51
|
Pant K, Yadav AK, Gupta P, Islam R, Saraya A, Venugopal SK. Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells. Redox Biol 2017; 12:340-349. [PMID: 28288414 PMCID: PMC5350572 DOI: 10.1016/j.redox.2017.03.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 01/16/2023] Open
Abstract
Butyrate is one of the short chain fatty acids, produced by the gut microbiota during anaerobic fermentation of dietary fibres. It has been shown that it can inhibit tumor progression via suppressing histone deacetylase and can induce apoptosis in cancer cells. However, the comprehensive pathway by which butyrate mediates apoptosis and growth arrest in cancer cells still remains unclear. In this study, the role of miR-22 in butyrate-mediated ROS release and induction of apoptosis was determined in hepatic cells. Intracellular expression of miR-22 was increased when the Huh 7 cells were incubated with sodium butyrate. Over-expression of miR-22 or addition of sodium butyrate inhibited SIRT-1 expression and enhanced the ROS production. Incubation of cells with anti-miR-22 reversed the effects of butyrate. Butyrate induced apoptosis via ROS production, cytochrome c release and activation of caspase-3, whereas addition of N-acetyl cysteine or anti-miR-22 reversed these butyrate-induced effects. Furthermore, sodium butyrate inhibited cell growth and proliferation, whereas anti-miR-22 inhibited these butyrate-mediated changes. The expression of PTEN and gsk-3 was found to be increased while p-akt and β-catenin expression was decreased significantly by butyrate. These data showed that butyrate modulated both apoptosis and proliferation via miR-22 expression in hepatic cells.
Collapse
Affiliation(s)
- Kishor Pant
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Ajay K Yadav
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Parul Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Rakibul Islam
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Anoop Saraya
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Senthil K Venugopal
- Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India.
| |
Collapse
|
52
|
Wang F, Ma Y, Wang H, Qin H. Reciprocal regulation between microRNAs and epigenetic machinery in colorectal cancer. Oncol Lett 2017; 13:1048-1057. [PMID: 28454212 DOI: 10.3892/ol.2017.5593] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/24/2016] [Indexed: 12/23/2022] Open
Abstract
Epigenetics encompasses changes in DNA methylation, histone and chromatin structure, and non-coding RNAs, specifically microRNA (miRNA) expression. Recent advances in the rapidly evolving field of colorectal cancer (CRC) epigenetics have revealed a complicated network of reciprocal interconnections between miRNAs and other epigenetic machinery. On the one hand, miRNA expression may be regulated by epigenetic mechanisms including DNA methylation and histone modifications. However, miRNAs may affect the epigenetic machinery by directly targeting its enzymatic components. In this study, we focus on the colorectal miRNA expression profile and further illustrate the reciprocal regulation in CRC, with the aim of offering new insights into the strategies of combatting the disease.
Collapse
Affiliation(s)
- Feng Wang
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Yanlei Ma
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huanlong Qin
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
53
|
Jin X, Wu N, Dai J, Li Q, Xiao X. TXNIP mediates the differential responses of A549 cells to sodium butyrate and sodium 4-phenylbutyrate treatment. Cancer Med 2016; 6:424-438. [PMID: 28033672 PMCID: PMC5313639 DOI: 10.1002/cam4.977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/15/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022] Open
Abstract
Sodium butyrate (NaBu) and sodium 4-phenylbutyrate (4PBA) have promising futures in cancer treatment; however, their underlying molecular mechanisms are not clearly understood. Here, we show A549 cell death induced by NaBu and 4PBA are not the same. NaBu treatment induces a significantly higher level of A549 cell death than 4PBA. A gene expression microarray identified more than 5000 transcripts that were altered (>1.5-fold) in NaBu-treated A549 cells, but fewer than 2000 transcripts that were altered in 4PBA. Moreover, more than 100 cell cycle-associated genes were greatly repressed by NaBu, but slightly repressed by 4PBA; few genes were significantly upregulated only in 4PBA-treated cells. Gene expression was further validated by other experiments. Additionally, A549 cells that were treated with these showed changes in glucose consumption, caspase 3/7 activation and histone modifications, as well as enhanced mitochondrial superoxide production. TXNIP was strongly induced by NaBu (30- to 40-fold mRNA) but was only slightly induced by 4PBA (two to fivefold) in A549 cells. TXNIP knockdown by shRNA in A549 cells significantly attenuated caspase 3/7 activation and restored cell viability, while TXNIP overexpression significantly increased caspase 3/7 activation and cell death only in NaBu-treated cells. Moreover, TXNIP also regulated NaBu- but not 4PBA-induced H4K5 acetylation and H3K4 trimethylation, possibly by increasing WDR5 expression. Finally, we demonstrated that 4PBA induced a mitochondrial superoxide-associated cell death, while NaBu did so mainly through a TXNIP-mediated pathway. The above data might benefit the future clinic application.
Collapse
Affiliation(s)
- Xuefang Jin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Nana Wu
- The Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Juji Dai
- Department of General Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Qiuxia Li
- The Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - XiaoQiang Xiao
- The Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China.,Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| |
Collapse
|
54
|
Halsall JA, Turner BM. Histone deacetylase inhibitors for cancer therapy: An evolutionarily ancient resistance response may explain their limited success. Bioessays 2016; 38:1102-1110. [PMID: 27717012 PMCID: PMC5091640 DOI: 10.1002/bies.201600070] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Histone deacetylase inhibitors (HDACi) are in clinical trials against a variety of cancers. Despite early successes, results against the more common solid tumors have been mixed. How is it that so many cancers, and most normal cells, tolerate the disruption caused by HDACi-induced protein hyperacetylation? And why are a few cancers so sensitive? Here we discuss recent results showing that human cells mount a coordinated transcriptional response to HDACi that mitigates their toxic effects. We present a hypothetical signaling system that could trigger and mediate this response. To account for the existence of such a response, we note that HDACi of various chemical types are made by a variety of organisms to kill or suppress competitors. We suggest that the resistance response in human cells is a necessary evolutionary consequence of exposure to environmental HDACi. We speculate that cancers sensitive to HDACi are those in which the resistance response has been compromised by mutation. Identifying such mutations will allow targeting of HDACi therapy to potentially susceptible cancers. Also see the video abstract here.
Collapse
Affiliation(s)
- John A Halsall
- Chromatin and Gene Expression Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Bryan M Turner
- Chromatin and Gene Expression Group, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
55
|
Dasgupta N, Thakur BK, Ta A, Dutta P, Das S. Suppression of Spleen Tyrosine Kinase (Syk) by Histone Deacetylation Promotes, Whereas BAY61-3606, a Synthetic Syk Inhibitor Abrogates Colonocyte Apoptosis by ERK Activation. J Cell Biochem 2016; 118:191-203. [PMID: 27293079 DOI: 10.1002/jcb.25625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/10/2016] [Indexed: 01/10/2023]
Abstract
Spleen tyrosine kinase (Syk), a non-receptor tyrosine kinase, regulates tumor progression, either negatively or positively, depending on the tissue lineage. Information about the role of Syk in colorectal cancers (CRC) is limited, and conflicting reports have been published. We studied Syk expression and its role in differentiation and apoptosis of the colonocytes. Here, we reported for the first time that expression of two transcript variants of Syk is suppressed in colonocytes during butyrate-induced differentiation, which mediates apoptosis of HT-29 cells. Despite being a known HDAC inhibitor, butyrate deacetylates histone3/4 around the transcription start site (TSS) of Syk. Histone deacetylation precludes the binding of RNA Polymerase II to the promoter and inhibits transcription. Since butyrate is a colonic metabolite derived from undigested fibers, our study offers a plausible explanation of the underlying mechanisms of the protective role of butyrate as well as the dietary fibers against CRC through the regulation of Syk. We also report that combined use of butyrate and highly specific Syk inhibitor BAY61-3606 does not enhance differentiation and apoptosis of colonocytes. Instead, BAY completely abolishes butyrate-induced differentiation and apoptosis in a Syk- and ERK1/2-dependent manner. While butyrate dephosphorylates ERK1/2 in HT-29 cells, BAY re-phosphorylates it, leading to its activation. This study describes a novel mechanism of butyrate action in CRC and explores the role of Syk in butyrate-induced differentiation and apoptosis. In addition, our study highlights those commercial small molecule inhibitors, although attractive drug candidates should be used with concern because of their frequent off-target effects. J. Cell. Biochem. 118: 191-203, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nirmalya Dasgupta
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Bhupesh Kumar Thakur
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Atri Ta
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Pujarini Dutta
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Santasabuj Das
- Department of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700010, India
| |
Collapse
|
56
|
Inhibitors of Histone Deacetylases Attenuate Noise-Induced Hearing Loss. J Assoc Res Otolaryngol 2016; 17:289-302. [PMID: 27095478 DOI: 10.1007/s10162-016-0567-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/30/2016] [Indexed: 11/27/2022] Open
Abstract
Loss of auditory sensory hair cells is the major pathological feature of noise-induced hearing loss (NIHL). Currently, no established clinical therapies for prevention or amelioration of NIHL are available. The absence of treatments is due to our lack of a comprehensive understanding of the molecular mechanisms underlying noise-induced damage. Our previous study indicates that epigenetic modification of histones alters hair cell survival. In this study, we investigated the effect of noise exposure on histone H3 lysine 9 acetylation (H3K9ac) in the inner ear of adult CBA/J mice and determined if inhibition of histone deacetylases by systemic administration of suberoylanilide hydroxamic acid (SAHA) could attenuate NIHL. Our results showed that H3K9ac was decreased in the nuclei of outer hair cells (OHCs) and marginal cells of the stria vascularis in the basal region after exposure to a traumatic noise paradigm known to induce permanent threshold shifts (PTS). Consistent with these results, levels of histone deacetylases 1, 2, and 3 (HDAC1, HDAC2 and HDAC3) were increased predominately in the nuclei of cochlear cells. Silencing of HDAC1, HDAC2, or HDAC3 with siRNA reduced the expression of the target HDAC in OHCs, but did not attenuate noise-induced PTS, whereas treatment with the pan-HDAC inhibitor SAHA, also named vorinostat, reduced OHC loss, and attenuated PTS. These findings suggest that histone acetylation is involved in the pathogenesis of noise-induced OHC death and hearing loss. Pharmacological targeting of histone deacetylases may afford a strategy for protection against NIHL.
Collapse
|
57
|
Felisbino MB, Alves da Costa T, Gatti MSV, Mello MLS. Differential Response of Human Hepatocyte Chromatin to HDAC Inhibitors as a Function of Microenvironmental Glucose Level. J Cell Physiol 2016; 231:2257-65. [DOI: 10.1002/jcp.25343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/12/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Marina Barreto Felisbino
- Department of Structural and Functional Biology, Institute of Biology; University of Campinas (Unicamp); Campinas São Paulo Brazil
| | - Thiago Alves da Costa
- Department of Structural and Functional Biology, Institute of Biology; University of Campinas (Unicamp); Campinas São Paulo Brazil
| | - Maria Silvia Viccari Gatti
- Department of Genetics, Evolution and Bioagents, Institute of Biology; University of Campinas (Unicamp); Campinas São Paulo Brazil
| | - Maria Luiza Silveira Mello
- Department of Structural and Functional Biology, Institute of Biology; University of Campinas (Unicamp); Campinas São Paulo Brazil
| |
Collapse
|
58
|
Abstract
The DNase I hypersensitive sites (DHSs) of chromatin constitute one of the best landmarks of eukaryotic genes that are poised and/or activated for transcription. For over 35 years, the high-mobility group nucleosome-binding chromosomal proteins HMGN1 and HMGN2 have been shown to play a role in the establishment of these chromatin-accessible domains at transcriptional regulatory elements, namely promoters and enhancers. The critical presence of HMGNs at enhancers, as highlighted by a recent publication, suggests a role for them in the structural and functional fine-tuning of the DHSs in vertebrates. As we review here, while preferentially out-competing histone H1 binding and invading neighbor nucleosomes, HMGNs may also modulate histone H3 at serine 10 (H3S10ph), which plays an important role in enhancer function and transcriptional initiation.
Collapse
Affiliation(s)
- Alexia Martínez de Paz
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
59
|
Heidor R, de Conti A, Ortega JF, Furtado KS, Silva RC, Tavares PELM, Purgatto E, Ract JNR, de Paiva SAR, Gioielli LA, Pogribny IP, Moreno FS. The chemopreventive activity of butyrate-containing structured lipids in experimental rat hepatocarcinogenesis. Mol Nutr Food Res 2015; 60:420-9. [PMID: 26548572 DOI: 10.1002/mnfr.201500643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/15/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022]
Abstract
SCOPE Emerging evidence indicates that the use of bioactive food components is a promising strategy to prevent the development of liver cancer. The goal of this study was to examine the chemopreventive effect of butyrate-containing structured lipids (STLs) produced by an enzymatic interesterification of tributyrin and flaxseed oil on rat hepatocarcinogenesis. METHODS AND RESULTS Male Wistar rats were subjected to a classic "resistant hepatocyte" model of liver carcinogenesis and treated with STLs, tributyrin or flaxseed oil during the initial phases of hepatocarcinogenesis. Treatment with STLs and tributyrin strongly inhibited the development of preneoplastic liver lesions. The chemopreventive activity of tributyrin was associated with the induction of apoptosis and reduction of the expression of major activated hepatocarcinogenesis-related oncogenes. Treatment with STLs caused substantially greater inhibitory effects than tributyrin on oncogene expression. CONCLUSION These results demonstrate that the tumor-suppressing activity of butyrate-containing STLs is associated with its ability to prevent and inhibit activation of major hepatocarcinogenesis-related oncogenes. Enrichment of histone H3K9me3 and H3K27me3 at the promoter of Myc and Ccnd1 genes may be related to the inhibitory effect on oncogene expression in the livers of STL-treated rats.
Collapse
Affiliation(s)
- Renato Heidor
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Advanced Research Center in Food Science and Nutrition (NAPAN), Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil.,Food Research Center (FORC), Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil
| | - Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Juliana F Ortega
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Kelly S Furtado
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Advanced Research Center in Food Science and Nutrition (NAPAN), Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil
| | - Roberta C Silva
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paulo E L M Tavares
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eduardo Purgatto
- Laboratory of Food Chemistry and Biochemistry, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil.,Advanced Research Center in Food Science and Nutrition (NAPAN), Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil.,Food Research Center (FORC), Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil
| | - Juliana N R Ract
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sérgio A R de Paiva
- Department of Internal Medicine, Botucatu Medical School, UNESP - São Paulo State University, Botucatu, Brazil.,Food Research Center (FORC), Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil
| | - Luiz A Gioielli
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Fernando S Moreno
- Laboratory of Diet, Nutrition and Cancer, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Advanced Research Center in Food Science and Nutrition (NAPAN), Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil.,Food Research Center (FORC), Faculty of Pharmaceutical Sciences, University of São Paulo, Brazil
| |
Collapse
|
60
|
Mátis G, Kulcsár A, Petrilla J, Hermándy-Berencz K, Neogrády Z. Feed-drug interaction of orally applied butyrate and phenobarbital on hepatic cytochrome P450 activity in chickens. J Anim Physiol Anim Nutr (Berl) 2015; 100:637-42. [PMID: 26614344 DOI: 10.1111/jpn.12416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/27/2015] [Indexed: 11/26/2022]
Abstract
The expression of hepatic drug-metabolizing cytochrome P450 (CYP) enzymes may be affected by several nutrition-derived compounds, such as by the commonly applied feed additive butyrate, possibly leading to feed-drug interactions. The aim of this study was to provide some evidence if butyrate can alter the activity of hepatic CYPs in chickens exposed to CYP-inducing xenobiotics, monitoring for the first time the possibility of such interaction. Ross 308 chickens in the grower phase were treated with daily intracoelomal phenobarbital (PB) injection (80 mg/kg BW), applied as a non-specific CYP-inducer, simultaneously with two different doses of intra-ingluvial sodium butyrate boluses (0.25 and 1.25 g/kg BW) for 5 days. Activity of CYP2H and CYP3A subfamilies was assessed by specific enzyme assays from isolated liver microsomes. According to our results, the lower dose of orally administered butyrate significantly attenuated the PB-triggered elevation of both hepatic CYP2H and CYP3A activities, which might be in association with the partly common signalling pathways of butyrate and CYP-inducing drugs, such as that of PB. Based on these data, butyrate may take part in pharmacoepigenetic interactions with simultaneously applied drugs or other CYP-inducing xenobiotics, with possible consequences for food safety and pharmacotherapy. Butyrate was found to be capable to maintain physiological CYP activity by attenuating CYP induction, underlining the safety of butyrate application in poultry nutrition.
Collapse
Affiliation(s)
- G Mátis
- Department of Physiology and Biochemistry, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - A Kulcsár
- Department of Physiology and Biochemistry, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - J Petrilla
- Department of Physiology and Biochemistry, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - K Hermándy-Berencz
- Department of Physiology and Biochemistry, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| | - Zs Neogrády
- Department of Physiology and Biochemistry, Faculty of Veterinary Science, Szent István University, Budapest, Hungary
| |
Collapse
|
61
|
Abstract
DESIGN Persistent latently infected CD4 T cells represent a major obstacle to HIV eradication. Histone deacetylase inhibitors (HDACis) are a proposed activation therapy. However, off-target effects on gene expression in host immune cells are poorly understood. We hypothesized that HDACi-modulated genes would be best identified with a dose-response analysis. METHODS Resting primary CD4 T cells were treated with 0.34, 1, 3, or 10 μmol/l of the HDACi, suberoylanilide hydroxamic acid (SAHA), for 24 h and subjected to microarray gene expression analysis. Genes with dose-correlated expression were filtered to identify a subset with consistent up or downregulation at each SAHA dose. Histone modifications were characterized in six SAHA dose-responsive genes by chromatin immunoprecipitation (ChIP-RT-qPCR). RESULTS A large number of genes were shown to be upregulated (N = 657) or downregulated (N = 725) by SAHA in a dose-responsive manner (FDR-corrected P-value ≤ 0.5, fold change ≥|2|). Several genes (e.g. CINNAL1, DPEP2, H1F0, IRGM, PHF15, and SELL) are potential in-vivo biomarkers of SAHA activity. SAHA dose-responsive genes included transcription factors, HIV restriction factors, histone methyltransferases, and host proteins that interact with HIV. Pathway analysis suggested net downregulation of T-cell activation with increasing SAHA dose. Histone acetylation was not correlated with host gene expression, but plausible alternative mechanisms for SAHA-modulated gene expression were identified. CONCLUSION Numerous genes in CD4 T cells are modulated by SAHA in a dose-responsive manner, including genes that may negatively influence HIV activation from latency. Our study suggests that SAHA influences gene expression through a confluence of several mechanisms, including histone modification, and altered expression and activity of transcription factors.
Collapse
|
62
|
Halsall JA, Turan N, Wiersma M, Turner BM. Cells adapt to the epigenomic disruption caused by histone deacetylase inhibitors through a coordinated, chromatin-mediated transcriptional response. Epigenetics Chromatin 2015; 8:29. [PMID: 26380582 PMCID: PMC4572612 DOI: 10.1186/s13072-015-0021-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/03/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The genome-wide hyperacetylation of chromatin caused by histone deacetylase inhibitors (HDACi) is surprisingly well tolerated by most eukaryotic cells. The homeostatic mechanisms that underlie this tolerance are unknown. Here we identify the transcriptional and epigenomic changes that constitute the earliest response of human lymphoblastoid cells to two HDACi, valproic acid and suberoylanilide hydroxamic acid (Vorinostat), both in widespread clinical use. RESULTS Dynamic changes in transcript levels over the first 2 h of exposure to HDACi were assayed on High Density microarrays. There was a consistent response to the two different inhibitors at several concentrations. Strikingly, components of all known lysine acetyltransferase (KAT) complexes were down-regulated, as were genes required for growth and maintenance of the lymphoid phenotype. Up-regulated gene clusters were enriched in regulators of transcription, development and phenotypic change. In untreated cells, HDACi-responsive genes, whether up- or down-regulated, were packaged in highly acetylated chromatin. This was essentially unaffected by HDACi. In contrast, HDACi induced a strong increase in H3K27me3 at transcription start sites, irrespective of their transcriptional response. Inhibition of the H3K27 methylating enzymes, EZH1/2, altered the transcriptional response to HDACi, confirming the functional significance of H3K27 methylation for specific genes. CONCLUSIONS We propose that the observed transcriptional changes constitute an inbuilt adaptive response to HDACi that promotes cell survival by minimising protein hyperacetylation, slowing growth and re-balancing patterns of gene expression. The transcriptional response to HDACi is mediated by a precisely timed increase in H3K27me3 at transcription start sites. In contrast, histone acetylation, at least at the three lysine residues tested, seems to play no direct role. Instead, it may provide a stable chromatin environment that allows transcriptional change to be induced by other factors, possibly acetylated non-histone proteins.
Collapse
Affiliation(s)
- John A Halsall
- Chromatin and Gene Expression Group, School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Nil Turan
- Chromatin and Gene Expression Group, School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Maaike Wiersma
- Chromatin and Gene Expression Group, School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Bryan M Turner
- Chromatin and Gene Expression Group, School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
63
|
Diepeveen LA, Watson ME, McSpadden SB, Strauss RP, Callus BA, Yeoh GC. Epigenetic Modulators Enhance Constitutive and Liver-Specific Reporter Expression in Murine Liver Progenitor Cell Lines. Tissue Eng Part C Methods 2015; 21:1080-7. [PMID: 25997084 DOI: 10.1089/ten.tec.2015.0131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stem cells expressing reporter constructs are extremely useful for their tracking in vivo or for determining cell lineage fate in vivo and in vitro. We generated liver progenitor cell (LPC) lines from actin-EGFP and TAT-GRE-lacZ mice. LPCs from the actin-EGFP mouse facilitate cell tracing following transplant as the reporter is constitutively expressed. LPCs from the TAT-GRE-lacZ mouse express β-galactosidase under the control of the tyrosine aminotransferase (TAT) promoter and are only active in mature hepatocytes. We found that the utility of such LPC lines becomes severely limited by downregulation of transgene expression following extended culture. We show that epigenetic mechanisms are responsible for suppressing expression of both transgenes. Enhancement of transgene expression in both LPC lines was achieved by treating the cell lines with either the histone acetylating agent sodium butyrate or the DNA demethylating agent 5-azacytidine.
Collapse
Affiliation(s)
- Luke Aris Diepeveen
- 1 The Centre for Medical Research, Harry Perkins Institute of Medical Research , Nedlands, WA, Australia
| | - Michel Elyse Watson
- 1 The Centre for Medical Research, Harry Perkins Institute of Medical Research , Nedlands, WA, Australia .,2 Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Crawley, WA, Australia
| | - Sarah Beth McSpadden
- 3 School of Chemistry and Biochemistry, University of Western Australia , Crawley, WA, Australia
| | - Robyn Patricia Strauss
- 3 School of Chemistry and Biochemistry, University of Western Australia , Crawley, WA, Australia
| | - Bernard Andrew Callus
- 3 School of Chemistry and Biochemistry, University of Western Australia , Crawley, WA, Australia
| | - George Cheng Yeoh
- 1 The Centre for Medical Research, Harry Perkins Institute of Medical Research , Nedlands, WA, Australia .,2 Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, Crawley, WA, Australia .,3 School of Chemistry and Biochemistry, University of Western Australia , Crawley, WA, Australia
| |
Collapse
|
64
|
Ooi JYY, Tuano NK, Rafehi H, Gao XM, Ziemann M, Du XJ, El-Osta A. HDAC inhibition attenuates cardiac hypertrophy by acetylation and deacetylation of target genes. Epigenetics 2015; 10:418-30. [PMID: 25941940 DOI: 10.1080/15592294.2015.1024406] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Pharmacological histone deacetylase (HDAC) inhibitors attenuate pathological cardiac remodeling and hypertrophic gene expression; yet, the direct histone targets remain poorly characterized. Since the inhibition of HDAC activity is associated with suppressing hypertrophy, we hypothesized histone acetylation would target genes implicated in cardiac remodeling. Trichostatin A (TSA) regulates cardiac gene expression and attenuates transverse aortic constriction (TAC) induced hypertrophy. We used chromatin immunoprecipitation (ChIP) coupled with massive parallel sequencing (ChIP-seq) to map, for the first time, genome-wide histone acetylation changes in a preclinical model of pathological cardiac hypertrophy and attenuation of pathogenesis with TSA. Pressure overload-induced cardiac hypertrophy was associated with histone acetylation of genes implicated in cardiac contraction, collagen deposition, inflammation, and extracellular matrix identified by ChIP-seq. Gene set enrichment analysis identified NF-kappa B (NF-κB) transcription factor activation with load induced hypertrophy. Increased histone acetylation was observed on the promoters of NFκB target genes (Icam1, Vcam1, Il21r, Il6ra, Ticam2, Cxcl10) consistent with gene activation in the hypertrophied heart. Surprisingly, TSA attenuated pressure overload-induced cardiac hypertrophy and the suppression of NFκB target genes by broad histone deacetylation. Our results suggest a mechanism for cardioprotection subject to histone deacetylation as a previously unknown target, implicating the importance of inflammation by pharmacological HDAC inhibition. The results of this study provides a framework for HDAC inhibitor function in the heart and argues the long held views of acetylation is subject to more flexibility than previously thought.
Collapse
Key Words
- ANP, Atrial natriuretic peptide
- BNP, Brain natriuretic peptide
- BW, Body Weight
- ChIP, Chromatin Immunoprecipitation
- Ct, threshold cycle number
- Cxcl10, Chemokine (C-X-C Motif) ligand 10
- ENCODE, Encyclopedia of DNA Elements Consortium
- FDR, False Discovery Rate
- FS, Fractional Shortening
- GAIIx, Genome Analyzer IIx
- HDAC inhibitor
- HDAC, Histone deacetylase
- Icam1, Intercellular adhesion molecule 1
- Il21r, Interleukin-21 receptor
- Il6ra, Interleukin-6 receptor
- LV, Left Ventricle
- LVDd, Left Ventricular Diastolic Dimension
- LVH, Left Ventricle Hypertrophy
- MACs, Model-based Analysis of ChIP-seq
- NES, normalized enrichment score
- NFκB, Nuclear factor of kappa light polypeptide gene enhancer in B-cells
- NGS, Next Generation Sequencing
- SEM, Standard Error of the Mean
- Serca2a, Sarcoplasmic reticulum Ca2+ ATPase
- TAC veh, TAC vehicle
- TAC, Transverse Aortic Constriction
- TF, transcription factor
- TL, Tibia Length
- TSA, Trichostatin A
- TSS, Transcription Start Site
- Ticam2, Toll-like receptor adaptor molecule 2
- Traf3, TNF receptor-associated factor 3
- UTR, Untranslated region
- Vcam1, Vascular cell adhesion molecule 1
- cDNA, complementary DNA
- cardiac hypertrophy
- chromatin
- epigenetics
- histone acetylation
- next generation sequencing
- α/βMHC, Alpha/Beta myosin heavy chain
Collapse
Affiliation(s)
- Jenny Y Y Ooi
- a Epigenetics in Human Health and Disease Laboratory; Baker IDI Heart and Diabetes Institute ; Melbourne , Victoria , Australia
| | | | | | | | | | | | | |
Collapse
|
65
|
Sawas A, O’Connor OA. Belinostat for the treatment of T-cell lymphoma. Expert Opin Orphan Drugs 2014. [DOI: 10.1517/21678707.2015.997209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
66
|
Parlato R, Mandl C, Hölzl-Wenig G, Liss B, Tucker KL, Ciccolini F. Regulation of proliferation and histone acetylation in embryonic neural precursors by CREB/CREM signaling. NEUROGENESIS 2014; 1:e970883. [PMID: 27504469 PMCID: PMC4973597 DOI: 10.4161/23262125.2014.970883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/05/2014] [Accepted: 09/26/2014] [Indexed: 12/26/2022]
Abstract
The transcription factor CREB (cAMP-response element binding protein) regulates differentiation, migration, survival and activity-dependent gene expression in the developing and mature nervous system. However, its specific role in the proliferation of embryonic neural progenitors is still not completely understood. Here we investigated how CREB regulates proliferation of mouse embryonic neural progenitors by a conditional mutant lacking Creb gene in neural progenitors. In parallel, we explored possible compensatory effects by the genetic ablation of another member of the same gene family, the cAMP-responsive element modulator (Crem). We show that CREB loss differentially impaired the proliferation, clonogenic potential and self-renewal of precursors derived from the ganglionic eminence (GE), in comparison to those derived from the cortex. This phenotype was associated with a specific reduction of histone acetylation in the GE of CREB mutant mice, and this reduction was rescued in vivo by inhibition of histone deacetylation. These observations indicate that the impaired proliferation could be caused by a reduced acetyltransferase activity in Creb conditional knock-out mice. These findings support a crucial role of CREB in controlling embryonic neurogenesis and propose a novel mechanism by which CREB regulates embryonic neural development.
Collapse
Affiliation(s)
- Rosanna Parlato
- Institute of Applied Physiology; University of Ulm; Ulm, Germany; Dept. of Molecular Biology of the Cell I; DKFZ-ZMBH Alliance; German Cancer Research Center; Heidelberg, Germany; Institute of Anatomy and Cell Biology; Interdisciplinary Center for Neurosciences (IZN); University of Heidelberg; Heidelberg, Germany
| | - Claudia Mandl
- Department of Neurobiology; Interdisciplinary Center for Neurosciences (IZN); University of Heidelberg ; Heidelberg, Germany
| | - Gabriele Hölzl-Wenig
- Department of Neurobiology; Interdisciplinary Center for Neurosciences (IZN); University of Heidelberg ; Heidelberg, Germany
| | - Birgit Liss
- Institute of Applied Physiology; University of Ulm ; Ulm, Germany
| | - Kerry L Tucker
- Institute of Anatomy and Cell Biology; Interdisciplinary Center for Neurosciences (IZN); University of Heidelberg; Heidelberg, Germany; Kerry L Tucker's current affiliation is the Center for Excellence in the Neurosciences, Dept. of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA
| | - Francesca Ciccolini
- Department of Neurobiology; Interdisciplinary Center for Neurosciences (IZN); University of Heidelberg ; Heidelberg, Germany
| |
Collapse
|
67
|
Götze S, Coersmeyer M, Müller O, Sievers S. Histone deacetylase inhibitors induce attenuation of Wnt signaling and TCF7L2 depletion in colorectal carcinoma cells. Int J Oncol 2014; 45:1715-23. [PMID: 25050608 DOI: 10.3892/ijo.2014.2550] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 05/30/2014] [Indexed: 11/06/2022] Open
Abstract
Histone deacetylase inhibitors (HDIs) specifically affect cancer cells by inducing cell cycle arrest, activate apoptotic pathways and re-activate epigenetically silenced tumor suppressor genes, but their pleiotropic mode of action is not fully understood. Despite the clinical effects of HDIs in the treatment of hematological malignancies, their potency against solid tumors is still unclear. We investigated the effects and mechanisms of HDI action in colorectal carcinoma cell lines with an activated Wnt signaling pathway, which is implicated in different aspects of tumorigenesis, including cell proliferation, apoptosis, angiogenesis and metastasis. We assessed the effects of HDI treatment in colorectal carcinoma cell lines by measuring histone hyperacetylation, cell viability and expression of Wnt target genes. Upon treatment with HDIs of the hydroxamate class, we found attenuation of Wnt signaling with concomitant induction of apoptosis and colorectal cancer cell death. Strikingly, the effects of HDIs on Wnt signaling were independent of histone hyperacetylation, thus we investigated the role of non-histone target proteins of histone deacetylases (HDACs). The compounds TSA and SAHA induced a rapid proteasome-dependent depletion of the Wnt transcription factor TCF7L2, which may be mediated by inhibition of HDAC 6 and 10. Our findings provide a molecular rationale for the use of HDIs against colorectal carcinomas with activated Wnt signaling.
Collapse
Affiliation(s)
- Silke Götze
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | - Oliver Müller
- University of Applied Sciences, Kaiserslautern, Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
68
|
Pitfalls in global normalization of ChIP-seq data in CD4(+) T cells treated with butyrate: A possible solution strategy. GENOMICS DATA 2014; 2:176-80. [PMID: 26484090 PMCID: PMC4536162 DOI: 10.1016/j.gdata.2014.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 11/23/2022]
Abstract
Regulatory T cells (Treg) play a central role in the suppression of inflammatory and allergic responses. Colonization of certain gut commensal microbes such as Clostridia class IV and XIVa in the gut can induce development of colonic Treg cells contributing to the maintenance of gut immune homeostasis. Clostridia-derived butyrate promotes the differentiation of naïve T cells into Treg cells through upregulation of Foxp3, the master transcription factor of Treg cells. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis revealed that treatment of naïve T cells with butyrate induces Treg-polarizing conditions by enhanced histone H3 acetylation in the promoter and conserved non-coding sequence regions of the Foxp3 locus. In general, global normalization was utilized for ChIP-seq analysis to compare the data obtained from two or more samples. However, global normalization is not appropriate for the evaluation of ChIP-seq data when treatment can affect the total amount of target protein. Here, we introduce a unique normalization method for ChIP-seq analysis in cells treated with butyrate, a pan-HDAC inhibitor that is likely to affect total acetylation levels of histone H3.
Collapse
|
69
|
Transcriptional and epigenetic basis for restoration of G6PD enzymatic activity in human G6PD-deficient cells. Blood 2014; 124:134-41. [PMID: 24805191 DOI: 10.1182/blood-2014-02-553792] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
HDAC inhibitors (HDACi) increase transcription of some genes through histone hyperacetylation. To test the hypothesis that HDACi-mediated enhanced transcription might be of therapeutic value for inherited enzyme deficiency disorders, we focused on the glycolytic and pentose phosphate pathways (GPPPs). We show that among the 16 genes of the GPPPs, HDACi selectively enhance transcription of glucose 6-phosphate dehydrogenase (G6PD). This requires enhanced recruitment of the generic transcription factor Sp1, with commensurate recruitment of histone acetyltransferases and deacetylases, increased histone acetylation, and polymerase II recruitment to G6PD. These G6PD-selective transcriptional and epigenetic events result in increased G6PD transcription and ultimately restored enzymatic activity in B cells and erythroid precursor cells from patients with G6PD deficiency, a disorder associated with acute or chronic hemolytic anemia. Therefore, restoration of enzymatic activity in G6PD-deficient nucleated cells is feasible through modulation of G6PD transcription. Our findings also suggest that clinical consequences of pathogenic missense mutations in proteins with enzymatic function can be overcome in some cases by enhancement of the transcriptional output of the affected gene.
Collapse
|
70
|
Rafehi H, Balcerczyk A, Lunke S, Kaspi A, Ziemann M, Kn H, Okabe J, Khurana I, Ooi J, Khan AW, Du XJ, Chang L, Haviv I, Keating ST, Karagiannis TC, El-Osta A. Vascular histone deacetylation by pharmacological HDAC inhibition. Genome Res 2014; 24:1271-84. [PMID: 24732587 PMCID: PMC4120081 DOI: 10.1101/gr.168781.113] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HDAC inhibitors can regulate gene expression by post-translational modification of histone as well as nonhistone proteins. Often studied at single loci, increased histone acetylation is the paradigmatic mechanism of action. However, little is known of the extent of genome-wide changes in cells stimulated by the hydroxamic acids, TSA and SAHA. In this article, we map vascular chromatin modifications including histone H3 acetylation of lysine 9 and 14 (H3K9/14ac) using chromatin immunoprecipitation (ChIP) coupled with massive parallel sequencing (ChIP-seq). Since acetylation-mediated gene expression is often associated with modification of other lysine residues, we also examined H3K4me3 and H3K9me3 as well as changes in CpG methylation (CpG-seq). RNA sequencing indicates the differential expression of ∼30% of genes, with almost equal numbers being up- and down-regulated. We observed broad deacetylation and gene expression changes conferred by TSA and SAHA mediated by the loss of EP300/CREBBP binding at multiple gene promoters. This study provides an important framework for HDAC inhibitor function in vascular biology and a comprehensive description of genome-wide deacetylation by pharmacological HDAC inhibition.
Collapse
Affiliation(s)
- Haloom Rafehi
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aneta Balcerczyk
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Sebastian Lunke
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Antony Kaspi
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Mark Ziemann
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Harikrishnan Kn
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Jun Okabe
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Faculty of Medicine, Monash University, Victoria 3800, Australia
| | - Ishant Khurana
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Jenny Ooi
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Abdul Waheed Khan
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Xiao-Jun Du
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Faculty of Medicine, Monash University, Victoria 3800, Australia
| | - Lisa Chang
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Izhak Haviv
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Samuel T Keating
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Tom C Karagiannis
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Assam El-Osta
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia; Faculty of Medicine, Monash University, Victoria 3800, Australia
| |
Collapse
|
71
|
Turner BM. Nucleosome signalling; an evolving concept. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:623-6. [PMID: 24412235 DOI: 10.1016/j.bbagrm.2014.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/02/2014] [Indexed: 11/16/2022]
Abstract
The nucleosome core particle is the first stage of DNA packaging in virtually all eukaryotes. It both organises nuclear DNA and protects it from adventitious binding of transcription factors and the consequent deregulation of gene expression. Both properties are essential to allow the genome expansion characteristic of complex eukaryotes. The nucleosome is a flexible structure in vivo, allowing selective relaxation of its intrinsically inhibitory effects in response to external signals. Structural changes are brought about by dedicated remodelling enzymes and by posttranslational modifications of the core histones. Histone modifications occasionally alter nucleosome structure directly, but their more usual roles are to act as receptors on the nucleosome surface that are recognised by specific protein domains. The bound proteins, in turn, affect nucleosome structure and function. This strategy enormously expands the signalling capacity of the nucleosome and its ability to influence both the initiation and elongation stages of transcription. The enzymes responsible for placing and removing histone modifications, and the modification-binding proteins themselves, are ubiquitous, numerous and conserved amongst eukaryotes. Like the nucleosome, they date back to the earliest eukaryotes and may have played integral and essential roles in eukaryotic evolution. The present properties and epigenetic functions of the nucleosome reflect its evolutionary past and the selective pressures to which it has responded and can be better understood in this context. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Bryan M Turner
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
72
|
Kanski R, Sneeboer MAM, van Bodegraven EJ, Sluijs JA, Kropff W, Vermunt MW, Creyghton MP, De Filippis L, Vescovi A, Aronica E, van Tijn P, van Strien ME, Hol EM. Histone acetylation in astrocytes suppresses GFAP and stimulates a re-organization of the intermediate filament network. J Cell Sci 2014; 127:4368-80. [DOI: 10.1242/jcs.145912] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glial Fibrillary Acidic Protein (GFAP) is the main intermediate filament in astrocytes and is regulated by epigenetic mechanisms during development. We demonstrate that histone acetylation controls GFAP expression also in mature astrocytes. Inhibition of histone deacetylases (HDACs) with Trichostatin-A or Sodium-butyrate reduced GFAP expression in primary human astrocytes and astrocytoma cells. Since splicing occurs co-transcriptional, we investigated whether histone acetylation changes the ratio between the canonical isoform GFAPα and the alternative GFAPδ splice-variant. We observed that decreased transcription of GFAP enhanced alternative isoform expression, as HDAC inhibition increased the GFAPδ/α ratio favouring GFAPδ. Expression of GFAPδ was dependent on the presence and binding of the splicing factors of the SR protein family. Inhibition of HDAC activity also resulted in aggregation of the GFAP network, reminiscent to our earlier findings of a GFAPδ-induced network collapse. Together, our data demonstrate that HDAC inhibition results in changes in transcription, splicing, and organization of GFAP. These data imply that a tight regulation of histone acetylation in astrocytes is essential, since dysregulation of gene expression causes aggregation of GFAP, a hallmark of human diseases like Alexander's disease.
Collapse
|
73
|
Mátis G, Neogrády Z, Csikó G, Gálfi P, Fébel H, Jemnitz K, Veres Z, Kulcsár A, Kenéz Á, Huber K. Epigenetic effects of dietary butyrate on hepatic histone acetylation and enzymes of biotransformation in chicken. Acta Vet Hung 2013; 61:477-90. [PMID: 23974937 DOI: 10.1556/avet.2013.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of the study was to investigate the in vivo epigenetic influences of dietary butyrate supplementation on the acetylation state of core histones and the activity of drug-metabolising microsomal cytochrome P450 (CYP) enzymes in the liver of broiler chickens in the starter period. One-day-old Ross 308 broilers were fed a starter diet without or with sodium butyrate (1.5 g/kg feed) for 21 days. After slaughtering, nucleus and microsome fractions were isolated from the exsanguinated liver by multi-step differential centrifugation. Histone acetylation level was detected from hepatocyte nuclei by Western blotting, while microsomal CYP activity was examined by specific enzyme assays. Hyperacetylation of hepatic histone H2A at lysine 5 was observed after butyrate supplementation, providing modifications in the epigenetic regulation of cell function. No significant changes could be found in the acetylation state of the other core histones at the acetylation sites examined. Furthermore, butyrate did not cause any changes in the drugmetabolising activity of hepatic microsomal CYP2H and CYP3A37 enzymes, which are mainly involved in the biotransformation of most xenobiotics in chicken. These data indicate that supplementation of the diet with butyrate probably does not have any pharmacokinetic interactions with simultaneously applied xenobiotics.
Collapse
Affiliation(s)
- Gábor Mátis
- 1 Szent István University Department of Physiology and Biochemistry, Faculty of Veterinary Science István u. 2 H-1078 Budapest Hungary
| | - Zsuzsanna Neogrády
- 1 Szent István University Department of Physiology and Biochemistry, Faculty of Veterinary Science István u. 2 H-1078 Budapest Hungary
| | - György Csikó
- 2 Szent István University Department of Pharmacology and Toxicology, Faculty of Veterinary Science Budapest Hungary
| | - Péter Gálfi
- 2 Szent István University Department of Pharmacology and Toxicology, Faculty of Veterinary Science Budapest Hungary
| | - Hedvig Fébel
- 3 Research Institute for Animal Breeding and Nutrition Herceghalom Hungary
| | - Katalin Jemnitz
- 4 Hungarian Academy of Sciences Institute of Molecular Pharmacology, Research Centre of Natural Sciences Budapest Hungary
| | - Zsuzsanna Veres
- 4 Hungarian Academy of Sciences Institute of Molecular Pharmacology, Research Centre of Natural Sciences Budapest Hungary
| | - Anna Kulcsár
- 1 Szent István University Department of Physiology and Biochemistry, Faculty of Veterinary Science István u. 2 H-1078 Budapest Hungary
| | - Ákos Kenéz
- 5 University of Veterinary Medicine Department of Physiology Hanover Germany
| | - Korinna Huber
- 5 University of Veterinary Medicine Department of Physiology Hanover Germany
| |
Collapse
|
74
|
Dudakovic A, Evans JM, Li Y, Middha S, McGee-Lawrence ME, van Wijnen AJ, Westendorf JJ. Histone deacetylase inhibition promotes osteoblast maturation by altering the histone H4 epigenome and reduces Akt phosphorylation. J Biol Chem 2013; 288:28783-91. [PMID: 23940046 DOI: 10.1074/jbc.m113.489732] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bone has remarkable regenerative capacity, but this ability diminishes during aging. Histone deacetylase inhibitors (HDIs) promote terminal osteoblast differentiation and extracellular matrix production in culture. The epigenetic events altered by HDIs in osteoblasts may hold clues for the development of new anabolic treatments for osteoporosis and other conditions of low bone mass. To assess how HDIs affect the epigenome of committed osteoblasts, MC3T3 cells were treated with suberoylanilide hydroxamic acid (SAHA) and subjected to microarray gene expression profiling and high-throughput ChIP-Seq analysis. As expected, SAHA induced differentiation and matrix calcification of osteoblasts in vitro. ChIP-Seq analysis revealed that SAHA increased histone H4 acetylation genome-wide and in differentially regulated genes, except for the 500 bp upstream of transcriptional start sites. Pathway analysis indicated that SAHA increased the expression of insulin signaling modulators, including Slc9a3r1. SAHA decreased phosphorylation of insulin receptor β, Akt, and the Akt substrate FoxO1, resulting in FoxO1 stabilization. Thus, SAHA induces genome-wide H4 acetylation and modulates the insulin/Akt/FoxO1 signaling axis, whereas it promotes terminal osteoblast differentiation in vitro.
Collapse
|
75
|
Boudadi E, Stower H, Halsall JA, Rutledge CE, Leeb M, Wutz A, O’Neill LP, Nightingale KP, Turner BM. The histone deacetylase inhibitor sodium valproate causes limited transcriptional change in mouse embryonic stem cells but selectively overrides Polycomb-mediated Hoxb silencing. Epigenetics Chromatin 2013; 6:11. [PMID: 23634885 PMCID: PMC3769143 DOI: 10.1186/1756-8935-6-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/16/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Histone deacetylase inhibitors (HDACi) cause histone hyperacetylation and H3K4 hypermethylation in various cell types. They find clinical application as anti-epileptics and chemotherapeutic agents, but the pathways through which they operate remain unclear. Surprisingly, changes in gene expression caused by HDACi are often limited in extent and can be positive or negative. Here we have explored the ability of the clinically important HDACi valproic acid (VPA) to alter histone modification and gene expression, both globally and at specific genes, in mouse embryonic stem (ES) cells. RESULTS Microarray expression analysis of ES cells exposed to VPA (1 mM, 8 h), showed that only 2.4% of genes showed a significant, >1.5-fold transcriptional change. Of these, 33% were down-regulated. There was no correlation between gene expression and VPA-induced changes in histone acetylation or H3K4 methylation at gene promoters, which were usually minimal. In contrast, all Hoxb genes showed increased levels of H3K9ac after exposure to VPA, but much less change in other modifications showing bulk increases. VPA-induced changes were lost within 24 h of inhibitor removal. VPA significantly increased the low transcription of Hoxb4 and Hoxb7, but not other Hoxb genes. Expression of Hoxb genes increased in ES cells lacking functional Polycomb silencing complexes PRC1 and PRC2. Surprisingly, VPA caused no further increase in Hoxb transcription in these cells, except for Hoxb1, whose expression increased several fold. Retinoic acid (RA) increased transcription of all Hoxb genes in differentiating ES cells within 24 h, but thereafter transcription remained the same, increased progressively or fell progressively in a locus-specific manner. CONCLUSIONS Hoxb genes in ES cells are unusual in being sensitive to VPA, with effects on both cluster-wide and locus-specific processes. VPA increases H3K9ac at all Hoxb loci but significantly overrides PRC-mediated silencing only at Hoxb4 and Hoxb7. Hoxb1 is the only Hoxb gene that is further up-regulated by VPA in PRC-deficient cells. Our results demonstrate that VPA can exert both cluster-wide and locus-specific effects on Hoxb regulation.
Collapse
Affiliation(s)
- Elsa Boudadi
- Chromatin and Gene Expression Group, College of Medical and Dental Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Hannah Stower
- Chromatin and Gene Expression Group, College of Medical and Dental Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
| | - John A Halsall
- Chromatin and Gene Expression Group, College of Medical and Dental Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Charlotte E Rutledge
- Chromatin and Gene Expression Group, College of Medical and Dental Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Martin Leeb
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Anton Wutz
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Laura P O’Neill
- Chromatin and Gene Expression Group, College of Medical and Dental Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Karl P Nightingale
- Chromatin and Gene Expression Group, College of Medical and Dental Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Bryan M Turner
- Chromatin and Gene Expression Group, College of Medical and Dental Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
76
|
Ververis K, Hiong A, Karagiannis TC, Licciardi PV. Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics 2013; 7:47-60. [PMID: 23459471 PMCID: PMC3584656 DOI: 10.2147/btt.s29965] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Histone deacetylase (HDAC) inhibitors are an emerging class of therapeutics with potential as anticancer drugs. The rationale for developing HDAC inhibitors (and other chromatin-modifying agents) as anticancer therapies arose from the understanding that in addition to genetic mutations, epigenetic changes such as dysregulation of HDAC enzymes can alter phenotype and gene expression, disturb homeostasis, and contribute to neoplastic growth. The family of HDAC inhibitors is large and diverse. It includes a range of naturally occurring and synthetic compounds that differ in terms of structure, function, and specificity. HDAC inhibitors have multiple cell type-specific effects in vitro and in vivo, such as growth arrest, cell differentiation, and apoptosis in malignant cells. HDAC inhibitors have the potential to be used as monotherapies or in combination with other anticancer therapies. Currently, there are two HDAC inhibitors that have received approval from the US FDA for the treatment of cutaneous T-cell lymphoma: vorinostat (suberoylanilide hydroxamic acid, Zolinza) and depsipeptide (romidepsin, Istodax). More recently, depsipeptide has also gained FDA approval for the treatment of peripheral T-cell lymphoma. Many more clinical trials assessing the effects of various HDAC inhibitors on hematological and solid malignancies are currently being conducted. Despite the proven anticancer effects of particular HDAC inhibitors against certain cancers, many aspects of HDAC enzymes and HDAC inhibitors are still not fully understood. Increasing our understanding of the effects of HDAC inhibitors, their targets and mechanisms of action will be critical for the advancement of these drugs, especially to facilitate the rational design of HDAC inhibitors that are effective as antineoplastic agents. This review will discuss the use of HDAC inhibitors as multitargeted therapies for malignancy. Further, we outline the pharmacology and mechanisms of action of HDAC inhibitors while discussing the safety and efficacy of these compounds in clinical studies to date.
Collapse
Affiliation(s)
- Katherine Ververis
- Epigenomic Medicine, Alfred Medical Research and Education Precinct, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
77
|
Jang H, Shin H. Current trends in the development and application of molecular technologies for cancer epigenetics. World J Gastroenterol 2013; 19:1030-1039. [PMID: 23467485 PMCID: PMC3581990 DOI: 10.3748/wjg.v19.i7.1030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/29/2012] [Accepted: 01/30/2013] [Indexed: 02/06/2023] Open
Abstract
Current progress in epigenetic research supports the view that diet and dietary components are important in cancer etiology by enhancing or inhibiting carcinogenesis. Since diet and dietary factors may significantly contribute to the causation and progression of many cancers, it is important to find the molecular mechanisms of action of such dietary factors for cancer prevention and treatment. Recently, the role of epigenetic mechanisms in the cancer development and progression has attracted more attention as additional evidence along with traditional DNA sequence based mechanisms such as mutations and structural re-arrangements. Such an increasing interest in cancer epigenetics has also accelerated the development and application of molecular assays and tools for DNA methylation detection and histone modification enrichment analysis. In this paper, key assays and methods for epigenetic research are reviewed and discussed in terms of their utility and usability. In addition, more advanced methods for genome-wide analysis are introduced as part of upcoming research trends and directions.
Collapse
|
78
|
Mátis G, Neogrády Z, Csikó G, Kulcsár A, Kenéz A, Huber K. Effects of orally applied butyrate bolus on histone acetylation and cytochrome P450 enzyme activity in the liver of chicken - a randomized controlled trial. Nutr Metab (Lond) 2013; 10:12. [PMID: 23336999 PMCID: PMC3561214 DOI: 10.1186/1743-7075-10-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/11/2013] [Indexed: 01/07/2023] Open
Abstract
Background Butyrate is known as histone deacetylase inhibitor, inducing histone hyperacetylation in vitro and playing a predominant role in the epigenetic regulation of gene expression and cell function. We hypothesized that butyrate, endogenously produced by intestinal microbial fermentation or applied as a nutritional supplement, might cause similar in vivo modifications in the chromatin structure of the hepatocytes, influencing the expression of certain genes and therefore modifying the activity of hepatic microsomal drug-metabolizing cytochrome P450 (CYP) enzymes. Methods An animal study was carried out in chicken as a model to investigate the molecular mechanisms of butyrate’s epigenetic actions in the liver. Broiler chicks in the early post-hatch period were treated once daily with orally administered bolus of butyrate following overnight starvation with two different doses (0.25 or 1.25 g/kg body weight per day) for five days. After slaughtering, cell nucleus and microsomal fractions were separated by differential centrifugation from the livers. Histones were isolated from cell nuclei and acetylation of hepatic core histones was screened by western blotting. The activity of CYP2H and CYP3A37, enzymes involved in biotransformation in chicken, was detected by aminopyrine N-demethylation and aniline-hydroxylation assays from the microsomal suspensions. Results Orally added butyrate, applied in bolus, had a remarkable impact on nucleosome structure of hepatocytes: independently of the dose, butyrate caused hyperacetylation of histone H2A, but no changes were monitored in the acetylation state of H2B. Intensive hyperacetylation of H3 was induced by the higher administered dose, while the lower dose tended to increase acetylation ratio of H4. In spite of the observed modification in histone acetylation, no significant changes were observed in the hepatic microsomal CYP2H and CYP3A37 activity. Conclusion Orally added butyrate in bolus could cause in vivo hyperacetylation of the hepatic core histones, providing modifications in the epigenetic regulation of cell function. However, these changes did not result in alteration of drug-metabolizing hepatic CYP2H and CYP3A37 enzymes, so there might be no relevant pharmacoepigenetic influences of oral application of butyrate under physiological conditions.
Collapse
Affiliation(s)
- Gábor Mátis
- Department of Physiology, University of Veterinary Medicine, Bischofsholer Damm 15/102, D-30173, Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
79
|
Abstract
Long-term memory formation requires transcription and protein synthesis. Over the past few decades, a great amount of knowledge has been gained regarding the molecular players that regulate the transcriptional program linked to memory consolidation. Epigenetic mechanisms have been shown to be essential for the regulation of neuronal gene expression, and histone acetylation has been one of the most studied and best characterized. In this review, we summarize the lines of evidence that have shown the relevance of histone acetylation in memory in both physiological and pathological conditions. Great advances have been made in identifying the writers and erasers of histone acetylation marks during learning. However, the identities of the upstream regulators and downstream targets that mediate the effect of changes in histone acetylation during memory consolidation remain restricted to a handful of molecules. We outline a general model by which corepressors and coactivators regulate histone acetylation during memory storage and discuss how the recent advances in high-throughput sequencing have the potential to radically change our understanding of how epigenetic control operates in the brain.
Collapse
Affiliation(s)
- Lucia Peixoto
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
80
|
Fung KYC, Ooi CC, Lewanowitsch T, Tan S, Tan HT, Lim TK, Lin Q, Williams DB, Lockett TJ, Cosgrove LJ, Chung MCM, Head RJ. Identification of Potential Pathways Involved in Induction of Apoptosis by Butyrate and 4-Benzoylbutyrate in HT29 Colorectal Cancer Cells. J Proteome Res 2012; 11:6019-29. [DOI: 10.1021/pr3007107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Kim Y. C. Fung
- CSIRO Preventative Health National Research Flagship, Adelaide, Australia
- CSIRO Animal, Food and Health Sciences, Adelaide and North Ryde, Australia
| | - Cheng Cheng Ooi
- CSIRO Preventative Health National Research Flagship, Adelaide, Australia
- CSIRO Animal, Food and Health Sciences, Adelaide and North Ryde, Australia
- School of Pharmacy and Medical
Sciences, Sansom Institute for Health Research, University of South Australia, Australia
| | - Tanya Lewanowitsch
- CSIRO Preventative Health National Research Flagship, Adelaide, Australia
- CSIRO Animal, Food and Health Sciences, Adelaide and North Ryde, Australia
| | - Sandra Tan
- Department of Biological Sciences,
Faculty of Science, National University of Singapore, Singapore
| | - Hwee Tong Tan
- Department of Biochemistry, Yong Loo
Lin School of Medicine, National University of Singapore, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences,
Faculty of Science, National University of Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences,
Faculty of Science, National University of Singapore, Singapore
| | - Desmond B. Williams
- School of Pharmacy and Medical
Sciences, Sansom Institute for Health Research, University of South Australia, Australia
| | - Trevor J. Lockett
- CSIRO Preventative Health National Research Flagship, Adelaide, Australia
- CSIRO Animal, Food and Health Sciences, Adelaide and North Ryde, Australia
| | - Leah J. Cosgrove
- CSIRO Preventative Health National Research Flagship, Adelaide, Australia
- CSIRO Animal, Food and Health Sciences, Adelaide and North Ryde, Australia
| | - Maxey C. M. Chung
- Department of Biological Sciences,
Faculty of Science, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo
Lin School of Medicine, National University of Singapore, Singapore
| | - Richard J. Head
- CSIRO Preventative Health National Research Flagship, Adelaide, Australia
- CSIRO Animal, Food and Health Sciences, Adelaide and North Ryde, Australia
| |
Collapse
|
81
|
Plöger S, Stumpff F, Penner GB, Schulzke JD, Gäbel G, Martens H, Shen Z, Günzel D, Aschenbach JR. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann N Y Acad Sci 2012; 1258:52-9. [PMID: 22731715 DOI: 10.1111/j.1749-6632.2012.06553.x] [Citation(s) in RCA: 321] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Butyrate production in the large intestine and ruminant forestomach depends on bacterial butyryl-CoA/acetate-CoA transferase activity and is highest when fermentable fiber and nonstructural carbohydrates are balanced. Gastrointestinal epithelia seem to use butyrate and butyrate-induced endocrine signals to adapt proliferation, apoptosis, and differentiation to the growth of the bacterial community. Butyrate has a potential clinical application in the treatment of inflammatory bowel disease (IBD; ulcerative colitis). Via inhibited release of tumor necrosis factor α and interleukin 13 and inhibition of histone deacetylase, butyrate may contribute to the restoration of the tight junction barrier in IBD by affecting the expression of claudin-2, occludin, cingulin, and zonula occludens poteins (ZO-1, ZO-2). Further evaluation of the molecular events that link butyrate to an improved tight junction structure will allow for the elucidation of the cofactors affecting the reliability of butyrate as a clinical treatment tool.
Collapse
Affiliation(s)
- Svenja Plöger
- Institute of Veterinary Physiology, Free University of Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
The chromatin-binding protein HMGN3 stimulates histone acetylation and transcription across the Glyt1 gene. Biochem J 2012; 442:495-505. [PMID: 22150271 DOI: 10.1042/bj20111502] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HMGNs are nucleosome-binding proteins that alter the pattern of histone modifications and modulate the binding of linker histones to chromatin. The HMGN3 family member exists as two splice forms, HMGN3a which is full-length and HMGN3b which lacks the C-terminal RD (regulatory domain). In the present study, we have used the Glyt1 (glycine transporter 1) gene as a model system to investigate where HMGN proteins are bound across the locus in vivo, and to study how the two HMGN3 splice variants affect histone modifications and gene expression. We demonstrate that HMGN1, HMGN2, HMGN3a and HMGN3b are bound across the Glyt1 gene locus and surrounding regions, and are not enriched more highly at the promoter or putative enhancer. We conclude that the peaks of H3K4me3 (trimethylated Lys(4) of histone H3) and H3K9ac (acetylated Lys(9) of histone H3) at the active Glyt1a promoter do not play a major role in recruiting HMGN proteins. HMGN3a/b binding leads to increased H3K14 (Lys(14) of histone H3) acetylation and stimulates Glyt1a expression, but does not alter the levels of H3K4me3 or H3K9ac enrichment. Acetylation assays show that HMGN3a stimulates the ability of PCAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor] to acetylate nucleosomal H3 in vitro, whereas HMGN3b does not. We propose a model where HMGN3a/b-stimulated H3K14 acetylation across the bodies of large genes such as Glyt1 can lead to more efficient transcription elongation and increased mRNA production.
Collapse
|
83
|
Halsall J, Gupta V, O'Neill LP, Turner BM, Nightingale KP. Genes are often sheltered from the global histone hyperacetylation induced by HDAC inhibitors. PLoS One 2012; 7:e33453. [PMID: 22479401 PMCID: PMC3316569 DOI: 10.1371/journal.pone.0033453] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 02/15/2012] [Indexed: 11/18/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) are increasingly used as therapeutic agents, but the mechanisms by which they alter cell behaviour remain unclear. Here we use microarray expression analysis to show that only a small proportion of genes (∼9%) have altered transcript levels after treating HL60 cells with different HDACi (valproic acid, Trichostatin A, suberoylanilide hydroxamic acid). Different gene populations respond to each inhibitor, with as many genes down- as up-regulated. Surprisingly, HDACi rarely induced increased histone acetylation at gene promoters, with most genes examined showing minimal change, irrespective of whether genes were up- or down-regulated. Many genes seem to be sheltered from the global histone hyperacetyation induced by HDACi.
Collapse
Affiliation(s)
| | | | | | | | - Karl P. Nightingale
- Chromatin and Gene Expression Group, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
84
|
Humphreys KJ, Cobiac L, Le Leu RK, Van der Hoek MB, Michael MZ. Histone deacetylase inhibition in colorectal cancer cells reveals competing roles for members of the oncogenic miR-17-92 cluster. Mol Carcinog 2012; 52:459-74. [PMID: 22308110 DOI: 10.1002/mc.21879] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/25/2011] [Accepted: 01/05/2012] [Indexed: 12/12/2022]
Abstract
Diet-derived butyrate, a histone deacetylase inhibitor (HDI), decreases proliferation and increases apoptosis in colorectal cancer (CRC) cells via epigenetic changes in gene expression. Other HDIs such as suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA) have similar effects. This study examined the role of microRNAs (miRNAs) in mediating the chemo-protective effects of HDIs, and explored functions of the oncogenic miR-17-92 cluster. The dysregulated miRNA expression observed in HT29 and HCT116 CRC cells could be epigenetically altered by butyrate, SAHA and TSA. These HDIs decreased expression of miR-17-92 cluster miRNAs (P < 0.05), with a corresponding increase in miR-17-92 target genes, including PTEN, BCL2L11, and CDKN1A (P < 0.05). The decrease in miR-17-92 expression may be partly responsible for the anti-proliferative effects of HDIs, with introduction of miR-17-92 cluster miRNA mimics reversing this effect and decreasing levels of PTEN, BCL2L11, and CDKN1A (P < 0.05). The growth effects of HDIs may be mediated by changes in miRNA activity, with down-regulation of the miR-17-92 cluster a plausible mechanism to explain some of the chemo-protective effects of HDIs. Of the miR-17-92 cluster miRNAs, miR-19a and miR-19b were primarily responsible for promoting proliferation, while miR-18a acted in opposition to other cluster members to decrease growth. NEDD9 and CDK19 were identified as novel miR-18a targets and were shown to be pro-proliferative genes, with RNA interference of their transcripts decreasing proliferation in CRC cells. This is the first study to identify competing roles for miR-17-92 cluster members, in the context of HDI-induced changes in CRC cells.
Collapse
Affiliation(s)
- Karen J Humphreys
- Flinders Centre for Cancer Prevention and Control, School of Medicine, Flinders University, Flinders Medical Centre, Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
85
|
Down-regulation of matrix metalloproteinase-7 inhibits metastasis of human anaplastic thyroid cancer cell line. Clin Exp Metastasis 2011; 29:71-82. [PMID: 22042554 DOI: 10.1007/s10585-011-9430-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 10/07/2011] [Indexed: 12/26/2022]
Abstract
Epigenetic drugs such as histone deacetylase inhibitors (HDACIs) possess anticancer properties due to its ability to regulate genes associated with tumor growth, differentiation, apoptosis and metastasis. In addition to its apoptotic effect, phenylbutyrate (PB), a carboxylic acid HDACI, inhibited an anaplastic (ATC) thyroid cancer cell line ARO from penetrating a matrigel coated transwell with concomitant suppression of a metastasis-associated gene, matrix metalloproteinase-7 (MMP-7) and stimulation of a transformation suppressor protein, reversion-inducing- cysteine-rich protein with Kazal motifs without affecting MMP-2 expression levels. Direct evidence suggesting MMP-7 down-regulated cancer metastasis came from the observation of a decreased pulmonary metastasis in SCID mice xeno-transplanted with MMP-7-knocked-down ARO cells. In addition, H-89, a protein kinase A inhibitor, remarkably restored the down-regulaed MMP-7 level treated by PB. Thus, the suppressive effect of PB on MMP-7 was partially carried out through H3 phosphoacetylation. To conclude, our findings suggest PB inhibits MMP-7 expression epigenetically through phosphoacetylation of histone proteins, and thereby, reduced invasive ability of an ATC thyroid cancer cell line.
Collapse
|
86
|
Abstract
Dietary exposures can have consequences for health years or decades later and this raises questions about the mechanisms through which such exposures are 'remembered' and how they result in altered disease risk. There is growing evidence that epigenetic mechanisms may mediate the effects of nutrition and may be causal for the development of common complex (or chronic) diseases. Epigenetics encompasses changes to marks on the genome (and associated cellular machinery) that are copied from one cell generation to the next, which may alter gene expression, but which do not involve changes in the primary DNA sequence. These include three distinct, but closely inter-acting, mechanisms including DNA methylation, histone modifications and non-coding microRNAs (miRNA) which, together, are responsible for regulating gene expression not only during cellular differentiation in embryonic and foetal development but also throughout the life-course. This review summarizes the growing evidence that numerous dietary factors, including micronutrients and non-nutrient dietary components such as genistein and polyphenols, can modify epigenetic marks. In some cases, for example, effects of altered dietary supply of methyl donors on DNA methylation, there are plausible explanations for the observed epigenetic changes, but to a large extent, the mechanisms responsible for diet-epigenome-health relationships remain to be discovered. In addition, relatively little is known about which epigenomic marks are most labile in response to dietary exposures. Given the plasticity of epigenetic marks and their responsiveness to dietary factors, there is potential for the development of epigenetic marks as biomarkers of health for use in intervention studies.
Collapse
Affiliation(s)
- J A McKay
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
87
|
Puppin C, Passon N, Frasca F, Vigneri R, Tomay F, Tomaciello S, Damante G. In thyroid cancer cell lines expression of periostin gene is controlled by p73 and is not related to epigenetic marks of active transcription. Cell Oncol (Dordr) 2011; 34:131-40. [DOI: 10.1007/s13402-011-0009-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2010] [Indexed: 12/26/2022] Open
|
88
|
Hippe B, Zwielehner J, Liszt K, Lassl C, Unger F, Haslberger AG. Quantification of butyryl CoA:acetate CoA-transferase genes reveals different butyrate production capacity in individuals according to diet and age. FEMS Microbiol Lett 2011; 316:130-5. [PMID: 21204931 DOI: 10.1111/j.1574-6968.2010.02197.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The gastrointestinal microbiota produces short-chain fatty acids, especially butyrate, which affect colonic health, immune function and epigenetic regulation. To assess the effects of nutrition and aging on the production of butyrate, the butyryl-CoA:acetate CoA-transferase gene and population shifts of Clostridium clusters lV and XlVa, the main butyrate producers, were analysed. Faecal samples of young healthy omnivores (24 ± 2.5 years), vegetarians (26 ± 5 years) and elderly (86 ± 8 years) omnivores were evaluated. Diet and lifestyle were assessed in questionnaire-based interviews. The elderly had significantly fewer copies of the butyryl-CoA:acetate CoA-transferase gene than young omnivores (P=0.014), while vegetarians showed the highest number of copies (P=0.048). The thermal denaturation of the butyryl-CoA:acetate CoA-transferase gene variant melting curve related to Roseburia/Eubacterium rectale spp. was significantly more variable in the vegetarians than in the elderly. The Clostridium cluster XIVa was more abundant in vegetarians (P=0.049) and in omnivores (P<0.01) than in the elderly group. Gastrointestinal microbiota of the elderly is characterized by decreased butyrate production capacity, reflecting increased risk of degenerative diseases. These results suggest that the butyryl-CoA:acetate CoA-transferase gene is a valuable marker for gastrointestinal microbiota function.
Collapse
Affiliation(s)
- Berit Hippe
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
89
|
Daroqui MC, Augenlicht LH. Transcriptional attenuation in colon carcinoma cells in response to butyrate. Cancer Prev Res (Phila) 2010; 3:1292-302. [PMID: 20841488 DOI: 10.1158/1940-6207.capr-10-0083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The short-chain fatty acid sodium butyrate (NaB), produced in the colonic lumen, induces cell cycle arrest, differentiation, and/or apoptosis in colorectal carcinoma cells in vitro, establishing a potential role for NaB in colon cancer prevention. We have previously shown that butyrate decreases cyclin D1 and c-myc expression, each essential for intestinal tumor development, by transcriptional attenuation. Here, we determined that butyrate-induced transcriptional attenuation of the cyclin D1 and c-myc genes in SW837 human colorectal adenocarcinoma cells occurs at ∼100 nucleotides downstream of the transcription start site, with a similar positioning in Caco-2 cells. A concomitant decrease in RNA polymerase II occupancy at the 5' end of each gene was observed. Because transcriptional regulation is associated with chromatin remodeling, we investigated by chromatin immunoprecipitation whether the histone deacetylase inhibitory activity of butyrate altered chromatin structure at the attenuated loci. Although the distributions of histone H3 trimethylated on K4 and K36 along the cyclin D1 and c-myc genes were consistent with current models, butyrate induced only modest decreases in these modifications, with a similar effect on acetylated H3 and a modest increase in histone H3 trimethylated on K27. Finally, transcriptome analysis using novel microarrays showed that butyrate-induced attenuation is widespread throughout the genome, likely independent of transcriptional initiation. We identified 42 loci potentially paused by butyrate and showed that the transcription patterns are gene specific. The biological functions of these loci encompass a number of effects of butyrate on the physiology of intestinal epithelial cells.
Collapse
Affiliation(s)
- Maria C Daroqui
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, 111 East 210th Street, Bronx, NY 10467, USA.
| | | |
Collapse
|
90
|
Singh N, Thangaraju M, Prasad PD, Martin PM, Lambert NA, Boettger T, Offermanns S, Ganapathy V. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases. J Biol Chem 2010; 285:27601-8. [PMID: 20601425 DOI: 10.1074/jbc.m110.102947] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mammalian colon harbors trillions of bacteria, yet there is no undue inflammatory response by the host against these bacteria under normal conditions. The bacterial fermentation products acetate, propionate, and butyrate are believed, at least in part, to be responsible for these immunosuppressive effects. Dendritic cells play an essential role in presentation of antigens to T lymphocytes and initiation of adaptive immune responses. Here we report that butyrate and propionate block the generation of dendritic cells from bone marrow stem cells, without affecting the generation of granulocytes. This effect is dependent on the Na(+)-coupled monocarboxylate transporter Slc5a8, which transports butyrate and propionate into cells, and on the ability of these two bacterial metabolites to inhibit histone deacetylases. Acetate, which is also a substrate for Slc5a8 but not an inhibitor of histone deacetylases, does not affect dendritic cell development, indicating the essential role of histone deacetylase inhibition in the process. The blockade of dendritic cell development by butyrate and propionate is associated with decreased expression of the transcription factors PU.1 and RelB. Butyrate also elicits its biologic effects through its ability to activate the G-protein-coupled receptor Gpr109a, but this mechanism is not involved in butyrate-induced blockade of dendritic cell development. The participation of Slc5a8 and the non-involvement of Gpr109a in butyrate effects have been substantiated using bone marrow cells obtained from Slc5a8(-/-) and Gpr109a(-/-) mice. These findings uncover an important mechanism underlying the anti-inflammatory functions of the bacterial fermentation products butyrate and propionate.
Collapse
Affiliation(s)
- Nagendra Singh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Kobori A, Bamba S, Imaeda H, Ban H, Tsujikawa T, Saito Y, Fujiyama Y, Andoh A. Butyrate stimulates IL-32α expression in human intestinal epithelial cell lines. World J Gastroenterol 2010; 16:2355-61. [PMID: 20480520 PMCID: PMC2874139 DOI: 10.3748/wjg.v16.i19.2355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the effects of butyrate on interleukin (IL)-32α expression in epithelial cell lines.
METHODS: The human intestinal epithelial cell lines HT-29, SW480, and T84 were used. Intracellular IL-32α was determined by Western blotting analyses. IL-32α mRNA expression was analyzed by real-time polymerase chain reaction.
RESULTS: Acetate and propionate had no effects on IL-32α mRNA expression. Butyrate significantly enhanced IL-32α expression in all cell lines. Butyrate also up-regulated IL-1β-induced IL-32α mRNA expression. Butyrate did not modulate the activation of phosphatidylinositol 3-kinase (PI3K), a mediator of IL-32α expression. Like butyrate, trichostatin A, a histone deacetylase inhibitor, also enhanced IL-1β-induced IL-32α mRNA expression.
CONCLUSION: Butyrate stimulated IL-32α expression in epithelial cell lines. An epigenetic mechanism, such as histone hyperacetylation, might be involved in the action of butyrate on IL-32α expression.
Collapse
|
92
|
Yang H, Nie Y, Li Y, Wan YJY. Histone modification-mediated CYP2E1 gene expression and apoptosis of HepG2 cells. Exp Biol Med (Maywood) 2010; 235:32-9. [PMID: 20404016 DOI: 10.1258/ebm.2009.009252] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The incidence of hepatocellular carcinoma is rising due to alcohol drinking, hepatitis C viral infection and metabolic syndrome. Differential expression of CYP2E1 may play a pleiotropic role in the multistep process of liver carcinogenesis. Considerable attention has focused on the antitumor effect of trichostatin A (TSA) as well as CYP2E1 expression-induced apoptosis of cancer cells. However, very few studies have examined the mechanisms by which TSA has an antitumor effect and its association to CYP2E1 expression. The current study examined the action of TSA on CYP2E1 expression and the role of CYP2E1 in inducing apoptosis of HepG2 cells. Our data showed that TSA selectively induced CYP2E1 in four studied human hepatocellular carcinoma (HCC) cell lines (Huh7, PLC/PRF/5, Hep3B and HepG2), but not in normal primary human hepatocytes. TSA-mediated up-regulation of CYP2E1 expression was associated with histone H3 acetylation and the recruitment of HNF-1 and HNF-3beta to the CYP2E1 promoter in HepG2 cells. siRNA-mediated knockdown experiments showed that TSA-induced caspase-3 cleavage was decreased due to reduced expression of CYP2E1 in HepG2 cells. Moreover, down-regulation of CYP2E1 was accompanied by decreased production of mitochondrial reactive oxygen species. These results suggest that histone modification is involved in CYP2E1 gene expression and that CYP2E1-dependent mitochondrial oxidative stress plays a role in TSA-induced apoptosis.
Collapse
Affiliation(s)
- Hui Yang
- Department of Gastroenterology Hepatology, First Municipal's People Hospital of Guangzhou, Guangzhou Medical College, Guangzhou 510180, China
| | | | | | | |
Collapse
|
93
|
Aguilera O, Fernández AF, Muñoz A, Fraga MF. Epigenetics and environment: a complex relationship. J Appl Physiol (1985) 2010; 109:243-51. [PMID: 20378707 DOI: 10.1152/japplphysiol.00068.2010] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The epigenomes of higher organisms constantly change over time. Many of these epigenetic changes are necessary to direct normal cellular development and differentiation in the developing organism. However, developmental abnormalities may occur in response to inappropriate epigenetic signaling that occurs secondarily to still poorly understood causes. In addition to genetic and stochastic influences on epigenetic processes, epigenetic variation can arise as a consequence of environmental factors. Here we review the effects of such environmental factors on the epigenomes of higher organisms. We discuss the possible impact of epigenetic changes on physiological and pathophysiological processes, depending in part on whether these changes occur during embryonic development or adulthood.
Collapse
Affiliation(s)
- Oscar Aguilera
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
94
|
Nunes MJ, Milagre I, Schnekenburger M, Gama MJ, Diederich M, Rodrigues E. Sp proteins play a critical role in histone deacetylase inhibitor-mediated derepression of CYP46A1 gene transcription. J Neurochem 2010; 113:418-31. [PMID: 20096088 DOI: 10.1111/j.1471-4159.2010.06612.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We investigated whether the CYP46A1 gene, a neuronal-specific cytochrome P450, responsible for the majority of brain cholesterol turnover, is subject to transcriptional modulation through modifications in histone acetylation. We demonstrated that inhibition of histone deacetylase activity by trichostatin A (TSA), valproic acid and sodium butyrate caused a potent induction of both CYP46A1 promoter activity and endogenous expression. Silencing of Sp transcription factors through specific small interfering RNAs, or impairing Sp binding to the proximal promoter, by site-directed mutagenesis, led to a significant decrease in TSA-mediated induction of CYP46A1 expression/promoter activity. Electrophoretic mobility shift assay, DNA affinity precipitation assays and chromatin immunoprecipitation assays were used to determine the multiprotein complex recruited to the CYP46A1 promoter, upon TSA treatment. Our data showed that a decrease in Sp3 binding at particular responsive elements, can shift the Sp1/Sp3/Sp4 ratio, and favor the detachment of histone deacetylase (HDAC) 1 and HDAC2 and the recruitment of p300/CBP. Moreover, we observed a dynamic change in the chromatin structure upon TSA treatment, characterized by an increase in the local recruitment of euchromatic markers and RNA polymerase II. Our results show the critical participation of an epigenetic program in the control of CYP46A1 gene transcription, and suggest that brain cholesterol catabolism may be affected upon treatment with HDAC inhibitors.
Collapse
Affiliation(s)
- Maria João Nunes
- Faculty of Pharmacy, iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, University of Lisbon, 1649-003 Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
95
|
Abstract
Disruption of the epigenome has been a hallmark of human cancers and has been linked with tumor pathogenesis and progression. Since epigenetic changes can be reversed in principle, studies have been carried out to identify modifiable (such as diet and lifestyle) factors, which possess epigenetic property, in hope for developing epigenetically based prevention/intervention strategies. The goal is to achieve some degree of epigenetic reprogramming, which would maintain normal gene expression status and reverse tumorigenesis through chemoprevention or lifestyle intervention such as diet modification. The ability of dietary compounds to act epigenetically in cancer cells has been studied and evidence continues to surface for constituents in food and dietary supplements to influence the epigenome and ultimately individual's risk of developing cancer. In this chapter, we summarized the existing data, both from animal and human studies, on the capacity of natural food products to influence three key epigenetic processes: DNA methylation, histone modification, and microRNA expression. As discussed in the perspective, while diet-based intervention that targets epigenetic pathways is promising, significant challenges remain in translating these scientific findings into clinical or public health practices in the context of cancer prevention.
Collapse
Affiliation(s)
- Jia Chen
- Department of Preventive Medicine, Mount Sinai School of Medicine,New York, USA
| | | |
Collapse
|
96
|
Worthley DL, Le Leu RK, Whitehall VL, Conlon M, Christophersen C, Belobrajdic D, Mallitt KA, Hu Y, Irahara N, Ogino S, Leggett BA, Young GP. A human, double-blind, placebo-controlled, crossover trial of prebiotic, probiotic, and synbiotic supplementation: effects on luminal, inflammatory, epigenetic, and epithelial biomarkers of colorectal cancer. Am J Clin Nutr 2009; 90:578-86. [PMID: 19640954 DOI: 10.3945/ajcn.2009.28106] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Diet is an important factor in colorectal carcinogenesis; thus, dietary supplements may have a role in colorectal cancer prevention. OBJECTIVE The objective was to establish the relative luminal, epithelial, and epigenetic consequences of prebiotic, probiotic, and synbiotic dietary supplementation in humans. DESIGN This was a randomized, double-blind, placebo-controlled, 4-wk crossover trial of resistant starch and Bifidobacterium lactis, either alone or as a combined synbiotic preparation, in 20 human volunteers. Rectal biopsy, feces, and serum samples were collected. The rectal mucosal endpoints were DNA methylation at 16 CpG island loci and LINE-1, epithelial proliferation (Ki67 immunohistochemistry), and crypt cellularity. The fecal endpoints were short-chain fatty acid concentrations, pH, ammonia, and microbiological profiles (by denaturing gradient gel electrophoresis and sequencing). Serum endpoints were a panel of cytokines and high-sensitivity C-reactive protein. RESULTS Seventeen subjects completed the entire study. The synbiotic intervention fostered a significantly different fecal stream bacterial community than did either the prebiotic (P = 0.032) or the probiotic (P = 0.001) intervention alone, in part because of a greater proportion of patients harboring fecal Lachnospiraceae spp. These changes developed in the absence of any significant differences in fecal chemistry. There were no differences in epithelial kinetics. CONCLUSIONS This synbiotic supplementation with B. lactis and resistant starch, in the doses used, induced unique changes in fecal microflora but did not significantly alter any other fecal, serum, or epithelial variables. This trial was registered in the Australian New Zealand Clinical Trials Registry at www.anzctr.org.au as ACTRN012606000115538.
Collapse
Affiliation(s)
- Daniel L Worthley
- Royal Brisbane and Women's Hospital Research Foundation, Clinical Research Centre, Brisbane, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Federico A, Pallante P, Bianco M, Ferraro A, Esposito F, Monti M, Cozzolino M, Keller S, Fedele M, Leone V, Troncone G, Chiariotti L, Pucci P, Fusco A. Chromobox protein homologue 7 protein, with decreased expression in human carcinomas, positively regulates E-cadherin expression by interacting with the histone deacetylase 2 protein. Cancer Res 2009; 69:7079-87. [PMID: 19706751 DOI: 10.1158/0008-5472.can-09-1542] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chromobox protein homologue 7 (CBX7) is a chromobox family protein encoding a novel polycomb protein, the expression of which shows a progressive reduction, well related with the malignant grade of the thyroid neoplasias. Indeed, CBX7 protein levels decreased in an increasing percentage of cases going from benign adenomas to papillary, follicular, and anaplastic thyroid carcinomas. To elucidate the function of CBX7 in carcinogenesis, we searched for CBX7 interacting proteins by a proteomic analysis. By this approach, we identified several proteins. Among these proteins, we selected histone deacetylase 2 (HDAC2), which is well known to play a key role in neoplastic cell transformation and down-regulation of E-cadherin expression, the loss of which is a critical event in the epithelial-to-mesenchymal transition. We confirmed by coimmunoprecipitation that CBX7 physically interacts with the HDAC2 protein and is able to inhibit its activity. Then, we showed that both these proteins bind the E-cadherin promoter and that CBX7 up-regulates E-cadherin expression. Consistent with these data, we found a positive statistical correlation between CBX7 and E-cadherin expression in human thyroid carcinomas. Finally, we showed that the expression of CBX7 increases the acetylation status of the histones H3 and H4 on the E-cadherin promoter. Therefore, the ability of CBX7 to positively regulate E-cadherin expression by interacting with HDAC2 and inhibiting its activity on the E-cadherin promoter would account for the correlation between the loss of CBX7 expression and a highly malignant phenotype.
Collapse
Affiliation(s)
- Antonella Federico
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli studi di Napoli Federico II, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Arakawa Y, Saito S, Yamada H, Aiba K. Simultaneous treatment with camptothecin and valproic acid suppresses induction of Bcl-XL and promotes apoptosis of MCF-7 breast cancer cells. Apoptosis 2009; 14:1076-85. [DOI: 10.1007/s10495-009-0384-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
99
|
Sawarkar R, Visweswariah SS, Nellen W, Nanjundiah V. Histone deacetylases regulate multicellular development in the social amoeba Dictyostelium discoideum. J Mol Biol 2009; 391:833-48. [PMID: 19576222 DOI: 10.1016/j.jmb.2009.06.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/18/2009] [Accepted: 06/25/2009] [Indexed: 11/29/2022]
Abstract
Epigenetic modifications of histones regulate gene expression and lead to the establishment and maintenance of cellular phenotypes during development. Histone acetylation depends on a balance between the activities of histone acetyltransferases and histone deacetylases (HDACs) and influences transcriptional regulation. In this study, we analyse the roles of HDACs during growth and development of one of the cellular slime moulds, the social amoeba Dictyostelium discoideum. The inhibition of HDAC activity by trichostatin A results in histone hyperacetylation and a delay in cell aggregation and differentiation. Cyclic AMP oscillations are normal in starved amoebae treated with trichostatin A but the expression of a subset of cAMP-regulated genes is delayed. Bioinformatic analysis indicates that there are four genes encoding putative HDACs in D. discoideum. Using biochemical, genetic and developmental approaches, we demonstrate that one of these four genes, hdaB, is dispensable for growth and development under laboratory conditions. A knockout of the hdaB gene results in a social context-dependent phenotype: hdaB(-) cells develop normally but sporulate less efficiently than the wild type in chimeras. We infer that HDAC activity is important for regulating the timing of gene expression during the development of D. discoideum and for defining aspects of the phenotype that mediate social behaviour in genetically heterogeneous groups.
Collapse
Affiliation(s)
- Ritwick Sawarkar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.
| | | | | | | |
Collapse
|
100
|
Fazzone W, Wilson PM, Labonte MJ, Lenz HJ, Ladner RD. Histone deacetylase inhibitors suppress thymidylate synthase gene expression and synergize with the fluoropyrimidines in colon cancer cells. Int J Cancer 2009; 125:463-73. [PMID: 19384949 DOI: 10.1002/ijc.24403] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite recent therapeutic advances, the response rates to chemotherapy for patients with metastatic colon cancer remain at approximately 50% with the fluoropyrimidine, 5-fluorouracil (5-FU), continuing to serve as the foundation chemotherapeutic agent for the treatment of this disease. Previous studies have demonstrated that overexpression of thymidylate synthase (TS) is a key determinant of resistance to 5-FU-based chemotherapy. Therefore, there is a significant need to develop alternative therapeutic strategies to overcome TS-mediated resistance. In this study, we demonstrate that the histone deacetylase inhibitors (HDACi) vorinostat and LBH589 significantly downregulate TS gene expression in a panel of colon cancer cell lines. Downregulation of TS was independent of p53, p21 and HDAC2 expression and was achievable in vivo as demonstrated by mouse xenograft models. We provide evidence that HDACi treatment leads to a potent transcriptional repression of the TS gene. Combination of the fluoropyrimidines 5-FU or FUdR with both vorinostat and LBH589 enhanced cell cycle arrest and growth inhibition. Importantly, the downstream effects of TS inhibition were significantly enhanced by this combination including the inhibition of acute TS induction and the enhanced accumulation of the cytotoxic nucleotide intermediate dUTP. These data demonstrate that HDACi repress TS expression at the level of transcription and provides the first evidence suggesting a direct mechanistic link between TS downregulation and the synergistic interaction observed between HDACi and 5-FU. This study provides rationale for the continued clinical evaluation of HDACi in combination with 5-FU-based therapies as a strategy to overcome TS-mediated resistance.
Collapse
Affiliation(s)
- William Fazzone
- Department of Pathology, Norris Comprehensive Cancer Center/University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|