51
|
Vliet SMF, Dasgupta S, Sparks NRL, Kirkwood JS, Vollaro A, Hur M, Zur Nieden NI, Volz DC. Maternal-to-zygotic transition as a potential target for niclosamide during early embryogenesis. Toxicol Appl Pharmacol 2019. [PMID: 31398420 DOI: 10.1016/j.taap.2019.114699,114699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Niclosamide is an antihelminthic drug used worldwide for the treatment of tapeworm infections. Recent drug repurposing screens have highlighted the broad bioactivity of niclosamide across diverse mechanisms of action. As a result, niclosamide is being evaluated for a range of alternative drug-repurposing applications, including the treatment of cancer, bacterial infections, and Zika virus. As new applications of niclosamide will require non-oral delivery routes that may lead to exposure in utero, it is important to understand the mechanism of niclosamide toxicity during early stages of embryonic development. Previously, we showed that niclosamide induces a concentration-dependent delay in epiboly progression in the absence of effects on oxidative phosphorylation - a well-established target for niclosamide. Therefore, the overall objective of this study was to further examine the mechanism of niclosamide-induced epiboly delay during zebrafish embryogenesis. Based on this study, we found that (1) niclosamide exposure during early zebrafish embryogenesis resulted in a decrease in yolk sac integrity with a concomitant decrease in the presence of yolk sac actin networks and increase in cell size; (2) within whole embryos, niclosamide exposure did not alter non-polar metabolites and lipids, but significantly altered amino acids specific to aminoacyl-tRNA biosynthesis; (3) niclosamide significantly altered transcripts related to translation, transcription, and mRNA processing pathways; and (4) niclosamide did not significantly alter levels of rRNA and tRNA. Overall, our findings suggest that niclosamide may be causing a systemic delay in embryonic development by disrupting the translation of maternally-supplied mRNAs, an effect that may be mediated through disruption of aminoacyl-tRNA biosynthesis.
Collapse
Affiliation(s)
- Sara M F Vliet
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA; Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Nicole R L Sparks
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA, USA
| | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Alyssa Vollaro
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Nicole I Zur Nieden
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
52
|
Romney ALT, Yanagitsuru YR, Mundy PC, Fangue NA, Hung TC, Brander SM, Connon RE. Developmental Staging and Salinity Tolerance in Embryos of the Delta Smelt, Hypomesus transpacificus. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2019; 511:634191. [PMID: 32831418 PMCID: PMC7442155 DOI: 10.1016/j.aquaculture.2019.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Delta smelt (Hypomesus transpacificus) is a critically endangered species endemic to the San Francisco Bay Delta (SFBD). Important for the conservation of this species is understanding the physiological and ecological impacts contributing to their population decline, and current studies lack information on embryonic development. Changes in patterns of salinity across the SFBD may be a particularly important environmental stressor contributing to the recruitment and survival of the species. Throughout their ontogeny, delta smelt may exhibit unique requirements and tolerances to environmental conditions including salinity. Here, we describe 22 stages of embryonic development of H. transpacificus that characterize early differentiation from the fertilized egg until hatching, allowing the identification of critical morphological features unique to this species. Additionally, we investigated aspects of physiological tolerance to environmental salinity during development. Embryos survived incubation at salinity treatments between 0.4 and 20 ppt, yet had lower hatch success at higher salinities. Prior to hatching, embryos exposed to higher salinities had increased osmolalities and reduced fractions of yolk implying that the elevated external salinity altered the physiology of the embryo and the environment internal to the chorion. Lastly, egg activation and fertilization appear to also be impacted by salinity. Altogether, we suggest that any potential tolerance to salinity during embryogenesis, a common feature in euryhaline teleost species, impacts life cycle transitions into, and out of, embryonic development. Results from this investigation should improve conservation and management practices of this species and further expand our understanding of the intimate relationship between an embryo and its environment.
Collapse
Affiliation(s)
- Amie L. T. Romney
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616, USA
| | - Yuzo R. Yanagitsuru
- Department of Wildlife Conservation and Fish Biology, University of California, Davis, CA 95616, USA
| | - Paige C. Mundy
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616, USA
| | - Nann A. Fangue
- Department of Wildlife Conservation and Fish Biology, University of California, Davis, CA 95616, USA
| | - Tien-Chieh Hung
- Fish Conservation Culture Laboratory, Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
| | - Susanne M. Brander
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Richard E. Connon
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
53
|
Zhang X, Li X, Li R, Zhang Y, Li Y, Li S. Transcriptomic profile of early zebrafish PGCs by single cell sequencing. PLoS One 2019; 14:e0220364. [PMID: 31412047 PMCID: PMC6693734 DOI: 10.1371/journal.pone.0220364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022] Open
Abstract
Single cell RNA-seq is a powerful and sensitive way to capture the genome-wide gene expression. Here, single cell RNA-seq was utilized to study the transcriptomic profile of early zebrafish PGCs (primordial germ cells) at three different developmental stages. The three stages were 6, 11 and 24 hpf (hours post fertilization). For each developmental stage, three zebrafish PGCs from one embryo were collected, and 9 samples in total were used in this experiment. Single cell RNA-seq results showed that 5099–7376 genes were detected among the 9 samples, and the number of expressed genes decreased as development progressed. Based on the gene expression pattern, samples from 6 and 11 hpf clustered closely, while samples from 24 hpf were more dispersed. By WGCNA (weighted gene co-expression network analysis), the two biggest modules that had inverse gene expression patterns were found to be related to PGC formation or migration. Functional enrichment analysis for these two modules showed that PGCs mainly conducted migration and cell division in early development (6/11 hpf) and translation activity became active in late development (24 hpf). Differentially expressed gene analyses showed that more genes were downregulated than upregulated between two adjacent stages, and genes related to PGC formation or migration reported by previous studies decreased significantly from 11 to 24 hpf. Our results provide base knowledge about zebrafish PGC development at the single cell level and can be further studied by other researchers interested in biological development.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xintian Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ronghong Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yunbin Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yiping Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shifeng Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
54
|
Vliet SMF, Dasgupta S, Sparks NRL, Kirkwood JS, Vollaro A, Hur M, Zur Nieden NI, Volz DC. Maternal-to-zygotic transition as a potential target for niclosamide during early embryogenesis. Toxicol Appl Pharmacol 2019; 380:114699. [PMID: 31398420 DOI: 10.1016/j.taap.2019.114699] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/16/2019] [Accepted: 08/04/2019] [Indexed: 12/31/2022]
Abstract
Niclosamide is an antihelminthic drug used worldwide for the treatment of tapeworm infections. Recent drug repurposing screens have highlighted the broad bioactivity of niclosamide across diverse mechanisms of action. As a result, niclosamide is being evaluated for a range of alternative drug-repurposing applications, including the treatment of cancer, bacterial infections, and Zika virus. As new applications of niclosamide will require non-oral delivery routes that may lead to exposure in utero, it is important to understand the mechanism of niclosamide toxicity during early stages of embryonic development. Previously, we showed that niclosamide induces a concentration-dependent delay in epiboly progression in the absence of effects on oxidative phosphorylation - a well-established target for niclosamide. Therefore, the overall objective of this study was to further examine the mechanism of niclosamide-induced epiboly delay during zebrafish embryogenesis. Based on this study, we found that (1) niclosamide exposure during early zebrafish embryogenesis resulted in a decrease in yolk sac integrity with a concomitant decrease in the presence of yolk sac actin networks and increase in cell size; (2) within whole embryos, niclosamide exposure did not alter non-polar metabolites and lipids, but significantly altered amino acids specific to aminoacyl-tRNA biosynthesis; (3) niclosamide significantly altered transcripts related to translation, transcription, and mRNA processing pathways; and (4) niclosamide did not significantly alter levels of rRNA and tRNA. Overall, our findings suggest that niclosamide may be causing a systemic delay in embryonic development by disrupting the translation of maternally-supplied mRNAs, an effect that may be mediated through disruption of aminoacyl-tRNA biosynthesis.
Collapse
Affiliation(s)
- Sara M F Vliet
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA; Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Nicole R L Sparks
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA, USA
| | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Alyssa Vollaro
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Nicole I Zur Nieden
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, CA, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
55
|
Elabd S, Jabeen NA, Gerber V, Peravali R, Bourdon JC, Kancherla S, Vallone D, Blattner C. Delay in development and behavioural abnormalities in the absence of p53 in zebrafish. PLoS One 2019; 14:e0220069. [PMID: 31323059 PMCID: PMC6641203 DOI: 10.1371/journal.pone.0220069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/07/2019] [Indexed: 12/21/2022] Open
Abstract
p53 is well-known for its tumour-suppressive activity. However, in the past decade it became clear that p53 is also involved in other processes including stem cell proliferation, differentiation and animal development. To investigate the role of p53 in early embryonic development, we targeted p53 by CRISPR/Cas9 to make a p53 knock-out zebrafish (Danio rerio). Our data show developmental and behavioural effects in p53-deficient zebrafish embryos and larvae. Specifically, we found that early development of zebrafish was clearly delayed in the absence of p53. However, after 1 day (1 dpf), the p53-deficient embryos appeared to recover, as evidenced by a similar level of pigmentation at 26 hpf, similar size of the eye at 4 dpf and only a minor difference in body size at 4 dpf compared to p53 wild-type siblings. The recovery of development after 1 dpf in p53-deficient embryos could be due to a compensatory mechanism involving other p53 family members. p63 and p73 were found over-expressed with respect to wild-type siblings. However, despite this adaptation, the hatching time remained delayed in p53-/- zebrafish. In addition to differences in development, p53-null zebrafish embryos also showed differences in behaviour. We observed an overall reduced activity and a reduced travel distance under non-stressed conditions and after exposing the larvae to vibration. We also observed a longer latency until the larvae started to move after touching with a needle. Overall, these data indicate that p53 is involved in early development and locomotion activities.
Collapse
Affiliation(s)
- Seham Elabd
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
- Human Physiology Department, Medical Research Institute, Alexandria University, Hadara, Alexandria, Egypt
| | - Nuzhat Amna Jabeen
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Vanessa Gerber
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Ravindra Peravali
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Jean-Christoph Bourdon
- Dundee Cancer Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Shilpa Kancherla
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Daniela Vallone
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Christine Blattner
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
- * E-mail:
| |
Collapse
|
56
|
Vastenhouw NL, Cao WX, Lipshitz HD. The maternal-to-zygotic transition revisited. Development 2019; 146:146/11/dev161471. [PMID: 31189646 DOI: 10.1242/dev.161471] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of animal embryos is initially directed by maternal gene products. Then, during the maternal-to-zygotic transition (MZT), developmental control is handed to the zygotic genome. Extensive research in both vertebrate and invertebrate model organisms has revealed that the MZT can be subdivided into two phases, during which very different modes of gene regulation are implemented: initially, regulation is exclusively post-transcriptional and post-translational, following which gradual activation of the zygotic genome leads to predominance of transcriptional regulation. These changes in the gene expression program of embryos are precisely controlled and highly interconnected. Here, we review current understanding of the mechanisms that underlie handover of developmental control during the MZT.
Collapse
Affiliation(s)
- Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
57
|
Full-Length Transcriptome Sequencing and the Discovery of New Transcripts in the Unfertilized Eggs of Zebrafish ( Danio rerio). G3-GENES GENOMES GENETICS 2019; 9:1831-1838. [PMID: 30872328 PMCID: PMC6553537 DOI: 10.1534/g3.119.200997] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding early gene expression in zebrafish embryos is a prerequisite for developmental biology research. In this study, 1,629,447 polymerase reads were obtained from the unfertilized eggs of zebrafish via full-length transcriptome sequencing using the PacBio RS II platform first. Then, 102,920 unique isoforms were obtained by correction, clustering and comparison with the zebrafish genome. 12,782 genes in the genome were captured, accounting for 39.71% of the all annotated genes. Approximately 62.27% of the 12,782 genes have been alternatively spliced. GO and KEGG annotations revealed that the unfertilized eggs primarily stored genes that participate in RNA processing and nuclear protein complex composition. According to this PacBio data that aligned with the genome, 3,970 fusion genes, 819 ncRNAs, and 84 new transcripts were predicted. Illumina RNA-seq and RT-qPCR detection found that the expression of two new transcripts, PB.5289.1 and PB.10209.1, were significantly up-regulated at the 2-cell stage and down-regulated rapidly thereafter, suggesting their involvement in minor ZGA during early embryonic development. This study indicated that the unfertilized eggs of zebrafish may have retained genes directly related to cell division and development to initiate the subsequent development in a limited space and time. On the other hand, NTRs or new transcriptome regions in the genome were discovered, which provided new clues regarding ZGA of MZT during early embryonic development in fish.
Collapse
|
58
|
Induced androgenetic development in rainbow trout and transcriptome analysis of irradiated eggs. Sci Rep 2019; 9:8084. [PMID: 31147623 PMCID: PMC6542805 DOI: 10.1038/s41598-019-44568-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
Abstract
Ionizing radiation is administered to damage nuclear genome in fish eggs during induced androgenesis. In this study, we examined whether 350 Gy of X-ray applied to damage chromosomes in the rainbow trout eggs affects maternal RNA. Shortly after irradiation, we did not find any symptoms of RNA degradation in the treated eggs. Significant (p < 0.01) differences between non-irradiated and irradiated eggs concerned only a few transcripts including increased expression of immediate early response 2 (IER2) and early growth response 1 (EGR1) genes observed in the irradiated eggs. Both genes belong to the group of “immediate early genes” that respond quickly to the diverse extracellular stimuli. Elevated expression of these genes was accompanied by decreased level of ssa-miR-10b-5p and ssa-miR-21b-5p (p < 0.05), for which IER2 and EGR1 are target genes. The level of RNA in the fertilized irradiated eggs was highly significantly lower than in the non-irradiated eggs (p < 0.001) and in the unfertilized irradiated eggs (p < 0.0001). However, transcriptome profiles of fertilized non-irradiated eggs and fertilized irradiated eggs did not differ significantly. Thus, we assume that reduced abundance of mRNA in the fertilized irradiated eggs was associated with post-translational degradation and clearance of the maternal transcripts rather than from the irradiation of eggs.
Collapse
|
59
|
Divergence, evolution and adaptation in ray-finned fish genomes. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1003-1018. [PMID: 31098893 DOI: 10.1007/s11427-018-9499-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023]
Abstract
With the rapid development of next-generation sequencing technologies and bioinformatics, over 50 ray-finned fish genomes by far have been sequenced with high quality. The genomic work provides abundant genetic resources for deep understanding of divergence, evolution and adaptation in the fish genomes. They are also instructive for identification of candidate genes for functional verification, molecular breeding, and development of novel marine drugs. As an example of other omics data, the Fish-T1K project generated a big database of fish transcriptomes to integrate with these published fish genomes for potential applications. In this review, we highlight the above-mentioned recent investigations and core topics on the ray-finned fish genome research, with a main goal to obtain a deeper understanding of fish biology for theoretical and practical applications.
Collapse
|
60
|
Martínez-Brown JM, Cetzal-Aké CA, Ibarra-Castro L, Sánchez-Cárdenas R, Maldonado-Amparo MA, Rojo-Cebreros AH, Sánchez-Téllez JL. Embryonic development of the bullseye puffer Sphoeroides annulatus (Tetraodontidae): A morphofunctional approach to ontogenetic steps. J Morphol 2019; 280:948-967. [PMID: 31021459 DOI: 10.1002/jmor.20994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 11/06/2022]
Abstract
The embryonic development of the bullseye puffer, Sphoeroides annulatus, was characterized on the basis of the theory of saltatory ontogeny. This theory predicts a correlative relationship between the ontogeny-type in an altricial-precocial spectrum and the habitat that a species occupies within an unstable-stable environmental spectrum. Because S. annulatus inhabits a variety of unstable environments along a wide latitudinal range, the hypothesis that this species presents one of the most altricial embryonic developments among tetraodontids was tested. Based on major developmental events that marked the ontogenetic thresholds nine embryonic steps were identified. Developmental features such as small adhesives eggs, lack of vitelline circulation, small free embryos swimming up at hatching guided by positive phototaxis, and small first-feeding larvae actively swam in the water column, suggest that S. annulatus belongs to the reproductive guild of the nonguarders-lithopelagophils. Moreover, a comparative analysis of the developmental sequences, egg size, and first-feeding larvae size between tetraodontids confirms the hypothesis of this study and supports the evolutionary principle of the altricial-precocial spectrum postulated in the theory of saltatory ontogeny.
Collapse
Affiliation(s)
- Juan M Martínez-Brown
- Laboratorio de Reproducción y Planta Piloto de Peces Marinos, Centro de Investigación en Alimentación y Desarrollo (CIAD) Unidad Mazatlán, Mazatlán, Sin, Mexico.,Dirección de Cátedras-CONACYT, Consejo Nacional de Ciencia y Tecnología (CONACYT), Ciudad de México, Mexico
| | - Carlos A Cetzal-Aké
- Laboratorio de Reproducción y Planta Piloto de Peces Marinos, Centro de Investigación en Alimentación y Desarrollo (CIAD) Unidad Mazatlán, Mazatlán, Sin, Mexico
| | - Leonardo Ibarra-Castro
- Laboratorio de Reproducción y Planta Piloto de Peces Marinos, Centro de Investigación en Alimentación y Desarrollo (CIAD) Unidad Mazatlán, Mazatlán, Sin, Mexico
| | - Rebeca Sánchez-Cárdenas
- Dirección de Cátedras-CONACYT, Consejo Nacional de Ciencia y Tecnología (CONACYT), Ciudad de México, Mexico.,Laboratorio de Ecología de Pesquerías, Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Mazatlán, Sin, Mexico
| | - María A Maldonado-Amparo
- Laboratorio de Ecología de Pesquerías, Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Mazatlán, Sin, Mexico
| | - Angel H Rojo-Cebreros
- Laboratorio de Reproducción y Planta Piloto de Peces Marinos, Centro de Investigación en Alimentación y Desarrollo (CIAD) Unidad Mazatlán, Mazatlán, Sin, Mexico
| | - Juan L Sánchez-Téllez
- Laboratorio de Reproducción y Planta Piloto de Peces Marinos, Centro de Investigación en Alimentación y Desarrollo (CIAD) Unidad Mazatlán, Mazatlán, Sin, Mexico
| |
Collapse
|
61
|
Bizuayehu TT, Mommens M, Sundaram AYM, Dhanasiri AKS, Babiak I. Postovulatory maternal transcriptome in Atlantic salmon and its relation to developmental potential of embryos. BMC Genomics 2019; 20:315. [PMID: 31014241 PMCID: PMC6480738 DOI: 10.1186/s12864-019-5667-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
Background Early development of an oviparous organism is based on maternally stocked structural, nutritional and regulatory components. These components influence the future developmental potential of an embryo, which is referred to as egg quality. Until zygotic genome activation, translational activity in a fish early embryo is limited to parentally inherited transcripts only. In this study, we asked whether egg transcriptome is associated with egg quality in Atlantic salmon (Salmo salar), which is capable of storing ovulated eggs in its abdominal cavity for a long time before spawning. Results We analyzed messenger RNA (mRNA) and micro RNA (miRNA) transcriptomes throughout the post-ovulatory egg retention period in batches of eggs from two quality groups, good and poor, classified based on the future developmental performance. We identified 28,551 protein-coding genes and 125 microRNA families, with 200 mRNAs and 5 miRNAs showing differential abundance between egg quality groups and/or among postovulatory ages. Transcriptome dynamics during the egg retention period was different in the two egg quality groups. We identified only a single gene, hepcidin-1, as a potential marker for Atlantic salmon egg quality evaluation. Conclusion The overlapping effect of post-ovulatory age on intrinsic egg developmental competence makes the quantification of egg quality difficult when based on transcripts abundance only. Electronic supplementary material The online version of this article (10.1186/s12864-019-5667-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teshome Tilahun Bizuayehu
- Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway.,Present address: Sars Center, University of Bergen, N-5006, Bergen, Norway
| | - Maren Mommens
- Aqua Gen AS, P.O.Box 1240, Sluppen, N-7462, Trondheim, Norway
| | - Arvind Y M Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, P. O. Box 4956, Nydalen, 0424, Oslo, Norway
| | | | - Igor Babiak
- Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway.
| |
Collapse
|
62
|
Lombard-Banek C, Moody SA, Manzini MC, Nemes P. Microsampling Capillary Electrophoresis Mass Spectrometry Enables Single-Cell Proteomics in Complex Tissues: Developing Cell Clones in Live Xenopus laevis and Zebrafish Embryos. Anal Chem 2019; 91:4797-4805. [PMID: 30827088 PMCID: PMC6688183 DOI: 10.1021/acs.analchem.9b00345] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Label-free single-cell proteomics by mass spectrometry (MS) is currently incompatible with complex tissues without requiring cell culturing, single-cell dissection, or tissue dissociation. We here report the first example of label-free single-cell MS-based proteomics directly in single cells in live vertebrate embryos. Our approach integrates optically guided in situ subcellular capillary microsampling, one-pot extraction-digestion of the collected proteins, peptide separation by capillary electrophoresis, ionization by an ultrasensitive electrokinetically pumped nanoelectrospray, and detection by high-resolution MS (Orbitrap). With a 700 zmol (420 000 copies) lower limit of detection, this trace-sensitive technology confidently identified and quantified ∼750-800 protein groups (<1% false-discovery rate) by analyzing just ∼5 ng of protein digest, viz. <0.05% of the total protein content from individual cells in a 16-cell Xenopus laevis (frog) embryo. After validating the approach by recovering animal-vegetal-pole proteomic asymmetry in the frog zygote, the technology was applied to uncover proteomic reorganization as the animal-dorsal (D11) cell of the 16-cell embryo gave rise to its neural-tissue-fated clone in the embryo developing to the 32-, 64-, and 128-cell stages. In addition to enabling proteomics on smaller cells in X. laevis, we also demonstrated this technology to be scalable to single cells in live zebrafish embryos. Microsampling single-cell MS-based proteomics raises exciting opportunities to study cell and developmental processes directly in complex tissues and whole organisms at the level of the building block of life: the cell.
Collapse
Affiliation(s)
- Camille Lombard-Banek
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742
| | - Sally A. Moody
- Department of Anatomy & Regenerative Biology, The George Washington University, Washington, DC 20052
| | - M. Chiara Manzini
- Department of Pharmacology & Physiology, The George Washington University, Washington, DC 20052
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742
- Department of Anatomy & Regenerative Biology, The George Washington University, Washington, DC 20052
| |
Collapse
|
63
|
Developmental fluoxetine exposure in zebrafish reduces offspring basal cortisol concentration via life stage-dependent maternal transmission. PLoS One 2019; 14:e0212577. [PMID: 30789953 PMCID: PMC6383989 DOI: 10.1371/journal.pone.0212577] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/05/2019] [Indexed: 12/13/2022] Open
Abstract
Fluoxetine (FLX) is a pharmaceutical used to treat affective disorders in humans, but as environmental contaminant also affects inadvertently exposed fish in urban watersheds. In humans and fish, acute FLX treatment and exposure are linked to endocrine disruption, including effects on the reproductive and stress axes. Using the zebrafish model, we build on the recent finding that developmental FLX exposure reduced cortisol production across generations, to determine possible parental and/or life-stage-dependent (age and/or breeding experience) contributions to this phenotype. Specifically, we combined control and developmentally FLX-exposed animals of both sexes (F0) into four distinct breeding groups mated at 5 and 9 months, and measured offspring (F1) basal cortisol at 12 dpf. Basal cortisol was lower in F1 descended from developmentally FLX-exposed F0 females bred at 5, but not 9 months, revealing a maternal, life-stage dependent effect. To investigate potential molecular contributions to this phenotype, we profiled maternally deposited transcripts involved in endocrine stress axis development and regulation, epigenetic (de novo DNA methyltransferases) and post-transcriptional (miRNA pathway components and specific miRNAs) regulation of gene expression in unfertilized eggs. Maternal FLX exposure resulted in decreased transcript abundance of glucocorticoid receptor, dnmt3 paralogues and miRNA pathway components in eggs collected at 5 months, and increased transcript abundance of miRNA pathway components at 9 months. Specific miRNAs predicted to target stress axis transcripts decreased (miR-740) or increased (miR-26, miR-30d, miR-92a, miR-103) in eggs collected from FLX females at 5 months. Increased abundance of miRNA-30d and miRNA-92a persisted in eggs collected from FLX females at 9 months. Clustering and principal component analyses of egg transcript profiles separated eggs collected from FLX-females at 5 months from other groups, suggesting that oocyte molecular signatures, and miRNAs in particular, may serve as predictive tools for the offspring phenotype of reduced basal cortisol in response to maternal FLX exposure.
Collapse
|
64
|
Huo X, Li H, Li Z, Yan C, Mathavan S, Liu J, Gong Z. Transcriptomic analyses of oncogenic hepatocytes reveal common and different molecular pathways of hepatocarcinogenesis in different developmental stages and genders in kras G12V transgenic zebrafish. Biochem Biophys Res Commun 2019; 510:558-564. [PMID: 30739784 DOI: 10.1016/j.bbrc.2019.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, is mainly due to genetic changes in hepatocytes. However, molecular expression in hepatocytes during hepatocarcinogenesis has not been characterized. In this study, using an inducible kras transgenic zebrafish models for HCC, transcriptomic profiles of oncogenic hepatocytes from larvae, male and female adult fish following a brief induction of oncogenic kras were investigated. We found that oncogenic hepatocytes from all the three sources possess most of the cancer hallmarks at molecular level, including Sustaining proliferative signaling, Evading growth suppressors, Resisting cell death, Avoiding immune destruction, Inflammation, Reprogramming of energy metabolism, Angiogenesis, and Activating invasion and metastasis, suggesting the malignant transformation at molecular level could occur at the early stage of hepatocarcinogensis and can be captured in hepatocytes. However, each group of oncogenic hepatocytes also had their own characteristics. Larval oncogenic hepatocytes have cancer stem cell features. Female oncogenic hepatocytes showed resemblance to a mild human HCC subtype while male oncogenic hepatocytes resembled a severe HCC subtype, consistent with the observed sex disparity of HCC in both zebrafish and human. Finally, the two adult groups were more similar to each other than to the larval group, indicating an overwhelming effect of development over the gender.
Collapse
Affiliation(s)
- Xiaojing Huo
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Hankun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Zhen Li
- Genome Institute of Singapore, Singapore
| | - Chuan Yan
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
65
|
Korzh V, Kondrychyn I, Winata C. The Zebrafish as a New Model System for Experimental Biology. CYTOL GENET+ 2018. [DOI: 10.3103/s009545271806004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
66
|
Fuentes R, Letelier J, Tajer B, Valdivia LE, Mullins MC. Fishing forward and reverse: Advances in zebrafish phenomics. Mech Dev 2018; 154:296-308. [PMID: 30130581 PMCID: PMC6289646 DOI: 10.1016/j.mod.2018.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
Understanding how the genome instructs the phenotypic characteristics of an organism is one of the major scientific endeavors of our time. Advances in genetics have progressively deciphered the inheritance, identity and biological relevance of genetically encoded information, contributing to the rise of several, complementary omic disciplines. One of them is phenomics, an emergent area of biology dedicated to the systematic multi-scale analysis of phenotypic traits. This discipline provides valuable gene function information to the rapidly evolving field of genetics. Current molecular tools enable genome-wide analyses that link gene sequence to function in multi-cellular organisms, illuminating the genome-phenome relationship. Among vertebrates, zebrafish has emerged as an outstanding model organism for high-throughput phenotyping and modeling of human disorders. Advances in both systematic mutagenesis and phenotypic analyses of embryonic and post-embryonic stages in zebrafish have revealed the function of a valuable collection of genes and the general structure of several complex traits. In this review, we summarize multiple large-scale genetic efforts addressing parental, embryonic, and adult phenotyping in the zebrafish. The genetic and quantitative tools available in the zebrafish model, coupled with the broad spectrum of phenotypes that can be assayed, make it a powerful model for phenomics, well suited for the dissection of genotype-phenotype associations in development, physiology, health and disease.
Collapse
Affiliation(s)
- Ricardo Fuentes
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joaquín Letelier
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), Seville, Spain; Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Benjamin Tajer
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leonardo E Valdivia
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
| | - Mary C Mullins
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
67
|
Ahi EP, Singh P, Lecaudey LA, Gessl W, Sturmbauer C. Maternal mRNA input of growth and stress-response-related genes in cichlids in relation to egg size and trophic specialization. EvoDevo 2018; 9:23. [PMID: 30519389 PMCID: PMC6271631 DOI: 10.1186/s13227-018-0112-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Egg size represents an important form of maternal effect determined by a complex interplay of long-term adaptation and short-term plasticity balancing egg size with brood size. Haplochromine cichlids are maternal mouthbrooders showing differential parental investment in different species, manifested in great variation in egg size, brood size and duration of maternal care. Little is known about maternally determined molecular characters of eggs in fishes and their relation to egg size and trophic specialization. Here we investigate maternal mRNA inputs of selected growth- and stress-related genes in eggs of mouthbrooding cichlid fishes adapted to different trophic niches from Lake Tanganyika, Lake Malawi, Lake Victoria and compare them to their riverine allies. RESULTS We first identified two reference genes, atf7ip and mid1ip1, to be suitable for cross-species quantification of mRNA abundance via qRT-PCR in the cichlid eggs. Using these reference genes, we found substantial variation in maternal mRNA input for a set of candidate genes related to growth and stress response across species and lakes. We observed negative correlation of mRNA abundance between two of growth hormone receptor paralogs (ghr1 and ghr2) across all haplochromine cichlid species which also differentiate the species in the two younger lakes, Malawi and Lake Victoria, from those in Lake Tanganyika and ancestral riverine species. Furthermore, we found correlations between egg size and maternal mRNA abundance of two growth-related genes igf2 and ghr2 across the haplochromine cichlids as well as distinct clustering of the species based on their trophic specialization using maternal mRNA abundance of five genes (ghr1, ghr2, igf2, gr and sgk1). CONCLUSIONS These findings indicate that variations in egg size in closely related cichlid species can be linked to differences in maternal RNA deposition of key growth-related genes. In addition, the cichlid species with contrasting trophic specialization deposit different levels of maternal mRNAs in their eggs for particular growth-related genes; however, it is unclear whether such differences contribute to differential morphogenesis at later stages of development. Our results provide first insights into this aspect of gene activation, as a basis for future studies targeting their role during ecomorphological specialization and adaptive radiation.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| | - Pooja Singh
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | | | - Wolfgang Gessl
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Christian Sturmbauer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
68
|
Hamm DC, Harrison MM. Regulatory principles governing the maternal-to-zygotic transition: insights from Drosophila melanogaster. Open Biol 2018; 8:180183. [PMID: 30977698 PMCID: PMC6303782 DOI: 10.1098/rsob.180183] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022] Open
Abstract
The onset of metazoan development requires that two terminally differentiated germ cells, a sperm and an oocyte, become reprogrammed to the totipotent embryo, which can subsequently give rise to all the cell types of the adult organism. In nearly all animals, maternal gene products regulate the initial events of embryogenesis while the zygotic genome remains transcriptionally silent. Developmental control is then passed from mother to zygote through a process known as the maternal-to-zygotic transition (MZT). The MZT comprises an intimately connected set of molecular events that mediate degradation of maternally deposited mRNAs and transcriptional activation of the zygotic genome. This essential developmental transition is conserved among metazoans but is perhaps best understood in the fruit fly, Drosophila melanogaster. In this article, we will review our understanding of the events that drive the MZT in Drosophila embryos and highlight parallel mechanisms driving this transition in other animals.
Collapse
Affiliation(s)
| | - Melissa M. Harrison
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| |
Collapse
|
69
|
Hwang YS, Seo M, Kim SK, Bang S, Kim H, Han JY. Zygotic gene activation in the chicken occurs in two waves, the first involving only maternally derived genes. eLife 2018; 7:39381. [PMID: 30375976 PMCID: PMC6242549 DOI: 10.7554/elife.39381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022] Open
Abstract
The first wave of transcriptional activation occurs after fertilisation in a species-specific pattern. Despite its importance to initial embryonic development, the characteristics of transcription following fertilisation are poorly understood in Aves. Here, we report detailed insights into the onset of genome activation in chickens. We established that two waves of transcriptional activation occurred, one shortly after fertilisation and another at Eyal-Giladi and Kochav Stage V. We found 1544 single nucleotide polymorphisms across 424 transcripts derived from parents that were expressed in offspring during the early embryonic stages. Surprisingly, only the maternal genome was activated in the zygote, and the paternal genome remained silent until the second-wave, regardless of the presence of a paternal pronucleus or supernumerary sperm in the egg. The identified maternal genes involved in cleavage that were replaced by bi-allelic expression. The results demonstrate that only maternal alleles are activated in the chicken zygote upon fertilisation, which could be essential for early embryogenesis and evolutionary outcomes in birds. The early stages of animal development involve a handover of genetic control. Initially, the egg cell is maintained by genetic information inherited from the mother, but soon after fertilization it starts to depend on its own genes instead. Activating genes inside the fertilized egg cell (zygote) so that they can take control of development is known as zygotic genome activation. Despite the fact that birds are often used to study how embryos develop, zygotic genome activation in birds is not well understood. Fertilization in birds, including chickens, is different to mammals in that it requires multiple sperm to fertilize an egg cell. As such, zygotic genome activation in birds is likely to differ from that in mammals. By examining gene expression in embryos from mixed-breed chickens, Hwang, Seo et al. showed that there are two stages of zygotic genome activation in chickens. The genes derived from the mother become active in the first stage, while genes from the father become active in the second stage. Genome activation in birds is therefore very different to the same process in mammals, which involves genome activation of both parents from the first stage. This extra level of control may help to prevent genetic complications resulting from the presence of multiple sperm, each of which carries a different set of genes from the father.
Collapse
Affiliation(s)
- Young Sun Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Minseok Seo
- C&K Genomics, Seoul, Republic of Korea.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Sang Kyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | - Heebal Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,C&K Genomics, Seoul, Republic of Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
70
|
Kamstra JH, Hurem S, Martin LM, Lindeman LC, Legler J, Oughton D, Salbu B, Brede DA, Lyche JL, Aleström P. Ionizing radiation induces transgenerational effects of DNA methylation in zebrafish. Sci Rep 2018; 8:15373. [PMID: 30337673 PMCID: PMC6193964 DOI: 10.1038/s41598-018-33817-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/06/2018] [Indexed: 01/08/2023] Open
Abstract
Ionizing radiation is known to cause DNA damage, yet the mechanisms underlying potential transgenerational effects of exposure have been scarcely studied. Previously, we observed effects in offspring of zebrafish exposed to gamma radiation during gametogenesis. Here, we hypothesize that these effects are accompanied by changes of DNA methylation possibly inherited by subsequent generations. We assessed DNA methylation in F1 embryos (5.5 hours post fertilization) with whole genome bisulfite sequencing following parental exposure to 8.7 mGy/h for 27 days and found 5658 differentially methylated regions (DMRs). DMRs were predominantly located at known regulatory regions, such as gene promoters and enhancers. Pathway analysis indicated the involvement of DMRs related to similar pathways found with gene expression analysis, such as development, apoptosis and cancers, which could be linked to previous observed developmental defects and genomic instability in the offspring. Follow up of 19 F1 DMRs in F2 and F3 embryos revealed persistent effects up to the F3 generation at 5 regions. These results indicate that ionizing radiation related effects in offspring can be linked to DNA methylation changes that partly can persist over generations. Monitoring DNA methylation could serve as a biomarker to provide an indication of ancestral exposures to ionizing radiation.
Collapse
Affiliation(s)
- Jorke H Kamstra
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway.
| | - Selma Hurem
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway
| | - Leonardo Martin Martin
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway.,University of Camagüey, Faculty of Agropecuary Sciences, Camagüey, 70100, Cuba
| | - Leif C Lindeman
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway.,Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Juliette Legler
- Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Utrecht University, Institute for Risk Assessment Sciences, 3508, TD, Utrecht, The Netherlands
| | - Deborah Oughton
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Brit Salbu
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Dag Anders Brede
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Jan Ludvig Lyche
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway
| | - Peter Aleström
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway
| |
Collapse
|
71
|
Sun J, Yan L, Shen W, Meng A. Maternal Ybx1 safeguards zebrafish oocyte maturation and maternal-to-zygotic transition by repressing global translation. Development 2018; 145:dev.166587. [PMID: 30135188 DOI: 10.1242/dev.166587] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/23/2018] [Indexed: 12/22/2022]
Abstract
Maternal mRNAs and proteins dictate early embryonic development before zygotic genome activation. In the absence of transcription, elaborate control of maternal mRNA translation is of particular importance for oocyte maturation and early embryogenesis. By analyzing zebrafish ybx1 mutants with a null allele, we demonstrate an essential role of maternal ybx1 in repressing global translation in oocytes and embryos. Loss of maternal Ybx1 leads to impaired oocyte maturation and egg activation. Maternal ybx1 (Mybx1) mutant embryos fail to undergo normal cleavage and the maternal-to-zygotic transition (MZT). Morpholino knockdown of ybx1 also results in MZT loss and epiboly failure, suggesting the postfertilization requirement of Ybx1. In addition, elevated global translation level and the unfolded protein response were found in Ybx1-depleted embryos. Supplementing translational repression by eIF4E inhibition markedly rescues the Mybx1 phenotype. Mechanistically, Ybx1 in embryos may associate with processing body components and repress translation when tethered to target mRNAs. Collectively, our results identify maternal Ybx1 as a global translational repressor required for oocyte maturation and early embryogenesis.
Collapse
Affiliation(s)
- Jiawei Sun
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Yan
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
72
|
Romney ALT, Podrabsky JE. Small noncoding RNA profiles along alternative developmental trajectories in an annual killifish. Sci Rep 2018; 8:13364. [PMID: 30190591 PMCID: PMC6127099 DOI: 10.1038/s41598-018-31466-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/13/2018] [Indexed: 11/24/2022] Open
Abstract
Embryonic development of Austrofundulus limnaeus can occur along two phenotypic trajectories that are physiologically and biochemically distinct. Phenotype appears to be influenced by maternal provisioning based on the observation that young females produce predominately non-diapausing embryos and older females produce mostly diapausing embryos. Embryonic incubation temperature can override this pattern and alter trajectory. We hypothesized that temperature-induced phenotypic plasticity may be regulated by post-transcriptional modification via noncoding RNAs. As a first step to exploring this possibility, RNA-seq was used to generate transcriptomic profiles of small noncoding RNAs in embryos developing along the two alternative trajectories. We find distinct profiles of mature sequences belonging to the miR-10 family expressed in increasing abundance during development and mature sequences of miR-430 that follow the opposite pattern. Furthermore, miR-430 sequences are enriched in escape trajectory embryos. MiR-430 family members are known to target maternally provisioned mRNAs in zebrafish and may operate similarly in A. limnaeus in the context of normal development, and also by targeting trajectory-specific mRNAs. This expression pattern and function for miR-430 presents a potentially novel model for maternal-embryonic conflict in gene regulation that provides the embryo the ability to override maternal programming in the face of altered environmental conditions.
Collapse
Affiliation(s)
- Amie L T Romney
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR, 97207, USA.
- Department of Anatomy, Physiology & Cell Biology, University of California at Davis School of Veterinary Medicine, One Shields Ave, Davis, CA, 95616, USA.
| | - Jason E Podrabsky
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR, 97207, USA.
| |
Collapse
|
73
|
Adam AC, Skjærven KH, Whatmore P, Moren M, Lie KK. Parental high dietary arachidonic acid levels modulated the hepatic transcriptome of adult zebrafish (Danio rerio) progeny. PLoS One 2018; 13:e0201278. [PMID: 30070994 PMCID: PMC6071982 DOI: 10.1371/journal.pone.0201278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 07/12/2018] [Indexed: 12/18/2022] Open
Abstract
Disproportionate high intake of n-6 polyunsaturated fatty acids (PUFAs) in the diet is considered as a major human health concern. The present study examines changes in the hepatic gene expression pattern of adult male zebrafish progeny associated with high levels of the n-6 PUFA arachidonic acid (ARA) in the parental diet. The parental generation (F0) was fed a diet which was either low (control) or high in ARA (high ARA). Progenies of both groups (F1) were given the control diet. No differences in body weight were found between the diet groups within adult stages of either F0 or F1 generation. Few differentially expressed genes were observed between the two dietary groups in the F0 in contrast to the F1 generation. Several links were found between the previous metabolic analysis of the parental fish and the gene expression analysis in their adult progeny. Main gene expression differences in the progeny were observed related to lipid and retinoid metabolism by PPARα/RXRα playing a central role in mediating changes to lipid and long-chain fatty acid metabolism. The enrichment of genes involved in β-oxidation observed in the progeny, corresponded to the increase in peroxisomal β-oxidative degradation of long-chain fatty acids in the parental fish metabolomics data. Similar links between the F0 and F1 generation were identified for the methionine cycle and transsulfuration pathway in the high ARA group. In addition, estrogen signalling was found to be affected by parental high dietary ARA levels, where gene expression was opposite directed in F1 compared to F0. This study shows that the dietary n-3/n-6 PUFA ratio can alter gene expression patterns in the adult progeny. Whether the effect is mediated by permanent epigenetic mechanisms regulating gene expression in developing gametes needs to be further investigated.
Collapse
Affiliation(s)
| | | | - Paul Whatmore
- Institute of Marine Research, Nordnes, Bergen, Norway
| | - Mari Moren
- Institute of Marine Research, Nordnes, Bergen, Norway
| | | |
Collapse
|
74
|
Laing L, Viana J, Dempster E, Uren Webster T, van Aerle R, Mill J, Santos E. Sex-specific transcription and DNA methylation profiles of reproductive and epigenetic associated genes in the gonads and livers of breeding zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2018; 222:16-25. [DOI: 10.1016/j.cbpa.2018.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022]
|
75
|
High resolution annotation of zebrafish transcriptome using long-read sequencing. Genome Res 2018; 28:1415-1425. [PMID: 30061115 PMCID: PMC6120630 DOI: 10.1101/gr.223586.117] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 07/05/2018] [Indexed: 12/13/2022]
Abstract
With the emergence of zebrafish as an important model organism, a concerted effort has been made to study its transcriptome. This effort is limited, however, by gaps in zebrafish annotation, which are especially pronounced concerning transcripts dynamically expressed during zygotic genome activation (ZGA). To date, short-read sequencing has been the principal technology for zebrafish transcriptome annotation. In part because these sequence reads are too short for assembly methods to resolve the full complexity of the transcriptome, the current annotation is rudimentary. By providing direct observation of full-length transcripts, recently refined long-read sequencing platforms can dramatically improve annotation coverage and accuracy. Here, we leveraged the SMRT platform to study the transcriptome of zebrafish embryos before and after ZGA. Our analysis revealed additional novelty and complexity in the zebrafish transcriptome, identifying 2539 high-confidence novel transcripts that originated from previously unannotated loci and 1835 high-confidence new isoforms in previously annotated genes. We validated these findings using a suite of computational approaches including structural prediction, sequence homology, and functional conservation analyses, as well as by confirmatory transcript quantification with short-read sequencing data. Our analyses provided insight into new homologs and paralogs of functionally important proteins and noncoding RNAs, isoform switching occurrences, and different classes of novel splicing events. Several novel isoforms representing distinct splicing events were validated through PCR experiments, including the discovery and validation of a novel 8-kb transcript spanning multiple mir-430 elements, an important driver of early development. Our study provides a significantly improved zebrafish transcriptome annotation resource.
Collapse
|
76
|
Winata CL, Korzh V. The translational regulation of maternal mRNAs in time and space. FEBS Lett 2018; 592:3007-3023. [PMID: 29972882 PMCID: PMC6175449 DOI: 10.1002/1873-3468.13183] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022]
Abstract
Since their discovery, the study of maternal mRNAs has led to the identification of mechanisms underlying their spatiotemporal regulation within the context of oogenesis and early embryogenesis. Following synthesis in the oocyte, maternal mRNAs are translationally silenced and sequestered into storage in cytoplasmic granules. At the same time, their unique distribution patterns throughout the oocyte and embryo are tightly controlled and connected to their functions in downstream embryonic processes. At certain points in oogenesis and early embryogenesis, maternal mRNAs are translationally activated to perform their functions in a timely manner. The cytoplasmic polyadenylation machinery is responsible for the translational activation of maternal mRNAs, and its role in initiating the maternal to zygotic transition events has recently come to light. Here, we summarize the current knowledge on maternal mRNA regulation, with particular focus on cytoplasmic polyadenylation as a mechanism for translational regulation.
Collapse
Affiliation(s)
- Cecilia Lanny Winata
- International Institute of Molecular and Cell Biology in Warsaw, Poland.,Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| |
Collapse
|
77
|
Nguyen H, Das U, Wang B, Xie J. The matrices and constraints of GT/AG splice sites of more than 1000 species/lineages. Gene 2018; 660:92-101. [PMID: 29588184 DOI: 10.1016/j.gene.2018.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
To provide a resource for the splice sites (SS) of different species, we calculated the matrices of nucleotide compositions of about 38 million splice sites from >1000 species/lineages. The matrices are enriched of aGGTAAGT (5'SS) or (Y)6N(C/t)AG(g/a)t (3'SS) overall; however, they are quite diverse among hundreds of species. The diverse matrices remain prominent even under sequence selection pressures, suggesting the existence of diverse constraints as well as U snRNAs and other spliceosomal factors and/or their interactions with the splice sites. Using an algorithm to measure and compare the splice site constraints across all species, we demonstrate their distinct differences quantitatively. As an example of the resource's application to answering specific questions, we confirm that high constraints of particular positions are significantly associated with transcriptome-wide, increased occurrences of alternative splicing when uncommon nucleotides are present. More interestingly, the abundance of alternative splicing in 16 species correlates with the average constraint index of splice sites in a bell curve. This resource will allow users to assess specific sequences/splice sites against the consensus of every Ensembl-annotated species, and to explore the evolutionary changes or relationship to alternative splicing and transcriptome diversity. Web-search or update features are also included.
Collapse
Affiliation(s)
- Hai Nguyen
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - Urmi Das
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Benjamin Wang
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; University of Illinois Urbana-Champaign, IL, USA
| | - Jiuyong Xie
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
78
|
Adrian-Kalchhauser I, Walser JC, Schwaiger M, Burkhardt-Holm P. RNA sequencing of early round goby embryos reveals that maternal experiences can shape the maternal RNA contribution in a wild vertebrate. BMC Evol Biol 2018; 18:34. [PMID: 29566669 PMCID: PMC5863367 DOI: 10.1186/s12862-018-1132-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/29/2018] [Indexed: 01/01/2023] Open
Abstract
Background It has been proposed that non-genetic inheritance could promote species fitness. Non-genetic inheritance could allow offspring to benefit from the experience of their parents, and could advocate pre-adaptation to prevailing and potentially selective conditions. Indeed, adaptive parental effects have been modeled and observed, but the molecular mechanisms behind them are far from understood. Results In the present study, we investigated whether maternal RNA can carry information about environmental conditions experienced by the mother in a wild vertebrate. Maternal RNA directs the development of the early embryo in many non-mammalian vertebrates and invertebrates. However, it is not known whether vertebrate maternal RNA integrates information about the parental environment. We sequenced the maternal RNA contribution from a model that we expected to rely on parental effects: the invasive benthic fish species Neogobius melanostomus (Round Goby). We found that maternal RNA expression levels correlated with the water temperature experienced by the mother before oviposition, and identified temperature-responsive gene groups such as core nucleosome components or the microtubule cytoskeleton. Conclusions Our findings suggest that the maternal RNA contribution may incorporate environmental information. Maternal RNA should therefore be considered a potentially relevant pathway for non-genetic inheritance. Also, the ability of a species to integrate environmental information in the maternal RNA contribution could potentially contribute to species fitness and may also play a role in extraordinary adaptive success stories of invasive species such as the round goby. Electronic supplementary material The online version of this article (10.1186/s12862-018-1132-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene Adrian-Kalchhauser
- Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland.
| | - Jean-Claude Walser
- Department of Environmental Systems Science, Genetic Diversity Centre Zurich, ETH Zurich, Universitätstrasse 16, CH-8092, Zurich, Switzerland
| | - Michaela Schwaiger
- Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - Patricia Burkhardt-Holm
- Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| |
Collapse
|
79
|
Hwang YS, Seo M, Lee BR, Lee HJ, Park YH, Kim SK, Lee HC, Choi HJ, Yoon J, Kim H, Han JY. The transcriptome of early chicken embryos reveals signaling pathways governing rapid asymmetric cellularization and lineage segregation. Development 2018; 145:dev.157453. [PMID: 29467246 DOI: 10.1242/dev.157453] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 02/12/2018] [Indexed: 12/15/2022]
Abstract
The phylogenomics and comparative functional genomics of avian species were investigated in the Bird 10,000 Genomes (B10K) project because of the important evolutionary position of birds and their value as a research model. However, the systematic profiling of transcriptional changes prior to oviposition has not been investigated in avian species because of the practical difficulties in obtaining pre-oviposited eggs. In this study, a total of 137 pre-oviposited embryos were collected from hen ovaries and oviducts and subjected to RNA-sequencing analyses. Two waves of chicken zygotic genome activation (ZGA) were observed. Functionally distinct developmental programs involving Notch, MAPK, Wnt and TGFβ signaling were separately detected during cleavage and area pellucida formation. Furthermore, the early stages of chicken development were compared with the human and mouse counterparts, highlighting chicken-specific signaling pathways and gradually analogous gene expression via ZGA. These findings provide a genome-wide understanding of avian embryogenesis and comparisons among amniotes.
Collapse
Affiliation(s)
- Young Sun Hwang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Minseok Seo
- CHO&KIM Genomics, SNU Research Park, Seoul National University Mt.4-2, Seoul 08826, Korea.,Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bo Ram Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hong Jo Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Young Hyun Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sang Kyung Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyung Chul Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Joon Yoon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,CHO&KIM Genomics, SNU Research Park, Seoul National University Mt.4-2, Seoul 08826, Korea.,Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea .,Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| |
Collapse
|
80
|
Hurem S, Martín LM, Lindeman L, Brede DA, Salbu B, Lyche JL, Aleström P, Kamstra JH. Parental exposure to gamma radiation causes progressively altered transcriptomes linked to adverse effects in zebrafish offspring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:855-863. [PMID: 29248853 DOI: 10.1016/j.envpol.2017.12.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Ionizing radiation causes a variety of effects, including DNA damage associated to cancers. However, the effects in progeny from irradiated parents is not well documented. Using zebrafish as a model, we previously found that parental exposure to ionizing radiation is associated with effects in offspring, such as increased hatching rates, deformities, increased DNA damage and reactive oxygen species. Here, we assessed short (one month) and long term effects (one year) on gene expression in embryonic offspring (5.5 h post fertilization) from zebrafish exposed during gametogenesis to gamma radiation (8.7 or 53 mGy/h for 27 days, total dose 5.2 or 31 Gy) using mRNA sequencing. One month after exposure, a global change in gene expression was observed in offspring from the 53 mGy/h group, followed by embryonic death at late gastrula, whereas offspring from the 8.7 mGy/h group was unaffected. Interestingly, one year after exposure newly derived embryos from the 8.7 mGy/h group exhibited 2390 (67.7% downregulated) differentially expressed genes. Overlaps in differentially expressed genes and enriched biological pathways were evident between the 53 mGy/h group one month and 8.7 mGy/h one year after exposure, but were oppositely regulated. Pathways could be linked to effects in adults and offspring, such as DNA damage (via Atm signaling) and reproduction (via Gnrh signaling). Comparison with gene expression analysis in directly exposed embryos indicate transferrin a and cytochrome P450 2x6 as possible biomarkers for radiation response in zebrafish. Our results indicate latent effects following ionizing radiation exposure from the lower dose in parents that can be transmitted to offspring and warrants monitoring effects over subsequent generations.
Collapse
Affiliation(s)
- Selma Hurem
- Faculty of Veterinary Medicine, Department of Food Safety and Infection Biology, CoE CERAD, Norwegian University of Life Sciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Leonardo Martín Martín
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, CoE CERAD, Norwegian University of Life Sciences, P.O. Box 8146 Dep., 0033 Oslo, Norway; Faculty of Agropecuary Sciences, Department of Morphophysiology, University of Camagüey, 74 650 Camagüey, Cuba
| | - Leif Lindeman
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, CoE CERAD, Norwegian University of Life Sciences, P.O. Box 8146 Dep., 0033 Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management, Institute of Environmental Sciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Dag Anders Brede
- Faculty of Environmental Sciences and Natural Resource Management, Institute of Environmental Sciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Brit Salbu
- Faculty of Environmental Sciences and Natural Resource Management, Institute of Environmental Sciences, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Jan Ludvig Lyche
- Faculty of Veterinary Medicine, Department of Food Safety and Infection Biology, CoE CERAD, Norwegian University of Life Sciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Peter Aleström
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, CoE CERAD, Norwegian University of Life Sciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, CoE CERAD, Norwegian University of Life Sciences, P.O. Box 8146 Dep., 0033 Oslo, Norway.
| |
Collapse
|
81
|
Skjærven KH, Jakt LM, Fernandes JMO, Dahl JA, Adam AC, Klughammer J, Bock C, Espe M. Parental micronutrient deficiency distorts liver DNA methylation and expression of lipid genes associated with a fatty-liver-like phenotype in offspring. Sci Rep 2018; 8:3055. [PMID: 29445184 PMCID: PMC5812986 DOI: 10.1038/s41598-018-21211-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/31/2018] [Indexed: 12/17/2022] Open
Abstract
Micronutrient status of parents can affect long term health of their progeny. Around 2 billion humans are affected by chronic micronutrient deficiency. In this study we use zebrafish as a model system to examine morphological, molecular and epigenetic changes in mature offspring of parents that experienced a one-carbon (1-C) micronutrient deficiency. Zebrafish were fed a diet sufficient, or marginally deficient in 1-C nutrients (folate, vitamin B12, vitamin B6, methionine, choline), and then mated. Offspring livers underwent histological examination, RNA sequencing and genome-wide DNA methylation analysis. Parental 1-C micronutrient deficiency resulted in increased lipid inclusion and we identified 686 differentially expressed genes in offspring liver, the majority of which were downregulated. Downregulated genes were enriched for functional categories related to sterol, steroid and lipid biosynthesis, as well as mitochondrial protein synthesis. Differential DNA methylation was found at 2869 CpG sites, enriched in promoter regions and permutation analyses confirmed the association with parental feed. Our data indicate that parental 1-C nutrient status can persist as locus specific DNA methylation marks in descendants and suggest an effect on lipid utilization and mitochondrial protein translation in F1 livers. This points toward parental micronutrients status as an important factor for offspring health and welfare.
Collapse
Affiliation(s)
| | - Lars Martin Jakt
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - John Arne Dahl
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | | | - Johanna Klughammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Marit Espe
- Institute of Marine Research, IMR, Bergen, Norway
| |
Collapse
|
82
|
Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:210-244. [PMID: 29369794 DOI: 10.1016/j.cbpb.2018.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
While the field of epigenetics is increasingly recognized to contribute to the emergence of phenotypes in mammalian research models across different developmental and generational timescales, the comparative biology of epigenetics in the large and physiologically diverse vertebrate infraclass of teleost fish remains comparatively understudied. The cypriniform zebrafish and the salmoniform rainbow trout and Atlantic salmon represent two especially important teleost orders, because they offer the unique possibility to comparatively investigate the role of epigenetic regulation in 3R and 4R duplicated genomes. In addition to their sequenced genomes, these teleost species are well-characterized model species for development and physiology, and therefore allow for an investigation of the role of epigenetic modifications in the emergence of physiological phenotypes during an organism's lifespan and in subsequent generations. This review aims firstly to describe the evolution of the repertoire of genes involved in key molecular epigenetic pathways including histone modifications, DNA methylation and microRNAs in zebrafish, rainbow trout, and Atlantic salmon, and secondly, to discuss recent advances in research highlighting a role for molecular epigenetics in shaping physiological phenotypes in these and other teleost models. Finally, by discussing themes and current limitations of the emerging field of teleost epigenetics from both theoretical and technical points of view, we will highlight future research needs and discuss how epigenetics will not only help address basic research questions in comparative teleost physiology, but also inform translational research including aquaculture, aquatic toxicology, and human disease.
Collapse
|
83
|
Winata CL, Łapiński M, Pryszcz L, Vaz C, Bin Ismail MH, Nama S, Hajan HS, Lee SGP, Korzh V, Sampath P, Tanavde V, Mathavan S. Cytoplasmic polyadenylation-mediated translational control of maternal mRNAs directs maternal-to-zygotic transition. Development 2018; 145:dev.159566. [PMID: 29229769 DOI: 10.1242/dev.159566] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022]
Abstract
In the earliest stages of animal development following fertilization, maternally deposited mRNAs direct biological processes to the point of zygotic genome activation (ZGA). These maternal mRNAs undergo cytoplasmic polyadenylation (CPA), suggesting translational control of their activation. To elucidate the biological role of CPA during embryogenesis, we performed genome-wide polysome profiling at several stages of zebrafish development. Our analysis revealed a correlation between CPA and polysome-association dynamics, demonstrating a coupling of translation to the CPA of maternal mRNAs. Pan-embryonic CPA inhibition disrupted the maternal-to-zygotic transition (MZT), causing a failure of developmental progression beyond the mid-blastula transition and changes in global gene expression that indicated a failure of ZGA and maternal mRNA clearance. Among the genes that were differentially expressed were those encoding chromatin modifiers and key transcription factors involved in ZGA, including nanog, pou5f3 and sox19b, which have distinct CPA dynamics. Our results establish the necessity of CPA for ensuring progression of the MZT. The RNA-seq data generated in this study represent a valuable zebrafish resource for the discovery of novel elements of the early embryonic transcriptome.
Collapse
Affiliation(s)
- Cecilia Lanny Winata
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland .,Max-Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Maciej Łapiński
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Leszek Pryszcz
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Candida Vaz
- Bioinformatics Institute, Agency for Science Technology and Research, 138671 Singapore
| | | | - Srikanth Nama
- Institute of Medical Biology, Agency of Science Technology and Research, 138648 Singapore
| | - Hajira Shreen Hajan
- Genome Institute of Singapore, Agency of Science Technology and Research, 138672 Singapore
| | - Serene Gek Ping Lee
- Genome Institute of Singapore, Agency of Science Technology and Research, 138672 Singapore
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland.,Institute of Molecular and Cell Biology, Agency of Science Technology and Research, 138673 Singapore
| | - Prabha Sampath
- Institute of Medical Biology, Agency of Science Technology and Research, 138648 Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, 117596 Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857 Singapore
| | - Vivek Tanavde
- Bioinformatics Institute, Agency for Science Technology and Research, 138671 Singapore.,Institute of Medical Biology, Agency of Science Technology and Research, 138648 Singapore
| | - Sinnakaruppan Mathavan
- Genome Institute of Singapore, Agency of Science Technology and Research, 138672 Singapore .,Vision Research Foundation, Sankara Nethralaya, 600 006 Chennai, India
| |
Collapse
|
84
|
Despic V, Neugebauer KM. RNA tales – how embryos read and discard messages from mom. J Cell Sci 2018; 131:jcs.201996. [DOI: 10.1242/jcs.201996] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Following fertilization, embryos develop for a substantial amount of time with a transcriptionally silent genome. Thus, early development is maternally programmed, as it solely relies on RNAs and proteins that are provided by the female gamete. However, these maternal instructions are not sufficient to support later steps of embryogenesis and are therefore gradually replaced by novel products synthesized from the zygotic genome. This switch in the origin of molecular players that drive early development is known as the maternal-to-zygotic transition (MZT). MZT is a universal phenomenon among all metazoans and comprises two interconnected processes: maternal mRNA degradation and the transcriptional awakening of the zygotic genome. The recent adaptation of high-throughput methods for use in embryos has deepened our knowledge of the molecular principles underlying MZT. These mechanisms comprise conserved strategies for RNA regulation that operate in many well-studied cellular contexts but that have adapted differently to early development. In this Review, we will discuss advances in our understanding of post-transcriptional regulatory pathways that drive maternal mRNA clearance during MZT, with an emphasis on recent data in zebrafish embryos on codon-mediated mRNA decay, the contributions of microRNAs (miRNAs) and RNA-binding proteins to this process, and the roles of RNA modifications in the stability control of maternal mRNAs.
Collapse
Affiliation(s)
- Vladimir Despic
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Karla M. Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
85
|
Pirrello J, Deluche C, Frangne N, Gévaudant F, Maza E, Djari A, Bourge M, Renaudin JP, Brown S, Bowler C, Zouine M, Chevalier C, Gonzalez N. Transcriptome profiling of sorted endoreduplicated nuclei from tomato fruits: how the global shift in expression ascribed to DNA ploidy influences RNA-Seq data normalization and interpretation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:387-398. [PMID: 29172253 DOI: 10.1111/tpj.13783] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
As part of normal development most eukaryotic organisms, ranging from insects and mammals to plants, display variations in nuclear ploidy levels resulting from somatic endopolyploidy. Endoreduplication is the major source of endopolyploidy in higher plants. Endoreduplication is a remarkable characteristic of the fleshy pericarp tissue of developing tomato fruits, where it establishes a highly integrated cellular system that acts as a morphogenetic factor supporting cell growth. However, the functional significance of endoreduplication is not fully understood. Although endoreduplication is thought to increase metabolic activity due to a global increase in transcription, the issue of gene-specific ploidy-regulated transcription remains open. To investigate the influence of endoreduplication on transcription in tomato fruit, we tested the feasibility of a RNA sequencing (RNA-Seq) approach using total nuclear RNA extracted from purified populations of flow cytometry-sorted nuclei based on their DNA content. Here we show that cell-based approaches to the study of RNA-Seq profiles need to take into account the putative global shift in expression between samples for correct analysis and interpretation of the data. From ploidy-specific expression profiles we found that the activity of cells inside the pericarp is related both to the ploidy level and their tissue location.
Collapse
Affiliation(s)
- Julien Pirrello
- UMR1332 BFP, INRA, Univ. Bordeaux, 33882, Villenave d'Ornon Cedex, France
- GBF, Université de Toulouse, INRA, 31326, Castanet-Tolosan Cedex, France
| | - Cynthia Deluche
- UMR1332 BFP, INRA, Univ. Bordeaux, 33882, Villenave d'Ornon Cedex, France
| | - Nathalie Frangne
- UMR1332 BFP, INRA, Univ. Bordeaux, 33882, Villenave d'Ornon Cedex, France
| | - Frédéric Gévaudant
- UMR1332 BFP, INRA, Univ. Bordeaux, 33882, Villenave d'Ornon Cedex, France
| | - Elie Maza
- GBF, Université de Toulouse, INRA, 31326, Castanet-Tolosan Cedex, France
| | - Anis Djari
- GBF, Université de Toulouse, INRA, 31326, Castanet-Tolosan Cedex, France
| | - Mickaël Bourge
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | | | - Spencer Brown
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Chris Bowler
- Département de Biologie, IBENS, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005, Paris, France
| | - Mohamed Zouine
- GBF, Université de Toulouse, INRA, 31326, Castanet-Tolosan Cedex, France
| | | | - Nathalie Gonzalez
- UMR1332 BFP, INRA, Univ. Bordeaux, 33882, Villenave d'Ornon Cedex, France
| |
Collapse
|
86
|
A conserved maternal-specific repressive domain in Zelda revealed by Cas9-mediated mutagenesis in Drosophila melanogaster. PLoS Genet 2017; 13:e1007120. [PMID: 29261646 PMCID: PMC5752043 DOI: 10.1371/journal.pgen.1007120] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/03/2018] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
In nearly all metazoans, the earliest stages of development are controlled by maternally deposited mRNAs and proteins. The zygotic genome becomes transcriptionally active hours after fertilization. Transcriptional activation during this maternal-to-zygotic transition (MZT) is tightly coordinated with the degradation of maternally provided mRNAs. In Drosophila melanogaster, the transcription factor Zelda plays an essential role in widespread activation of the zygotic genome. While Zelda expression is required both maternally and zygotically, the mechanisms by which it functions to remodel the embryonic genome and prepare the embryo for development remain unclear. Using Cas9-mediated genome editing to generate targeted mutations in the endogenous zelda locus, we determined the functional relevance of protein domains conserved amongst Zelda orthologs. We showed that neither a conserved N-terminal zinc finger nor an acidic patch were required for activity. Similarly, a previously identified splice isoform of zelda is dispensable for viability. By contrast, we identified a highly conserved zinc-finger domain that is essential for the maternal, but not zygotic functions of Zelda. Animals homozygous for mutations in this domain survived to adulthood, but embryos inheriting these loss-of-function alleles from their mothers died late in embryogenesis. These mutations did not interfere with the capacity of Zelda to activate transcription in cell culture. Unexpectedly, these mutations generated a hyperactive form of the protein and enhanced Zelda-dependent gene expression. These data have defined a protein domain critical for controlling Zelda activity during the MZT, but dispensable for its roles later in development, for the first time separating the maternal and zygotic requirements for Zelda. This demonstrates that highly regulated levels of Zelda activity are required for establishing the developmental program during the MZT. We propose that tightly regulated gene expression is essential to navigate the MZT and that failure to precisely execute this developmental program leads to embryonic lethality. Following fertilization, the one-celled zygote must be rapidly reprogrammed to enable the development of a new, unique organism. During these initial stages of development there is little or no transcription of the zygotic genome, and maternally deposited products control this process. Among the essential maternal products are mRNAs that encode transcription factors required for preparing the zygotic genome for transcriptional activation. This ensures that there is a precisely coordinated hand-off from maternal to zygotic control. In Drosophila melanogaster, the transcription factor Zelda is essential for activating the zygotic genome and coupling this activation to the degradation of the maternally deposited products. Nonetheless, the mechanism by which Zelda functions remains unclear. Here we used Cas9-mediated genome engineering to determine the functional requirements for highly conserved domains within Zelda. We identified a domain required specifically for Zelda’s role in reprogramming the early embryonic genome, but not essential for its functions later in development. Surprisingly, this domain restricts the ability of Zelda to activate transcription. These data demonstrate that Zelda activity is tightly regulated, and we propose that precise regulation of both the timing and levels of genome activation is required for the embryo to successfully transition from maternal to zygotic control.
Collapse
|
87
|
Rabani M, Pieper L, Chew GL, Schier AF. A Massively Parallel Reporter Assay of 3' UTR Sequences Identifies In Vivo Rules for mRNA Degradation. Mol Cell 2017; 68:1083-1094.e5. [PMID: 29225039 DOI: 10.1016/j.molcel.2017.11.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/13/2017] [Accepted: 11/10/2017] [Indexed: 12/31/2022]
Abstract
The stability of mRNAs is regulated by signals within their sequences, but a systematic and predictive understanding of the underlying sequence rules remains elusive. Here we introduce UTR-seq, a combination of massively parallel reporter assays and regression models, to survey the dynamics of tens of thousands of 3' UTR sequences during early zebrafish embryogenesis. UTR-seq revealed two temporal degradation programs: a maternally encoded early-onset program and a late-onset program that accelerated degradation after zygotic genome activation. Three signals regulated early-onset rates: stabilizing poly-U and UUAG sequences and destabilizing GC-rich signals. Three signals explained late-onset degradation: miR-430 seeds, AU-rich sequences, and Pumilio recognition sites. Sequence-based regression models translated 3' UTRs into their unique decay patterns and predicted the in vivo effect of sequence signals on mRNA stability. Their application led to the successful design of artificial 3' UTRs that conferred specific mRNA dynamics. UTR-seq provides a general strategy to uncover the rules of RNA cis regulation.
Collapse
Affiliation(s)
- Michal Rabani
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Lindsey Pieper
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Guo-Liang Chew
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; The Broad Institute, Cambridge, MA 02140, USA.
| |
Collapse
|
88
|
White RJ, Collins JE, Sealy IM, Wali N, Dooley CM, Digby Z, Stemple DL, Murphy DN, Billis K, Hourlier T, Füllgrabe A, Davis MP, Enright AJ, Busch-Nentwich EM. A high-resolution mRNA expression time course of embryonic development in zebrafish. eLife 2017; 6. [PMID: 29144233 PMCID: PMC5690287 DOI: 10.7554/elife.30860] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/04/2017] [Indexed: 12/18/2022] Open
Abstract
We have produced an mRNA expression time course of zebrafish development across 18 time points from 1 cell to 5 days post-fertilisation sampling individual and pools of embryos. Using poly(A) pulldown stranded RNA-seq and a 3′ end transcript counting method we characterise temporal expression profiles of 23,642 genes. We identify temporal and functional transcript co-variance that associates 5024 unnamed genes with distinct developmental time points. Specifically, a class of over 100 previously uncharacterised zinc finger domain containing genes, located on the long arm of chromosome 4, is expressed in a sharp peak during zygotic genome activation. In addition, the data reveal new genes and transcripts, differential use of exons and previously unidentified 3′ ends across development, new primary microRNAs and temporal divergence of gene paralogues generated in the teleost genome duplication. To make this dataset a useful baseline reference, the data can be browsed and downloaded at Expression Atlas and Ensembl.
Collapse
Affiliation(s)
| | - John E Collins
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Ian M Sealy
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Neha Wali
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Zsofia Digby
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Daniel N Murphy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Konstantinos Billis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Anja Füllgrabe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Matthew P Davis
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Anton J Enright
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Elisabeth M Busch-Nentwich
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom.,Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
89
|
Jukam D, Shariati SAM, Skotheim JM. Zygotic Genome Activation in Vertebrates. Dev Cell 2017; 42:316-332. [PMID: 28829942 PMCID: PMC5714289 DOI: 10.1016/j.devcel.2017.07.026] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
The first major developmental transition in vertebrate embryos is the maternal-to-zygotic transition (MZT) when maternal mRNAs are degraded and zygotic transcription begins. During the MZT, the embryo takes charge of gene expression to control cell differentiation and further development. This spectacular organismal transition requires nuclear reprogramming and the initiation of RNAPII at thousands of promoters. Zygotic genome activation (ZGA) is mechanistically coordinated with other embryonic events, including changes in the cell cycle, chromatin state, and nuclear-to-cytoplasmic component ratios. Here, we review progress in understanding vertebrate ZGA dynamics in frogs, fish, mice, and humans to explore differences and emphasize common features.
Collapse
Affiliation(s)
- David Jukam
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - S Ali M Shariati
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
90
|
Siefert JC, Georgescu C, Wren JD, Koren A, Sansam CL. DNA replication timing during development anticipates transcriptional programs and parallels enhancer activation. Genome Res 2017; 27:1406-1416. [PMID: 28512193 PMCID: PMC5538556 DOI: 10.1101/gr.218602.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/08/2017] [Indexed: 11/29/2022]
Abstract
In dividing cells, DNA replication occurs in a precise order, but many questions remain regarding the mechanisms of replication timing establishment and regulation. We now have generated genome-wide, high-resolution replication timing maps throughout zebrafish development. Unexpectedly, in the rapid cell cycles preceding the midblastula transition, a defined timing program was present that predicted the initial wave of zygotic transcription. Replication timing was thereafter progressively and continuously remodeled across the majority of the genome, and epigenetic changes involved in enhancer activation frequently paralleled developmental changes in replication timing. The long arm of Chromosome 4 underwent a dramatic developmentally regulated switch to late replication during gastrulation, reminiscent of mammalian X Chromosome inactivation. This study reveals that replication timing is dynamic and tightly linked to epigenetic and transcriptional changes throughout early zebrafish development. These data provide insight into the regulation and functions of replication timing and will enable further mechanistic studies.
Collapse
Affiliation(s)
- Joseph C Siefert
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Constantin Georgescu
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Christopher L Sansam
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
91
|
Hutchins AP, Yang Z, Li Y, He F, Fu X, Wang X, Li D, Liu K, He J, Wang Y, Chen J, Esteban MA, Pei D. Models of global gene expression define major domains of cell type and tissue identity. Nucleic Acids Res 2017; 45:2354-2367. [PMID: 28426095 PMCID: PMC5389706 DOI: 10.1093/nar/gkx054] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/22/2017] [Indexed: 01/22/2023] Open
Abstract
The current classification of cells in an organism is largely based on their anatomic and developmental origin. Cells types and tissues are traditionally classified into those that arise from the three embryonic germ layers, the ectoderm, mesoderm and endoderm, but this model does not take into account the organization of cell type-specific patterns of gene expression. Here, we present computational models for cell type and tissue specification derived from a collection of 921 RNA-sequencing samples from 272 distinct mouse cell types or tissues. In an unbiased fashion, this analysis accurately predicts the three known germ layers. Unexpectedly, this analysis also suggests that in total there are eight major domains of cell type-specification, corresponding to the neurectoderm, neural crest, surface ectoderm, endoderm, mesoderm, blood mesoderm, germ cells and the embryonic domain. Further, we identify putative genes responsible for specifying the domain and the cell type. This model has implications for understanding trans-lineage differentiation for stem cells, developmental cell biology and regenerative medicine.
Collapse
Affiliation(s)
- Andrew P Hutchins
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, Guangdong 518055, China.,Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Zhongzhou Yang
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yuhao Li
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Fangfang He
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Xiuling Fu
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Xiaoshan Wang
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Dongwei Li
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Kairong Liu
- Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing 100080, China.,Beihang University, Beijing 100191, China
| | - Jiangping He
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yong Wang
- Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing 100080, China
| | - Jiekai Chen
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Miguel A Esteban
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China.,Laboratory of RNA, Chromatin and Human disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| |
Collapse
|
92
|
Mathai BJ, Meijer AH, Simonsen A. Studying Autophagy in Zebrafish. Cells 2017; 6:E21. [PMID: 28698482 PMCID: PMC5617967 DOI: 10.3390/cells6030021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 12/26/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process which allows lysosomal degradation of complex cytoplasmic components into basic biomolecules that are recycled for further cellular use. Autophagy is critical for cellular homeostasis and for degradation of misfolded proteins and damaged organelles as well as intracellular pathogens. The role of autophagy in protection against age-related diseases and a plethora of other diseases is now coming to light; assisted by several divergent eukaryotic model systems ranging from yeast to mice. We here give an overview of different methods used to analyse autophagy in zebrafish-a relatively new model for studying autophagy-and briefly discuss what has been done so far and possible future directions.
Collapse
Affiliation(s)
- Benan John Mathai
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0317 Oslo, Norway.
| | - Annemarie H Meijer
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0317 Oslo, Norway.
| |
Collapse
|
93
|
Fipronil-induced enantioselective developmental toxicity to zebrafish embryo-larvae involves changes in DNA methylation. Sci Rep 2017; 7:2284. [PMID: 28536466 PMCID: PMC5442102 DOI: 10.1038/s41598-017-02255-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/28/2017] [Indexed: 01/01/2023] Open
Abstract
Enantioselectivity in the aquatic toxicity of chiral pesticides has been widely investigated, while the molecular mechanisms remain unclear. Thus far, few studies has focused on genomic expression related to selective toxicity in chiral pesticide, nor on epigenetic changes, such as DNA methylation. Here, we used fipronil, a broad-spectrum insecticide, as a model chemical to probe its enantioselective toxicity in embryo development. Our results showed that S-(+)-fipronil caused severer developmental toxicity in embryos. The MeDIP-Seq analysis demonstrated that S-(+)-fipronil dysregulated a higher level of genomic DNA methylation than R-(−)-fipronil. Gene Ontology analysis revealed that S-(+)-fipronil caused more differentially methylated genes that are involved in developmental processes. Compared with R-(−)-fipronil, S-(+)-fipronil significantly disrupted 7 signaling pathways (i.e., mitogen-activated protein kinases, tight junctions, focal adhesion, transforming growth factor-β, vascular smooth muscle contraction, and the hedgehog and Wnt signaling pathways) by hyper-methylation of developmentally related genes, which further induced the downregulation of those genes. Together, these data suggest that differences in DNA methylation may partly explain the enantioselectivity of fipronil to zebrafish embryos. The application of epigenetics to investigate the enantioselective toxicity mechanism of chiral chemicals would provide a further understanding of their stereoselectivity biological effects.
Collapse
|
94
|
Miccoli A, Dalla Valle L, Carnevali O. The maternal control in the embryonic development of zebrafish. Gen Comp Endocrinol 2017; 245:55-68. [PMID: 27013380 DOI: 10.1016/j.ygcen.2016.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/16/2016] [Accepted: 03/19/2016] [Indexed: 12/13/2022]
Abstract
The maternal control directing the very first hours of life is of pivotal importance for ensuring proper development to the growing embryo. Thanks to the finely regulated inheritance of maternal factors including mRNAs and proteins produced during oogenesis and stored into the mature oocyte, the embryo is sustained throughout the so-called maternal-to-zygotic transition, a period in development characterized by a species-specific length in time, during which critical biological changes regarding cell cycle and zygotic transcriptional activation occur. In order not to provoke any kind of persistent damage, the process must be delicately balanced. Surprisingly, our knowledge as to the possible effects of beneficial bacteria regarding the modulation of the quality and/or quantity of both maternally-supplied and zygotically-transcribed mRNAs, is very limited. To date, only one group has investigated the consequences of the parentally-supplied Lactobacillus rhamnosus on the storage of mRNAs into mature oocytes, leading to an altered maternal control process in the F1 generation. Particular attention was called on the monitoring of several biomarkers involved in autophagy, apoptosis and axis patterning, while data on miRNA generation and pluripotency maintenance are herein presented for the first time, and can assist in laying the ground for further investigations in this field. In this review, the reader is supplied with the current knowledge on the above-mentioned biological process, first by drawing the general background and then by emphasizing the most important findings that have highlighted their focal role in normal animal development.
Collapse
Affiliation(s)
- Andrea Miccoli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
95
|
Wang H, Wang B, Liu X, Liu Y, Du X, Zhang Q, Wang X. Identification and expression of piwil2 in turbot Scophthalmus maximus, with implications of the involvement in embryonic and gonadal development. Comp Biochem Physiol B Biochem Mol Biol 2017; 208-209:84-93. [PMID: 28438683 DOI: 10.1016/j.cbpb.2017.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/07/2017] [Accepted: 04/17/2017] [Indexed: 11/17/2022]
Abstract
Piwil2, a member of the Argonaute family, is involved in the biogenesis of PIWI-interacting RNAs (piRNAs) and plays an important role in regulating gametogenesis. In the present study, we identified turbot Scophthalmus maximus piwil2 gene, named Smpiwil2, which contained a PAZ domain and a PIWI domain. Sequence comparison, genomic structure and phylogenetic analyses showed that Smpiwil2 is homologous to that of teleosts and tetrapods. The Smpiwil2 transcript showed higher expression in the ovary than in the testis, demonstrating a sexually dimorphic gene expression pattern. In situ hybridization (ISH) showed that Smpiwil2 was expressed in the oogonia and all the stages of oocytes in the ovary as well as in spermatogonia and spermatocytes in the testis. Embryonic expression profile revealed that Smpiwil2 was maternally inherited, and its level was higher from the zygote to the blastula stage and subsequently decreased until hatching. Moreover, a CpG island was predicted to locate in the 5'-flanking region of Smpiwil2 gene, and its methylation levels detected by sodium bisulfite sequencing showed significant disparity between females and males, implying that the sexually dimorphic expression of Smpiwil2 might be regulated by methylation. These results indicated that Smpiwil2 had potentially vital functions in embryonic and gonadal development in this species. In addition, the temporal and sex differences in Smpiwil2 expression indicated that this gene may play different roles in gonadal development of different sexes.
Collapse
Affiliation(s)
- Huizhen Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Bo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Xiaobing Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Yuezhong Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Xinxin Du
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - XuBo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China.
| |
Collapse
|
96
|
Romney AL, Podrabsky JE. Transcriptomic analysis of maternally provisioned cues for phenotypic plasticity in the annual killifish, Austrofundulus limnaeus. EvoDevo 2017; 8:6. [PMID: 28439397 PMCID: PMC5401559 DOI: 10.1186/s13227-017-0069-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/14/2017] [Indexed: 12/20/2022] Open
Abstract
Background Genotype and environment can interact during development to produce novel adaptive traits that support life in extreme conditions. The development of the annual killifish Austrofundulus limnaeus is unique among vertebrates because the embryos have distinct cell movements that separate epiboly from axis formation during early development, can enter into a state of metabolic dormancy known as diapause and can survive extreme environmental conditions. The ability to enter into diapause can be maternally programmed, with young females producing embryos that do not enter into diapause. Alternately, embryos can be programmed to “escape” from diapause and develop directly by both maternal factors and embryonic incubation conditions. Thus, maternally packaged gene products are hypothesized to regulate developmental trajectory and perhaps the other unique developmental characters in this species. Results Using high-throughput RNA sequencing, we generated transcriptomic profiles of mRNAs, long non-coding RNAs and small non-coding RNAs (sncRNAs) in 1–2 cell stage embryos of A. limnaeus. Transcriptomic analyses suggest maternal programming of embryos through alternatively spliced mRNAs and antisense sncRNAs. Comparison of these results to those of comparable studies on zebrafish and other fishes reveals a surprisingly high abundance of transcripts involved in the cellular response to stress and a relatively lower expression of genes required for rapid transition through the cell cycle. Conclusions Maternal programming of developmental trajectory is unlikely accomplished by differential expression of diapause-specific genes. Rather, evidence suggests a role for trajectory-specific splice variants of genes expressed in both phenotypes. In addition, based on comparative studies with zebrafish, the A. limnaeus 1–2 cell stage transcriptome is unique in ways that are consistent with their unique life history. These results not only impact our understanding of the genetic mechanisms that regulate entrance into diapause, but also provide insight into the epigenetic regulation of gene expression during development. Electronic supplementary material The online version of this article (doi:10.1186/s13227-017-0069-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amie L Romney
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207 USA
| | - Jason E Podrabsky
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207 USA
| |
Collapse
|
97
|
Joseph SR, Pálfy M, Hilbert L, Kumar M, Karschau J, Zaburdaev V, Shevchenko A, Vastenhouw NL. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos. eLife 2017; 6. [PMID: 28425915 PMCID: PMC5451213 DOI: 10.7554/elife.23326] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/19/2017] [Indexed: 01/09/2023] Open
Abstract
Upon fertilization, the genome of animal embryos remains transcriptionally inactive until the maternal-to-zygotic transition. At this time, the embryo takes control of its development and transcription begins. How the onset of zygotic transcription is regulated remains unclear. Here, we show that a dynamic competition for DNA binding between nucleosome-forming histones and transcription factors regulates zebrafish genome activation. Taking a quantitative approach, we found that the concentration of non-DNA-bound core histones sets the time for the onset of transcription. The reduction in nuclear histone concentration that coincides with genome activation does not affect nucleosome density on DNA, but allows transcription factors to compete successfully for DNA binding. In agreement with this, transcription factor binding is sensitive to histone levels and the concentration of transcription factors also affects the time of transcription. Our results demonstrate that the relative levels of histones and transcription factors regulate the onset of transcription in the embryo. DOI:http://dx.doi.org/10.7554/eLife.23326.001 The DNA in a fertilized egg contains all the information required to form an animal’s body. In order for the animal to develop properly, particular genes encoded in the DNA are only active at specific times. The DNA is wrapped around proteins called histones, which allows the DNA to be tightly packed inside the cell. However, histones can block other proteins called transcription factors from binding to the DNA to activate the genes. Young embryos initially develop with all of their genes switched off, relying on the nutrients and other molecules provided by their mother. After some time, the embryo starts to switch on its own genes to take control of its own development, but it was not clear how this happens. Joseph et al. investigated how genes are activated in zebrafish embryos, which are often used as models to study how animals develop. The experiments show that competition between histones and transcription factors for binding to DNA controls when genes are switched on. In young fish embryos, there are so many histones present that transcription factors have no opportunity to bind to DNA. Over time, however, the numbers of histones decrease, allowing transcription factors to bind to DNA and switch on genes. Histones and transcription factors regulate the activity of genes throughout the life of the animal. Therefore, competition between these two types of protein may also control gene activity in other situations. A better understanding of how gene activity is controlled could allow researchers to more easily grow different types of cell in the laboratory or to reprogram specific cells in the body. As such, these new findings may aid the development of therapies to regenerate organs or tissues that have been damaged by injury or disease. DOI:http://dx.doi.org/10.7554/eLife.23326.002
Collapse
Affiliation(s)
- Shai R Joseph
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Máté Pálfy
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Lennart Hilbert
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Mukesh Kumar
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jens Karschau
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Vasily Zaburdaev
- Center for Systems Biology Dresden, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
98
|
Rauwerda H, Pagano JFB, de Leeuw WC, Ensink W, Nehrdich U, de Jong M, Jonker M, Spaink HP, Breit TM. Transcriptome dynamics in early zebrafish embryogenesis determined by high-resolution time course analysis of 180 successive, individual zebrafish embryos. BMC Genomics 2017; 18:287. [PMID: 28399811 PMCID: PMC5387192 DOI: 10.1186/s12864-017-3672-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/29/2017] [Indexed: 02/08/2023] Open
Abstract
Background Recently, much progress has been made in the field of gene-expression in early embryogenesis. However, the dynamic behaviour of transcriptomes in individual embryos has hardly been studied yet and the time points at which pools of embryos are collected are usually still quite far apart. Here, we present a high-resolution gene-expression time series with 180 individual zebrafish embryos, obtained from nine different spawns, developmentally ordered and profiled from late blastula to mid-gastrula stage. On average one embryo per minute was analysed. The focus was on identification and description of the transcriptome dynamics of the expressed genes in this embryonic stage, rather than to biologically interpret profiles in cellular processes and pathways. Results In the late blastula to mid-gastrula stage, we found 6,734 genes being expressed with low variability and rather gradual changes. Ten types of dynamic behaviour were defined, such as genes with continuously increasing or decreasing expression, and all expressed genes were grouped into these types. Also, the exact expression starting and stopping points of several hundred genes during this developmental period could be pinpointed. Although the resolution of the experiment was so high, that we were able to clearly identify four known oscillating genes, no genes were observed with a peaking expression. Additionally, several genes showed expression at two or three distinct levels that strongly related to the spawn an embryo originated from. Conclusion Our unique experimental set-up of whole-transcriptome analysis of 180 individual embryos, provided an unparalleled in-depth insight into the dynamics of early zebrafish embryogenesis. The existence of a tightly regulated embryonic transcriptome program, even between individuals from different spawns is shown. We have made the expression profile of all genes available for domain experts. The fact that we were able to separate the different spawns by their gene-expression variance over all expressed genes, underlines the importance of spawn specificity, as well as the unexpectedly tight gene-expression regulation in early zebrafish embryogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3672-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Han Rauwerda
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Johanna F B Pagano
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim C de Leeuw
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim Ensink
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Ulrike Nehrdich
- Institute Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Mark de Jong
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.,Present address: GenomeScan B.V., Plesmanlaan, Leiden, The Netherlands
| | - Martijs Jonker
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Herman P Spaink
- Institute Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Timo M Breit
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands. .,Institute Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands. .,MAD/AB&RB, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
99
|
Despic V, Dejung M, Gu M, Krishnan J, Zhang J, Herzel L, Straube K, Gerstein MB, Butter F, Neugebauer KM. Dynamic RNA-protein interactions underlie the zebrafish maternal-to-zygotic transition. Genome Res 2017; 27:1184-1194. [PMID: 28381614 PMCID: PMC5495070 DOI: 10.1101/gr.215954.116] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/24/2017] [Indexed: 12/21/2022]
Abstract
During the maternal-to-zygotic transition (MZT), transcriptionally silent embryos rely on post-transcriptional regulation of maternal mRNAs until zygotic genome activation (ZGA). RNA-binding proteins (RBPs) are important regulators of post-transcriptional RNA processing events, yet their identities and functions during developmental transitions in vertebrates remain largely unexplored. Using mRNA interactome capture, we identified 227 RBPs in zebrafish embryos before and during ZGA, hereby named the zebrafish MZT mRNA-bound proteome. This protein constellation consists of many conserved RBPs, some of which are potential stage-specific mRNA interactors that likely reflect the dynamics of RNA-protein interactions during MZT. The enrichment of numerous splicing factors like hnRNP proteins before ZGA was surprising, because maternal mRNAs were found to be fully spliced. To address potentially unique roles of these RBPs in embryogenesis, we focused on Hnrnpa1. iCLIP and subsequent mRNA reporter assays revealed a function for Hnrnpa1 in the regulation of poly(A) tail length and translation of maternal mRNAs through sequence-specific association with 3' UTRs before ZGA. Comparison of iCLIP data from two developmental stages revealed that Hnrnpa1 dissociates from maternal mRNAs at ZGA and instead regulates the nuclear processing of pri-mir-430 transcripts, which we validated experimentally. The shift from cytoplasmic to nuclear RNA targets was accompanied by a dramatic translocation of Hnrnpa1 and other pre-mRNA splicing factors to the nucleus in a transcription-dependent manner. Thus, our study identifies global changes in RNA-protein interactions during vertebrate MZT and shows that Hnrnpa1 RNA-binding activities are spatially and temporally coordinated to regulate RNA metabolism during early development.
Collapse
Affiliation(s)
- Vladimir Despic
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Mario Dejung
- Institute of Molecular Biology, 55128 Mainz, Germany
| | - Mengting Gu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Jayanth Krishnan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Jing Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Lydia Herzel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Korinna Straube
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Mark B Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Falk Butter
- Institute of Molecular Biology, 55128 Mainz, Germany
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
100
|
Chen J, Xia L, Bruchas MR, Solnica-Krezel L. Imaging early embryonic calcium activity with GCaMP6s transgenic zebrafish. Dev Biol 2017; 430:385-396. [PMID: 28322738 PMCID: PMC5835148 DOI: 10.1016/j.ydbio.2017.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/12/2017] [Accepted: 03/11/2017] [Indexed: 12/02/2022]
Abstract
Intracellular Ca2+ signaling regulates cellular activities during embryogenesis and in adult organisms. We generated stable Tg[βactin2:GCaMP6s]stl351 and Tg[ubi:GCaMP6s]stl352 transgenic lines that combine the ubiquitously-expressed Ca2+ indicator GCaMP6s with the transparent characteristics of zebrafish embryos to achieve superior in vivo Ca2+ imaging. Using the Tg[βactin2:GCaMP6s]stl351 line featuring strong GCaMP6s expression from cleavage through gastrula stages, we detected higher frequency of Ca2+ transients in the superficial blastomeres during the blastula stages preceding the midblastula transition. Additionally, GCaMP6s also revealed that dorsal-biased Ca2+ signaling that follows the midblastula transition persisted longer during gastrulation, compared with earlier studies. We observed that dorsal-biased Ca2+ signaling is diminished in ventralized ichabod/β-catenin2 mutant embryos and ectopically induced in embryos dorsalized by excess β-catenin. During gastrulation, we directly visualized Ca2+ signaling in the dorsal forerunner cells, which form in a Nodal signaling dependent manner and later give rise to the laterality organ. We found that excess Nodal increases the number and the duration of Ca2+ transients specifically in the dorsal forerunner cells. The GCaMP6s transgenic lines described here enable unprecedented visualization of dynamic Ca2+ events from embryogenesis through adulthood, augmenting the zebrafish toolbox.
Collapse
Affiliation(s)
- Jiakun Chen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Li Xia
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, 63105, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, 63105, USA; Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|