51
|
Kerr L, Kafetzopoulos I, Grima R, Sproul D. Genome-wide single-molecule analysis of long-read DNA methylation reveals heterogeneous patterns at heterochromatin that reflect nucleosome organisation. PLoS Genet 2023; 19:e1010958. [PMID: 37782664 PMCID: PMC10569558 DOI: 10.1371/journal.pgen.1010958] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/12/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023] Open
Abstract
High-throughput sequencing technology is central to our current understanding of the human methylome. The vast majority of studies use chemical conversion to analyse bulk-level patterns of DNA methylation across the genome from a population of cells. While this technology has been used to probe single-molecule methylation patterns, such analyses are limited to short reads of a few hundred basepairs. DNA methylation can also be directly detected using Nanopore sequencing which can generate reads measuring megabases in length. However, thus far these analyses have largely focused on bulk-level assessment of DNA methylation. Here, we analyse DNA methylation in single Nanopore reads from human lymphoblastoid cells, to show that bulk-level metrics underestimate large-scale heterogeneity in the methylome. We use the correlation in methylation state between neighbouring sites to quantify single-molecule heterogeneity and find that heterogeneity varies significantly across the human genome, with some regions having heterogeneous methylation patterns at the single-molecule level and others possessing more homogeneous methylation patterns. By comparing the genomic distribution of the correlation to epigenomic annotations, we find that the greatest heterogeneity in single-molecule patterns is observed within heterochromatic partially methylated domains (PMDs). In contrast, reads originating from euchromatic regions and gene bodies have more ordered DNA methylation patterns. By analysing the patterns of single molecules in more detail, we show the existence of a nucleosome-scale periodicity in DNA methylation that accounts for some of the heterogeneity we uncover in long single-molecule DNA methylation patterns. We find that this periodic structure is partially masked in bulk data and correlates with DNA accessibility as measured by nanoNOMe-seq, suggesting that it could be generated by nucleosomes. Our findings demonstrate the power of single-molecule analysis of long-read data to understand the structure of the human methylome.
Collapse
Affiliation(s)
- Lyndsay Kerr
- MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Ioannis Kafetzopoulos
- MRC Human Genetics Unit and CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Current address: Altos Labs Cambridge Institute, Cambridge, United Kingdom
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Duncan Sproul
- MRC Human Genetics Unit and CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
52
|
Marinov GK, Chen X, Swaffer MP, Xiang T, Grossman AR, Greenleaf WJ. Genome-wide distribution of 5-hydroxymethyluracil and chromatin accessibility in the Breviolum minutum genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558303. [PMID: 37781619 PMCID: PMC10541103 DOI: 10.1101/2023.09.18.558303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
In dinoflagellates, a unique and extremely divergent genomic and nuclear organization has evolved. The highly unusual features of dinoflagellate nuclei and genomes include permanently condensed liquid crystalline chromosomes, primarily packaged by proteins other than histones, genes organized in very long unidirectional gene arrays, a general absence of transcriptional regulation, high abundance of the otherwise very rare DNA modification 5-hydroxymethyluracil (5-hmU), and many others. While most of these fascinating properties were originally identified in the 1970s and 1980s, they have not yet been investigated using modern genomic tools. In this work, we address some of the outstanding questions regarding dinoflagellate genome organization by mapping the genome-wide distribution of 5-hmU (using both immunoprecipitation-based and basepair-resolution chemical mapping approaches) and of chromatin accessibility in the genome of the Symbiodiniaceae dinoflagellate Breviolum minutum. We find that the 5-hmU modification is preferentially enriched over certain classes of repetitive elements, often coincides with the boundaries between gene arrays, and is generally correlated with decreased chromatin accessibility, the latter otherwise being largely uniform along the genome. We discuss the potential roles of 5-hmU in the functional organization of dinoflagellate genomes and its relationship to the transcriptional landscape of gene arrays.
Collapse
Affiliation(s)
- Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Xinyi Chen
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | | | - Tingting Xiang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
53
|
van Dijk EL, Naquin D, Gorrichon K, Jaszczyszyn Y, Ouazahrou R, Thermes C, Hernandez C. Genomics in the long-read sequencing era. Trends Genet 2023; 39:649-671. [PMID: 37230864 DOI: 10.1016/j.tig.2023.04.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Long-read sequencing (LRS) technologies have provided extremely powerful tools to explore genomes. While in the early years these methods suffered technical limitations, they have recently made significant progress in terms of read length, throughput, and accuracy and bioinformatics tools have strongly improved. Here, we aim to review the current status of LRS technologies, the development of novel methods, and the impact on genomics research. We will explore the most impactful recent findings made possible by these technologies focusing on high-resolution sequencing of genomes and transcriptomes and the direct detection of DNA and RNA modifications. We will also discuss how LRS methods promise a more comprehensive understanding of human genetic variation, transcriptomics, and epigenetics for the coming years.
Collapse
Affiliation(s)
- Erwin L van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Kévin Gorrichon
- National Center of Human Genomics Research (CNRGH), 91000 Évry-Courcouronnes, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Rania Ouazahrou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Claude Thermes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Céline Hernandez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
54
|
Butterfield RJ, Dunn DM, Duval B, Moldt S, Weiss RB. Deciphering D4Z4 CpG methylation gradients in fascioscapulohumeral muscular dystrophy using nanopore sequencing. Genome Res 2023; 33:1439-1454. [PMID: 37798116 PMCID: PMC10620044 DOI: 10.1101/gr.277871.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/02/2023] [Indexed: 10/07/2023]
Abstract
Fascioscapulohumeral muscular dystrophy (FSHD) is caused by a unique genetic mechanism that relies on contraction and hypomethylation of the D4Z4 macrosatellite array on the Chromosome 4q telomere allowing ectopic expression of the DUX4 gene in skeletal muscle. Genetic analysis is difficult because of the large size and repetitive nature of the array, a nearly identical array on the 10q telomere, and the presence of divergent D4Z4 arrays scattered throughout the genome. Here, we combine nanopore long-read sequencing with Cas9-targeted enrichment of 4q and 10q D4Z4 arrays for comprehensive genetic analysis including determination of the length of the 4q and 10q D4Z4 arrays with base-pair resolution. In the same assay, we differentiate 4q from 10q telomeric sequences, determine A/B haplotype, identify paralogous D4Z4 sequences elsewhere in the genome, and estimate methylation for all CpGs in the array. Asymmetric, length-dependent methylation gradients were observed in the 4q and 10q D4Z4 arrays that reach a hypermethylation point at approximately 10 D4Z4 repeat units, consistent with the known threshold of pathogenic D4Z4 contractions. High resolution analysis of individual D4Z4 repeat methylation revealed areas of low methylation near the CTCF/insulator region and areas of high methylation immediately preceding the DUX4 transcriptional start site. Within the DUX4 exons, we observed a waxing/waning methylation pattern with a 180-nucleotide periodicity, consistent with phased nucleosomes. Targeted nanopore sequencing complements recently developed molecular combing and optical mapping approaches to genetic analysis for FSHD by adding precision of the length measurement, base-pair resolution sequencing, and quantitative methylation analysis.
Collapse
Affiliation(s)
- Russell J Butterfield
- Department of Pediatrics, University of Utah, Salt Lake City, Utah 84108, USA;
- Department of Neurology, University of Utah, Salt Lake City, Utah 84132, USA
| | - Diane M Dunn
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Brett Duval
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sarah Moldt
- Department of Pediatrics, University of Utah, Salt Lake City, Utah 84108, USA
| | - Robert B Weiss
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
55
|
Hook PW, Timp W. Beyond assembly: the increasing flexibility of single-molecule sequencing technology. Nat Rev Genet 2023; 24:627-641. [PMID: 37161088 PMCID: PMC10169143 DOI: 10.1038/s41576-023-00600-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/11/2023]
Abstract
The maturation of high-throughput short-read sequencing technology over the past two decades has shaped the way genomes are studied. Recently, single-molecule, long-read sequencing has emerged as an essential tool in deciphering genome structure and function, including filling gaps in the human reference genome, measuring the epigenome and characterizing splicing variants in the transcriptome. With recent technological developments, these single-molecule technologies have moved beyond genome assembly and are being used in a variety of ways, including to selectively sequence specific loci with long reads, measure chromatin state and protein-DNA binding in order to investigate the dynamics of gene regulation, and rapidly determine copy number variation. These increasingly flexible uses of single-molecule technologies highlight a young and fast-moving part of the field that is leading to a more accessible era of nucleic acid sequencing.
Collapse
Affiliation(s)
- Paul W Hook
- Department of Biomedical Engineering, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Winston Timp
- Department of Biomedical Engineering, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
56
|
Eckenrode KB, Righelli D, Ramos M, Argelaguet R, Vanderaa C, Geistlinger L, Culhane AC, Gatto L, Carey V, Morgan M, Risso D, Waldron L. Curated single cell multimodal landmark datasets for R/Bioconductor. PLoS Comput Biol 2023; 19:e1011324. [PMID: 37624866 PMCID: PMC10497156 DOI: 10.1371/journal.pcbi.1011324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 09/12/2023] [Accepted: 07/03/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The majority of high-throughput single-cell molecular profiling methods quantify RNA expression; however, recent multimodal profiling methods add simultaneous measurement of genomic, proteomic, epigenetic, and/or spatial information on the same cells. The development of new statistical and computational methods in Bioconductor for such data will be facilitated by easy availability of landmark datasets using standard data classes. RESULTS We collected, processed, and packaged publicly available landmark datasets from important single-cell multimodal protocols, including CITE-Seq, ECCITE-Seq, SCoPE2, scNMT, 10X Multiome, seqFISH, and G&T. We integrate data modalities via the MultiAssayExperiment Bioconductor class, document and re-distribute datasets as the SingleCellMultiModal package in Bioconductor's Cloud-based ExperimentHub. The result is single-command actualization of landmark datasets from seven single-cell multimodal data generation technologies, without need for further data processing or wrangling in order to analyze and develop methods within Bioconductor's ecosystem of hundreds of packages for single-cell and multimodal data. CONCLUSIONS We provide two examples of integrative analyses that are greatly simplified by SingleCellMultiModal. The package will facilitate development of bioinformatic and statistical methods in Bioconductor to meet the challenges of integrating molecular layers and analyzing phenotypic outputs including cell differentiation, activity, and disease.
Collapse
Affiliation(s)
- Kelly B. Eckenrode
- Graduate School of Public Health and Health Policy, City University of New York, NY, NY, United States of America
- Institute for Implementation Science in Public Health, City University of New York, NY, NY, United States of America
| | - Dario Righelli
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | - Marcel Ramos
- Graduate School of Public Health and Health Policy, City University of New York, NY, NY, United States of America
- Institute for Implementation Science in Public Health, City University of New York, NY, NY, United States of America
- Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - Ricard Argelaguet
- European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire, United Kingdom
| | | | - Ludwig Geistlinger
- Center for Computational Biomedicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Laurent Gatto
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Vincent Carey
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Martin Morgan
- Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States of America
| | - Davide Risso
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | - Levi Waldron
- Graduate School of Public Health and Health Policy, City University of New York, NY, NY, United States of America
- Institute for Implementation Science in Public Health, City University of New York, NY, NY, United States of America
| |
Collapse
|
57
|
Wang T, Fowler JM, Liu L, Loo CE, Luo M, Schutsky EK, Berríos KN, DeNizio JE, Dvorak A, Downey N, Montermoso S, Pingul BY, Nasrallah M, Gosal WS, Wu H, Kohli RM. Direct enzymatic sequencing of 5-methylcytosine at single-base resolution. Nat Chem Biol 2023; 19:1004-1012. [PMID: 37322153 PMCID: PMC10763687 DOI: 10.1038/s41589-023-01318-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/17/2023] [Indexed: 06/17/2023]
Abstract
5-methylcytosine (5mC) is the most important DNA modification in mammalian genomes. The ideal method for 5mC localization would be both nondestructive of DNA and direct, without requiring inference based on detection of unmodified cytosines. Here we present direct methylation sequencing (DM-Seq), a bisulfite-free method for profiling 5mC at single-base resolution using nanogram quantities of DNA. DM-Seq employs two key DNA-modifying enzymes: a neomorphic DNA methyltransferase and a DNA deaminase capable of precise discrimination between cytosine modification states. Coupling these activities with deaminase-resistant adapters enables accurate detection of only 5mC via a C-to-T transition in sequencing. By comparison, we uncover a PCR-related underdetection bias with the hybrid enzymatic-chemical TET-assisted pyridine borane sequencing approach. Importantly, we show that DM-Seq, unlike bisulfite sequencing, unmasks prognostically important CpGs in a clinical tumor sample by not confounding 5mC with 5-hydroxymethylcytosine. DM-Seq thus offers an all-enzymatic, nondestructive, faithful and direct method for the reading of 5mC alone.
Collapse
Affiliation(s)
- Tong Wang
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Johanna M Fowler
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian E Loo
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Meiqi Luo
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily K Schutsky
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kiara N Berríos
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jamie E DeNizio
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley Dvorak
- Integrated DNA Technologies, Inc., Coralville, IA, USA
| | - Nick Downey
- Integrated DNA Technologies, Inc., Coralville, IA, USA
| | - Saira Montermoso
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Bianca Y Pingul
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - MacLean Nasrallah
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Hao Wu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahul M Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
58
|
Sinha KK, Bilokapic S, Du Y, Malik D, Halic M. Histone modifications regulate pioneer transcription factor cooperativity. Nature 2023; 619:378-384. [PMID: 37225990 PMCID: PMC10338341 DOI: 10.1038/s41586-023-06112-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Pioneer transcription factors have the ability to access DNA in compacted chromatin1. Multiple transcription factors can bind together to a regulatory element in a cooperative way, and cooperation between the pioneer transcription factors OCT4 (also known as POU5F1) and SOX2 is important for pluripotency and reprogramming2-4. However, the molecular mechanisms by which pioneer transcription factors function and cooperate on chromatin remain unclear. Here we present cryo-electron microscopy structures of human OCT4 bound to a nucleosome containing human LIN28B or nMATN1 DNA sequences, both of which bear multiple binding sites for OCT4. Our structural and biochemistry data reveal that binding of OCT4 induces changes to the nucleosome structure, repositions the nucleosomal DNA and facilitates cooperative binding of additional OCT4 and of SOX2 to their internal binding sites. The flexible activation domain of OCT4 contacts the N-terminal tail of histone H4, altering its conformation and thus promoting chromatin decompaction. Moreover, the DNA-binding domain of OCT4 engages with the N-terminal tail of histone H3, and post-translational modifications at H3K27 modulate DNA positioning and affect transcription factor cooperativity. Thus, our findings suggest that the epigenetic landscape could regulate OCT4 activity to ensure proper cell programming.
Collapse
Affiliation(s)
- Kalyan K Sinha
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Silvija Bilokapic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yongming Du
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Deepshikha Malik
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mario Halic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
59
|
Guan R, Lian T, Zhou BR, Wheeler D, Bai Y. Structural mechanism of LIN28B nucleosome targeting by OCT4. Mol Cell 2023; 83:1970-1982.e6. [PMID: 37327775 PMCID: PMC10276192 DOI: 10.1016/j.molcel.2023.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/31/2023] [Accepted: 05/19/2023] [Indexed: 06/18/2023]
Abstract
Pioneer transcription factors are essential for cell fate changes by targeting closed chromatin. OCT4 is a crucial pioneer factor that can induce cell reprogramming. However, the structural basis of how pioneer factors recognize the in vivo nucleosomal DNA targets is unknown. Here, we determine the high-resolution structures of the nucleosome containing human LIN28B DNA and its complexes with the OCT4 DNA binding region. Three OCT4s bind the pre-positioned nucleosome by recognizing non-canonical DNA sequences. Two use their POUS domains while the other uses the POUS-loop-POUHD region; POUHD serves as a wedge to unwrap ∼25 base pair DNA. Our analysis of previous genomic data and determination of the ESRRB-nucleosome-OCT4 structure confirmed the generality of these structural features. Moreover, biochemical studies suggest that multiple OCT4s cooperatively open the H1-condensed nucleosome array containing the LIN28B nucleosome. Thus, our study suggests a mechanism of how OCT4 can target the nucleosome and open closed chromatin.
Collapse
Affiliation(s)
- Ruifang Guan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tengfei Lian
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
60
|
Chen H, Yan C, Dhasarathy A, Kladde M, Bai L. Investigating pioneer factor activity and its coordination with chromatin remodelers using integrated synthetic oligo assay. STAR Protoc 2023; 4:102279. [PMID: 37289591 PMCID: PMC10323128 DOI: 10.1016/j.xpro.2023.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 06/10/2023] Open
Abstract
Chromatin accessibility is regulated by pioneer factors (PFs) and chromatin remodelers (CRs). Here, we present a protocol, based on integrated synthetic oligonucleotide libraries in yeast, to systematically interrogate the nucleosome-displacing activities of PFs and their coordination with CRs. We describe steps for designing oligonucleotide sequences, constructing yeast libraries, measuring nucleosome configurations, and data analyses. This approach potentially can be adapted for use in higher eukaryotes to investigate the activities of many types of chromatin-associated factors. For complete details on the use and execution of this protocol, please refer to Yan et al.,1 and Chen et al.2.
Collapse
Affiliation(s)
- Hengye Chen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Chao Yan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Archana Dhasarathy
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58201, USA
| | - Michael Kladde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
61
|
Liu F, Wang Y, Gu H, Wang X. Technologies and applications of single-cell DNA methylation sequencing. Theranostics 2023; 13:2439-2454. [PMID: 37215576 PMCID: PMC10196823 DOI: 10.7150/thno.82582] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/09/2023] [Indexed: 05/24/2023] Open
Abstract
DNA methylation is the most stable epigenetic modification. In mammals, it usually occurs at the cytosine of CpG dinucleotides. DNA methylation is essential for many physiological and pathological processes. Aberrant DNA methylation has been observed in human diseases, particularly cancer. Notably, conventional DNA methylation profiling technologies require a large amount of DNA, often from a heterogeneous cell population, and provide an average methylation level of many cells. It is often not realistic to collect sufficient numbers of cells, such as rare cells and circulating tumor cells in peripheral blood, for bulk sequencing assays. It is therefore essential to develop sequencing technologies that can accurately profile DNA methylation using small numbers of cells or even single cells. Excitingly, many single-cell DNA methylation sequencing and single-cell omics sequencing technologies have been developed, and applications of these methods have greatly expanded our understanding of the molecular mechanism of DNA methylation. Here, we summaries single-cell DNA methylation and multi-omics sequencing methods, delineate their applications in biomedical sciences, discuss technical challenges, and present our perspective on future research directions.
Collapse
Affiliation(s)
- Fang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yunfei Wang
- Zhejiang ShengTing Biotech. Ltd, Hangzhou, 310000, China
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiaoxue Wang
- Department of Hematology, the First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
62
|
Butterfield RJ, Dunn DM, Duval B, Moldt S, Weiss RB. Deciphering D4Z4 CpG methylation gradients in fascioscapulohumeral muscular dystrophy using nanopore sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528868. [PMID: 36824722 PMCID: PMC9949141 DOI: 10.1101/2023.02.17.528868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Fascioscapulohumeral muscular dystrophy (FSHD) is caused by a unique genetic mechanism that relies on contraction and hypomethylation of the D4Z4 macrosatellite array on the chromosome 4q telomere allowing ectopic expression of the DUX4 gene in skeletal muscle. Genetic analysis is difficult due to the large size and repetitive nature of the array, a nearly identical array on the 10q telomere, and the presence of divergent D4Z4 arrays scattered throughout the genome. Here, we combine nanopore long-read sequencing with Cas9-targeted enrichment of 4q and 10q D4Z4 arrays for comprehensive genetic analysis including determination of the length of the 4q and 10q D4Z4 arrays with base-pair resolution. In the same assay, we differentiate 4q from 10q telomeric sequences, determine A/B haplotype, identify paralogous D4Z4 sequences elsewhere in the genome, and estimate methylation for all CpGs in the array. Asymmetric, length-dependent methylation gradients were observed in the 4q and 10q D4Z4 arrays that reach a hypermethylation point at approximately 10 D4Z4 repeat units, consistent with the known threshold of pathogenic D4Z4 contractions. High resolution analysis of individual D4Z4 repeat methylation revealed areas of low methylation near the CTCF/insulator region and areas of high methylation immediately preceding the DUX4 transcriptional start site. Within the DUX4 exons, we observed a waxing/waning methylation pattern with a 180-nucleotide periodicity, consistent with phased nucleosomes. Targeted nanopore sequencing complements recently developed molecular combing and optical mapping approaches to genetic analysis for FSHD by adding precision of the length measurement, base-pair resolution sequencing, and quantitative methylation analysis.
Collapse
Affiliation(s)
- Russell J Butterfield
- Department of Pediatrics, University of Utah, Salt Lake City, UT
- Department of Neurology, University of Utah, Salt Lake City, UT
| | - Diane M Dunn
- University of Utah, Department of Human Genetics, Salt Lake City, UT
| | - Brett Duval
- University of Utah, Department of Human Genetics, Salt Lake City, UT
| | - Sarah Moldt
- Department of Pediatrics, University of Utah, Salt Lake City, UT
| | - Robert B Weiss
- University of Utah, Department of Human Genetics, Salt Lake City, UT
| |
Collapse
|
63
|
Fu H, Zheng H, Chen X, Weirauch MT, Muglia LJ, Wang L, Liu Y. NOMe-HiC: joint profiling of genetic variant, DNA methylation, chromatin accessibility, and 3D genome in the same DNA molecule. Genome Biol 2023; 24:50. [PMID: 36927507 PMCID: PMC10018866 DOI: 10.1186/s13059-023-02889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Cis-regulatory elements are coordinated to regulate the expression of their targeted genes. However, the joint measurement of cis-regulatory elements' activities and their interactions in spatial proximity is limited by the current sequencing approaches. We describe a method, NOMe-HiC, which simultaneously captures single-nucleotide polymorphisms, DNA methylation, chromatin accessibility (GpC methyltransferase footprints), and chromosome conformation changes from the same DNA molecule, together with the transcriptome, in a single assay. NOMe-HiC shows high concordance with state-of-the-art mono-omic assays across different molecular measurements and reveals coordinated chromatin accessibility at distal genomic segments in spatial proximity and novel types of long-range allele-specific chromatin accessibility.
Collapse
Affiliation(s)
- Hailu Fu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Haizi Zheng
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiaoting Chen
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew T Weirauch
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Louis J Muglia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Present address: Burroughs Wellcome Fund, Research Triangle Park, NC, 27614, USA
| | - Li Wang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Biology, Xavier University, Cincinnati, OH, 45207, USA.
| | - Yaping Liu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Department of Electrical Engineering and Computing Sciences, University of Cincinnati College of Engineering and Applied Science, Cincinnati, OH, 45229, USA.
- University of Cincinnati Cancer Center, Cincinnati, OH, 45219, USA.
| |
Collapse
|
64
|
Sinha K, Bilokapic S, Du Y, Malik D, Halic M. Histone modifications regulate pioneer transcription factor binding and cooperativity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532583. [PMID: 36993452 PMCID: PMC10055048 DOI: 10.1101/2023.03.14.532583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Pioneer transcription factors have the ability to access DNA in compacted chromatin. Multiple transcription factors can bind together to a regulatory element in a cooperative way and cooperation between pioneer transcription factors Oct4 and Sox2 is important for pluripotency and reprogramming. However, the molecular mechanisms by which pioneer transcription factors function and cooperate remain unclear. Here we present cryo-EM structures of human Oct4 bound to a nucleosome containing human Lin28B and nMatn1 DNA sequences, which bear multiple binding sites for Oct4. Our structural and biochemistry data reveal that Oct4 binding induces changes to the nucleosome structure, repositions the nucleosomal DNA and facilitates cooperative binding of additional Oct4 and of Sox2 to their internal binding sites. The flexible activation domain of Oct4 contacts the histone H4 N-terminal tail, altering its conformation and thus promoting chromatin decompaction. Moreover, the DNA binding domain of Oct4 engages with histone H3 N-terminal tail, and posttranslational modifications at H3K27 modulate DNA positioning and affect transcription factor cooperativity. Thus, our data show that the epigenetic landscape can regulate Oct4 activity to ensure proper cell reprogramming.
Collapse
Affiliation(s)
- Kalyan Sinha
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Silvija Bilokapic
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yongming Du
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Deepshikha Malik
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Mario Halic
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Corresponding author:
| |
Collapse
|
65
|
Kreibich E, Kleinendorst R, Barzaghi G, Kaspar S, Krebs AR. Single-molecule footprinting identifies context-dependent regulation of enhancers by DNA methylation. Mol Cell 2023; 83:787-802.e9. [PMID: 36758546 DOI: 10.1016/j.molcel.2023.01.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/21/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023]
Abstract
Enhancers are cis-regulatory elements that control the establishment of cell identities during development. In mammals, enhancer activation is tightly coupled with DNA demethylation. However, whether this epigenetic remodeling is necessary for enhancer activation is unknown. Here, we adapted single-molecule footprinting to measure chromatin accessibility and transcription factor binding as a function of the presence of methylation on the same DNA molecules. We leveraged natural epigenetic heterogeneity at active enhancers to test the impact of DNA methylation on their chromatin accessibility in multiple cell lineages. Although reduction of DNA methylation appears dispensable for the activity of most enhancers, we identify a class of cell-type-specific enhancers where DNA methylation antagonizes the binding of transcription factors. Genetic perturbations reveal that chromatin accessibility and transcription factor binding require active demethylation at these loci. Thus, in addition to safeguarding the genome from spurious activation, DNA methylation directly controls transcription factor occupancy at active enhancers.
Collapse
Affiliation(s)
- Elisa Kreibich
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Rozemarijn Kleinendorst
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Guido Barzaghi
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Sarah Kaspar
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Arnaud R Krebs
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
66
|
Simultaneous Measurement of DNA Methylation and Nucleosome Occupancy in Single Cells Using scNOMe-Seq. Methods Mol Biol 2023; 2611:231-247. [PMID: 36807071 DOI: 10.1007/978-1-0716-2899-7_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Single-cell Nucleosome Occupancy and Methylome sequencing (scNOMe-seq) is a multimodal assay that simultaneously measures endogenous DNA methylation and nucleosome occupancy (i.e., chromatin accessibility) in single cells. scNOMe-seq combines the activity of a GpC Methyltransferase, an enzyme which methylates cytosines in GpC dinucleotides, with bisulfite conversion, whereby unmethylated cytosines are converted into thymines. Because GpC Methyltransferase acts only on cytosines present in non-nucleosomal regions of the genome, the subsequent bisulfite conversion step not only detects the endogenous DNA methylation, but also reveals the genome-wide pattern of chromatin accessibility. Implementing this technology at the single-cell level helps to capture the dynamics governing methylation and accessibility vary across individual cells and cell types. Here, we provide a scalable plate-based protocol for preparing scNOMe-seq libraries from single nucleus suspensions.
Collapse
|
67
|
Marinov GK, Shipony Z, Kundaje A, Greenleaf WJ. Genome-Wide Mapping of Active Regulatory Elements Using ATAC-seq. Methods Mol Biol 2023; 2611:3-19. [PMID: 36807060 DOI: 10.1007/978-1-0716-2899-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Active cis-regulatory elements (cREs) in eukaryotes are characterized by nucleosomal depletion and, accordingly, higher accessibility. This property has turned out to be immensely useful for identifying cREs genome-wide and tracking their dynamics across different cellular states and is the basis of numerous methods taking advantage of the preferential enzymatic cleavage/labeling of accessible DNA. ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) has emerged as the most versatile and widely adaptable method and has been widely adopted as the standard tool for mapping open chromatin regions. Here, we discuss the current optimal practices and important considerations for carrying out ATAC-seq experiments, primarily in the context of mammalian systems.
Collapse
Affiliation(s)
| | - Zohar Shipony
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA.,Department of Computer Science, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA. .,Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA. .,Department of Applied Physics, Stanford University, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
68
|
Hinks M, Marinov GK, Kundaje A, Bintu L, Greenleaf WJ. Single-Molecule Mapping of Chromatin Accessibility Using NOMe-seq/dSMF. Methods Mol Biol 2023; 2611:101-119. [PMID: 36807067 DOI: 10.1007/978-1-0716-2899-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The bulk of gene expression regulation in most organisms is accomplished through the action of transcription factors (TFs) on cis-regulatory elements (CREs). In eukaryotes, these CREs are generally characterized by nucleosomal depletion and thus higher physical accessibility of DNA. Many methods exploit this property to map regions of high average accessibility, and thus putative active CREs, in bulk. However, these techniques do not provide information about coordinated patterns of accessibility along the same DNA molecule, nor do they map the absolute levels of occupancy/accessibility. SMF (Single-Molecule Footprinting) fills these gaps by leveraging recombinant DNA cytosine methyltransferases (MTase) to mark accessible locations on individual DNA molecules. In this chapter, we discuss current methods and important considerations for performing SMF experiments.
Collapse
Affiliation(s)
- Michaela Hinks
- Department of Genetics, Stanford University, Stanford, CA, USA.
| | | | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA.,Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA. .,Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA. .,Department of Applied Physics, Stanford University, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
69
|
Chen S, Gu X, Li R, An S, Wang Z. Genome-wide Analysis of Histone H3 Lysine 27 Trimethylation Profiles in Sciatic Nerve of Chronic Constriction Injury Rats. Neurochem Res 2023; 48:1945-1957. [PMID: 36763313 DOI: 10.1007/s11064-023-03879-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/12/2023] [Accepted: 01/28/2023] [Indexed: 02/11/2023]
Abstract
The histone H3 lysine 27 trimethylation (H3K27me3) is one of the most important chromatin modifications, which is associated with injury-activated gene expression in Schwann cells (SCs). However, the alteration of genome-wide H3K27me3 enrichments in the development of neuropathic pain is still unknown. Here, we applied the chromatin immunoprecipitation sequencing (ChIP-seq) approach to identify the alteration of differential enrichments of H3K27me3 in chronic constriction injury (CCI) sciatic nerve of rats and potential molecular mechanisms underlying the development of neuropathic pain. Our results indicated that CCI increased the numbers of SCs displaying H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) and H3K27me3 in the sciatic nerve. ChIP-seq data showed that CCI significantly changed H3K27me3 enrichments on gene promoters in the sciatic nerve. Bioinformatics analyses exhibited that genes gaining H3K27me3 were mostly associated with regulation of cell proliferation, response to stress and oxidation-reduction process. Genes losing this mark were enriched in neuronal generation, and MAPK, cAMP as well as ERBB signaling pathways. Importantly, IL1A, CCL2, NOS2, S100A8, BDNF, GDNF, ERBB3 and C3 were identified as key genes in neuropathic pain. CCI led to significant upregulation of key genes in the sciatic nerve. EZH2 inhibitor reversed CCI-induced increases of H3K27me3 and key gene protein levels, which were accompanied by relieved mechanical allodynia and thermal hyperalgesia in CCI rats. These results indicate that genes with differential enrichments of H3K27me3 in SCs function in various cellular processes and pathways, and many are linked to neuropathic pain after peripheral nerve injury.
Collapse
Affiliation(s)
- Shuhui Chen
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian, 271000, China
| | - Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian, 271000, China
| | - Ruidi Li
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian, 271000, China
| | - Shuhong An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian, 271000, China.
| | - Zhaojin Wang
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian, 271000, China.
| |
Collapse
|
70
|
Wang M, Li Q, Liu L. Factors and Methods for the Detection of Gene Expression Regulation. Biomolecules 2023; 13:biom13020304. [PMID: 36830673 PMCID: PMC9953580 DOI: 10.3390/biom13020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Gene-expression regulation involves multiple processes and a range of regulatory factors. In this review, we describe the key factors that regulate gene expression, including transcription factors (TFs), chromatin accessibility, histone modifications, DNA methylation, and RNA modifications. In addition, we also describe methods that can be used to detect these regulatory factors.
Collapse
|
71
|
Hecker D, Behjati Ardakani F, Karollus A, Gagneur J, Schulz MH. The adapted Activity-By-Contact model for enhancer-gene assignment and its application to single-cell data. Bioinformatics 2023; 39:btad062. [PMID: 36708003 PMCID: PMC9931646 DOI: 10.1093/bioinformatics/btad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/05/2022] [Accepted: 01/26/2023] [Indexed: 01/29/2023] Open
Abstract
MOTIVATION Identifying regulatory regions in the genome is of great interest for understanding the epigenomic landscape in cells. One fundamental challenge in this context is to find the target genes whose expression is affected by the regulatory regions. A recent successful method is the Activity-By-Contact (ABC) model which scores enhancer-gene interactions based on enhancer activity and the contact frequency of an enhancer to its target gene. However, it describes regulatory interactions entirely from a gene's perspective, and does not account for all the candidate target genes of an enhancer. In addition, the ABC model requires two types of assays to measure enhancer activity, which limits the applicability. Moreover, there is neither implementation available that could allow for an integration with transcription factor (TF) binding information nor an efficient analysis of single-cell data. RESULTS We demonstrate that the ABC score can yield a higher accuracy by adapting the enhancer activity according to the number of contacts the enhancer has to its candidate target genes and also by considering all annotated transcription start sites of a gene. Further, we show that the model is comparably accurate with only one assay to measure enhancer activity. We combined our generalized ABC model with TF binding information and illustrated an analysis of a single-cell ATAC-seq dataset of the human heart, where we were able to characterize cell type-specific regulatory interactions and predict gene expression based on TF affinities. All executed processing steps are incorporated into our new computational pipeline STARE. AVAILABILITY AND IMPLEMENTATION The software is available at https://github.com/schulzlab/STARE. CONTACT marcel.schulz@em.uni-frankfurt.de. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dennis Hecker
- Institute of Cardiovascular Regeneration, Goethe University Hospital
- Cardio-Pulmonary Institute, Goethe University
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Frankfurt am Main 60590
| | - Fatemeh Behjati Ardakani
- Institute of Cardiovascular Regeneration, Goethe University Hospital
- Cardio-Pulmonary Institute, Goethe University
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Frankfurt am Main 60590
| | - Alexander Karollus
- School of Computation, Information and Technology, Technical University of Munich, Garching 85748
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching 85748
- Institute of Human Genetics, Technical University of Munich, Munich 81675
- Computational Health Center, Helmholtz Center Munich, Neuherberg 85764
- Munich Data Science Institute, Technical University of Munich, Garching 85748, Germany
| | - Marcel H Schulz
- Institute of Cardiovascular Regeneration, Goethe University Hospital
- Cardio-Pulmonary Institute, Goethe University
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Frankfurt am Main 60590
| |
Collapse
|
72
|
Guan R, Lian T, Zhou BR, Bai Y. Structural mechanism of LIN28B nucleosome targeting by OCT4 for pluripotency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522631. [PMID: 36789416 PMCID: PMC9928048 DOI: 10.1101/2023.01.03.522631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pioneer transcription factors are essential for cell fate changes by targeting closed chromatin. OCT4 is a crucial pioneer factor that can induce cell reprogramming. However, the structural basis of how pioneer factors recognize the in vivo nucleosomal DNA targets is unknown. Here, we determine the high-resolution structures of the nucleosome containing human LIN28B DNA and its complexes with the OCT4 DNA binding region. Three OCT4s bind the pre-positioned nucleosome by recognizing non-canonical DNA motifs. Two use their POUS domains by forming extensive hydrogen bonds. The other uses the POUS-loop-POUHD region; POUHD serves as a wedge to unwrap ∼25 base pair DNA. Biochemical studies suggest that multiple OCT4s cooperatively open the H1-condensed nucleosome array containing the LIN28B nucleosome. Our study suggests a mechanism whereby OCT4s target the LIN28B nucleosome by forming multivalent interactions with nucleosomal motifs, unwrapping nucleosomal DNA, evicting H1, and cooperatively open closed chromatin to initiate cell reprogramming.
Collapse
Affiliation(s)
- Ruifang Guan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,These authors equally contributed to this work
| | - Tengfei Lian
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,These authors equally contributed to this work
| | - Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,Correspondence:
| |
Collapse
|
73
|
Lee BH, Wu Z, Rhie SK. Characterizing chromatin interactions of regulatory elements and nucleosome positions, using Hi-C, Micro-C, and promoter capture Micro-C. Epigenetics Chromatin 2022; 15:41. [PMID: 36544209 PMCID: PMC9768916 DOI: 10.1186/s13072-022-00473-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Regulatory elements such as promoters, enhancers, and insulators interact each other to mediate molecular processes. To capture chromatin interactions of regulatory elements, 3C-derived methods such as Hi-C and Micro-C are developed. Here, we generated and analyzed Hi-C, Micro-C, and promoter capture Micro-C datasets with different sequencing depths to study chromatin interactions of regulatory elements and nucleosome positions in human prostate cancer cells. RESULTS Compared to Hi-C, Micro-C identifies more high-resolution loops, including ones around structural variants. By evaluating the effect of sequencing depth, we revealed that more than 2 billion reads of Micro-C are needed to detect chromatin interactions at 1 kb resolution. Moreover, we found that deep-sequencing identifies additional long-range loops that are longer than 1 Mb in distance. Furthermore, we found that more than 50% of the loops are involved in insulators while less than 10% of the loops are promoter-enhancer loops. To comprehensively capture chromatin interactions that promoters are involved in, we performed promoter capture Micro-C. Promoter capture Micro-C identifies loops near promoters with a lower amount of sequencing reads. Sequencing of 160 million reads of promoter capture Micro-C resulted in reaching a plateau of identifying loops. However, there was still a subset of promoters that are not involved in loops even after deep-sequencing. By integrating Micro-C with NOMe-seq and ChIP-seq, we found that active promoters involved in loops have a more accessible region with lower levels of DNA methylation and more highly phased nucleosomes, compared to active promoters that are not involved in loops. CONCLUSION We determined the required sequencing depth for Micro-C and promoter capture Micro-C to generate high-resolution chromatin interaction maps and loops. We also investigated the effect of sequencing coverage of Hi-C, Micro-C, and promoter capture Micro-C on detecting chromatin loops. Our analyses suggest the presence of distinct regulatory element groups, which are differently involved in nucleosome positions and chromatin interactions. This study does not only provide valuable insights on understanding chromatin interactions of regulatory elements, but also present guidelines for designing research projects on chromatin interactions among regulatory elements.
Collapse
Affiliation(s)
- Beoung Hun Lee
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zexun Wu
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Suhn K Rhie
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
74
|
Mansisidor AR, Risca VI. Chromatin accessibility: methods, mechanisms, and biological insights. Nucleus 2022; 13:236-276. [PMID: 36404679 PMCID: PMC9683059 DOI: 10.1080/19491034.2022.2143106] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/22/2022] Open
Abstract
Access to DNA is a prerequisite to the execution of essential cellular processes that include transcription, replication, chromosomal segregation, and DNA repair. How the proteins that regulate these processes function in the context of chromatin and its dynamic architectures is an intensive field of study. Over the past decade, genome-wide assays and new imaging approaches have enabled a greater understanding of how access to the genome is regulated by nucleosomes and associated proteins. Additional mechanisms that may control DNA accessibility in vivo include chromatin compaction and phase separation - processes that are beginning to be understood. Here, we review the ongoing development of accessibility measurements, we summarize the different molecular and structural mechanisms that shape the accessibility landscape, and we detail the many important biological functions that are linked to chromatin accessibility.
Collapse
Affiliation(s)
- Andrés R. Mansisidor
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| |
Collapse
|
75
|
Zhao Y, Yu L, Wu X, Li H, Coombes KR, Au KF, Cheng L, Li L. CEDA: integrating gene expression data with CRISPR-pooled screen data identifies essential genes with higher expression. Bioinformatics 2022; 38:5245-5252. [PMID: 36250792 PMCID: PMC9710553 DOI: 10.1093/bioinformatics/btac668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Clustered regularly interspaced short palindromic repeats (CRISPR)-based genetic perturbation screen is a powerful tool to probe gene function. However, experimental noises, especially for the lowly expressed genes, need to be accounted for to maintain proper control of false positive rate. METHODS We develop a statistical method, named CRISPR screen with Expression Data Analysis (CEDA), to integrate gene expression profiles and CRISPR screen data for identifying essential genes. CEDA stratifies genes based on expression level and adopts a three-component mixture model for the log-fold change of single-guide RNAs (sgRNAs). Empirical Bayesian prior and expectation-maximization algorithm are used for parameter estimation and false discovery rate inference. RESULTS Taking advantage of gene expression data, CEDA identifies essential genes with higher expression. Compared to existing methods, CEDA shows comparable reliability but higher sensitivity in detecting essential genes with moderate sgRNA fold change. Therefore, using the same CRISPR data, CEDA generates an additional hit gene list. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
- Biomedical Informatics Shared Resources, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Xue Wu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Haoran Li
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Kevin R Coombes
- Department of Population Health Sciences, Georgia Cancer Center at Augusta University, Augusta, GA 30912, USA
| | - Kin Fai Au
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
- Biomedical Informatics Shared Resources, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Lijun Cheng
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Lang Li
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
- Biomedical Informatics Shared Resources, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
76
|
Petrova V, Song R, DEEP Consortium, Nordström KJV, Walter J, Wong JJL, Armstrong N, Rasko JEJ, Schmitz U. Increased chromatin accessibility facilitates intron retention in specific cell differentiation states. Nucleic Acids Res 2022; 50:11563-11579. [PMID: 36354002 PMCID: PMC9723627 DOI: 10.1093/nar/gkac994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Dynamic intron retention (IR) in vertebrate cells is of widespread biological importance. Aberrant IR is associated with numerous human diseases including several cancers. Despite consistent reports demonstrating that intrinsic sequence features can help introns evade splicing, conflicting findings about cell type- or condition-specific IR regulation by trans-regulatory and epigenetic mechanisms demand an unbiased and systematic analysis of IR in a controlled experimental setting. We integrated matched mRNA sequencing (mRNA-Seq), whole-genome bisulfite sequencing (WGBS), nucleosome occupancy methylome sequencing (NOMe-Seq) and chromatin immunoprecipitation sequencing (ChIP-Seq) data from primary human myeloid and lymphoid cells. Using these multi-omics data and machine learning, we trained two complementary models to determine the role of epigenetic factors in the regulation of IR in cells of the innate immune system. We show that increased chromatin accessibility, as revealed by nucleosome-free regions, contributes substantially to the retention of introns in a cell-specific manner. We also confirm that intrinsic characteristics of introns are key for them to evade splicing. This study suggests an important role for chromatin architecture in IR regulation. With an increasing appreciation that pathogenic alterations are linked to RNA processing, our findings may provide useful insights for the development of novel therapeutic approaches that target aberrant splicing.
Collapse
Affiliation(s)
- Veronika Petrova
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown 2050, Australia,Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | | | - Karl J V Nordström
- Laboratory of EpiGenetics, Saarland University, Campus A2 4, D-66123 Saarbrücken, Germany
| | - Jörn Walter
- Laboratory of EpiGenetics, Saarland University, Campus A2 4, D-66123 Saarbrücken, Germany
| | - Justin J L Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Nicola J Armstrong
- Mathematics and Statistics, Curtin University, Bentley, WA 6102, Australia
| | | | | |
Collapse
|
77
|
Miura F, Miura M, Shibata Y, Furuta Y, Miyamura K, Ino Y, Bayoumi AMA, Oba U, Ito T. Identification, expression, and purification of DNA cytosine 5-methyltransferases with short recognition sequences. BMC Biotechnol 2022; 22:33. [PMID: 36333700 PMCID: PMC9636781 DOI: 10.1186/s12896-022-00765-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Background DNA methyltransferases (MTases) are enzymes that induce methylation, one of the representative epigenetic modifications of DNA, and are also useful tools for analyzing epigenomes. However, regarding DNA cytosine 5-methylation, MTases identified so far have drawbacks in that their recognition sequences overlap with those for intrinsic DNA methylation in mammalian cells and/or that the recognition sequence is too long for fine epigenetic mapping. To identify MTases with short recognition sequences that never overlap with the CG dinucleotide, we systematically investigated the 25 candidate enzymes identified using a database search, which showed high similarity to known cytosine 5-MTases recognizing short sequences. Results We identified MTases with six new recognition sequences, including TCTG, CC, CNG, TCG, GCY, and GGCA. Because the recognition sequence never overlapped with the CG dinucleotide, MTases recognizing the CC dinucleotide were promising. Conclusions In the current study, we established a procedure for producing active CC-methylating MTases and applied it to nucleosome occupancy and methylome sequencing to prove the usefulness of the enzyme for fine epigenetic mapping. MTases that never overlap with CG dinucleotides would allow us to profile multiple epigenomes simultaneously.
Supplementary Information The online version contains supplementary material available at 10.1186/s12896-022-00765-3.
Collapse
Affiliation(s)
- Fumihito Miura
- grid.177174.30000 0001 2242 4849Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582 Japan
| | - Miki Miura
- grid.177174.30000 0001 2242 4849Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582 Japan
| | - Yukiko Shibata
- grid.177174.30000 0001 2242 4849Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582 Japan
| | - Yoshikazu Furuta
- grid.39158.360000 0001 2173 7691Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, 001-0020 Japan
| | - Keisuke Miyamura
- grid.177174.30000 0001 2242 4849Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582 Japan
| | - Yuki Ino
- grid.177174.30000 0001 2242 4849Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582 Japan
| | - Asmaa M. A. Bayoumi
- grid.411806.a0000 0000 8999 4945Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, 61511 Egypt
| | - Utako Oba
- grid.177174.30000 0001 2242 4849Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582 Japan ,grid.177174.30000 0001 2242 4849Department of Pediatrics, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582 Japan
| | - Takashi Ito
- grid.177174.30000 0001 2242 4849Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582 Japan
| |
Collapse
|
78
|
Hung KL, Luebeck J, Dehkordi SR, Colón CI, Li R, Wong ITL, Coruh C, Dharanipragada P, Lomeli SH, Weiser NE, Moriceau G, Zhang X, Bailey C, Houlahan KE, Yang W, González RC, Swanton C, Curtis C, Jamal-Hanjani M, Henssen AG, Law JA, Greenleaf WJ, Lo RS, Mischel PS, Bafna V, Chang HY. Targeted profiling of human extrachromosomal DNA by CRISPR-CATCH. Nat Genet 2022; 54:1746-1754. [PMID: 36253572 PMCID: PMC9649439 DOI: 10.1038/s41588-022-01190-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/22/2022] [Indexed: 12/15/2022]
Abstract
Extrachromosomal DNA (ecDNA) is a common mode of oncogene amplification but is challenging to analyze. Here, we adapt CRISPR-CATCH, in vitro CRISPR-Cas9 treatment and pulsed field gel electrophoresis of agarose-entrapped genomic DNA, previously developed for bacterial chromosome segments, to isolate megabase-sized human ecDNAs. We demonstrate strong enrichment of ecDNA molecules containing EGFR, FGFR2 and MYC from human cancer cells and NRAS ecDNA from human metastatic melanoma with acquired therapeutic resistance. Targeted enrichment of ecDNA versus chromosomal DNA enabled phasing of genetic variants, identified the presence of an EGFRvIII mutation exclusively on ecDNAs and supported an excision model of ecDNA genesis in a glioblastoma model. CRISPR-CATCH followed by nanopore sequencing enabled single-molecule ecDNA methylation profiling and revealed hypomethylation of the EGFR promoter on ecDNAs. We distinguished heterogeneous ecDNA species within the same sample by size and sequence with base-pair resolution and discovered functionally specialized ecDNAs that amplify select enhancers or oncogene-coding sequences.
Collapse
Affiliation(s)
- King L Hung
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Jens Luebeck
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Siavash R Dehkordi
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Caterina I Colón
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Ivy Tsz-Lo Wong
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Ceyda Coruh
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Prashanthi Dharanipragada
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shirley H Lomeli
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Natasha E Weiser
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Gatien Moriceau
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Xiao Zhang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Kathleen E Houlahan
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Wenting Yang
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Rocío Chamorro González
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London, UK
- University College London Hospitals NHS Trust, London, UK
| | - Christina Curtis
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, University College London, London, UK
- University College London Hospitals NHS Trust, London, UK
| | - Anton G Henssen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center DKFZ, Heidelberg, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - William J Greenleaf
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Roger S Lo
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Paul S Mischel
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
79
|
White LK, Hesselberth JR. Modification mapping by nanopore sequencing. Front Genet 2022; 13:1037134. [PMID: 36386798 PMCID: PMC9650216 DOI: 10.3389/fgene.2022.1037134] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 06/26/2024] Open
Abstract
Next generation sequencing (NGS) has provided biologists with an unprecedented view into biological processes and their regulation over the past 2 decades, fueling a wave of development of high throughput methods based on short read DNA and RNA sequencing. For nucleic acid modifications, NGS has been coupled with immunoprecipitation, chemical treatment, enzymatic treatment, and/or the use of reverse transcriptase enzymes with fortuitous activities to enrich for and to identify covalent modifications of RNA and DNA. However, the majority of nucleic acid modifications lack commercial monoclonal antibodies, and mapping techniques that rely on chemical or enzymatic treatments to manipulate modification signatures add additional technical complexities to library preparation. Moreover, such approaches tend to be specific to a single class of RNA or DNA modification, and generate only indirect readouts of modification status. Third generation sequencing technologies such as the commercially available "long read" platforms from Pacific Biosciences and Oxford Nanopore Technologies are an attractive alternative for high throughput detection of nucleic acid modifications. While the former can indirectly sense modified nucleotides through changes in the kinetics of reverse transcription reactions, nanopore sequencing can in principle directly detect any nucleic acid modification that produces a signal distortion as the nucleic acid passes through a nanopore sensor embedded within a charged membrane. To date, more than a dozen endogenous DNA and RNA modifications have been interrogated by nanopore sequencing, as well as a number of synthetic nucleic acid modifications used in metabolic labeling, structure probing, and other emerging applications. This review is intended to introduce the reader to nanopore sequencing and key principles underlying its use in direct detection of nucleic acid modifications in unamplified DNA or RNA samples, and outline current approaches for detecting and quantifying nucleic acid modifications by nanopore sequencing. As this technology matures, we anticipate advances in both sequencing chemistry and analysis methods will lead to rapid improvements in the identification and quantification of these epigenetic marks.
Collapse
Affiliation(s)
| | - Jay R. Hesselberth
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
80
|
George S, Cassidy RN, Saintilnord WN, Fondufe-Mittendorf Y. Epigenomic reprogramming in iAs-mediated carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:319-365. [PMID: 36858778 DOI: 10.1016/bs.apha.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Arsenic is a naturally occurring metal carcinogen found in the Earth's crust. Millions of people worldwide are chronically exposed to arsenic through drinking water and food. Exposure to inorganic arsenic has been implicated in many diseases ranging from acute toxicities to malignant transformations. Despite the well-known deleterious health effects of arsenic exposure, the molecular mechanisms in arsenic-mediated carcinogenesis are not fully understood. Since arsenic is non-mutagenic, the mechanism by which arsenic causes carcinogenesis is via alterations in epigenetic-regulated gene expression. There are two possible ways by which arsenic may modify the epigenome-indirectly through an arsenic-induced generation of reactive oxygen species which then impacts chromatin remodelers, or directly through interaction and modulation of chromatin remodelers. Whether directly or indirectly, arsenic modulates epigenetic gene regulation and our understanding of the direct effect of this modulation on chromatin structure is limited. In this chapter we will discuss the various ways by which inorganic arsenic affects the epigenome with consequences in health and disease.
Collapse
Affiliation(s)
- Smitha George
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Richard N Cassidy
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Wesley N Saintilnord
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | | |
Collapse
|
81
|
Battaglia S, Dong K, Wu J, Chen Z, Najm FJ, Zhang Y, Moore MM, Hecht V, Shoresh N, Bernstein BE. Long-range phasing of dynamic, tissue-specific and allele-specific regulatory elements. Nat Genet 2022; 54:1504-1513. [PMID: 36195755 PMCID: PMC10567064 DOI: 10.1038/s41588-022-01188-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/18/2022] [Indexed: 11/07/2022]
Abstract
Epigenomic maps identify gene regulatory elements by their chromatin state. However, prevailing short-read sequencing methods cannot effectively distinguish alleles, evaluate the interdependence of elements in a locus or capture single-molecule dynamics. Here, we apply targeted nanopore sequencing to profile chromatin accessibility and DNA methylation on contiguous ~100-kb DNA molecules that span loci relevant to development, immunity and imprinting. We detect promoters, enhancers, insulators and transcription factor footprints on single molecules based on exogenous GpC methylation. We infer relationships among dynamic elements within immune loci, and order successive remodeling events during T cell stimulation. Finally, we phase primary sequence and regulatory elements across the H19/IGF2 locus, uncovering primate-specific features. These include a segmental duplication that stabilizes the imprinting control region and a noncanonical enhancer that drives biallelic IGF2 expression in specific contexts. Our study advances emerging strategies for phasing gene regulatory landscapes and reveals a mechanism that overrides IGF2 imprinting in human cells.
Collapse
Affiliation(s)
- Sofia Battaglia
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Kevin Dong
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jingyi Wu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Zeyu Chen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Fadi J Najm
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yuanyuan Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Molly M Moore
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vivian Hecht
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Inscripta, Inc., Boulder, CO, USA
| | - Noam Shoresh
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bradley E Bernstein
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
82
|
Abstract
The immune system is highly complex and distributed throughout an organism, with hundreds to thousands of cell states existing in parallel with diverse molecular pathways interacting in a highly dynamic and coordinated fashion. Although the characterization of individual genes and molecules is of the utmost importance for understanding immune-system function, high-throughput, high-resolution omics technologies combined with sophisticated computational modeling and machine-learning approaches are creating opportunities to complement standard immunological methods with new insights into immune-system dynamics. Like systems immunology itself, immunology researchers must take advantage of these technologies and form their own diverse networks, connecting with researchers from other disciplines. This Review is an introduction and 'how-to guide' for immunologists with no particular experience in the field of omics but with the intention to learn about and apply these systems-level approaches, and for immunologists who want to make the most of interdisciplinary networks.
Collapse
|
83
|
MacCarthy CM, Huertas J, Ortmeier C, Vom Bruch H, Tan DS, Reinke D, Sander A, Bergbrede T, Jauch R, Schöler HR, Cojocaru V. OCT4 interprets and enhances nucleosome flexibility. Nucleic Acids Res 2022; 50:10311-10327. [PMID: 36130732 PMCID: PMC9561370 DOI: 10.1093/nar/gkac755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 01/06/2023] Open
Abstract
Pioneer transcription factors are proteins that induce cellular identity transitions by binding to inaccessible regions of DNA in nuclear chromatin. They contribute to chromatin opening and recruit other factors to regulatory DNA elements. The structural features and dynamics modulating their interaction with nucleosomes are still unresolved. From a combination of experiments and molecular simulations, we reveal here how the pioneer factor and master regulator of pluripotency, Oct4, interprets and enhances nucleosome structural flexibility. The magnitude of Oct4’s impact on nucleosome dynamics depends on the binding site position and the mobility of the unstructured tails of nucleosomal histone proteins. Oct4 uses both its DNA binding domains to propagate and stabilize open nucleosome conformations, one for specific sequence recognition and the other for nonspecific interactions with nearby regions of DNA. Our findings provide a structural basis for the versatility of transcription factors in engaging with nucleosomes and have implications for understanding how pioneer factors induce chromatin dynamics.
Collapse
Affiliation(s)
- Caitlin M MacCarthy
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Jan Huertas
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Claudia Ortmeier
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hermann Vom Bruch
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Daisylyn Senna Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Deike Reinke
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Astrid Sander
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | - Ralf Jauch
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Hans R Schöler
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Medical Faculty, University of Münster, Germany
| | - Vlad Cojocaru
- Department of Cellular and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Computational Structural Biology Group, University of Utrecht, The Netherlands.,STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
84
|
Přibylová A, Fischer L, Pyott DE, Bassett A, Molnar A. DNA methylation can alter CRISPR/Cas9 editing frequency and DNA repair outcome in a target-specific manner. THE NEW PHYTOLOGIST 2022; 235:2285-2299. [PMID: 35524464 PMCID: PMC9545110 DOI: 10.1111/nph.18212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/02/2022] [Indexed: 05/31/2023]
Abstract
The impact of epigenetic modifications on the efficacy of CRISPR/Cas9-mediated double-stranded DNA breaks and subsequent DNA repair is poorly understood, especially in plants. In this study, we investigated the effect of the level of cytosine methylation on the outcome of CRISPR/Cas9-induced mutations at multiple Cas9 target sites in Nicotiana benthamiana leaf cells using next-generation sequencing. We found that high levels of promoter methylation, but not gene-body methylation, decreased the frequency of Cas9-mediated mutations. DNA methylation also influenced the ratio of insertions and deletions and potentially the type of Cas9 cleavage in a target-specific manner. In addition, we detected an over-representation of deletion events governed by a single 5'-terminal nucleotide at Cas9-induced DNA breaks. Our findings suggest that DNA methylation can indirectly impair Cas9 activity and subsequent DNA repair, probably through changes in the local chromatin structure. In addition to the well described Cas9-induced blunt-end double-stranded DNA breaks, we provide evidence for Cas9-mediated staggered DNA cuts in plant cells. Both types of cut may direct microhomology-mediated DNA repair by a novel, as yet undescribed, mechanism.
Collapse
Affiliation(s)
- Adéla Přibylová
- Institute of Molecular Plant SciencesThe University of EdinburghEdinburghEH9 3BFUK
- Faculty of ScienceCharles UniversityPrague128 44Czech Republic
| | - Lukáš Fischer
- Faculty of ScienceCharles UniversityPrague128 44Czech Republic
| | - Douglas E. Pyott
- The Wellcome Trust Center for Cell BiologyInstitute of Cell BiologyThe University of EdinburghEdinburghEH9 3BFUK
| | - Andrew Bassett
- Wellcome Sanger InstituteWellcome Genome CampusHinxtonCB10 1SAUK
| | - Attila Molnar
- Institute of Molecular Plant SciencesThe University of EdinburghEdinburghEH9 3BFUK
| |
Collapse
|
85
|
Yang G, Lu T, Weisenberger DJ, Liang G. The Multi-Omic Landscape of Primary Breast Tumors and Their Metastases: Expanding the Efficacy of Actionable Therapeutic Targets. Genes (Basel) 2022; 13:1555. [PMID: 36140723 PMCID: PMC9498783 DOI: 10.3390/genes13091555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Breast cancer (BC) mortality is almost exclusively due to metastasis, which is the least understood aspect of cancer biology and represents a significant clinical challenge. Although we have witnessed tremendous advancements in the treatment for metastatic breast cancer (mBC), treatment resistance inevitably occurs in most patients. Recently, efforts in characterizing mBC revealed distinctive genomic, epigenomic and transcriptomic (multi-omic) landscapes to that of the primary tumor. Understanding of the molecular underpinnings of mBC is key to understanding resistance to therapy and the development of novel treatment options. This review summarizes the differential molecular landscapes of BC and mBC, provides insights into the genomic heterogeneity of mBC and highlights the therapeutically relevant, multi-omic features that may serve as novel therapeutic targets for mBC patients.
Collapse
Affiliation(s)
- Guang Yang
- School of Sciences, China Pharmaceutical University, Nanjing 211121, China
- China Grand Enterprises, Beijing 100101, China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, Nanjing 211121, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211121, China
| | - Daniel J. Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Gangning Liang
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| |
Collapse
|
86
|
Hansen TJ, Hodges E. ATAC-STARR-seq reveals transcription factor-bound activators and silencers within chromatin-accessible regions of the human genome. Genome Res 2022; 32:1529-1541. [PMID: 35858748 PMCID: PMC9435738 DOI: 10.1101/gr.276766.122] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
Massively parallel reporter assays (MPRAs) test the capacity of putative gene regulatory elements to drive transcription on a genome-wide scale. Most gene regulatory activity occurs within accessible chromatin, and recently described methods have combined assays that capture these regions-such as assay for transposase-accessible chromatin using sequencing (ATAC-seq)-with self-transcribing active regulatory region sequencing (STARR-seq) to selectively assay the regulatory potential of accessible DNA (ATAC-STARR-seq). Here, we report an integrated approach that quantifies activating and silencing regulatory activity, chromatin accessibility, and transcription factor (TF) occupancy with one assay using ATAC-STARR-seq. Our strategy, including important updates to the ATAC-STARR-seq assay and workflow, enabled high-resolution testing of ∼50 million unique DNA fragments tiling ∼101,000 accessible chromatin regions in human lymphoblastoid cells. We discovered that 30% of all accessible regions contain an activator, a silencer, or both. Although few MPRA studies have explored silencing activity, we demonstrate that silencers occur at similar frequencies to activators, and they represent a distinct functional group enriched for unique TF motifs and repressive histone modifications. We further show that Tn5 cut-site frequencies are retained in the ATAC-STARR plasmid library compared to standard ATAC-seq, enabling TF occupancy to be ascertained from ATAC-STARR data. With this approach, we found that activators and silencers cluster by distinct TF footprint combinations, and these groups of activity represent different gene regulatory networks of immune cell function. Altogether, these data highlight the multilayered capabilities of ATAC-STARR-seq to comprehensively investigate the regulatory landscape of the human genome all from a single DNA fragment source.
Collapse
Affiliation(s)
- Tyler J Hansen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| |
Collapse
|
87
|
Lee S, Chang TC, Schreiner P, Fan Y, Agarwal N, Owens C, Dummer R, Kirkwood JM, Barnhill RL, Theodorescu D, Wu G, Bahrami A. Targeted Long-Read Bisulfite Sequencing Identifies Differences in the TERT Promoter Methylation Profiles between TERT Wild-Type and TERT Mutant Cancer Cells. Cancers (Basel) 2022; 14:4018. [PMID: 36011010 PMCID: PMC9406525 DOI: 10.3390/cancers14164018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background: TERT promoter methylation, located several hundred base pairs upstream of the transcriptional start site, is cancer specific and correlates with increased TERT mRNA expression and poorer patient outcome. Promoter methylation, however, is not mutually exclusive to TERT activating genetic alterations, as predicted for functionally redundant mechanisms. To annotate the altered patterns of TERT promoter methylation and their relationship with gene expression, we applied a Pacific Biosciences-based, long-read, bisulfite-sequencing technology and compared the differences in the methylation marks between wild-type and mutant cancers in an allele-specific manner. Results: We cataloged TERT genetic alterations (i.e., promoter point mutations or structural variations), allele-specific promoter methylation patterns, and allele-specific expression levels in a cohort of 54 cancer cell lines. In heterozygous mutant cell lines, the mutant alleles were significantly less methylated than their silent, mutation-free alleles (p < 0.05). In wild-type cell lines, by contrast, both epialleles were equally methylated to high levels at the TERT distal promoter, but differentially methylated in the proximal regions. ChIP analysis showed that epialleles with the hypomethylated proximal and core promoter were enriched in the active histone mark H3K4me2/3, whereas epialleles that were methylated in those regions were enriched in the repressive histone mark H3K27me3. Decitabine therapy induced biallelic expression in the wild-type cancer cells, whereas the mutant cell lines were unaffected. Conclusions: Long-read bisulfite sequencing analysis revealed differences in the methylation profiles and responses to demethylating agents between TERT wild-type and genetically altered cancer cell lines. The causal relation between TERT promoter methylation and gene expression remains to be established.
Collapse
Affiliation(s)
- Seungjae Lee
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38015, USA
| | - Patrick Schreiner
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38015, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38015, USA
| | - Neeraj Agarwal
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Charles Owens
- Department of Surgery, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - John M. Kirkwood
- Department of Pathology, University of Pittsburgh Cancer Center, Pittsburgh, PA 15232, USA
| | | | - Dan Theodorescu
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
- Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gang Wu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38015, USA
| | - Armita Bahrami
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
| |
Collapse
|
88
|
Li S, Peng Y, Panchenko AR. DNA methylation: Precise modulation of chromatin structure and dynamics. Curr Opin Struct Biol 2022; 75:102430. [PMID: 35914496 DOI: 10.1016/j.sbi.2022.102430] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022]
Abstract
DNA methylation plays a vital role in epigenetic regulation in both plants and animals, and typically occurs at the 5-carbon position of the cytosine pyrimidine ring within the CpG dinucleotide steps. Cytosine methylation can alter DNA's geometry, mechanical and physico-chemical properties - thus influencing the molecular signaling events vital for transcription, replication and chromatin remodeling. Despite the profound effect cytosine methylation can have on DNA, the underlying atomistic mechanisms remain enigmatic. Many studies so far have produced controversial findings on how cytosine methylation dictates DNA flexibility and accessibility, nucleosome stability and dynamics. Here, we review the most recent experimental and computational studies that provide precise characterization of structure and function of cytosine methylation and its versatile roles in modulating DNA mechanics, nucleosome and chromatin structure, stability and dynamics. Moreover, the review briefly discusses the relationship between DNA methylation and nucleosome positioning, and the crosstalk between DNA methylation and histone tail modifications.
Collapse
Affiliation(s)
- Shuxiang Li
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON, Canada
| | - Yunhui Peng
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON, Canada.
| |
Collapse
|
89
|
Katsman E, Orlanski S, Martignano F, Fox-Fisher I, Shemer R, Dor Y, Zick A, Eden A, Petrini I, Conticello SG, Berman BP. Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from Nanopore sequencing. Genome Biol 2022; 23:158. [PMID: 35841107 PMCID: PMC9283844 DOI: 10.1186/s13059-022-02710-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
The Oxford Nanopore (ONT) platform provides portable and rapid genome sequencing, and its ability to natively profile DNA methylation without complex sample processing is attractive for point-of-care real-time sequencing. We recently demonstrated ONT shallow whole-genome sequencing to detect copy number alterations (CNAs) from the circulating tumor DNA (ctDNA) of cancer patients. Here, we show that cell type and cancer-specific methylation changes can also be detected, as well as cancer-associated fragmentation signatures. This feasibility study suggests that ONT shallow WGS could be a powerful tool for liquid biopsy.
Collapse
Affiliation(s)
- Efrat Katsman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shari Orlanski
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Ilana Fox-Fisher
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviad Zick
- Department of Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amir Eden
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Iacopo Petrini
- Unit of Respiratory Medicine, Department of Critical Area and Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Pisa, Italy
| | - Silvestro G Conticello
- Core Research Laboratory, ISPRO, Florence, Italy.
- Institute of Clinical Physiology, National Research Council, Pisa, Italy.
| | - Benjamin P Berman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
90
|
Zhou W, Hinoue T, Barnes B, Mitchell O, Iqbal W, Lee SM, Foy KK, Lee KH, Moyer EJ, VanderArk A, Koeman JM, Ding W, Kalkat M, Spix NJ, Eagleson B, Pospisilik JA, Szabó PE, Bartolomei MS, Vander Schaaf NA, Kang L, Wiseman AK, Jones PA, Krawczyk CM, Adams M, Porecha R, Chen BH, Shen H, Laird PW. DNA methylation dynamics and dysregulation delineated by high-throughput profiling in the mouse. CELL GENOMICS 2022; 2:100144. [PMID: 35873672 PMCID: PMC9306256 DOI: 10.1016/j.xgen.2022.100144] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/20/2022] [Accepted: 05/20/2022] [Indexed: 05/21/2023]
Abstract
We have developed a mouse DNA methylation array that contains 296,070 probes representing the diversity of mouse DNA methylation biology. We present a mouse methylation atlas as a rich reference resource of 1,239 DNA samples encompassing distinct tissues, strains, ages, sexes, and pathologies. We describe applications for comparative epigenomics, genomic imprinting, epigenetic inhibitors, patient-derived xenograft assessment, backcross tracing, and epigenetic clocks. We dissect DNA methylation processes associated with differentiation, aging, and tumorigenesis. Notably, we find that tissue-specific methylation signatures localize to binding sites for transcription factors controlling the corresponding tissue development. Age-associated hypermethylation is enriched at regions of Polycomb repression, while hypomethylation is enhanced at regions bound by cohesin complex members. Apc Min/+ polyp-associated hypermethylation affects enhancers regulating intestinal differentiation, while hypomethylation targets AP-1 binding sites. This Infinium Mouse Methylation BeadChip (version MM285) is widely accessible to the research community and will accelerate high-sample-throughput studies in this important model organism.
Collapse
Affiliation(s)
- Wanding Zhou
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author
| | - Toshinori Hinoue
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Bret Barnes
- Illumina, Inc., Bioinformatics and Instrument Software Department, San Diego, CA 92122, USA
| | - Owen Mitchell
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Waleed Iqbal
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sol Moe Lee
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kelly K. Foy
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kwang-Ho Lee
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ethan J. Moyer
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alexandra VanderArk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Julie M. Koeman
- Genomics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Wubin Ding
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Manpreet Kalkat
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Nathan J. Spix
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Bryn Eagleson
- Vivarium and Transgenics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | | | - Piroska E. Szabó
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Liang Kang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ashley K. Wiseman
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Peter A. Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Connie M. Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Marie Adams
- Genomics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Rishi Porecha
- Illumina, Inc., Bioinformatics and Instrument Software Department, San Diego, CA 92122, USA
| | | | - Hui Shen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
- Corresponding author
| | - Peter W. Laird
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
- Corresponding author
| |
Collapse
|
91
|
Isbel L, Grand RS, Schübeler D. Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nat Rev Genet 2022; 23:728-740. [PMID: 35831531 DOI: 10.1038/s41576-022-00512-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/11/2022]
Abstract
Cell type-specific gene expression relies on transcription factors (TFs) binding DNA sequence motifs embedded in chromatin. Understanding how motifs are accessed in chromatin is crucial to comprehend differential transcriptional responses and the phenotypic impact of sequence variation. Chromatin obstacles to TF binding range from DNA methylation to restriction of DNA access by nucleosomes depending on their position, composition and modification. In vivo and in vitro approaches now enable the study of TF binding in chromatin at unprecedented resolution. Emerging insights suggest that TFs vary in their ability to navigate chromatin states. However, it remains challenging to link binding and transcriptional outcomes to molecular characteristics of TFs or the local chromatin substrate. Here, we discuss our current understanding of how TFs access DNA in chromatin and novel techniques and directions towards a better understanding of this critical step in genome regulation.
Collapse
Affiliation(s)
- Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ralph S Grand
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. .,Faculty of Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
92
|
Ahmad K. Mapping beads on strings. Nat Methods 2022; 19:651-652. [PMID: 35595967 DOI: 10.1038/s41592-022-01519-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kami Ahmad
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
93
|
The Promise of Single-cell Technology in Providing New Insights Into the Molecular Heterogeneity and Management of Acute Lymphoblastic Leukemia. Hemasphere 2022; 6:e734. [PMID: 35651714 PMCID: PMC9148686 DOI: 10.1097/hs9.0000000000000734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
Drug resistance and treatment failure in pediatric acute lymphoblastic leukemia (ALL) are in part driven by tumor heterogeneity and clonal evolution. Although bulk tumor genomic analyses have provided some insight into these processes, single-cell sequencing has emerged as a powerful technique to profile individual cells in unprecedented detail. Since the introduction of single-cell RNA sequencing, we now have the capability to capture not only transcriptomic, but also genomic, epigenetic, and proteomic variation between single cells separately and in combination. This rapidly evolving field has the potential to transform our understanding of the fundamental biology of pediatric ALL and guide the management of ALL patients to improve their clinical outcome. Here, we discuss the impact single-cell sequencing has had on our understanding of tumor heterogeneity and clonal evolution in ALL and provide examples of how single-cell technology can be integrated into the clinic to inform treatment decisions for children with high-risk disease.
Collapse
|
94
|
Grandi FC, Modi H, Kampman L, Corces MR. Chromatin accessibility profiling by ATAC-seq. Nat Protoc 2022; 17:1518-1552. [PMID: 35478247 PMCID: PMC9189070 DOI: 10.1038/s41596-022-00692-9] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
The assay for transposase-accessible chromatin using sequencing (ATAC-seq) provides a simple and scalable way to detect the unique chromatin landscape associated with a cell type and how it may be altered by perturbation or disease. ATAC-seq requires a relatively small number of input cells and does not require a priori knowledge of the epigenetic marks or transcription factors governing the dynamics of the system. Here we describe an updated and optimized protocol for ATAC-seq, called Omni-ATAC, that is applicable across a broad range of cell and tissue types. The ATAC-seq workflow has five main steps: sample preparation, transposition, library preparation, sequencing and data analysis. This protocol details the steps to generate and sequence ATAC-seq libraries, with recommendations for sample preparation and downstream bioinformatic analysis. ATAC-seq libraries for roughly 12 samples can be generated in 10 h by someone familiar with basic molecular biology, and downstream sequencing analysis can be implemented using benchmarked pipelines by someone with basic bioinformatics skills and with access to a high-performance computing environment.
Collapse
Affiliation(s)
- Fiorella C Grandi
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Hailey Modi
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Lucas Kampman
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - M Ryan Corces
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
95
|
Altemose N, Maslan A, Smith OK, Sundararajan K, Brown RR, Mishra R, Detweiler AM, Neff N, Miga KH, Straight AF, Streets A. DiMeLo-seq: a long-read, single-molecule method for mapping protein-DNA interactions genome wide. Nat Methods 2022; 19:711-723. [PMID: 35396487 PMCID: PMC9189060 DOI: 10.1038/s41592-022-01475-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/24/2022] [Indexed: 12/13/2022]
Abstract
Studies of genome regulation routinely use high-throughput DNA sequencing approaches to determine where specific proteins interact with DNA, and they rely on DNA amplification and short-read sequencing, limiting their quantitative application in complex genomic regions. To address these limitations, we developed directed methylation with long-read sequencing (DiMeLo-seq), which uses antibody-tethered enzymes to methylate DNA near a target protein's binding sites in situ. These exogenous methylation marks are then detected simultaneously with endogenous CpG methylation on unamplified DNA using long-read, single-molecule sequencing technologies. We optimized and benchmarked DiMeLo-seq by mapping chromatin-binding proteins and histone modifications across the human genome. Furthermore, we identified where centromere protein A localizes within highly repetitive regions that were unmappable with short sequencing reads, and we estimated the density of centromere protein A molecules along single chromatin fibers. DiMeLo-seq is a versatile method that provides multimodal, genome-wide information for investigating protein-DNA interactions.
Collapse
Affiliation(s)
- Nicolas Altemose
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Annie Maslan
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Owen K Smith
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | | | - Rachel R Brown
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Reet Mishra
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Karen H Miga
- Department of Molecular & Cell Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Aaron F Straight
- Department of Biochemistry, Stanford University, Stanford, CA, USA.
| | - Aaron Streets
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
96
|
Ma Z, Davis SW, Ho YY. Flexible copula model for integrating correlated multi-omics data from single-cell experiments. Biometrics 2022. [PMID: 35622236 DOI: 10.1111/biom.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/18/2022] [Indexed: 11/27/2022]
Abstract
With recent advances in technologies to profile multi-omics data at the single-cell level, integrative multi-omics data analysis has been increasingly popular. It is increasingly common that information such as methylation changes, chromatin accessibility, and gene expression are jointly collected in a single-cell experiment. In biomedical studies, it is often of interest to study the associations between various data types and to examine how these associations might change according to other factors such as cell types and gene regulatory components. However, since each data type usually has a distinct marginal distribution, joint analysis of these changes of associations using multi-omics data is statistically challenging. In this paper, we propose a flexible copula-based framework to model covariate-dependent correlation structures independent of their marginals. In addition, the proposed approach could jointly combine a wide variety of univariate marginal distributions, either discrete or continuous, including the class of zero-inflated distributions. The performance of the proposed framework is demonstrated through a series of simulation studies. Finally, it is applied to a set of experimental data to investigate the dynamic relationship between single-cell RNA-sequencing, chromatin accessibility, and DNA methylation at different germ layers during mouse gastrulation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zichen Ma
- Department of Public Health Sciences, Clemson University, Clemson, SC, USA
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Yen-Yi Ho
- Department of Statistics, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
97
|
Zhang Z, Lin L, Chen H, Ye W, Dong S, Zheng X, Wang Y. ATAC-Seq Reveals the Landscape of Open Chromatin and cis-Regulatory Elements in the Phytophthora sojae Genome. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:301-310. [PMID: 35037783 DOI: 10.1094/mpmi-11-21-0291-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nucleosome-free open chromatin often harbors transcription factor (TF)-binding sites that are associated with active cis-regulatory elements. However, analysis of open chromatin regions has rarely been applied to oomycete or fungal plant pathogens. In this study, we performed the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) to identify open chromatin and cis-regulatory elements in Phytophthora sojae at the mycelial stage. We identified 10,389 peaks representing nucleosome-free regions (NFRs). The peaks were enriched in gene-promoter regions and associated with 40% of P. sojae genes; transcription levels were higher for genes with multiple peaks than genes with a single peak and were higher for genes with a single peak than genes without peak. Chromatin accessibility was positively correlated with gene transcription level. Through motif discovery based on NFR peaks in core promoter regions, 25 candidate cis-regulatory motifs with evidence of TF-binding footprints were identified. These motifs exhibited various preferences for location in the promoter region and associations with the transcription level of their target genes, which included some putative pathogenicity-related genes. As the first study revealing the landscape of open chromatin and the correlation between chromatin accessibility and gene transcription level in oomycetes, the results provide a technical reference and data resources for future studies on the regulatory mechanisms of gene transcription.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Long Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu 210095, China
| |
Collapse
|
98
|
BAF complex-mediated chromatin relaxation is required for establishment of X chromosome inactivation. Nat Commun 2022; 13:1658. [PMID: 35351876 PMCID: PMC8964718 DOI: 10.1038/s41467-022-29333-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
The process of epigenetic silencing, while fundamentally important, is not yet completely understood. Here we report a replenishable female mouse embryonic stem cell (mESC) system, Xmas, that allows rapid assessment of X chromosome inactivation (XCI), the epigenetic silencing mechanism of one of the two X chromosomes that enables dosage compensation in female mammals. Through a targeted genetic screen in differentiating Xmas mESCs, we reveal that the BAF complex is required to create nucleosome-depleted regions at promoters on the inactive X chromosome during the earliest stages of establishment of XCI. Without this action gene silencing fails. Xmas mESCs provide a tractable model for screen-based approaches that enable the discovery of unknown facets of the female-specific process of XCI and epigenetic silencing more broadly. Female embryonic stem cells (ESCs) are the ideal model to study X chromosome inactivation (XCI) establishment; however, these cells are challenging to keep in culture. Here the authors create fluorescent ‘Xmas’ reporter mice as a renewable source of ESCs and show nucleosome remodelers Smarcc1 and Smarca4 create a nucleosome-free promoter region prior to the establishment of silencing.
Collapse
|
99
|
Dimitriu MA, Lazar-Contes I, Roszkowski M, Mansuy IM. Single-Cell Multiomics Techniques: From Conception to Applications. Front Cell Dev Biol 2022; 10:854317. [PMID: 35386194 PMCID: PMC8979110 DOI: 10.3389/fcell.2022.854317] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 01/16/2023] Open
Abstract
Recent advances in methods for single-cell analyses and barcoding strategies have led to considerable progress in research. The development of multiplexed assays offers the possibility to conduct parallel analyses of multiple factors and processes for comprehensive characterization of cellular and molecular states in health and disease. These technologies have expanded extremely rapidly in the past years and constantly evolve and provide better specificity, precision and resolution. This review summarizes recent progress in single-cell multiomics approaches, and focuses, in particular, on the most innovative techniques that integrate genome, epigenome and transcriptome profiling. It describes the methodologies, discusses their advantages and limitations, and explains how they have been applied to studies on cell heterogeneity and differentiation, and epigenetic reprogramming.
Collapse
Affiliation(s)
| | | | | | - Isabelle M. Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute, University of Zurich and Institute for Neuroscience, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
100
|
Abstract
Single-cell technologies measure unique cellular signatures but are typically limited to a single modality. Computational approaches allow the fusion of diverse single-cell data types, but their efficacy is difficult to validate in the absence of authentic multi-omic measurements. To comprehensively assess the molecular phenotypes of single cells, we devised single-nucleus methylcytosine, chromatin accessibility, and transcriptome sequencing (snmCAT-seq) and applied it to postmortem human frontal cortex tissue. We developed a cross-validation approach using multi-modal information to validate fine-grained cell types and assessed the effectiveness of computational data fusion methods. Correlation analysis in individual cells revealed distinct relations between methylation and gene expression. Our integrative approach enabled joint analyses of the methylome, transcriptome, chromatin accessibility, and conformation for 63 human cortical cell types. We reconstructed regulatory lineages for cortical cell populations and found specific enrichment of genetic risk for neuropsychiatric traits, enabling the prediction of cell types that are associated with diseases.
Collapse
|