51
|
Minor Isozymes Tailor Yeast Metabolism to Carbon Availability. mSystems 2019; 4:mSystems00170-18. [PMID: 30834327 PMCID: PMC6392091 DOI: 10.1128/msystems.00170-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/21/2019] [Indexed: 11/23/2022] Open
Abstract
Gene duplication is one of the main evolutionary paths to new protein function. Typically, duplicated genes either accumulate mutations and degrade into pseudogenes or are retained and diverge in function. Some duplicated genes, however, show long-term persistence without apparently acquiring new function. An important class of isozymes consists of those that catalyze the same reaction in the same compartment, where knockout of one isozyme causes no known functional defect. Here we present an approach to assigning specific functional roles to seemingly redundant isozymes. First, gene expression data are analyzed computationally to identify conditions under which isozyme expression diverges. Then, knockouts are compared under those conditions. This approach revealed that the expression of many yeast isozymes diverges in response to carbon availability and that carbon source manipulations can induce fitness phenotypes for seemingly redundant isozymes. A driver of these fitness phenotypes is differential allosteric enzyme regulation, indicating isozyme divergence to achieve more-optimal control of metabolism. Isozymes are enzymes that differ in sequence but catalyze the same chemical reactions. Despite their apparent redundancy, isozymes are often retained over evolutionary time, suggesting that they contribute to fitness. We developed an unsupervised computational method for identifying environmental conditions under which isozymes are likely to make fitness contributions. This method analyzes published gene expression data to find specific experimental perturbations that induce differential isozyme expression. In yeast, we found that isozymes are strongly enriched in the pathways of central carbon metabolism and that many isozyme pairs show anticorrelated expression during the respirofermentative shift. Building on these observations, we assigned function to two minor central carbon isozymes, aconitase 2 (ACO2) and pyruvate kinase 2 (PYK2). ACO2 is expressed during fermentation and proves advantageous when glucose is limiting. PYK2 is expressed during respiration and proves advantageous for growth on three-carbon substrates. PYK2’s deletion can be rescued by expressing the major pyruvate kinase only if that enzyme carries mutations mirroring PYK2’s allosteric regulation. Thus, central carbon isozymes help to optimize allosteric metabolic regulation under a broad range of potential nutrient conditions while requiring only a small number of transcriptional states. IMPORTANCE Gene duplication is one of the main evolutionary paths to new protein function. Typically, duplicated genes either accumulate mutations and degrade into pseudogenes or are retained and diverge in function. Some duplicated genes, however, show long-term persistence without apparently acquiring new function. An important class of isozymes consists of those that catalyze the same reaction in the same compartment, where knockout of one isozyme causes no known functional defect. Here we present an approach to assigning specific functional roles to seemingly redundant isozymes. First, gene expression data are analyzed computationally to identify conditions under which isozyme expression diverges. Then, knockouts are compared under those conditions. This approach revealed that the expression of many yeast isozymes diverges in response to carbon availability and that carbon source manipulations can induce fitness phenotypes for seemingly redundant isozymes. A driver of these fitness phenotypes is differential allosteric enzyme regulation, indicating isozyme divergence to achieve more-optimal control of metabolism.
Collapse
|
52
|
Umekawa M. Regulation and Physiology of Autophagy Induced by Glucose Starvation “The role of autophagy for the degradation of intracellular mannosyl glycan in yeast”. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1748.1e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
53
|
Umekawa M. Regulation and Physiology of Autophagy Induced by Glucose Starvation “The role of autophagy for the degradation of intracellular mannosyl glycan in yeast”. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1748.1j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
54
|
Sagot I, Laporte D. Quiescence, an individual journey. Curr Genet 2019; 65:695-699. [PMID: 30649583 DOI: 10.1007/s00294-018-00928-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/14/2022]
Abstract
Quiescence is operationally characterized as a temporary and reversible proliferation arrest. There are many preconceived ideas about quiescence, quiescent cells being generally viewed as insignificant sleeping G1 cells. In fact, quiescence is central for organism physiology and its dysregulation involved in many pathologies. The quiescent state encompasses very diverse cellular situations depending on the cell type and its environment. This diversity challenges not only quiescence uniformity but also the universality of the molecular mechanisms beyond quiescence regulation. In this mini-perspective, we discuss recent advances in the concept of quiescence, and illustrate that this multifaceted cellular state is gaining increasing attention in many fields of biology.
Collapse
Affiliation(s)
- Isabelle Sagot
- Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, Université de Bordeaux, CS61390, Bordeaux Cedex, 33077, France.
| | - Damien Laporte
- Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, Unité Mixte de Recherche 5095, Université de Bordeaux, CS61390, Bordeaux Cedex, 33077, France
| |
Collapse
|
55
|
Sagot I, Laporte D. The cell biology of quiescent yeast – a diversity of individual scenarios. J Cell Sci 2019; 132:132/1/jcs213025. [DOI: 10.1242/jcs.213025] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
Most cells, from unicellular to complex organisms, spend part of their life in quiescence, a temporary non-proliferating state. Although central for a variety of essential processes including tissue homeostasis, development and aging, quiescence is poorly understood. In fact, quiescence encompasses various cellular situations depending on the cell type and the environmental niche. Quiescent cell properties also evolve with time, adding another layer of complexity. Studying quiescence is, above all, limited by the fact that a quiescent cell can be recognized as such only after having proved that it is capable of re-proliferating. Recent cellular biology studies in yeast have reported the relocalization of hundreds of proteins and the reorganization of several cellular machineries upon proliferation cessation. These works have revealed that quiescent cells can display various properties, shedding light on a plethora of individual behaviors. The deciphering of the molecular mechanisms beyond these reorganizations, together with the understanding of their cellular functions, have begun to provide insights into the physiology of quiescent cells. In this Review, we discuss recent findings and emerging concepts in Saccharomyces cerevisiae quiescent cell biology.
Collapse
Affiliation(s)
- Isabelle Sagot
- Centre National de la Recherche Scientifique, Université de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095-33077 Bordeaux cedex, France
| | - Damien Laporte
- Centre National de la Recherche Scientifique, Université de Bordeaux-Institut de Biochimie et Génétique Cellulaires, UMR5095-33077 Bordeaux cedex, France
| |
Collapse
|
56
|
Tomova AA, Kujumdzieva AV, Petrova VY. Carbon source influences Saccharomyces cerevisiaeyeast cell survival strategies: quiescence or sporulation. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1674188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Anna Atanasova Tomova
- Department “General and Industrial Microbiology”, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Anna Vengelova Kujumdzieva
- Department “General and Industrial Microbiology”, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Ventsislava Yankova Petrova
- Department “General and Industrial Microbiology”, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| |
Collapse
|
57
|
Evano B, Tajbakhsh S. Skeletal muscle stem cells in comfort and stress. NPJ Regen Med 2018; 3:24. [PMID: 30588332 PMCID: PMC6303387 DOI: 10.1038/s41536-018-0062-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
Investigations on developmental and regenerative myogenesis have led to major advances in decrypting stem cell properties and potential, as well as their interactions within the evolving niche. As a consequence, regenerative myogenesis has provided a forum to investigate intrinsic regulators of stem cell properties as well as extrinsic factors, including stromal cells, during normal growth and following injury and disease. Here we review some of the latest advances in the field that have exposed fundamental processes including regulation of stress following trauma and ageing, senescence, DNA damage control and modes of symmetric and asymmetric cell divisions. Recent studies have begun to explore the nature of the niche that is distinct in different muscle groups, and that is altered from prenatal to postnatal stages, and during ageing. We also discuss heterogeneities among muscle stem cells and how distinct properties within the quiescent and proliferating cell states might impact on homoeostasis and regeneration. Interestingly, cellular quiescence, which was thought to be a passive cell state, is regulated by multiple mechanisms, many of which are deregulated in various contexts including ageing. These and other factors including metabolic activity and genetic background can impact on the efficiency of muscle regeneration.
Collapse
Affiliation(s)
- Brendan Evano
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 75015 Paris, France
- CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 75015 Paris, France
- CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
58
|
Walvekar AS, Srinivasan R, Gupta R, Laxman S. Methionine coordinates a hierarchically organized anabolic program enabling proliferation. Mol Biol Cell 2018; 29:3183-3200. [PMID: 30354837 PMCID: PMC6340205 DOI: 10.1091/mbc.e18-08-0515] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Methionine availability during overall amino acid limitation metabolically reprograms cells to support proliferation, the underlying basis for which remains unclear. Here we construct the organization of this methionine-mediated anabolic program using yeast. Combining comparative transcriptome analysis and biochemical and metabolic flux-based approaches, we discover that methionine rewires overall metabolic outputs by increasing the activity of a key regulatory node. This comprises the pentose phosphate pathway (PPP) coupled with reductive biosynthesis, the glutamate dehydrogenase (GDH)-dependent synthesis of glutamate/glutamine, and pyridoxal-5-phosphate (PLP)-dependent transamination capacity. This PPP-GDH-PLP node provides the required cofactors and/or substrates for subsequent rate-limiting reactions in the synthesis of amino acids and therefore nucleotides. These rate-limiting steps in amino acid biosynthesis are also induced in a methionine-dependent manner. This thereby results in a biochemical cascade establishing a hierarchically organized anabolic program. For this methionine-mediated anabolic program to be sustained, cells co-opt a "starvation stress response" regulator, Gcn4p. Collectively, our data suggest a hierarchical metabolic framework explaining how methionine mediates an anabolic switch.
Collapse
Affiliation(s)
- Adhish S. Walvekar
- Institute for Stem Cell biology and Regenerative Medicine (inStem), NCBS-TIFR campus, Bangalore 560065, India
| | - Rajalakshmi Srinivasan
- Institute for Stem Cell biology and Regenerative Medicine (inStem), NCBS-TIFR campus, Bangalore 560065, India
| | - Ritu Gupta
- Institute for Stem Cell biology and Regenerative Medicine (inStem), NCBS-TIFR campus, Bangalore 560065, India
| | - Sunil Laxman
- Institute for Stem Cell biology and Regenerative Medicine (inStem), NCBS-TIFR campus, Bangalore 560065, India
| |
Collapse
|
59
|
Gutierrez H, Taghizada B, Meneghini MD. Nutritional and meiotic induction of transiently heritable stress resistant states in budding yeast. MICROBIAL CELL 2018; 5:511-521. [PMID: 30483522 PMCID: PMC6244294 DOI: 10.15698/mic2018.11.657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Transient exposures to environmental stresses induce altered physiological states in exposed cells that persist after the stresses have been removed. These states, referred to as cellular memory, can even be passed on to daughter cells and may thus be thought of as embodying a form of epigenetic inheritance. We find that meiotically produced spores in the budding yeast S. cerevisiae possess a state of heightened stress resistance that, following their germination, persists for numerous mitotic generations. As yeast meiotic development is essentially a starvation response that a/alpha diploid cells engage, we sought to model this phenomenon by subjecting haploid cells to starvation conditions. We find also that haploid cells exposed to glucose withdrawal acquire a state of elevated stress resistance that persists after the reintroduction of these cells to glucose-replete media. Following release from lengthy durations of glucose starvation, we confirm that this physiological state of enhanced stress resistance is propagated in descendants of the exposed cells through two mitotic divisions before fading from the population. In both haploid starved cells and diploid produced meiotic spores we show that their cellular memories are not attributable to trehalose, a widely regarded stress protectant that accumulates in these cell types. Moreover, the transiently heritable stress resistant state induced by glucose starvation in haploid cells is independent of the Msn2/4 transcription factors, which are known to program cellular memory induced by exposure of cells to NaCl. Our findings identify new developmentally and nutritionally induced states of cellular memory that exhibit striking degrees of persistence and mitotic heritability.
Collapse
Affiliation(s)
- Heldder Gutierrez
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Bakhtiyar Taghizada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Marc D Meneghini
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
60
|
Laporte D, Gouleme L, Jimenez L, Khemiri I, Sagot I. Mitochondria reorganization upon proliferation arrest predicts individual yeast cell fate. eLife 2018; 7:35685. [PMID: 30299253 PMCID: PMC6177259 DOI: 10.7554/elife.35685] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Most cells spend the majority of their life in a non-proliferating state. When proliferation cessation is irreversible, cells are senescent. By contrast, if the arrest is only temporary, cells are defined as quiescent. These cellular states are hardly distinguishable without triggering proliferation resumption, hampering thus the study of quiescent cells properties. Here we show that quiescent and senescent yeast cells are recognizable based on their mitochondrial network morphology. Indeed, while quiescent yeast cells display numerous small vesicular mitochondria, senescent cells exhibit few globular mitochondria. This allowed us to reconsider at the individual-cell level, properties previously attributed to quiescent cells using population-based approaches. We demonstrate that cell’s propensity to enter quiescence is not influenced by replicative age, volume or density. Overall, our findings reveal that quiescent cells are not all identical but that their ability to survive is significantly improved when they exhibit the specific reorganization of several cellular machineries.
Collapse
Affiliation(s)
- Damien Laporte
- Centre National de la Recherche Scientifique, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Laëtitia Gouleme
- Centre National de la Recherche Scientifique, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Laure Jimenez
- Centre National de la Recherche Scientifique, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Ines Khemiri
- Centre National de la Recherche Scientifique, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Isabelle Sagot
- Centre National de la Recherche Scientifique, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| |
Collapse
|
61
|
Krishna S, Laxman S. A minimal "push-pull" bistability model explains oscillations between quiescent and proliferative cell states. Mol Biol Cell 2018; 29:2243-2258. [PMID: 30044724 PMCID: PMC6249812 DOI: 10.1091/mbc.e18-01-0017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A minimal model for oscillating between quiescent and growth/proliferation states, dependent on the availability of a central metabolic resource, is presented. From the yeast metabolic cycles, metabolic oscillations in oxygen consumption are represented as transitions between quiescent and growth states. We consider metabolic resource availability, growth rates, and switching rates (between states) to model a relaxation oscillator explaining transitions between these states. This frustrated bistability model reveals a required communication between the metabolic resource that determines oscillations and the quiescent and growth state cells. Cells in each state reflect memory, or hysteresis of their current state, and “push–pull” cells from the other state. Finally, a parsimonious argument is made for a specific central metabolite as the controller of switching between quiescence and growth states. We discuss how an oscillator built around the availability of such a metabolic resource is sufficient to generally regulate oscillations between growth and quiescence through committed transitions.
Collapse
Affiliation(s)
- Sandeep Krishna
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Sunil Laxman
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| |
Collapse
|
62
|
Xie B, Wang Y, Jones DR, Dey KK, Wang X, Li Y, Cho JH, Shaw TI, Tan H, Peng J. Isotope Labeling-Assisted Evaluation of Hydrophilic and Hydrophobic Liquid Chromatograph-Mass Spectrometry for Metabolomics Profiling. Anal Chem 2018; 90:8538-8545. [PMID: 29883117 DOI: 10.1021/acs.analchem.8b01591] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High throughput untargeted metabolomics usually relies on complementary liquid chromatography-mass spectrometry (LC-MS) methods to expand the coverage of diverse metabolites, but the integration of those methods is not fully characterized. We systematically investigated the performance of hydrophilic interaction liquid chromatography (HILIC)-MS and nanoflow reverse-phase liquid chromatography (nRPLC)-MS under 8 LC-MS settings, varying stationary phases (HILIC and C18), mobile phases (acidic and basic pH), and MS ionization modes (positive and negative). Whereas nRPLC-MS optimization was previously reported, we found in HILIC-MS (2.1 mm × 150 mm) that the optimal performance was achieved in a 90 min gradient with 100 μL/min flow rate by loading metabolite extracts from 2 mg of cell/tissue samples. Since peak features were highly compromised by contaminants, we used stable isotope labeled yeast to enhance formula identification for comparing different LC-MS conditions. The 8 LC-MS settings enabled the detection of a total of 1050 formulas, among which 78%, 73%, and 62% formulas were recovered by the best combination of 4, 3, and 2 LC-MS settings, respectively. Moreover, these yeast samples were harvested in the presence or absence of nitrogen starvation, enabling quantitative comparisons of altered formulas and metabolite structures, followed by validation with selected synthetic metabolites. The results revealed that nitrogen starvation downregulated amino acid components but upregulated uridine-related metabolism. In summary, this study introduces a thorough evaluation of hydrophilicity and hydrophobicity based LC-MS and provides information for selecting complementary settings to balance throughput and efficiency during metabolomics experiments.
Collapse
|
63
|
Stress response factors drive regrowth of quiescent cells. Curr Genet 2018; 64:807-810. [PMID: 29455333 DOI: 10.1007/s00294-018-0813-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 01/19/2023]
Abstract
Quiescent cells exploit an array of transcription factors to activate stress response machinery and maintain survival under nutrient-limited conditions. Our recent findings reveal that these transcription factors also play an important role in the exit of quiescence and regrowth. By studying Saccharomyces cerevisiae under a continuous, nutrient-limited condition, we found that Msn2 and Msn4 function as master regulators of glycolytic genes in the quiescent-like phase. They control the timing of transition from quiescence to growth by regulating the accumulation rate of acetyl-CoA, a key metabolite that is downstream of glycolysis and drives growth. These findings suggest a model that Msn2/4 not only protect the cells from starvation but also facilitate their regrowth from quiescence. Thus, understanding the functions of stress response transcription factors in metabolic regulation will provide deeper insight into how quiescent cells manage the capacity of regrowth.
Collapse
|
64
|
Laporte D, Jimenez L, Gouleme L, Sagot I. Yeast quiescence exit swiftness is influenced by cell volume and chronological age. MICROBIAL CELL (GRAZ, AUSTRIA) 2017; 5:104-111. [PMID: 29417058 PMCID: PMC5798409 DOI: 10.15698/mic2018.02.615] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/29/2017] [Indexed: 01/12/2023]
Abstract
Quiescence exit swiftness is crucial not only for micro-organisms in competition for an environmental niche, such as yeast, but also for the maintenance of tissue homeostasis in multicellular species. Here we explore the effect of replicative and chronological age on Saccharomyces cerevisiae quiescence exit efficiency. Our study reveals that this step strongly relies on the cell volume in quiescence but is not influenced by cell replicative age, at least for cells that have undergone less than 10 divisions. Furthermore, we establish that chronological age strongly impinges on cell's capacities to exit quiescence. This effect is not related to cell volume or due to cell's inability to metabolize external glucose but rather seems to depend on intracellular trehalose concentration. Overall, our data illustrate that the quiescent state is a continuum evolving with time, early and deep quiescence being distinguishable by the cell's proficiency to re-enter the proliferation cycle.
Collapse
Affiliation(s)
- Damien Laporte
- CNRS, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, UMR5095 - 33077 Bordeaux cedex, France
| | - Laure Jimenez
- CNRS, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, UMR5095 - 33077 Bordeaux cedex, France
| | - Laëtitia Gouleme
- CNRS, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, UMR5095 - 33077 Bordeaux cedex, France
| | - Isabelle Sagot
- CNRS, Université de Bordeaux - Institut de Biochimie et Génétique Cellulaires, UMR5095 - 33077 Bordeaux cedex, France
| |
Collapse
|
65
|
Adachi A, Koizumi M, Ohsumi Y. Autophagy induction under carbon starvation conditions is negatively regulated by carbon catabolite repression. J Biol Chem 2017; 292:19905-19918. [PMID: 29042435 DOI: 10.1074/jbc.m117.817510] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/10/2017] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a conserved process in which cytoplasmic components are sequestered for degradation in the vacuole/lysosomes in eukaryotic cells. Autophagy is induced under a variety of starvation conditions, such as the depletion of nitrogen, carbon, phosphorus, zinc, and others. However, apart from nitrogen starvation, it remains unclear how these stimuli induce autophagy. In yeast, for example, it remains contentious whether autophagy is induced under carbon starvation conditions, with reports variously suggesting both induction and lack of induction upon depletion of carbon. We therefore undertook an analysis to account for these inconsistencies, concluding that autophagy is induced in response to abrupt carbon starvation when cells are grown with glycerol but not glucose as the carbon source. We found that autophagy under these conditions is mediated by nonselective degradation that is highly dependent on the autophagosome-associated scaffold proteins Atg11 and Atg17. We also found that the extent of carbon starvation-induced autophagy is positively correlated with cells' oxygen consumption rate, drawing a link between autophagy induction and respiratory metabolism. Further biochemical analyses indicated that maintenance of intracellular ATP levels is also required for carbon starvation-induced autophagy and that autophagy plays an important role in cell viability during prolonged carbon starvation. Our findings suggest that carbon starvation-induced autophagy is negatively regulated by carbon catabolite repression.
Collapse
Affiliation(s)
- Atsuhiro Adachi
- From the Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-12 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Michiko Koizumi
- From the Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-12 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Yoshinori Ohsumi
- From the Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259-S2-12 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
66
|
Kuang Z, Pinglay S, Ji H, Boeke JD. Msn2/4 regulate expression of glycolytic enzymes and control transition from quiescence to growth. eLife 2017; 6:29938. [PMID: 28949295 PMCID: PMC5634782 DOI: 10.7554/elife.29938] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/25/2017] [Indexed: 11/13/2022] Open
Abstract
Nutrient availability and stresses impact a cell's decision to enter a growth state or a quiescent state. Acetyl-CoA stimulates cell growth under nutrient-limiting conditions, but how cells generate acetyl-CoA under starvation stress is less understood. Here, we show that general stress response factors, Msn2 and Msn4, function as master transcriptional regulators of yeast glycolysis via directly binding and activating genes encoding glycolytic enzymes. Yeast cells lacking Msn2 and Msn4 exhibit prevalent repression of glycolytic genes and a significant delay of acetyl-CoA accumulation and reentry into growth from quiescence. Thus Msn2/4 exhibit a dual role in activating carbohydrate metabolism genes and stress response genes. These results suggest a possible mechanism by which starvation-induced stress response factors may prime quiescent cells to reenter growth through glycolysis when nutrients are limited.
Collapse
Affiliation(s)
- Zheng Kuang
- Institute for Systems Genetics, NYU Langone Medical Center, New York, United States.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, United States.,Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, United States
| | - Sudarshan Pinglay
- Institute for Systems Genetics, NYU Langone Medical Center, New York, United States.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, United States
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, United States
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Medical Center, New York, United States.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, United States
| |
Collapse
|
67
|
Duc C, Pradal M, Sanchez I, Noble J, Tesnière C, Blondin B. A set of nutrient limitations trigger yeast cell death in a nitrogen-dependent manner during wine alcoholic fermentation. PLoS One 2017; 12:e0184838. [PMID: 28922393 PMCID: PMC5602661 DOI: 10.1371/journal.pone.0184838] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/29/2017] [Indexed: 12/27/2022] Open
Abstract
Yeast cell death can occur during wine alcoholic fermentation. It is generally considered to result from ethanol stress that impacts membrane integrity. This cell death mainly occurs when grape musts processing reduces lipid availability, resulting in weaker membrane resistance to ethanol. However the mechanisms underlying cell death in these conditions remain unclear. We examined cell death occurrence considering yeast cells ability to elicit an appropriate response to a given nutrient limitation and thus survive starvation. We show here that a set of micronutrients (oleic acid, ergosterol, pantothenic acid and nicotinic acid) in low, growth-restricting concentrations trigger cell death in alcoholic fermentation when nitrogen level is high. We provide evidence that nitrogen signaling is involved in cell death and that either SCH9 deletion or Tor inhibition prevent cell death in several types of micronutrient limitation. Under such limitations, yeast cells fail to acquire any stress resistance and are unable to store glycogen. Unexpectedly, transcriptome analyses did not reveal any major changes in stress genes expression, suggesting that post-transcriptional events critical for stress response were not triggered by micronutrient starvation. Our data point to the fact that yeast cell death results from yeast inability to trigger an appropriate stress response under some conditions of nutrient limitations most likely not encountered by yeast in the wild. Our conclusions provide a novel frame for considering both cell death and the management of nutrients during alcoholic fermentation.
Collapse
Affiliation(s)
- Camille Duc
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France.,Lallemand SAS, Blagnac, France
| | - Martine Pradal
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Isabelle Sanchez
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Catherine Tesnière
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Bruno Blondin
- UMR SPO, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| |
Collapse
|
68
|
Robinson C, Denison C, Burkenstock A, Nutter C, Gordon D. Cellular conditions that modulate the fungicidal activity of occidiofungin. J Appl Microbiol 2017; 123:380-391. [DOI: 10.1111/jam.13496] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/07/2017] [Accepted: 05/23/2017] [Indexed: 01/14/2023]
Affiliation(s)
- C.A. Robinson
- Department of Biological Sciences; Mississippi State University; Mississippi State MS USA
| | - C. Denison
- Department of Biological Sciences; Mississippi State University; Mississippi State MS USA
| | - A. Burkenstock
- Department of Biological Sciences; Mississippi State University; Mississippi State MS USA
| | - C. Nutter
- Department of Biological Sciences; Mississippi State University; Mississippi State MS USA
| | - D.M. Gordon
- Department of Biological Sciences; Mississippi State University; Mississippi State MS USA
| |
Collapse
|
69
|
Adaptive Roles of SSY1 and SIR3 During Cycles of Growth and Starvation in Saccharomyces cerevisiae Populations Enriched for Quiescent or Nonquiescent Cells. G3-GENES GENOMES GENETICS 2017; 7:1899-1911. [PMID: 28450371 PMCID: PMC5473767 DOI: 10.1534/g3.117.041749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over its evolutionary history, Saccharomyces cerevisiae has evolved to be well-adapted to fluctuating nutrient availability. In the presence of sufficient nutrients, yeast cells continue to proliferate, but upon starvation haploid yeast cells enter stationary phase and differentiate into nonquiescent (NQ) and quiescent (Q) cells. Q cells survive stress better than NQ cells and show greater viability when nutrient-rich conditions are restored. To investigate the genes that may be involved in the differentiation of Q and NQ cells, we serially propagated yeast populations that were enriched for either only Q or only NQ cell types over many repeated growth–starvation cycles. After 30 cycles (equivalent to 300 generations), each enriched population produced a higher proportion of the enriched cell type compared to the starting population, suggestive of adaptive change. We also observed differences in each population’s fitness suggesting possible tradeoffs: clones from NQ lines were better adapted to logarithmic growth, while clones from Q lines were better adapted to starvation. Whole-genome sequencing of clones from Q- and NQ-enriched lines revealed mutations in genes involved in the stress response and survival in limiting nutrients (ECM21, RSP5, MSN1, SIR4, and IRA2) in both Q and NQ lines, but also differences between the two lines: NQ line clones had recurrent independent mutations affecting the Ssy1p-Ptr3p-Ssy5p (SPS) amino acid sensing pathway, while Q line clones had recurrent, independent mutations in SIR3 and FAS1. Our results suggest that both sets of enriched-cell type lines responded to common, as well as distinct, selective pressures.
Collapse
|
70
|
Abstract
Most cells in nature are not actively dividing, yet are able to return to the cell cycle given the appropriate environmental signals. There is now ample evidence that quiescent G0 cells are not shut-down but still metabolically and transcriptionally active. Quiescent cells must maintain a basal transcriptional capacity to maintain transcripts and proteins necessary for survival. This implies a tight control over RNA polymerases: RNA pol II for mRNA transcription during G0, but especially RNA pol I and RNA pol III to maintain an appropriate level of structural RNAs, raising the possibility that specific transcriptional control mechanisms evolved in quiescent cells. In accordance with this, we recently discovered that RNA interference is necessary to control RNA polymerase I transcription during G0. While this mini-review focuses on yeast model organisms (Saccharomyces cerevisiae and Schizosaccharomyces pombe), parallels are drawn to other eukaryotes and mammalian systems, in particular stem cells.
Collapse
Affiliation(s)
- Benjamin Roche
- a Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA
| | - Benoit Arcangioli
- b Genome Dynamics Unit , UMR 3525 CNRS, Institut Pasteur, 25-28 rue du Docteur Roux , Paris , France
| | - Robert Martienssen
- a Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA.,c Howard Hughes Medical Institute-Gordon and Betty Moore Foundation (HHMI-GBM) Investigator , NY , USA
| |
Collapse
|
71
|
Fazal Z, Pelowitz J, Johnson PE, Harper JC, Brinker CJ, Jakobsson E. Three-Dimensional Encapsulation of Saccharomyces cerevisiae in Silicate Matrices Creates Distinct Metabolic States as Revealed by Gene Chip Analysis. ACS NANO 2017; 11:3560-3575. [PMID: 28287261 DOI: 10.1021/acsnano.6b06385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In order to design hybrid cellular/synthetic devices such as sensors and vaccines, it is important to understand how the metabolic state of living cells changes upon physical confinement within three-dimensional (3D) matrices. We analyze the gene expression patterns of stationary phase Saccharomyces cerevisiae (S. cerevisiae) cells encapsulated within three distinct nanostructured silica matrices and relate those patterns to known naturally occurring metabolic states. Silica encapsulation methods employed were lipid-templated mesophase silica thin films formed by cell-directed assembly (CDA), lipid-templated mesophase silica particles formed by spray drying (SD), and glycerol-doped silica gel monoliths prepared from an aqueous silicate (AqS+g) precursor solution. It was found that the cells for all three-encapsulated methods enter quiescent states characteristic of response to stress, albeit to different degrees and with differences in detail. By the measure of enrichment of stress-related gene ontology categories, we find that the AqS+g encapsulation is more amenable to the cells than CDA and SD encapsulation. We hypothesize that this differential response in the AqS+g encapsulation is related to four properties of the encapsulating gel: (1) oxygen permeability, (2) relative softness of the material, (3) development of a protective sheath around individual cells (visible in TEM micrographs vide infra), and (4) the presence of glycerol in the gel, which has been previously noted to serve as a protectant for encapsulated cells and can serve as the sole carbon source for S. cerevisiae under aerobic conditions. This work represents a combination of experiment and analysis aimed at the design and development of 3D encapsulation procedures to induce, and perhaps control, well-defined physiological behaviors.
Collapse
Affiliation(s)
- Zeeshan Fazal
- Department of Biosciences, COMSATS Institute of Information Technology , Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| | | | | | | | | | | |
Collapse
|
72
|
Abstract
For almost all cells, nutrient availability, from glucose to amino acids, dictates their growth or developmental programs. This nutrient availability is closely coupled to the overall intracellular metabolic state of the cell. Therefore, cells have evolved diverse, robust and versatile modules to sense intracellular metabolic states, activate signaling outputs and regulate outcomes to these states. Yet, signaling and metabolism have been viewed as important but separate. This short review attempts to position aspects of intracellular signaling from a metabolic perspective, highlighting how conserved, core principles of metabolic sensing and signaling can emerge from an understanding of metabolic regulation. I briefly explain the nature of metabolic sensors, using the example of the AMP activated protein kinase (AMPK) as an "energy sensing" hub. Subsequently, I explore how specific central metabolites, particularly acetyl-CoA, but also S -adenosyl methionine and SAICAR, can act as signaling molecules. I extensively illustrate the nature of a metabolic signaling hub using the specific example of the Target of Rapamycin Complex 1 (TORC1), and amino acid sensing. A highlight is the emergence of the lysosome/vacuole as a metabolic and signaling hub. Finally, the need to expand our understanding of the intracellular dynamics (in concentration and localization) of several metabolites, and their signaling hubs is emphasized.
Collapse
Affiliation(s)
- Sunil Laxman
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), NCBS Campus, GKVK, Bellary Road, Bangalore 560065, India
| |
Collapse
|
73
|
McKnight JN, Breeden LL, Tsukiyama T. A molecular off switch for transcriptional quiescence. Cell Cycle 2016; 14:3667-8. [PMID: 26514179 DOI: 10.1080/15384101.2015.1112618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Jeffrey N McKnight
- a Basic Sciences Division ; Fred Hutchinson Cancer Research Center ; Seattle , WA USA
| | - Linda L Breeden
- a Basic Sciences Division ; Fred Hutchinson Cancer Research Center ; Seattle , WA USA
| | - Toshio Tsukiyama
- a Basic Sciences Division ; Fred Hutchinson Cancer Research Center ; Seattle , WA USA
| |
Collapse
|
74
|
Puig-Castellví F, Alfonso I, Piña B, Tauler R. (1)H NMR metabolomic study of auxotrophic starvation in yeast using Multivariate Curve Resolution-Alternating Least Squares for Pathway Analysis. Sci Rep 2016; 6:30982. [PMID: 27485935 PMCID: PMC4971537 DOI: 10.1038/srep30982] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/12/2016] [Indexed: 11/15/2022] Open
Abstract
Disruption of specific metabolic pathways constitutes the mode of action of many known toxicants and it is responsible for the adverse phenotypes associated to human genetic defects. Conversely, many industrial applications rely on metabolic alterations of diverse microorganisms, whereas many therapeutic drugs aim to selectively disrupt pathogens’ metabolism. In this work we analyzed metabolic changes induced by auxotrophic starvation conditions in yeast in a non-targeted approach, using one-dimensional proton Nuclear Magnetic Resonance spectroscopy (1H NMR) and chemometric analyses. Analysis of the raw spectral datasets showed specific changes linked to the different stages during unrestricted yeast growth, as well as specific changes linked to each of the four tested starvation conditions (L-methionine, L-histidine, L-leucine and uracil). Analysis of changes in concentrations of more than 40 metabolites by Multivariate Curve Resolution – Alternating Least Squares (MCR-ALS) showed the normal progression of key metabolites during lag, exponential and stationary unrestricted growth phases, while reflecting the metabolic blockage induced by the starvation conditions. In this case, different metabolic intermediates accumulated over time, allowing identification of the different metabolic pathways specifically affected by each gene disruption. This synergy between NMR metabolomics and molecular biology may have clear implications for both genetic diagnostics and drug development.
Collapse
Affiliation(s)
- Francesc Puig-Castellví
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Benjamin Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Romà Tauler
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| |
Collapse
|
75
|
Honigberg SM. Similar environments but diverse fates: Responses of budding yeast to nutrient deprivation. MICROBIAL CELL 2016; 3:302-328. [PMID: 27917388 PMCID: PMC5134742 DOI: 10.15698/mic2016.08.516] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diploid budding yeast (Saccharomyces cerevisiae) can adopt one
of several alternative differentiation fates in response to nutrient limitation,
and each of these fates provides distinct biological functions. When different
strain backgrounds are taken into account, these various fates occur in response
to similar environmental cues, are regulated by the same signal transduction
pathways, and share many of the same master regulators. I propose that the
relationships between fate choice, environmental cues and signaling pathways are
not Boolean, but involve graded levels of signals, pathway activation and
master-regulator activity. In the absence of large differences between
environmental cues, small differences in the concentration of cues may be
reinforced by cell-to-cell signals. These signals are particularly essential for
fate determination within communities, such as colonies and biofilms, where fate
choice varies dramatically from one region of the community to another. The lack
of Boolean relationships between cues, signaling pathways, master regulators and
cell fates may allow yeast communities to respond appropriately to the wide
range of environments they encounter in nature.
Collapse
Affiliation(s)
- Saul M Honigberg
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City MO 64110, USA
| |
Collapse
|
76
|
Marek A, Korona R. Strong dominance of functional alleles over gene deletions in both intensely growing and deeply starved yeast cells. J Evol Biol 2016; 29:1836-45. [PMID: 27279155 DOI: 10.1111/jeb.12917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/29/2022]
Abstract
Previous studies with diploid yeast have shown that the deletion of one allele at a single locus typically has little impact on fitness under conditions promoting fast growth. Here, we confirm and quantify this finding. The strong dominance of functional over nonfunctional alleles is predicted by the metabolic control theory which assumes that the cell is a system of metabolic fluxes and that the total metabolic rate is equivalent to fitness. To test whether these requirements are critical, we tested dominance under conditions of long-term starvation when metabolism is low and thus the metabolic activities of proteins are likely inadequate or imbalanced. More fundamentally, the central assumption of the model, that high metabolic rate translates into high fitness, appears implausible. Contrary to these conjectures, we found that the mean rate of survival of starving heterozygotes was affected only slightly more than was the mean rate of growth under good conditions. Under none of the two treatments the central prediction of the model, that fitness of heterozygous strains is higher for the enzymatic proteins than for nonenzymatic ones, was confirmed. Our data add to growing uncertainty whether the metabolic control theory is sufficient to explain the remarkable ubiquity of strong genetic dominance.
Collapse
Affiliation(s)
- A Marek
- Institute of Environmental Sciences, Jagiellonian University, Cracow, Poland
| | - R Korona
- Institute of Environmental Sciences, Jagiellonian University, Cracow, Poland.
| |
Collapse
|
77
|
Persistence and drug tolerance in pathogenic yeast. Curr Genet 2016; 63:19-22. [DOI: 10.1007/s00294-016-0613-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
|
78
|
Ronneau S, Petit K, De Bolle X, Hallez R. Phosphotransferase-dependent accumulation of (p)ppGpp in response to glutamine deprivation in Caulobacter crescentus. Nat Commun 2016; 7:11423. [PMID: 27109061 PMCID: PMC4848567 DOI: 10.1038/ncomms11423] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 03/24/2016] [Indexed: 01/17/2023] Open
Abstract
The alarmone (p)ppGpp is commonly used by bacteria to quickly respond to nutrient starvation. Although (p)ppGpp synthetases such as SpoT have been extensively studied, little is known about the molecular mechanisms stimulating alarmone synthesis upon starvation. Here, we describe an essential role of the nitrogen-related phosphotransferase system (PTSNtr) in controlling (p)ppGpp accumulation in Caulobacter crescentus. We show that cells sense nitrogen starvation by way of detecting glutamine deprivation using the first enzyme (EINtr) of PTSNtr. Decreasing intracellular glutamine concentration triggers phosphorylation of EINtr and its downstream components HPr and EIIANtr. Once phosphorylated, both HPr∼P and EIIANtr∼P stimulate (p)ppGpp accumulation by modulating SpoT activities. This burst of second messenger primarily impacts the non-replicative phase of the cell cycle by extending the G1 phase. This work highlights a new role for bacterial PTS systems in stimulating (p)ppGpp accumulation in response to metabolic cues and in controlling cell cycle progression and cell growth. The small molecule (p)ppGpp is commonly produced by bacteria as a signal of nutrient starvation. Here, Ronneau et al. show that (p)ppGpp accumulation in the model bacterium Caulobacter crescentus is modulated by a nitrogen-related phosphotransferase system in response to glutamine deprivation.
Collapse
Affiliation(s)
- Séverin Ronneau
- Bacterial Cell cycle and Development (BCcD), URBM, University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| | - Kenny Petit
- Bacterial Cell cycle and Development (BCcD), URBM, University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| | - Xavier De Bolle
- Bacterial Cell cycle and Development (BCcD), URBM, University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| | - Régis Hallez
- Bacterial Cell cycle and Development (BCcD), URBM, University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| |
Collapse
|
79
|
The transcription factor GCN4 regulates PHM8 and alters triacylglycerol metabolism in Saccharomyces cerevisiae. Curr Genet 2016; 62:841-851. [PMID: 26979516 DOI: 10.1007/s00294-016-0590-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 02/01/2023]
Abstract
PHM8 is a very important enzyme in nonpolar lipid metabolism because of its role in triacylglycerol (TAG) biosynthesis under phosphate stress conditions. It is positively regulated by the PHO4 transcription factor under low phosphate conditions; however, its regulation has not been explored under normal physiological conditions. General control nonderepressible (GCN4), a basic leucine-zipper transcription factor activates the transcription of amino acids, purine biosynthesis genes and many stress response genes under various stress conditions. In this study, we demonstrate that the level of TAG is regulated by the transcription factor GCN4. GCN4 directly binds to its consensus recognition sequence (TGACTC) in the PHM8 promoter and controls its expression. The analysis of cells expressing the P PHM8 -lacZ reporter gene showed that mutations (TGACTC-GGGCCC) in the GCN4-binding sequence caused a significant increase in β-galactosidase activity. Mutation in the GCN4 binding sequence causes an increase in PHM8 expression, lysophosphatidic acid phosphatase activity and TAG level. PHM8, in conjunction with DGA1, a mono- and diacylglycerol transferase, controls the level of TAG. These results revealed that GCN4 negatively regulates PHM8 and that deletion of GCN4 causes de-repression of PHM8, which is responsible for the increased TAG content in gcn4∆ cells.
Collapse
|
80
|
Martynova J, Kokina A, Kibilds J, Liepins J, Scerbaka R, Vigants A. Effects of acetate on Kluyveromyces marxianus DSM 5422 growth and metabolism. Appl Microbiol Biotechnol 2016; 100:4585-94. [DOI: 10.1007/s00253-016-7392-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
|
81
|
Wang D, Mansisidor A, Prabhakar G, Hochwagen A. Condensin and Hmo1 Mediate a Starvation-Induced Transcriptional Position Effect within the Ribosomal DNA Array. Cell Rep 2016; 14:1010-1017. [PMID: 26832415 DOI: 10.1016/j.celrep.2016.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/30/2015] [Accepted: 12/28/2015] [Indexed: 02/06/2023] Open
Abstract
Repetitive DNA arrays are important structural features of eukaryotic genomes that are often heterochromatinized to suppress repeat instability. It is unclear, however, whether all repeats within an array are equally subject to heterochromatin formation and gene silencing. Here, we show that in starving Saccharomyces cerevisiae, silencing of reporter genes within the ribosomal DNA (rDNA) array is less pronounced in outer repeats compared with inner repeats. This position effect is linked to the starvation-induced contraction of the nucleolus. We show that the chromatin regulators condensin and Hmo1 redistribute within the rDNA upon starvation; that Hmo1, like condensin, is required for nucleolar contraction; and that the position effect partially depends on both proteins. Starvation-induced nucleolar contraction and differential desilencing of the outer rDNA repeats may provide a mechanism to activate rDNA-encoded RNAPII transcription units without causing general rDNA instability.
Collapse
Affiliation(s)
- Danni Wang
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
82
|
Dhawan J, Laxman S. Decoding the stem cell quiescence cycle--lessons from yeast for regenerative biology. J Cell Sci 2015; 128:4467-74. [PMID: 26672015 PMCID: PMC5695657 DOI: 10.1242/jcs.177758] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In the past decade, major advances have occurred in the understanding of mammalian stem cell biology, but roadblocks (including gaps in our fundamental understanding) remain in translating this knowledge to regenerative medicine. Interestingly, a close analysis of the Saccharomyces cerevisiae literature leads to an appreciation of how much yeast biology has contributed to the conceptual framework underpinning our understanding of stem cell behavior, to the point where such insights have been internalized into the realm of the known. This Opinion article focuses on one such example, the quiescent adult mammalian stem cell, and examines concepts underlying our understanding of quiescence that can be attributed to studies in yeast. We discuss the metabolic, signaling and gene regulatory events that control entry and exit into quiescence in yeast. These processes and events retain remarkable conservation and conceptual parallels in mammalian systems, and collectively suggest a regulated program beyond the cessation of cell division. We argue that studies in yeast will continue to not only reveal fundamental concepts in quiescence, but also leaven progress in regenerative medicine.
Collapse
Affiliation(s)
- Jyotsna Dhawan
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India CSIR Center for Cellular and Molecular Biology, Hyderabad, India
| | - Sunil Laxman
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| |
Collapse
|
83
|
Padi M, Quackenbush J. Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators. BMC SYSTEMS BIOLOGY 2015; 9:80. [PMID: 26576632 PMCID: PMC4650867 DOI: 10.1186/s12918-015-0228-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/03/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Genome-wide libraries of yeast deletion strains have been used to screen for genes that drive phenotypes such as stress response. A surprising observation emerging from these studies is that the genes with the largest changes in mRNA expression during a state transition are not those that drive that transition. Here, we show that integrating gene expression data with context-independent protein interaction networks can help prioritize master regulators that drive biological phenotypes. RESULTS Genes essential for survival had previously been shown to exhibit high centrality in protein interaction networks. However, the set of genes that drive growth in any specific condition is highly context-dependent. We inferred regulatory networks from gene expression data and transcription factor binding motifs in Saccharomyces cerevisiae, and found that high-degree nodes in regulatory networks are enriched for transcription factors that drive the corresponding phenotypes. We then found that using a metric combining protein interaction and transcriptional networks improved the enrichment for drivers in many of the contexts we examined. We applied this principle to a dataset of gene expression in normal human fibroblasts expressing a panel of viral oncogenes. We integrated regulatory interactions inferred from this data with a database of yeast two-hybrid protein interactions and ranked 571 human transcription factors by their combined network score. The ranked list was significantly enriched in known cancer genes that could not be found by standard differential expression or enrichment analyses. CONCLUSIONS There has been increasing recognition that network-based approaches can provide insight into critical cellular elements that help define phenotypic state. Our analysis suggests that no one network, based on a single data type, captures the full spectrum of interactions. Greater insight can instead be gained by exploring multiple independent networks and by choosing an appropriate metric on each network. Moreover we can improve our ability to rank phenotypic drivers by combining the information from individual networks. We propose that such integrative network analysis could be used to combine clinical gene expression data with interaction databases to prioritize patient- and disease-specific therapeutic targets.
Collapse
Affiliation(s)
- Megha Padi
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA.
| |
Collapse
|
84
|
Stundon JL, Zakian VA. Identification of Saccharomyces cerevisiae Genes Whose Deletion Causes Synthetic Effects in Cells with Reduced Levels of the Nuclear Pif1 DNA Helicase. G3 (BETHESDA, MD.) 2015; 5:2913-8. [PMID: 26483010 PMCID: PMC4683662 DOI: 10.1534/g3.115.021139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/08/2015] [Indexed: 02/07/2023]
Abstract
The multifunctional Saccharomyces cerevisiae Pif1 DNA helicase affects the maintenance of telomeric, ribosomal, and mitochondrial DNAs, suppresses DNA damage at G-quadruplex motifs, influences the processing of Okazaki fragments, and promotes breakage induced replication. All of these functions require the ATPase/helicase activity of the protein. Owing to Pif1's critical role in the maintenance of mitochondrial DNA, pif1Δ strains quickly generate respiratory deficient cells and hence grow very slowly. This slow growth makes it difficult to carry out genome-wide synthetic genetic analysis in this background. Here, we used a partial loss of function allele of PIF1, pif1-m2, which is mitochondrial proficient but has reduced abundance of nuclear Pif1. Although pif1-m2 is not a null allele, pif1-m2 cells exhibit defects in telomere maintenance, reduced suppression of damage at G-quadruplex motifs and defects in breakage induced replication. We performed a synthetic screen to identify nonessential genes with a synthetic sick or lethal relationship in cells with low abundance of nuclear Pif1. This study identified eleven genes that were synthetic lethal (APM1, ARG80, CDH1, GCR1, GTO3, PRK1, RAD10, SKT5, SOP4, UMP1, and YCK1) and three genes that were synthetic sick (DEF1, YIP4, and HOM3) with pif1-m2.
Collapse
Affiliation(s)
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, New Jersey 08544
| |
Collapse
|
85
|
Guidi M, Ruault M, Marbouty M, Loïodice I, Cournac A, Billaudeau C, Hocher A, Mozziconacci J, Koszul R, Taddei A. Spatial reorganization of telomeres in long-lived quiescent cells. Genome Biol 2015; 16:206. [PMID: 26399229 PMCID: PMC4581094 DOI: 10.1186/s13059-015-0766-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/01/2015] [Indexed: 12/13/2022] Open
Abstract
Background The spatiotemporal behavior of chromatin is an important control mechanism of genomic function. Studies in Saccharomyces cerevisiae have broadly contributed to demonstrate the functional importance of nuclear organization. Although in the wild yeast survival depends on their ability to withstand adverse conditions, most of these studies were conducted on cells undergoing exponential growth. In these conditions, as in most eukaryotic cells, silent chromatin that is mainly found at the 32 telomeres accumulates at the nuclear envelope, forming three to five foci. Results Here, combining live microscopy, DNA FISH and chromosome conformation capture (HiC) techniques, we report that chromosomes adopt distinct organizations according to the metabolic status of the cell. In particular, following carbon source exhaustion the genome of long-lived quiescent cells undergoes a major spatial re-organization driven by the grouping of telomeres into a unique focus or hypercluster localized in the center of the nucleus. This change in genome conformation is specific to quiescent cells able to sustain long-term viability. We further show that reactive oxygen species produced by mitochondrial activity during respiration commit the cell to form a hypercluster upon starvation. Importantly, deleting the gene encoding telomere associated silencing factor SIR3 abolishes telomere grouping and decreases longevity, a defect that is rescued by expressing a silencing defective SIR3 allele competent for hypercluster formation. Conclusions Our data show that mitochondrial activity primes cells to group their telomeres into a hypercluster upon starvation, reshaping the genome architecture into a conformation that may contribute to maintain longevity of quiescent cells. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0766-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Micol Guidi
- Institut Curie, PSL Research University, Paris, F-75248, France.,CNRS, UMR 3664, Paris, F-75248, France.,Sorbonne Universités, UPMC Univ, Paris 06, France
| | - Myriam Ruault
- Institut Curie, PSL Research University, Paris, F-75248, France.,CNRS, UMR 3664, Paris, F-75248, France.,Sorbonne Universités, UPMC Univ, Paris 06, France
| | - Martial Marbouty
- Institut Pasteur, Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015, Paris, France.,CNRS, UMR 3525, 75015, Paris, France
| | - Isabelle Loïodice
- Institut Curie, PSL Research University, Paris, F-75248, France.,CNRS, UMR 3664, Paris, F-75248, France.,Sorbonne Universités, UPMC Univ, Paris 06, France
| | - Axel Cournac
- Institut Pasteur, Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015, Paris, France.,CNRS, UMR 3525, 75015, Paris, France
| | - Cyrille Billaudeau
- Institut Curie, PSL Research University, Paris, F-75248, France.,CNRS, UMR 3664, Paris, F-75248, France.,Sorbonne Universités, UPMC Univ, Paris 06, France
| | - Antoine Hocher
- Institut Curie, PSL Research University, Paris, F-75248, France.,CNRS, UMR 3664, Paris, F-75248, France.,Sorbonne Universités, UPMC Univ, Paris 06, France
| | - Julien Mozziconacci
- LPTMC, Université Pierre et Marie Curie, UMR 7600, Sorbonne Universités, 4 Place Jussieu, 75005, Paris, France
| | - Romain Koszul
- Institut Pasteur, Department Genomes and Genetics, Groupe Régulation Spatiale des Génomes, 75015, Paris, France.,CNRS, UMR 3525, 75015, Paris, France
| | - Angela Taddei
- Institut Curie, PSL Research University, Paris, F-75248, France. .,CNRS, UMR 3664, Paris, F-75248, France. .,Sorbonne Universités, UPMC Univ, Paris 06, France.
| |
Collapse
|
86
|
McKnight JN, Boerma JW, Breeden LL, Tsukiyama T. Global Promoter Targeting of a Conserved Lysine Deacetylase for Transcriptional Shutoff during Quiescence Entry. Mol Cell 2015; 59:732-43. [PMID: 26300265 DOI: 10.1016/j.molcel.2015.07.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/25/2015] [Accepted: 07/17/2015] [Indexed: 11/24/2022]
Abstract
Quiescence is a conserved cell-cycle state characterized by cell-cycle arrest, increased stress resistance, enhanced longevity, and decreased transcriptional, translational, and metabolic output. Although quiescence plays essential roles in cell survival and normal differentiation, the molecular mechanisms leading to this state are not well understood. Here, we determined changes in the transcriptome and chromatin structure of S. cerevisiae upon quiescence entry. Our analyses revealed transcriptional shutoff that is far more robust than previously believed and an unprecedented global chromatin transition, which are tightly correlated. These changes require Rpd3 lysine deacetylase targeting to at least half of gene promoters via quiescence-specific transcription factors including Xbp1 and Stb3. Deletion of RPD3 prevents cells from establishing transcriptional quiescence, leading to defects in quiescence entry and shortening of chronological lifespan. Our results define a molecular mechanism for global reprogramming of transcriptome and chromatin structure for quiescence driven by a highly conserved chromatin regulator.
Collapse
Affiliation(s)
- Jeffrey N McKnight
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Joseph W Boerma
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Linda L Breeden
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
87
|
Rutledge MT, Russo M, Belton JM, Dekker J, Broach JR. The yeast genome undergoes significant topological reorganization in quiescence. Nucleic Acids Res 2015. [PMID: 26202961 PMCID: PMC4787801 DOI: 10.1093/nar/gkv723] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We have examined the three-dimensional organization of the yeast genome during quiescence by a chromosome capture technique as a means of understanding how genome organization changes during development. For exponentially growing cells we observe high levels of inter-centromeric interaction but otherwise a predominance of intrachromosomal interactions over interchromosomal interactions, consistent with aggregation of centromeres at the spindle pole body and compartmentalization of individual chromosomes within the nucleoplasm. Three major changes occur in the organization of the quiescent cell genome. First, intrachromosomal associations increase at longer distances in quiescence as compared to growing cells. This suggests that chromosomes undergo condensation in quiescence, which we confirmed by microscopy by measurement of the intrachromosomal distances between two sites on one chromosome. This compaction in quiescence requires the condensin complex. Second, inter-centromeric interactions decrease, consistent with prior data indicating that centromeres disperse along an array of microtubules during quiescence. Third, inter-telomeric interactions significantly increase in quiescence, an observation also confirmed by direct measurement. Thus, survival during quiescence is associated with substantial topological reorganization of the genome.
Collapse
Affiliation(s)
- Mark T Rutledge
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Mariano Russo
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Jon-Matthew Belton
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Job Dekker
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - James R Broach
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
88
|
Arlia-Ciommo A, Piano A, Leonov A, Svistkova V, Titorenko VI. Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan. Cell Cycle 2015; 13:3336-49. [PMID: 25485579 PMCID: PMC4614525 DOI: 10.4161/15384101.2014.965063] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent findings suggest that evolutionarily distant organisms share the key features of the aging process and exhibit similar mechanisms of its modulation by certain genetic, dietary and pharmacological interventions. The scope of this review is to analyze mechanisms that in the yeast Saccharomyces cerevisiae underlie: (1) the replicative and chronological modes of aging; (2) the convergence of these 2 modes of aging into a single aging process; (3) a programmed differentiation of aging cell communities in liquid media and on solid surfaces; and (4) longevity-defining responses of cells to some chemical compounds released to an ecosystem by other organisms populating it. Based on such analysis, we conclude that all these mechanisms are programs for upholding the long-term survival of the entire yeast population inhabiting an ecological niche; however, none of these mechanisms is a ʺprogram of agingʺ - i.e., a program for progressing through consecutive steps of the aging process.
Collapse
Key Words
- D, diauxic growth phase
- ERCs, extrachromosomal rDNA circles
- IPOD, insoluble protein deposit
- JUNQ, juxtanuclear quality control compartment
- L, logarithmic growth phase
- MBS, the mitochondrial back-signaling pathway
- MTC, the mitochondrial translation control signaling pathway
- NPCs, nuclear pore complexes
- NQ, non-quiescent cells
- PD, post-diauxic growth phase
- Q, quiescent cells
- ROS, reactive oxygen species
- RTG, the mitochondrial retrograde signaling pathway
- Ras/cAMP/PKA, the Ras family GTPase/cAMP/protein kinase A signaling pathway
- ST, stationary growth phase
- TOR/Sch9, the target of rapamycin/serine-threonine protein kinase Sch9 signaling pathway
- UPRER, the unfolded protein response pathway in the endoplasmic reticulum
- UPRmt, the unfolded protein response pathway in mitochondria
- cell growth and proliferation
- cell survival
- cellular aging
- ecosystems
- evolution
- longevity
- programmed cell death
- yeast
- yeast colony
- yeast replicative and chronological aging
Collapse
|
89
|
Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability. PLoS One 2015; 10:e0122709. [PMID: 25884705 PMCID: PMC4401569 DOI: 10.1371/journal.pone.0122709] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022] Open
Abstract
Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23), under low (67 mg/L) and high nitrogen (670 mg/L) regimes, at three time points during fermentation (12 h, 24 h and 96 h). Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12 h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this nutrient in the grape-musts and the development of strategies to optimize yeast performance in industrial fermentations.
Collapse
|
90
|
Kang YK, Putluri N, Maity S, Tsimelzon A, Ilkayeva O, Mo Q, Lonard D, Michailidis G, Sreekumar A, Newgard CB, Wang M, Tsai SY, Tsai MJ, O'Malley BW. CAPER is vital for energy and redox homeostasis by integrating glucose-induced mitochondrial functions via ERR-α-Gabpa and stress-induced adaptive responses via NF-κB-cMYC. PLoS Genet 2015; 11:e1005116. [PMID: 25830341 PMCID: PMC4382186 DOI: 10.1371/journal.pgen.1005116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 03/03/2015] [Indexed: 01/01/2023] Open
Abstract
Ever since we developed mitochondria to generate ATP, eukaryotes required intimate mito-nuclear communication. In addition, since reactive oxygen species are a cost of mitochondrial oxidative phosphorylation, this demands safeguards as protection from these harmful byproducts. Here we identified a critical transcriptional integrator which eukaryotes share to orchestrate both nutrient-induced mitochondrial energy metabolism and stress-induced nuclear responses, thereby maintaining carbon-nitrogen balance, and preserving life span and reproductive capacity. Inhibition of nutrient-induced expression of CAPER arrests nutrient-dependent cell proliferation and ATP generation and induces autophagy-mediated vacuolization. Nutrient signaling to CAPER induces mitochondrial transcription and glucose-dependent mitochondrial respiration via coactivation of nuclear receptor ERR-α-mediated Gabpa transcription. CAPER is also a coactivator for NF-κB that directly regulates c-Myc to coordinate nuclear transcriptome responses to mitochondrial stress. Finally, CAPER is responsible for anaplerotic carbon flux into TCA cycles from glycolysis, amino acids and fatty acids in order to maintain cellular energy metabolism to counter mitochondrial stress. Collectively, our studies reveal CAPER as an evolutionarily conserved 'master' regulatory mechanism by which eukaryotic cells control vital homeostasis for both ATP and antioxidants via CAPER-dependent coordinated control of nuclear and mitochondrial transcriptomic programs and their metabolisms. These CAPER dependent bioenergetic programs are highly conserved, as we demonstrated that they are essential to preserving life span and reproductive capacity in human cells-and even in C. elegans.
Collapse
Affiliation(s)
- Yun Kyoung Kang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nagireddy Putluri
- Verna and Marrs McLean Department of Biochemistry and Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Suman Maity
- Verna and Marrs McLean Department of Biochemistry and Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anna Tsimelzon
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical School, Durham, North Carolina, United States of America
| | - Qianxing Mo
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - David Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - George Michailidis
- Department of Statistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Arun Sreekumar
- Verna and Marrs McLean Department of Biochemistry and Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical School, Durham, North Carolina, United States of America
| | - Meng Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sophia Y. Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bert W. O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
91
|
Dai J, Itahana K, Baskar R. Quiescence does not affect p53 and stress response by irradiation in human lung fibroblasts. Biochem Biophys Res Commun 2015; 458:104-9. [PMID: 25637534 DOI: 10.1016/j.bbrc.2015.01.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/17/2015] [Indexed: 01/17/2023]
Abstract
Cells in many organs exist in both proliferating and quiescent states. Proliferating cells are more radio-sensitive, DNA damage pathways including p53 pathway are activated to undergo either G1/S or G2/M arrest to avoid entering S and M phase with DNA damage. On the other hand, quiescent cells are already arrested in G0, therefore there may be fundamental difference of irradiation response between proliferating and quiescent cells, and this difference may affect their radiosensitivity. To understand these differences, proliferating and quiescent human normal lung fibroblasts were exposed to 0.10-1 Gy of γ-radiation. The response of key proteins involved in the cell cycle, cell death, and metabolism as well as histone H2AX phosphorylation were examined. Interestingly, p53 and p53 phosphorylation (Ser-15), as well as the cyclin-dependent kinase inhibitors p21 and p27, were induced similarly in both proliferating and quiescent cells after irradiation. Furthermore, the p53 protein half-life, and expression of cyclin A, cyclin E, proliferating cell nuclear antigen (PCNA), Bax, or cytochrome c expression as well as histone H2AX phosphorylation were comparable after irradiation in both phases of cells. The effect of radioprotection by a glycogen synthase kinase 3β inhibitor on p53 pathway was also similar between proliferating and quiescent cells. Our results showed that quiescence does not affect irradiation response of key proteins involved in stress and DNA damage at least in normal fibroblasts, providing a better understanding of the radiation response in quiescent cells, which is crucial for tissue repair and regeneration.
Collapse
Affiliation(s)
- Jiawen Dai
- Molecular Radiobiology Laboratory, Division of Cellular and Molecular Research, Singapore
| | - Koji Itahana
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore.
| | - Rajamanickam Baskar
- Molecular Radiobiology Laboratory, Division of Cellular and Molecular Research, Singapore; Department of Radiation Oncology, National Cancer Centre, Singapore.
| |
Collapse
|
92
|
Serra-Cardona A, Petrezsélyová S, Canadell D, Ramos J, Ariño J. Coregulated expression of the Na+/phosphate Pho89 transporter and Ena1 Na+-ATPase allows their functional coupling under high-pH stress. Mol Cell Biol 2014; 34:4420-4435. [PMID: 25266663 PMCID: PMC4248728 DOI: 10.1128/mcb.01089-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/22/2014] [Indexed: 12/22/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has two main high-affinity inorganic phosphate (Pi) transporters, Pho84 and Pho89, that are functionally relevant at acidic/neutral pH and alkaline pH, respectively. Upon Pi starvation, PHO84 and PHO89 are induced by the activation of the PHO regulon by the binding of the Pho4 transcription factor to specific promoter sequences. We show that PHO89 and PHO84 are induced by alkalinization of the medium with different kinetics and that the network controlling Pho89 expression in response to alkaline pH differs from that of other members of the PHO regulon. In addition to Pho4, the PHO89 promoter is regulated by the transcriptional activator Crz1 through the calcium-activated phosphatase calcineurin, and it is under the control of several repressors (Mig2, Nrg1, and Nrg2) coordinately regulated by the Snf1 protein kinase and the Rim101 transcription factor. This network mimics the one regulating expression of the Na(+)-ATPase gene ENA1, encoding a major determinant for Na(+) detoxification. Our data highlight a scenario in which the activities of Pho89 and Ena1 are functionally coordinated to sustain growth in an alkaline environment.
Collapse
Affiliation(s)
- Albert Serra-Cardona
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Silvia Petrezsélyová
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - David Canadell
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - José Ramos
- Departamento de Microbiología, Edificio Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
93
|
Buelto D, Duncan MC. Cellular energetics: actin and myosin abstain from ATP during starvation. Curr Biol 2014; 24:R1004-6. [PMID: 25442847 DOI: 10.1016/j.cub.2014.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Destiney Buelto
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mara C Duncan
- Department of Cell and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
94
|
Evidence for a transketolase-mediated metabolic checkpoint governing biotrophic growth in rice cells by the blast fungus Magnaporthe oryzae. PLoS Pathog 2014; 10:e1004354. [PMID: 25188286 PMCID: PMC4154871 DOI: 10.1371/journal.ppat.1004354] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/24/2014] [Indexed: 02/01/2023] Open
Abstract
The blast fungus Magnaporthe oryzae threatens global food security through the widespread destruction of cultivated rice. Foliar infection requires a specialized cell called an appressorium that generates turgor to force a thin penetration hypha through the rice cuticle and into the underlying epidermal cells, where the fungus grows for the first days of infection as a symptomless biotroph. Understanding what controls biotrophic growth could open new avenues for developing sustainable blast intervention programs. Here, using molecular genetics and live-cell imaging, we dismantled M. oryzae glucose-metabolizing pathways to reveal that the transketolase enzyme, encoded by TKL1, plays an essential role in facilitating host colonization during rice blast disease. In the absence of transketolase, Δtkl1 mutant strains formed functional appressoria that penetrated rice cuticles successfully and developed invasive hyphae (IH) in rice cells from primary hyphae. However, Δtkl1 could not undertake sustained biotrophic growth or cell-to-cell movement. Transcript data and observations using fluorescently labeled histone H1:RFP fusion proteins indicated Δtkl1 mutant strains were alive in host cells but were delayed in mitosis. Mitotic delay could be reversed and IH growth restored by the addition of exogenous ATP, a metabolite depleted in Δtkl1 mutant strains. We show that ATP might act via the TOR signaling pathway, and TOR is likely a downstream target of activation for TKL1. TKL1 is also involved in controlling the migration of appressorial nuclei into primary hyphae in host cells. When taken together, our results indicate transketolase has a novel role in mediating - via ATP and TOR signaling - an in planta-specific metabolic checkpoint that controls nuclear migration from appressoria into primary hyphae, prevents mitotic delay in early IH and promotes biotrophic growth. This work thus provides new information about the metabolic strategies employed by M. oryzae to enable rice cell colonization. The blast fungus Magnaporthe oryzae destroys rice and wheat harvests and could compromise global food security. Following penetration into the rice cell, M. oryzae elaborates bulbous invasive hyphae that grow in living rice cells for most of the infection cycle without causing disease symptoms. Little is known about the physiological processes governing this important biotrophic stage of fungal growth. Here, we used gene functional analysis to show how the primary metabolic enzyme transketolase is essential for hyphal growth in rice cells. Loss of transketolase did not affect the ability of the fungus to gain entry into rice cells, but invasive hyphal growth was curtailed in transketolase null mutants. Biotrophic growth was restored in transketolase mutants by the addition of exogenous ATP. We conclude that M. oryzae metabolism is dedicated to metabolizing glucose through transketolase in planta in order to provide ATP as a trigger for biotrophic growth and infection. This work is significant because it reveals important—but previously unknown—metabolic strategies employed by M. oryzae to facilitate rice infection. These strategies might be open to abrogation by chemical or biological means and are likely relevant to other rapidly proliferating intracellular pathogens.
Collapse
|
95
|
Konishi T, Harata M. Improvement of the transformation efficiency of Sacchaaromyces cerevisiae by altering carbon sources in pre-culture. Biosci Biotechnol Biochem 2014; 78:1090-3. [PMID: 25036141 DOI: 10.1080/09168451.2014.915730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We show here that the transformation efficiency of Saccharomyces cerevisiae is improved by altering carbon sources in media for pre-culturing cells prior to the transformation reactions. The transformation efficiency was increased up to sixfold by combination with existing transformation protocols. This method is widely applicable for yeast research since efficient transformation can be performed easily without changing any of the other procedures in the transformation.
Collapse
Affiliation(s)
- Tatsunori Konishi
- a Laboratory of Molecular Biology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | | |
Collapse
|
96
|
Petrovska I, Nüske E, Munder MC, Kulasegaran G, Malinovska L, Kroschwald S, Richter D, Fahmy K, Gibson K, Verbavatz JM, Alberti S. Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation. eLife 2014; 3:eLife.02409. [PMID: 24771766 PMCID: PMC4011332 DOI: 10.7554/elife.02409] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/10/2014] [Indexed: 01/20/2023] Open
Abstract
One of the key questions in biology is how the metabolism of a cell responds to changes in the environment. In budding yeast, starvation causes a drop in intracellular pH, but the functional role of this pH change is not well understood. Here, we show that the enzyme glutamine synthetase (Gln1) forms filaments at low pH and that filament formation leads to enzymatic inactivation. Filament formation by Gln1 is a highly cooperative process, strongly dependent on macromolecular crowding, and involves back-to-back stacking of cylindrical homo-decamers into filaments that associate laterally to form higher order fibrils. Other metabolic enzymes also assemble into filaments at low pH. Hence, we propose that filament formation is a general mechanism to inactivate and store key metabolic enzymes during a state of advanced cellular starvation. These findings have broad implications for understanding the interplay between nutritional stress, the metabolism and the physical organization of a cell.
Collapse
Affiliation(s)
- Ivana Petrovska
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Nüske
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Matthias C Munder
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Liliana Malinovska
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sonja Kroschwald
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Doris Richter
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Karim Fahmy
- Institute of Resource Ecology, Helmholtz Institute Dresden-Rossendorf, Dresden, Germany
| | - Kimberley Gibson
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jean-Marc Verbavatz
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
97
|
Lang MJ, Martinez-Marquez JY, Prosser DC, Ganser LR, Buelto D, Wendland B, Duncan MC. Glucose starvation inhibits autophagy via vacuolar hydrolysis and induces plasma membrane internalization by down-regulating recycling. J Biol Chem 2014; 289:16736-47. [PMID: 24753258 DOI: 10.1074/jbc.m113.525782] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cellular energy influences all aspects of cellular function. Although cells can adapt to a gradual reduction in energy, acute energy depletion poses a unique challenge. Because acute depletion hampers the transport of new energy sources into the cell, the cell must use endogenous substrates to replenish energy after acute depletion. In the yeast Saccharomyces cerevisiae, glucose starvation causes an acute depletion of intracellular energy that recovers during continued glucose starvation. However, how the cell replenishes energy during the early phase of glucose starvation is unknown. In this study, we investigated the role of pathways that deliver proteins and lipids to the vacuole during glucose starvation. We report that in response to glucose starvation, plasma membrane proteins are directed to the vacuole through reduced recycling at the endosomes. Furthermore, we found that vacuolar hydrolysis inhibits macroautophagy in a target of rapamycin complex 1-dependent manner. Accordingly, we found that endocytosis and hydrolysis are required for survival in glucose starvation, whereas macroautophagy is dispensable. Together, these results suggest that hydrolysis of components delivered to the vacuole independent of autophagy is the cell survival mechanism used by S. cerevisiae in response to glucose starvation.
Collapse
Affiliation(s)
- Michael J Lang
- From the Department of Cell and Developmental Biology, the University of Michigan, Ann Arbor, Michigan 48109
| | - Jorge Y Martinez-Marquez
- From the Department of Cell and Developmental Biology, the University of Michigan, Ann Arbor, Michigan 48109
| | - Derek C Prosser
- the Department of Biology, the Johns Hopkins University, Baltimore, Maryland 21218, and
| | - Laura R Ganser
- the Department of Biology, the University of North Carolina, Chapel Hill, North Carolina 27599
| | - Destiney Buelto
- the Curriculum in Genetics and Molecular Biology, the University of North Carolina, Chapel Hill, North Carolina 27599
| | - Beverly Wendland
- the Department of Biology, the Johns Hopkins University, Baltimore, Maryland 21218, and
| | - Mara C Duncan
- From the Department of Cell and Developmental Biology, the University of Michigan, Ann Arbor, Michigan 48109, the Department of Biology, the University of North Carolina, Chapel Hill, North Carolina 27599, the Curriculum in Genetics and Molecular Biology, the University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
98
|
Kokina A, Kibilds J, Liepins J. Adenine auxotrophy--be aware: some effects of adenine auxotrophy in Saccharomyces cerevisiae strain W303-1A. FEMS Yeast Res 2014; 14:697-707. [PMID: 24661329 DOI: 10.1111/1567-1364.12154] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 02/24/2014] [Accepted: 03/18/2014] [Indexed: 11/27/2022] Open
Abstract
Adenine auxotrophy is a commonly used genetic marker in haploid yeast strains. Strain W303-1A, which carries the ade2-1 mutation, is widely used in physiological and genetic research. Yeast extract-based rich medium contains a low level of adenine, so that adenine is often depleted before glucose. This could affect the cell physiology of adenine auxotrophs grown in rich medium. The aim of our study was to assess the effects of adenine auxotrophy on cell morphology and stress physiology. Our results show that adenine depletion halts cell division, but that culture optical density continues to increase due to cell swelling. Accumulation of trehalose and a coincident 10-fold increase in desiccation stress tolerance is observed in adenine auxotrophs after adenine depletion, when compared to prototrophs. Under adenine starvation, long-term survival of W303-1A is lower than during carbon starvation, but higher than during leucine starvation. We observed drastic adenine-dependent changes in cell stress physiology, suggesting that results may be biased when adenine auxotrophs are grown in rich media without adenine supplementation.
Collapse
Affiliation(s)
- Agnese Kokina
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | | | | |
Collapse
|
99
|
Abstract
The nucleus is a cellular compartment that hosts several macro-molecular machines displaying a highly complex spatial organization. This tight architectural orchestration determines not only DNA replication and repair but also regulates gene expression. In budding yeast microtubules play a key role in structuring the nucleus since they condition the Rabl arrangement in G1 and chromosome partitioning during mitosis through their attachment to centromeres via the kinetochore proteins. Recently, we have shown that upon quiescence entry, intranuclear microtubules emanating from the spindle pole body elongate to form a highly stable bundle that spans the entire nucleus. Here, we examine some molecular mechanisms that may underlie the formation of this structure. As the intranuclear microtubule bundle causes a profound re-organization of the yeast nucleus and is required for cell survival during quiescence, we discuss the possibility that the assembly of such a structure participates in quiescence establishment.
Collapse
Affiliation(s)
- Damien Laporte
- Université de Bordeaux; Institut de Biochimie et Génétique Cellulaires; Bordeaux, France; CNRS; UMR5095 Bordeaux France; Bordeaux, France
| | - Isabelle Sagot
- Université de Bordeaux; Institut de Biochimie et Génétique Cellulaires; Bordeaux, France; CNRS; UMR5095 Bordeaux France; Bordeaux, France
| |
Collapse
|
100
|
Elfving N, Chereji RV, Bharatula V, Björklund S, Morozov AV, Broach JR. A dynamic interplay of nucleosome and Msn2 binding regulates kinetics of gene activation and repression following stress. Nucleic Acids Res 2014; 42:5468-82. [PMID: 24598258 PMCID: PMC4027177 DOI: 10.1093/nar/gku176] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transcription factor Msn2 mediates a significant proportion of the environmental stress response, in which a common cohort of genes changes expression in a stereotypic fashion upon exposure to any of a wide variety of stresses. We have applied genome-wide chromatin immunoprecipitation and nucleosome profiling to determine where Msn2 binds under stressful conditions and how that binding affects, and is affected by, nucleosome positioning. We concurrently determined the effect of Msn2 activity on gene expression following stress and demonstrated that Msn2 stimulates both activation and repression. We found that some genes responded to both intermittent and continuous Msn2 nuclear occupancy while others responded only to continuous occupancy. Finally, these studies document a dynamic interplay between nucleosomes and Msn2 such that nucleosomes can restrict access of Msn2 to its canonical binding sites while Msn2 can promote reposition, expulsion and recruitment of nucleosomes to alter gene expression. This interplay may allow the cell to discriminate between different types of stress signaling.
Collapse
Affiliation(s)
- Nils Elfving
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Răzvan V Chereji
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
| | - Vasudha Bharatula
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Alexandre V Morozov
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - James R Broach
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|