51
|
Cohen LB, Troemel ER. Microbial pathogenesis and host defense in the nematode C. elegans. Curr Opin Microbiol 2015; 23:94-101. [PMID: 25461579 PMCID: PMC4324121 DOI: 10.1016/j.mib.2014.11.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/13/2022]
Abstract
Epithelial cells line the surfaces of the body, and are on the front lines of defense against microbial infection. Like many other metazoans, the nematode Caenorhabditis elegans lacks known professional immune cells and relies heavily on defense mediated by epithelial cells. New results indicate that epithelial defense in C. elegans can be triggered through detection of pathogen-induced perturbation of core physiology within host cells and through autophagic defense against intracellular and extracellular pathogens. Recent studies have also illuminated a diverse array of pathogenic attack strategies used against C. elegans. These findings are providing insight into the underpinnings of host/pathogen interactions in a simple animal host that can inform studies of infectious diseases in humans.
Collapse
Affiliation(s)
- Lianne B Cohen
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Emily R Troemel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States.
| |
Collapse
|
52
|
Carradec Q, Götz U, Arnaiz O, Pouch J, Simon M, Meyer E, Marker S. Primary and secondary siRNA synthesis triggered by RNAs from food bacteria in the ciliate Paramecium tetraurelia. Nucleic Acids Res 2015; 43:1818-33. [PMID: 25593325 PMCID: PMC4330347 DOI: 10.1093/nar/gku1331] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In various organisms, an efficient RNAi response can be triggered by feeding cells with bacteria producing double-stranded RNA (dsRNA) against an endogenous gene. However, the detailed mechanisms and natural functions of this pathway are not well understood in most cases. Here, we studied siRNA biogenesis from exogenous RNA and its genetic overlap with endogenous RNAi in the ciliate Paramecium tetraurelia by high-throughput sequencing. Using wild-type and mutant strains deficient for dsRNA feeding we found that high levels of primary siRNAs of both strands are processed from the ingested dsRNA trigger by the Dicer Dcr1, the RNA-dependent RNA polymerases Rdr1 and Rdr2 and other factors. We further show that this induces the synthesis of secondary siRNAs spreading along the entire endogenous mRNA, demonstrating the occurrence of both 3′-to-5′ and 5′-to-3′ transitivity for the first time in the SAR clade of eukaryotes (Stramenopiles, Alveolates, Rhizaria). Secondary siRNAs depend on Rdr2 and show a strong antisense bias; they are produced at much lower levels than primary siRNAs and hardly contribute to RNAi efficiency. We further provide evidence that the Paramecium RNAi machinery also processes single-stranded RNAs from its bacterial food, broadening the possible natural functions of exogenously induced RNAi in this organism.
Collapse
Affiliation(s)
- Quentin Carradec
- Institut de Biologie de l'ENS, IBENS, Ecole Normale Supérieure, Inserm, U1024, CNRS, UMR 8197, 75005 Paris, France UPMC, IFD, Sorbonne Universités, 4 place Jussieu, 75252 Paris cedex 05, France
| | - Ulrike Götz
- Zentrum für Human- und Molekularbiologie, Molekulare Zelldynamik, Universität des Saarlandes, Campus A2 4, 66123 Saarbrücken, Germany
| | - Olivier Arnaiz
- Centre de Génétique Moléculaire, CNRS UPR3404, 91198 Gif-sur-Yvette cedex, France
| | - Juliette Pouch
- Institut de Biologie de l'ENS, IBENS, Ecole Normale Supérieure, Inserm, U1024, CNRS, UMR 8197, 75005 Paris, France
| | - Martin Simon
- Zentrum für Human- und Molekularbiologie, Molekulare Zelldynamik, Universität des Saarlandes, Campus A2 4, 66123 Saarbrücken, Germany
| | - Eric Meyer
- Institut de Biologie de l'ENS, IBENS, Ecole Normale Supérieure, Inserm, U1024, CNRS, UMR 8197, 75005 Paris, France
| | - Simone Marker
- Institut de Biologie de l'ENS, IBENS, Ecole Normale Supérieure, Inserm, U1024, CNRS, UMR 8197, 75005 Paris, France Zentrum für Human- und Molekularbiologie, Molekulare Zelldynamik, Universität des Saarlandes, Campus A2 4, 66123 Saarbrücken, Germany
| |
Collapse
|
53
|
Sarkies P, Miska EA. Small RNAs break out: the molecular cell biology of mobile small RNAs. Nat Rev Mol Cell Biol 2014; 15:525-35. [DOI: 10.1038/nrm3840] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
54
|
Diogo J, Bratanich A. The nematode Caenorhabditis elegans as a model to study viruses. Arch Virol 2014; 159:2843-51. [PMID: 25000902 DOI: 10.1007/s00705-014-2168-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/28/2014] [Indexed: 12/15/2022]
Abstract
Caenorhabditis elegans is a worm that has been extensively studied, and it is today an accepted model in many different biological fields. C. elegans is cheap to maintain, it is transparent, allowing easy localization studies, and it develops from egg to adult in around 4 days. Many mutants, available to the scientific community, have been developed. This has facilitated the study of the role of particular genes in many cellular pathways, which are highly conserved when compared with higher eukaryotes. This review describes the advantages of C. elegans as a laboratory model and the known mechanisms utilized by this worm to fight pathogens. In particular, we describe the strong C. elegans RNAi machinery, which plays an important role in the antiviral response. This has been shown in vitro (C. elegans cell cultures) as well as in vivo (RNAi-deficient strains) utilizing recently described viruses that have the worm as a host. Infections with mammalian viruses have also been achieved using chemical treatment. The role of viral genes involved in pathogenesis has been addressed by evaluating the phenotypes of transgenic strains of C. elegans expressing those genes. Very simple approaches such as feeding the worm with bacteria transformed with viral genes have also been utilized. The advantages and limitations of different approaches are discussed.
Collapse
Affiliation(s)
- Jesica Diogo
- Department of Virology, School of Veterinary Sciences, University of Buenos Aires, Av. Chorroarin 280, 1427, Buenos Aires, Argentina
| | | |
Collapse
|
55
|
Bakowski MA, Desjardins CA, Smelkinson MG, Dunbar TA, Lopez-Moyado IF, Rifkin SA, Cuomo CA, Troemel ER. Ubiquitin-mediated response to microsporidia and virus infection in C. elegans. PLoS Pathog 2014; 10:e1004200. [PMID: 24945527 PMCID: PMC4063957 DOI: 10.1371/journal.ppat.1004200] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/07/2014] [Indexed: 11/18/2022] Open
Abstract
Microsporidia comprise a phylum of over 1400 species of obligate intracellular pathogens that can infect almost all animals, but little is known about the host response to these parasites. Here we use the whole-animal host C. elegans to show an in vivo role for ubiquitin-mediated response to the microsporidian species Nematocida parisii, as well to the Orsay virus, another natural intracellular pathogen of C. elegans. We analyze gene expression of C. elegans in response to N. parisii, and find that it is similar to response to viral infection. Notably, we find an upregulation of SCF ubiquitin ligase components, such as the cullin ortholog cul-6, which we show is important for ubiquitin targeting of N. parisii cells in the intestine. We show that ubiquitylation components, the proteasome, and the autophagy pathway are all important for defense against N. parisii infection. We also find that SCF ligase components like cul-6 promote defense against viral infection, where they have a more robust role than against N. parisii infection. This difference may be due to suppression of the host ubiquitylation system by N. parisii: when N. parisii is crippled by anti-microsporidia drugs, the host can more effectively target pathogen cells for ubiquitylation. Intriguingly, inhibition of the ubiquitin-proteasome system (UPS) increases expression of infection-upregulated SCF ligase components, indicating that a trigger for transcriptional response to intracellular infection by N. parisii and virus may be perturbation of the UPS. Altogether, our results demonstrate an in vivo role for ubiquitin-mediated defense against microsporidian and viral infections in C. elegans.
Collapse
Affiliation(s)
- Malina A. Bakowski
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | | | - Margery G. Smelkinson
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Tiffany A. Dunbar
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Isaac F. Lopez-Moyado
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Scott A. Rifkin
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution University of California San Diego, La Jolla, California, United States of America
| | - Christina A. Cuomo
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Emily R. Troemel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
56
|
Svoboda P. Renaissance of mammalian endogenous RNAi. FEBS Lett 2014; 588:2550-6. [DOI: 10.1016/j.febslet.2014.05.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 01/03/2023]
|
57
|
Weick EM, Sarkies P, Silva N, Chen RA, Moss SMM, Cording AC, Ahringer J, Martinez-Perez E, Miska EA. PRDE-1 is a nuclear factor essential for the biogenesis of Ruby motif-dependent piRNAs in C. elegans. Genes Dev 2014; 28:783-96. [PMID: 24696457 PMCID: PMC4015492 DOI: 10.1101/gad.238105.114] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Piwi-interacting RNAs (piRNA) are small regulatory RNAs with essential roles in maintaining genome integrity in animals and protists. Most Caenorhabditis elegans piRNAs are transcribed from two genomic clusters that likely contain thousands of individual transcription units; however, their biogenesis is not understood. Here we identify and characterize prde-1 (piRNA silencing-defective) as the first essential C. elegans piRNA biogenesis gene. Analysis of prde-1 provides the first direct evidence that piRNA precursors are 28- to 29-nucleotide (nt) RNAs initiating 2 nt upstream of mature piRNAs. PRDE-1 is a nuclear germline-expressed protein that localizes to chromosome IV. PRDE-1 is required specifically for the production of piRNA precursors from genomic loci containing an 8-nt upstream motif, the Ruby motif. The expression of a second class of motif-independent piRNAs is unaffected in prde-1 mutants. We exploited this finding to determine the targets of the motif-independent class of piRNAs. Together, our data provide new insights into both the biogenesis and function of piRNAs in gene regulation.
Collapse
Affiliation(s)
- Eva-Maria Weick
- Wellcome Trust Cancer Research UK Gurdon Institute, Department of Genetics, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Wedeles CJ, Wu MZ, Claycomb JM. Silent no more: Endogenous small RNA pathways promote gene expression. WORM 2014; 3:e28641. [PMID: 25254148 DOI: 10.4161/worm.28641] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/24/2014] [Indexed: 11/19/2022]
Abstract
Endogenous small RNA pathways related to RNA interference (RNAi) play a well-documented role in protecting host genomes from the invasion of foreign nucleic acids. In C. elegans, the PIWI type Argonaute, PRG-1, through an association with 21U-RNAs, mediates a genome surveillance process by constantly scanning the genome for potentially deleterious invading elements. Upon recognition of foreign nucleic acids, PRG-1 initiates a cascade of cytoplasmic and nuclear events that results in heritable epigenetic silencing of these transcripts and their coding genomic loci. If the PRG-1/21U-RNA genome surveillance pathway has the capacity to target most of the C. elegans transcriptome, what mechanisms exist to protect endogenous transcripts from being silenced by this pathway? In this commentary, we discuss three recent publications that implicate the CSR-1 small RNA pathway in the heritable activation of germline transcripts, propose a model as to why not all epialleles behave similarly, and touch on the practical implications of these findings.
Collapse
Affiliation(s)
| | - Monica Z Wu
- Department of Molecular Genetics; University of Toronto; Toronto, ON Canada
| | - Julie M Claycomb
- Department of Molecular Genetics; University of Toronto; Toronto, ON Canada
| |
Collapse
|
59
|
Sterken MG, Snoek LB, Bosman KJ, Daamen J, Riksen JAG, Bakker J, Pijlman GP, Kammenga JE. A heritable antiviral RNAi response limits Orsay virus infection in Caenorhabditis elegans N2. PLoS One 2014; 9:e89760. [PMID: 24587016 PMCID: PMC3933659 DOI: 10.1371/journal.pone.0089760] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/23/2014] [Indexed: 11/21/2022] Open
Abstract
Orsay virus (OrV) is the first virus known to be able to complete a full infection cycle in the model nematode species Caenorhabditis elegans. OrV is transmitted horizontally and its infection is limited by antiviral RNA interference (RNAi). However, we have no insight into the kinetics of OrV replication in C. elegans. We developed an assay that infects worms in liquid, allowing precise monitoring of the infection. The assay revealed a dual role for the RNAi response in limiting Orsay virus infection in C. elegans. Firstly, it limits the progression of the initial infection at the step of recognition of dsRNA. Secondly, it provides an inherited protection against infection in the offspring. This establishes the heritable RNAi response as anti-viral mechanism during OrV infections in C. elegans. Our results further illustrate that the inheritance of the anti-viral response is important in controlling the infection in the canonical wild type Bristol N2. The OrV replication kinetics were established throughout the worm life-cycle, setting a standard for further quantitative assays with the OrV-C. elegans infection model.
Collapse
Affiliation(s)
- Mark G. Sterken
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - L. Basten Snoek
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Kobus J. Bosman
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Jikke Daamen
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Joost A. G. Riksen
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Jaap Bakker
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
60
|
Ashe A, Bélicard T, Le Pen J, Sarkies P, Frézal L, Lehrbach NJ, Félix MA, Miska EA. A deletion polymorphism in the Caenorhabditis elegans RIG-I homolog disables viral RNA dicing and antiviral immunity. eLife 2013; 2:e00994. [PMID: 24137537 PMCID: PMC3793227 DOI: 10.7554/elife.00994] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/20/2013] [Indexed: 12/12/2022] Open
Abstract
RNA interference defends against viral infection in plant and animal cells. The
nematode Caenorhabditis elegans and its natural pathogen, the
positive-strand RNA virus Orsay, have recently emerged as a new animal model of
host-virus interaction. Using a genome-wide association study in C.
elegans wild populations and quantitative trait locus mapping, we
identify a 159 base-pair deletion in the conserved drh-1 gene
(encoding a RIG-I-like helicase) as a major determinant of viral sensitivity. We
show that DRH-1 is required for the initiation of an antiviral RNAi pathway and
the generation of virus-derived siRNAs (viRNAs). In mammals, RIG-I-domain
containing proteins trigger an interferon-based innate immunity pathway in
response to RNA virus infection. Our work in C. elegans
demonstrates that the RIG-I domain has an ancient role in viral recognition. We
propose that RIG-I acts as modular viral recognition factor that couples viral
recognition to different effector pathways including RNAi and interferon
responses. DOI:http://dx.doi.org/10.7554/eLife.00994.001 Most organisms—from bacteria to mammals—have at least a rudimentary
immune system that can detect and defend against pathogens, particularly
viruses. This defense mechanism, which is known as the innate immune system,
uses sensor proteins to recognize viral RNA, and then mobilizes other immune
components to attack the invaders. The specific mechanisms used to destroy viruses differ between species. In
mammals, a protein called RIG-1 binds to viral RNA and activates a signaling
pathway that leads to the production of interferons: immune proteins named after
their ability to ‘interfere’ with viral replication. Plants and
insects do not use interferons, but instead use a mechanism called RNA
interference, in which long double-stranded RNAs are cleaved into shorter
fragments. The nematode worm C. elegans also deploys RNA interference
against viruses but, in contrast to insects and plants, worms do not possess a
specific set of RNA interference enzymes that participate solely in the
antiviral response. They do, however, express a protein called DRH-1 that is
related to the RIG-I protein found in mammals. To investigate whether DRH-1 contributes to innate immunity in C.
elegans, Ashe et al. infected 97 strains of C.
elegans from around the world with a virus, and showed that some
strains were more sensitive to the virus than others, with certain strains
showing complete resistance. By comparing a sensitive strain with a resistant
one, Ashe et al. revealed that viral sensitivity was caused by a mutation in the
gene encoding DRH-1. Further experiments showed that DRH-1 is required for the first step in RNA
interference. Ashe et al. have thus identified a conserved role for RIG-1 in
initiating antiviral responses, and propose that the protein couples virus
recognition to distinct defense mechanisms in different evolutionary groups. DOI:http://dx.doi.org/10.7554/eLife.00994.002
Collapse
Affiliation(s)
- Alyson Ashe
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge , Cambridge , United Kingdom ; Department of Biochemistry , University of Cambridge , Cambridge , United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|