCID: PMC9279507 DOI: 10.1038/s41467-022-31720-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 06/28/2022] [Indexed: 12/31/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins communicate from cell-surface receptors to drive transcription of immune response genes. The parasite Toxoplasma gondii blocks STAT1-mediated gene expression by secreting the intrinsically disordered protein TgIST that traffics to the host nucleus, binds phosphorylated STAT1 dimers, and occupies nascent transcription sites that unexpectedly remain silenced. Here we define a core region within internal repeats of TgIST that is necessary and sufficient to block STAT1-mediated gene expression. Cellular, biochemical, mutational, and structural data demonstrate that the repeat region of TgIST adopts a helical conformation upon binding to STAT1 dimers. The binding interface is defined by a groove formed from two loops in the STAT1 SH2 domains that reorient during dimerization. TgIST binding to this newly exposed site at the STAT1 dimer interface alters its conformation and prevents the recruitment of co-transcriptional activators, thus defining the mechanism of blocked transcription.
Collapse
Affiliation(s)
- Zhou Huang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hejun Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jay Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Rui Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Catherine R Knoverek
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
91
|
Corrigan AN, Lemkul JA. Electronic Polarization at the Interface between the p53 Transactivation Domain and Two Binding Partners. J Phys Chem B 2022; 126:4814-4827. [PMID: 35749260 PMCID: PMC9267131 DOI: 10.1021/acs.jpcb.2c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) are an abundant class of highly charged proteins that participate in numerous crucial biological processes, often in regulatory roles. IDPs do not have one major free energy minimum with a dominant structure, instead existing as conformational ensembles of multiple semistable conformations. p53 is a prototypical protein with disordered regions and binds to many structurally diverse partners, making it a useful model for exploring the role of electrostatic interactions at IDP binding interfaces. In this study, we used the Drude-2019 force field to simulate the p53 transactivation domain with two protein partners to probe the role of electrostatic interactions in IDP protein-protein interactions. We found that the Drude-2019 polarizable force field reasonably reproduced experimental chemical shifts of the p53 transactivation domain (TAD) in one complex for which these data are available. We also found that the proteins in these complexes displayed dipole response at specific residues of each protein and that residues primarily involved in binding showed a large percent change in dipole moment between the unbound and complexed states. Probing the role of electrostatic interactions in IDP binding can allow us greater fundamental understanding of these interactions and may help with targeting p53 or its partners for drug design.
Collapse
Affiliation(s)
| | - Justin A. Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 20461, United States,Center for Drug Discovery, Virginia Tech, Blacksburg, VA 20461, United States,Corresponding Author: , Address: 111 Engel Hall, 340 West Campus Dr., Blacksburg, VA 24061, Phone: +1 (540) 231-3129
| |
Collapse
|
92
|
Kanada R, Kagoshima Y, Asano M, Suzuki T, Murata T, Haruta M, Takahashi M, Ubukata O, Hashimoto K, Obata K, Kihara K, Kuroha M, Banjo T, Togashi N, Sato K, Yamamoto Y, Suzuki K, Isoyama T, Tominaga Y, Higuchi S, Naito H. Discovery of EP300/CBP histone acetyltransferase inhibitors through scaffold hopping of 1,4-oxazepane ring. Bioorg Med Chem Lett 2022; 66:128726. [PMID: 35413416 DOI: 10.1016/j.bmcl.2022.128726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/02/2022]
Abstract
EP300 and its paralog CBP play an important role in post-translational modification as histone acetyltransferases (HATs). EP300/CBP inhibition has been gaining attention as an anticancer treatment target in recent years. Herein, we describe the identification of a novel, highly selective EP300/CBP inhibitor, compound 11 (DS17701585), by scaffold hopping and structure-based optimization of a high-throughput screening hit 1. Compound 11 (DS17701585) shows dose-dependent inhibition of SRY-box transcription factor 2 (SOX2) mRNA expression in a human lung squamous cell carcinoma cell line LK2-xenografted mouse model.
Collapse
Affiliation(s)
- Ryutaro Kanada
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | - Yoshiko Kagoshima
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Masayoshi Asano
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takashi Suzuki
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takeshi Murata
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Makoto Haruta
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Mizuki Takahashi
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Osamu Ubukata
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Kazuyuki Hashimoto
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kenichi Obata
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Kawori Kihara
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Mutsumi Kuroha
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Toshihiro Banjo
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Noriko Togashi
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kazumi Sato
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Yuka Yamamoto
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Kanae Suzuki
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takeshi Isoyama
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yuichi Tominaga
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Saito Higuchi
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hiroyuki Naito
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
93
|
Okada Y. Sperm chromatin condensation: epigenetic mechanisms to compact the genome and spatiotemporal regulation from inside and outside the nucleus. Gene 2022; 97:41-53. [PMID: 35491100 DOI: 10.1266/ggs.21-00065] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sperm chromatin condensation is a critical step in mammalian spermatogenesis to protect the paternal DNA from external damaging factors and to acquire fertility. During chromatin condensation, various events proceed in a chronological order, independently or in sequence, interacting with each other both inside and outside the nucleus to support the dramatic chromatin changes. Among these events, histone-protamine replacement, which is concomitant with acrosome biogenesis and cytoskeletal alteration, is the most critical step associated with nuclear elongation. Failures of not only intranuclear events but also extra-nuclear events severely affect sperm shape and chromatin state and are subsequently linked to infertility. This review focuses on nuclear and non-nuclear factors that affect sperm chromatin condensation and its effects, and further discusses the possible utility of sperm chromatin for clinical applications.
Collapse
Affiliation(s)
- Yuki Okada
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo
| |
Collapse
|
94
|
Jin M, Xu S, Cao B, Xu Q, Yan Z, Ren Q, Lin C, Tang C. Regulator of G protein signaling 2 is inhibited by hypoxia-inducible factor-1α/E1A binding protein P300 complex upon hypoxia in human preeclampsia. Int J Biochem Cell Biol 2022; 147:106211. [PMID: 35430356 DOI: 10.1016/j.biocel.2022.106211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/25/2022] [Accepted: 04/09/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Preeclampsia is a pregnancy-related complication that causes maternal and fetal mortality. Despite extensive studies showing the role of hypoxia in preeclampsia progression, the specific mechanism remains unclear. The purpose of this study was to explore the possible mechanism underlying hypoxia in preeclampsia. METHODS Human trophoblast-like JEG-3 cell line was used to investigate the molecular mechanisms underlying hypoxia contribution to preeclampsia and the expression correlation of key molecules was examined in human placental tissues. Methods include JEG-3 cell culture and hypoxia induction, RNA isolation and quantitative real-time PCR, transient transfection and dual-luciferase assay, western blot, immunoprecipitation, immunofluorescence staining, cell proliferation assay, chromatin immunoprecipitation assay, obtainment of human placental tissue sample and immunohistochemistry staining. RESULTS Hypoxia-Inducible Factor-1α is up-regulated in clinical preeclampsia samples, where Regulator of G Protein Signaling 2 is down-regulated. Mechanistically, Hypoxia-Inducible Factor-1α is induced in response to hypoxia, which up-regulates E1A binding protein P300 expression and thereby forms a Hypoxia-Inducible Factor-1α/E1A binding protein P300 protein-protein complex that binds to the promoter of gene Regulator of G Protein Signaling 2 and subsequently inhibits the transcription of Regulator of G Protein Signaling 2, possibly contributing to the preeclampsia development. In addition, the expression of E1A binding protein P300 is increased in preeclampsia samples, and the expression of Regulator of G Protein Signaling 2 in preeclamptic placentas inversely correlates with the levels of E1A binding protein P300. CONCLUSION Our findings may provide novel insights into understanding the molecular pathogenesis of preeclampsia and may be a prognostic biomarker and therapeutic target for preeclampsia.
Collapse
Affiliation(s)
- Meiyuan Jin
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China; Department of Obstetrics, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Shouying Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Bin Cao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310057, China
| | - Qiang Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Ziyi Yan
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Qianlei Ren
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Chao Lin
- Department of Neurosurgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| |
Collapse
|
95
|
Zhang L, Hou N, Chen B, Kan C, Han F, Zhang J, Sun X. Post-Translational Modifications of p53 in Ferroptosis: Novel Pharmacological Targets for Cancer Therapy. Front Pharmacol 2022; 13:908772. [PMID: 35685623 PMCID: PMC9171069 DOI: 10.3389/fphar.2022.908772] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/10/2022] [Indexed: 12/21/2022] Open
Abstract
The tumor suppressor p53 is a well-known cellular guardian of genomic integrity that blocks cell cycle progression or induces apoptosis upon exposure to cellular stresses. However, it is unclear how the remaining activities of p53 are regulated after the abrogation of these routine activities. Ferroptosis is a form of iron- and lipid-peroxide-mediated cell death; it is particularly important in p53-mediated carcinogenesis and corresponding cancer prevention. Post-translational modifications have clear impacts on the tumor suppressor function of p53. Here, we review the roles of post-translational modifications in p53-mediated ferroptosis, which promotes the elimination of tumor cells. A thorough understanding of the p53 functional network will be extremely useful in future strategies to identify pharmacological targets for cancer therapy.
Collapse
Affiliation(s)
- Le Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Bing Chen
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
96
|
Sima A, Smădeanu RE, Simionescu AA, Nedelea F, Vlad AM, Becheanu C. Menke–Hennekam Syndrome: A Literature Review and a New Case Report. CHILDREN 2022; 9:children9050759. [PMID: 35626936 PMCID: PMC9139512 DOI: 10.3390/children9050759] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/14/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
Background: Menke–Hennekam syndrome (MHS) is a rare and recently described syndrome consecutive to the variants in exon 30 or 31 in CREBBP (CREB-binding protein gene). The CREB-binding protein (CREBBP) and EP300 genes are two commonly expressed genes whose products possess acetyltransferase activity for histones and various other proteins. Mutations that affect these two genes are known to cause Rubinstein–Taybi syndrome (RTS); however, with the application of whole exome sequencing (WES) there were reports of variants that affect specific regions of exon 30 or 31 of these two genes but without the specific phenotype of RTS. Material and Methods: A review of the available literature was conducted, aimed at underscoring the difficulties in diagnosing MHS based on phenotype particularities. Results: Five applicable studies were identified by searching PubMed, Web of Science, and Scopus databases for publications up to November 2021 using the key terms “Menke–Hennekam syndrome” and “CREBBP”. Conclusions: In this paper, we present a new case and highlight the importance of exome sequencing to identify different mutations of exons 30 and 31 of the CREBBP gene involved in MHS, and we make formal recommendations based on our literature review.
Collapse
Affiliation(s)
- Aurora Sima
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, “Grigore Alexandrescu” Emergency Hospital for Children, 011743 Bucharest, Romania; (A.S.); (A.-M.V.); (C.B.)
| | - Roxana Elena Smădeanu
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, “Grigore Alexandrescu” Emergency Hospital for Children, 011743 Bucharest, Romania; (A.S.); (A.-M.V.); (C.B.)
- Correspondence: ; Tel.: +40-021-316-9366
| | - Anca Angela Simionescu
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, Filantropia Clinical Hospital, 011132 Bucharest, Romania;
| | - Florina Nedelea
- Department of Clinical Genetics, Carol Davila University of Medicine and Pharmacy, Filantropia Clinical Hospital, 011132 Bucharest, Romania;
| | - Andreea-Maria Vlad
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, “Grigore Alexandrescu” Emergency Hospital for Children, 011743 Bucharest, Romania; (A.S.); (A.-M.V.); (C.B.)
| | - Cristina Becheanu
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, “Grigore Alexandrescu” Emergency Hospital for Children, 011743 Bucharest, Romania; (A.S.); (A.-M.V.); (C.B.)
| |
Collapse
|
97
|
Abstract
Like many intracellular pathogens, the protozoan parasite Toxoplasma gondii has evolved sophisticated mechanisms to promote its transmission and persistence in a variety of hosts by injecting effector proteins that manipulate many processes in the cells it invades. Specifically, the parasite diverts host epigenetic modulators and modifiers from their native functions to rewire host gene expression to counteract the innate immune response and to limit its strength. The arms race between the parasite and its hosts has led to accelerated adaptive evolution of effector proteins and the unconventional secretion routes they use. This review provides an up-to-date overview of how T. gondii effectors, through the evolution of intrinsically disordered domains, the formation of supramolecular complexes, and the use of molecular mimicry, target host transcription factors that act as coordinating nodes, as well as chromatin-modifying enzymes, to control the fate of infected cells and ultimately the outcome of infection. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mohamed-Ali Hakimi
- Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France;
| |
Collapse
|
98
|
Peiffer AL, Garlick JM, Joy ST, Mapp AK, Brooks CL. Allostery in the dynamic coactivator domain KIX occurs through minor conformational micro-states. PLoS Comput Biol 2022; 18:e1009977. [PMID: 35452454 PMCID: PMC9067669 DOI: 10.1371/journal.pcbi.1009977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/04/2022] [Accepted: 02/27/2022] [Indexed: 12/16/2022] Open
Abstract
The coactivator KIX of CBP uses two binding surfaces to recognize multiple activators and exhibits allostery in ternary complex formation. Activator•coactivator interactions are central to transcriptional regulation, yet the microscopic origins of allostery in dynamic proteins like KIX are largely unknown. Here, we investigate the molecular recognition and allosteric manifestations involved in two KIX ternary systems c-Myb•KIX•MLL and pKID•KIX•MLL. Exploring the hypothesis that binary complex formation prepays an entropic cost for positive cooperativity, we utilize molecular dynamics simulations, side chain methyl order parameters, and differential scanning fluorimetry (DSF) to explore conformational entropy changes in KIX. The protein's configurational micro-states from structural clustering highlight the utility of protein plasticity in molecular recognition and allostery. We find that apo KIX occupies a wide distribution of lowly-populated configurational states. Each binding partner has its own suite of KIX states that it selects, building a model of molecular recognition fingerprints. Allostery is maximized with MLL pre-binding, which corresponds to the observation of a significant reduction in KIX micro-states observed when MLL binds. With all binding partners, the changes in KIX conformational entropy arise predominantly from changes in the most flexible loop. Likewise, we find that a small molecule and mutations allosterically inhibit/enhance activator binding by tuning loop dynamics, suggesting that loop-targeting chemical probes could be developed to alter KIX•activator interactions. Experimentally capturing KIX stabilization is challenging, particularly because of the disordered nature of particular activators. However, DSF melting curves allow for inference of relative entropic changes that occur across complexes, which we compare to our computed entropy changes using simulation methyl order parameters.
Collapse
Affiliation(s)
- Amanda L. Peiffer
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Julie M. Garlick
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Stephen T. Joy
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anna K. Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Charles L. Brooks
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
99
|
Biyanee A, Yusenko MV, Klempnauer KH. Src-Family Protein Kinase Inhibitors Suppress MYB Activity in a p300-Dependent Manner. Cells 2022; 11:1162. [PMID: 35406726 PMCID: PMC8997952 DOI: 10.3390/cells11071162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Recent studies have disclosed transcription factor MYB as a potential drug target for malignancies that are dependent on deregulated MYB function, including acute myeloid leukemia (AML) and adenoid cystic carcinoma (ACC). Although transcription factors are often regarded as undruggable, successful targeting of MYB by low-molecular-weight compounds has recently been demonstrated. In an attempt to repurpose known drugs as novel MYB-inhibitory agents, we have screened libraries of approved drugs and drug-like compounds for molecules with MYB-inhibitory potential. Here, we present initial evidence for the MYB-inhibitory activity of the protein kinase inhibitors bosutinib, PD180970 and PD161570, that we identified in a recent screen. We show that these compounds interfere with the activity of the MYB transactivation domain, apparently by disturbing the ability of MYB to cooperate with the coactivator p300. We show that treatment of the AML cell line HL60 with these compounds triggers the up-regulation of the myeloid differentiation marker CD11b and induces cell death. Importantly, we show that these effects are significantly dampened by forced expression of an activated version of MYB, confirming that the ability to suppress MYB function is a relevant activity of these compounds. Overall, our work identifies several protein kinase inhibitors as novel MYB-inhibitory agents and suggests that the inhibition of MYB function may play a role in their pharmacological impact on leukemic cells.
Collapse
Affiliation(s)
| | | | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany; (A.B.); (M.V.Y.)
| |
Collapse
|
100
|
Ye G, Liu H, Zhou Q, Liu X, Huang L, Weng C. A Tug of War: Pseudorabies Virus and Host Antiviral Innate Immunity. Viruses 2022; 14:v14030547. [PMID: 35336954 PMCID: PMC8949863 DOI: 10.3390/v14030547] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
The non-specific innate immunity can initiate host antiviral innate immune responses within minutes to hours after the invasion of pathogenic microorganisms. Therefore, the natural immune response is the first line of defense for the host to resist the invaders, including viruses, bacteria, fungi. Host pattern recognition receptors (PRRs) in the infected cells or bystander cells recognize pathogen-associated molecular patterns (PAMPs) of invading pathogens and initiate a series of signal cascades, resulting in the expression of type I interferons (IFN-I) and inflammatory cytokines to antagonize the infection of microorganisms. In contrast, the invading pathogens take a variety of mechanisms to inhibit the induction of IFN-I production from avoiding being cleared. Pseudorabies virus (PRV) belongs to the family Herpesviridae, subfamily Alphaherpesvirinae, genus Varicellovirus. PRV is the causative agent of Aujeszky’s disease (AD, pseudorabies). Although the natural host of PRV is swine, it can infect a wide variety of mammals, such as cattle, sheep, cats, and dogs. The disease is usually fatal to these hosts. PRV mainly infects the peripheral nervous system (PNS) in swine. For other species, PRV mainly invades the PNS first and then progresses to the central nervous system (CNS), which leads to acute death of the host with serious clinical and neurological symptoms. In recent years, new PRV variant strains have appeared in some areas, and sporadic cases of PRV infection in humans have also been reported, suggesting that PRV is still an important emerging and re-emerging infectious disease. This review summarizes the strategies of PRV evading host innate immunity and new targets for inhibition of PRV replication, which will provide more information for the development of effective inactivated vaccines and drugs for PRV.
Collapse
Affiliation(s)
- Guangqiang Ye
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Hongyang Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Qiongqiong Zhou
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Xiaohong Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Li Huang
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
- Correspondence:
| |
Collapse
|