51
|
Wang H, Zhang Y, Cheng H, Yan F, Song D, Wang Q, Cai S, Wang Y, Huang L. Selective corticocortical connectivity suppression during propofol-induced anesthesia in healthy volunteers. Cogn Neurodyn 2022; 16:1029-1043. [PMID: 36237410 PMCID: PMC9508318 DOI: 10.1007/s11571-021-09775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/03/2022] Open
Abstract
We comprehensively studied directional feedback and feedforward connectivity to explore potential connectivity changes that underlie propofol-induced deep sedation. We further investigated the corticocortical connectivity patterns within and between hemispheres. Sixty-channel electroencephalographic data were collected from 19 healthy volunteers in a resting wakefulness state and propofol-induced deep unconsciousness state defined by a bispectral index value of 40. A source analysis was employed to locate cortical activity. The Desikan-Killiany atlas was used to partition cortices, and directional functional connectivity was assessed by normalized symbolic transfer entropy between higher-order (prefrontal and frontal) and lower-order (auditory, sensorimotor and visual) cortices and between hot-spot frontal and parietal cortices. We found that propofol significantly suppressed feedforward connectivity from the left parietal to right frontal cortex and bidirectional connectivity between the left frontal and left parietal cortex, between the frontal and auditory cortex, and between the frontal and sensorimotor cortex. However, there were no significant changes in either feedforward or feedback connectivity between the prefrontal and all the lower-order cortices and between the frontal and visual cortices or in feedback connectivity from the frontal to parietal cortex. Propofol anesthetic selectively decreased the unidirectional interaction between higher-order frontoparietal cortices and bidirectional interactions between the higher-order frontal cortex and lower-order auditory and sensorimotor cortices, which indicated that both feedback and feedforward connectivity were suppressed under propofol-induced deep sedation. Our findings provide critical insights into the connectivity changes underlying the top-down mechanism of propofol anesthesia at deep sedation. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-021-09775-x.
Collapse
Affiliation(s)
- Haidong Wang
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| | - Yun Zhang
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| | - Huanhuan Cheng
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| | - Fei Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road, Xi’an, 710061 China
| | - Dawei Song
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road, Xi’an, 710061 China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road, Xi’an, 710061 China
| | - Suping Cai
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| | - Yubo Wang
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| |
Collapse
|
52
|
Zhang X, Li H, Dong R, Lu Z, Li C. Electroencephalogram and surface electromyogram fusion-based precise detection of lower limb voluntary movement using convolution neural network-long short-term memory model. Front Neurosci 2022; 16:954387. [PMID: 36213740 PMCID: PMC9538146 DOI: 10.3389/fnins.2022.954387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
The electroencephalogram (EEG) and surface electromyogram (sEMG) fusion has been widely used in the detection of human movement intention for human–robot interaction, but the internal relationship of EEG and sEMG signals is not clear, so their fusion still has some shortcomings. A precise fusion method of EEG and sEMG using the CNN-LSTM model was investigated to detect lower limb voluntary movement in this study. At first, the EEG and sEMG signal processing of each stage was analyzed so that the response time difference between EEG and sEMG can be estimated to detect lower limb voluntary movement, and it can be calculated by the symbolic transfer entropy. Second, the data fusion and feature of EEG and sEMG were both used for obtaining a data matrix of the model, and a hybrid CNN-LSTM model was established for the EEG and sEMG-based decoding model of lower limb voluntary movement so that the estimated value of time difference was about 24 ∼ 26 ms, and the calculated value was between 25 and 45 ms. Finally, the offline experimental results showed that the accuracy of data fusion was significantly higher than feature fusion-based accuracy in 5-fold cross-validation, and the average accuracy of EEG and sEMG data fusion was more than 95%; the improved average accuracy for eliminating the response time difference between EEG and sEMG was about 0.7 ± 0.26% in data fusion. In the meantime, the online average accuracy of data fusion-based CNN-LSTM was more than 87% in all subjects. These results demonstrated that the time difference had an influence on the EEG and sEMG fusion to detect lower limb voluntary movement, and the proposed CNN-LSTM model can achieve high performance. This work provides a stable and reliable basis for human–robot interaction of the lower limb exoskeleton.
Collapse
Affiliation(s)
- Xiaodong Zhang
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Shaanxi Key Laboratory of Intelligent Robots, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Wearable Human Enhancement Technology Innovation Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hanzhe Li
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Wearable Human Enhancement Technology Innovation Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Hanzhe Li,
| | - Runlin Dong
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhufeng Lu
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Cunxin Li
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
53
|
Compression complexity with ordinal patterns for robust causal inference in irregularly sampled time series. Sci Rep 2022; 12:14170. [PMID: 35986037 PMCID: PMC9391387 DOI: 10.1038/s41598-022-18288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/09/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractDistinguishing cause from effect is a scientific challenge resisting solutions from mathematics, statistics, information theory and computer science. Compression-Complexity Causality (CCC) is a recently proposed interventional measure of causality, inspired by Wiener–Granger’s idea. It estimates causality based on change in dynamical compression-complexity (or compressibility) of the effect variable, given the cause variable. CCC works with minimal assumptions on given data and is robust to irregular-sampling, missing-data and finite-length effects. However, it only works for one-dimensional time series. We propose an ordinal pattern symbolization scheme to encode multidimensional patterns into one-dimensional symbolic sequences, and thus introduce the Permutation CCC (PCCC). We demonstrate that PCCC retains all advantages of the original CCC and can be applied to data from multidimensional systems with potentially unobserved variables which can be reconstructed using the embedding theorem. PCCC is tested on numerical simulations and applied to paleoclimate data characterized by irregular and uncertain sampling and limited numbers of samples.
Collapse
|
54
|
Barak-Ventura R, Marín MR, Porfiri M. A spatiotemporal model of firearm ownership in the United States. PATTERNS 2022; 3:100546. [PMID: 36033595 PMCID: PMC9403408 DOI: 10.1016/j.patter.2022.100546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/04/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Firearm injury is a major public health crisis in the United States, where more than 200 people sustain a nonfatal firearm injury and more than 100 people die from it every day. To formulate policy that minimizes firearm-related harms, legislators must have access to spatially resolved firearm possession rates. Here, we create a spatiotemporal econometric model that estimates monthly state-level firearm ownership from two cogent proxies (background checks per capita and fraction of suicides committed with a firearm). From calibration on yearly survey data that assess ownership, we find that both proxies have predictive value in estimation of firearm ownership and that interactions between states cannot be neglected. We demonstrate use of the model in the study of relationships between media coverage, mass shootings, and firearm ownership, uncovering causal associations that are masked by the use of the proxies individually. A spatiotemporal model of firearm prevalence in the United States is created The econometric model predicts firearm ownership in every state for every month Information theory is used to detail causal links related to firearm prevalence The media can influence firearm prevalence, which in turn moderates mass shootings
Firearm violence is a major public health crisis in the United States, where more than 200 people sustain a nonfatal firearm injury and more than 100 people die from it every day. Despite these unsettling figures, scientific research on firearm-related harm significantly lags behind because spatially and temporally resolved data on firearm ownership are unavailable. This paper presents a spatiotemporal model that predicts firearm prevalence at the resolutions of one state and one month from the numbers of background checks and suicides committed with a firearm. Drawing on principles from econometrics, the model also accounts for interactions between states. The model’s output is challenged in causal analysis, which uncovers unprecedented associations between firearm prevalence, media output on firearm regulations, and mass shootings.
Collapse
Affiliation(s)
- Roni Barak-Ventura
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Center for Urban Science and Progress, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Manuel Ruiz Marín
- Department of Quantitative Methods, Law and Modern Languages, Technical University of Cartagena, Cartagena, 30201 Murcia, Spain
- Murcia Bio-Health Institute (IMIB-Arrixaca), Health Science Campus, Cartagena, 30120 Murcia, Spain
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Center for Urban Science and Progress, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Corresponding author
| |
Collapse
|
55
|
Yi B, Bose S. Quantum Liang Information Flow as Causation Quantifier. PHYSICAL REVIEW LETTERS 2022; 129:020501. [PMID: 35867429 DOI: 10.1103/physrevlett.129.020501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Liang information flow is widely used in classical systems and network theory for causality quantification and has been applied widely, for example, to finance, neuroscience, and climate studies. The key part of the theory is to freeze a node of a network to ascertain its causal influence on other nodes. Such a theory is yet to be applied to quantum network dynamics. Here, we generalize the Liang information flow to the quantum domain with respect to von Neumann entropy and exemplify its usage by applying it to a variety of small quantum networks.
Collapse
Affiliation(s)
- Bin Yi
- Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - Sougato Bose
- Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom
| |
Collapse
|
56
|
Margarette Sanchez M, Borden L, Alam N, Noroozi A, Ravan M, Flor-Henry P, Hasey G. A Machine Learning Algorithm to Discriminating Between Bipolar and Major Depressive Disorders Based on Resting EEG Data. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2635-2638. [PMID: 36085796 DOI: 10.1109/embc48229.2022.9871453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Distinguishing major depressive disorder (MDD) from bipolar disorder (BD) is a crucial clinical challenge due to the lack of known biomarkers. Conventional methods of diagnosis rest exclusively on symptomatic presentation, and personal and family history. As a result, BD-depressed episode (BD-DE) is often misdiagnosed as MDD, and inappropriate therapy is given. Electroencephalography (EEG) has been widely studied as a potential source of biomarkers to differentiate these disorders. Previous attempts using machine learning (ML) methods have delivered insufficient sensitivity and specificity for clinical use, likely as a consequence of the small training set size, and inadequate ML methodology. We hope to overcome these limitations by employing a training dataset of resting-state EEG from 71 MDD and 71 BD patients. We introduce a robust 3 steps ML technique: 1) a multi-step preprocessing method is used to improve the quality of the EEG signal 2) symbolic transfer entropy (STE), which is an effective connectivity measure, is applied to the resultant EEG signals 3) the ML algorithm uses the extracted STE features to distinguish MDD from BD patients. Clinical Relevance--- The accuracy of our algorithm, derived from a large sample of patients, suggests that this method may hold significant promise as a clinical tool. The proposed method delivered total accuracy, sensitivity, and specificity of 84.9%, 83.4%, and 87.1%, respectively.
Collapse
|
57
|
Yamashita Rios de Sousa AM, Hlinka J. Assessing serial dependence in ordinal patterns processes using chi-squared tests with application to EEG data analysis. CHAOS (WOODBURY, N.Y.) 2022; 32:073126. [PMID: 35907712 DOI: 10.1063/5.0096954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
We extend Elsinger's work on chi-squared tests for independence using ordinal patterns and investigate the general class of m-dependent ordinal patterns processes, to which belong ordinal patterns processes derived from random walk, white noise, and moving average processes. We describe chi-squared asymptotically distributed statistics for such processes that take into account necessary constraints on ordinal patterns probabilities and propose a test for m-dependence, with which we are able to quantify the range of serial dependence in a process. We apply the test to epilepsy electroencephalography time series data and observe shorter m-dependence associated with seizures, suggesting that the range of serial dependence decreases during those events.
Collapse
Affiliation(s)
| | - Jaroslav Hlinka
- Institute of Computer Science, Czech Academy of Sciences, Prague 182 07, Czech Republic
| |
Collapse
|
58
|
Kamberaj H. Random walks in a free energy landscape combining augmented molecular dynamics simulations with a dynamic graph neural network model. J Mol Graph Model 2022; 114:108199. [DOI: 10.1016/j.jmgm.2022.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|
59
|
Zhang Y, Wang G, Li Z, Xie M, Celler B, Su S, Xu P, Yao D. Matlab Open Source Code: Noise-Assisted Multivariate Empirical Mode Decomposition Based Causal Decomposition for Causality Inference of Bivariate Time Series. Front Neuroinform 2022; 16:851645. [PMID: 35784185 PMCID: PMC9243260 DOI: 10.3389/fninf.2022.851645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
Causality inference has arrested much attention in academic studies. Currently, multiple methods such as Granger causality, Convergent Cross Mapping (CCM), and Noise-assisted Multivariate Empirical Mode Decomposition (NA-MEMD) are introduced to solve the problem. Motivated by the researchers who uploaded the open-source code for causality inference, we hereby present the Matlab code of NA-MEMD Causal Decomposition to help users implement the algorithm in multiple scenarios. The code is developed on Matlab2020 and is mainly divided into three subfunctions: na_memd, Plseries, and cd_na_memd. na_memd is called in the main function to generate the matrix of Intrinsic Mode Functions (IMFs) and Plseries can display the average frequency and phase difference of IMFs of the same order in a matrix which can be used for the selection of the main Intrinsic Causal Component (ICC) and ICCs set. cd_na_memd is called to perform causal redecomposition after removing the main ICC from the original time series and output the result of NA-MEMD Causal Decomposition. The performance of the code is evaluated from the perspective of executing time, robustness, and validity. With the data amount enlarging, the executing time increases linearly with it and the value of causal strength oscillates in an ideally small interval which represents the relatively high robustness of the code. The validity is verified based on the open-access predator-prey data (wolf-moose bivariate time series from Isle Royale National Park in Michigan, USA) and our result is aligned with that of Causal Decomposition.
Collapse
Affiliation(s)
- Yi Zhang
- School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory for Neuro Information of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guan Wang
- School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziwen Li
- Glasgow College, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingjun Xie
- School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu, China
| | - Branko Celler
- Biomedical Systems Laboratory, University of New South Wales, Sydney, NSW, Australia
| | - Steven Su
- Center for Health Technologies, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia
| | - Peng Xu
- Key Laboratory for Neuro Information of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- Key Laboratory for Neuro Information of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
60
|
A control chart-based symbolic conditional transfer entropy method for root cause analysis of process disturbances. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2022.107902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
61
|
Zhang Y, Wang K, Yu W, Guo X, Wen J, Luo Y. Minimal EEG channel selection for depression detection with connectivity features during sleep. Comput Biol Med 2022; 147:105690. [DOI: 10.1016/j.compbiomed.2022.105690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
|
62
|
Lu J, Donner RV, Yin D, Guan S, Zou Y. Partial event coincidence analysis for distinguishing direct and indirect coupling in functional network construction. CHAOS (WOODBURY, N.Y.) 2022; 32:063134. [PMID: 35778157 DOI: 10.1063/5.0087607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Correctly identifying interaction patterns from multivariate time series presents an important step in functional network construction. In this context, the widespread use of bivariate statistical association measures often results in a false identification of links because strong similarity between two time series can also emerge without the presence of a direct interaction due to intermediate mediators or common drivers. In order to properly distinguish such direct and indirect links for the special case of event-like data, we present here a new generalization of event coincidence analysis to a partial version thereof, which is aimed at excluding possible transitive effects of indirect couplings. Using coupled chaotic systems and stochastic processes on two generic coupling topologies (star and chain configuration), we demonstrate that the proposed methodology allows for the correct identification of indirect interactions. Subsequently, we apply our partial event coincidence analysis to multi-channel EEG recordings to investigate possible differences in coordinated alpha band activity among macroscopic brain regions in resting states with eyes open (EO) and closed (EC) conditions. Specifically, we find that direct connections typically correspond to close spatial neighbors while indirect ones often reflect longer-distance connections mediated via other brain regions. In the EC state, connections in the frontal parts of the brain are enhanced as compared to the EO state, while the opposite applies to the posterior regions. In general, our approach leads to a significant reduction in the number of indirect connections and thereby contributes to a better understanding of the alpha band desynchronization phenomenon in the EO state.
Collapse
Affiliation(s)
- Jiamin Lu
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Reik V Donner
- Department of Water, Environment, Construction and Safety, Magdeburg-Stendal University of Applied Sciences, Breitscheidstraße 2, 39114 Magdeburg, Germany
| | - Dazhi Yin
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Shuguang Guan
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Yong Zou
- School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
63
|
Mokhov II, Smirnov DA. Contributions to surface air temperature trends estimated from climate time series: Medium-term causalities. CHAOS (WOODBURY, N.Y.) 2022; 32:063128. [PMID: 35778149 DOI: 10.1063/5.0088042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Contributions of various natural and anthropogenic factors to trends of surface air temperatures at different latitudes of the Northern and Southern hemispheres on various temporal horizons are estimated from climate data since the 19th century in empirical autoregressive models. Along with anthropogenic forcing, we assess the impact of several natural climate modes including Atlantic Multidecadal Oscillation, El-Nino/Southern Oscillation, Interdecadal Pacific Oscillation, Pacific Decadal Oscillation, and Antarctic Oscillation. On relatively short intervals of the length of two or three decades, contributions of climate variability modes are considerable and comparable to the contributions of greenhouse gases and even exceed the latter. On longer intervals of about half a century and greater, the contributions of greenhouse gases dominate at all latitudinal belts including polar, middle, and tropical ones.
Collapse
Affiliation(s)
- Igor I Mokhov
- A.M. Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences, 3 Pyzhevsky Per., 119017 Moscow, Russia
| | - Dmitry A Smirnov
- A.M. Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences, 3 Pyzhevsky Per., 119017 Moscow, Russia
| |
Collapse
|
64
|
Zanin M, Martínez JH. Analyzing international events through the lens of statistical physics: The case of Ukraine. CHAOS (WOODBURY, N.Y.) 2022; 32:051103. [PMID: 35649977 DOI: 10.1063/5.0091628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
During the last few years, statistical physics has received increasing attention as a framework for the analysis of real complex systems; yet, this is less clear in the case of international political events, partly due to the complexity in securing relevant quantitative data on them. Here, we analyze a detailed dataset of violent events that took place in Ukraine since January 2021 and analyze their temporal and spatial correlations through entropy and complexity metrics and functional networks. Results depict a complex scenario with events appearing in a non-random fashion but with eastern-most regions functionally disconnected from the remainder of the country-something opposing the widespread "two Ukraines" view. We further draw some lessons and venues for future analyses.
Collapse
Affiliation(s)
- M Zanin
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
| | - J H Martínez
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
| |
Collapse
|
65
|
Kudo K, Morise H, Ranasinghe KG, Mizuiri D, Bhutada AS, Chen J, Findlay A, Kirsch HE, Nagarajan SS. Magnetoencephalography Imaging Reveals Abnormal Information Flow in Temporal Lobe Epilepsy. Brain Connect 2022; 12:362-373. [PMID: 34210170 PMCID: PMC9131359 DOI: 10.1089/brain.2020.0989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background/Introduction: Widespread network disruption has been hypothesized to be an important predictor of outcomes in patients with refractory temporal lobe epilepsy (TLE). Most studies examining functional network disruption in epilepsy have largely focused on the symmetric bidirectional metrics of the strength of network connections. However, a more complete description of network dysfunction impacts in epilepsy requires an investigation of the potentially more sensitive directional metrics of information flow. Methods: This study describes a whole-brain magnetoencephalography-imaging approach to examine resting-state directional information flow networks, quantified by phase-transfer entropy (PTE), in patients with TLE compared with healthy controls (HCs). Associations between PTE and clinical characteristics of epilepsy syndrome are also investigated. Results: Deficits of information flow were specific to alpha-band frequencies. In alpha band, while HCs exhibit a clear posterior-to-anterior directionality of information flow, in patients with TLE, this pattern of regional information outflow and inflow was significantly altered in the frontal and occipital regions. The changes in information flow within the alpha band in selected brain regions were correlated with interictal spike frequency and duration of epilepsy. Conclusions: Impaired information flow is an important dimension of network dysfunction associated with the pathophysiological mechanisms of TLE.
Collapse
Affiliation(s)
- Kiwamu Kudo
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- Medical Imaging Business Center, Ricoh Company Ltd., Kanazawa, Japan
| | - Hirofumi Morise
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- Medical Imaging Business Center, Ricoh Company Ltd., Kanazawa, Japan
| | - Kamalini G. Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Danielle Mizuiri
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Abhishek S. Bhutada
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Jessie Chen
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Anne Findlay
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Heidi E. Kirsch
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- Epilepsy Center, Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Srikantan S. Nagarajan
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
66
|
Vlachos I, Kugiumtzis D, Paluš M. Phase-based causality analysis with partial mutual information from mixed embedding. CHAOS (WOODBURY, N.Y.) 2022; 32:053111. [PMID: 35649985 DOI: 10.1063/5.0087910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Instantaneous phases extracted from multivariate time series can retain information about the relationships between the underlying mechanisms that generate the series. Although phases have been widely used in the study of nondirectional coupling and connectivity, they have not found similar appeal in the study of causality. Herein, we present a new method for phase-based causality analysis, which combines ideas from the mixed embedding technique and the information-theoretic approach to causality in coupled oscillatory systems. We then use the introduced method to investigate causality in simulated datasets of bivariate, unidirectionally paired systems from combinations of Rössler, Lorenz, van der Pol, and Mackey-Glass equations. We observe that causality analysis using the phases can capture the true causal relation for coupling strength smaller than the analysis based on the amplitudes can capture. On the other hand, the causality estimation based on the phases tends to have larger variability, which is attributed more to the phase extraction process than the actual phase-based causality method. In addition, an application on real electroencephalographic data from an experiment on elicited human emotional states reinforces the usefulness of phases in causality identification.
Collapse
Affiliation(s)
- Ioannis Vlachos
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitris Kugiumtzis
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Milan Paluš
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Pod Vodárenskou věží 2, 182 07 Prague 8, Czech Republic
| |
Collapse
|
67
|
Espinoso A, Andrzejak RG. Phase irregularity: A conceptually simple and efficient approach to characterize electroencephalographic recordings from epilepsy patients. Phys Rev E 2022; 105:034212. [PMID: 35428047 DOI: 10.1103/physreve.105.034212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The severe neurological disorder epilepsy affects almost 1% of the world population. For patients who suffer from pharmacoresistant focal-onset epilepsy, electroencephalographic (EEG) recordings are essential for the localization of the brain area where seizures start. Apart from the visual inspection of the recordings, quantitative EEG signal analysis techniques proved to be useful for this purpose. Among other features, regularity versus irregularity and phase coherence versus phase independence allowed characterizing brain dynamics from the measured EEG signals. Can phase irregularities also characterize brain dynamics? To address this question, we use the univariate coefficient of phase velocity variation, defined as the ratio of phase velocity standard deviation and the mean phase velocity. Beyond that, as a bivariate measure we use the classical mean phase coherence to quantify the degree of phase locking. All phase-based measures are combined with surrogates to test null hypotheses about the dynamics underlying the signals. In the first part of our analysis, we use the Rössler model system to study our approach under controlled conditions. In the second part, we use the Bern-Barcelona EEG database which consists of focal and nonfocal signals extracted from seizure-free recordings. Focal signals are recorded from brain areas where the first seizure EEG signal changes can be detected, and nonfocal signals are recorded from areas that are not involved in the seizure at its onset. Our results show that focal signals have less phase variability and more phase coherence than nonfocal signals. Once combined with surrogates, the mean phase velocity proved to have the highest discriminative power between focal and nonfocal signals. In conclusion, conceptually simple and easy to compute phase-based measures can help to detect features induced by epilepsy from EEG signals. This holds not only for the classical mean phase coherence but even more so for univariate measures of phase irregularity.
Collapse
Affiliation(s)
- Anaïs Espinoso
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain and Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac 10-12, 08028 Barcelona, Catalonia, Spain
| | - Ralph G Andrzejak
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain
| |
Collapse
|
68
|
Smirnov DA. Generative formalism of causality quantifiers for processes. Phys Rev E 2022; 105:034209. [PMID: 35428131 DOI: 10.1103/physreve.105.034209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The concept of dynamical causal effect (DCE) is generalized and equipped with a formalism which allows one to formulate in a unified manner and interrelate a variety of causality quantifiers used in time series analysis. An elementary DCE from a subsystem Y to a subsystem X is defined within the stochastic dynamical systems framework as a response of a future X state to an appropriate variation of an initial (X,Y)-state distribution or a certain parameter of Y or of the coupling element Y→X; this response is quantified in a probabilistic sense via a certain distinction functional; elementary DCEs are assembled over a set of initial variations via an assemblage functional. To include all those aspects, a "triple brackets formula" for the general DCE is suggested and serves as a first principle to produce specific causality quantifiers as realizations of the general DCE. As an application, transfer entropy and Liang-Kleeman information flow are related surprisingly as opposite limit cases in a family of DCEs; it is shown that their "nats per time unit" may differ drastically. The suggested DCE viewpoint links any formal causality quantifier to "intervention-effect" experiments, i.e., future responses to initial variations, and so provides its dynamical interpretation, opening a way to its further physical interpretations in studies of physical systems.
Collapse
Affiliation(s)
- Dmitry A Smirnov
- Saratov Branch, Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences, 38 Zelyonaya St., Saratov 410019, Russia
| |
Collapse
|
69
|
Zhang X, Hu W, Yang F. Detection of Cause-Effect Relations Based on Information Granulation and Transfer Entropy. ENTROPY 2022; 24:e24020212. [PMID: 35205507 PMCID: PMC8871421 DOI: 10.3390/e24020212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022]
Abstract
Causality inference is a process to infer Cause-Effect relations between variables in, typically, complex systems, and it is commonly used for root cause analysis in large-scale process industries. Transfer entropy (TE), as a non-parametric causality inference method, is an effective method to detect Cause-Effect relations in both linear and nonlinear processes. However, a major drawback of transfer entropy lies in the high computational complexity, which hinders its real application, especially in systems that have high requirements for real-time estimation. Motivated by such a problem, this study proposes an improved method for causality inference based on transfer entropy and information granulation. The calculation of transfer entropy is improved with a new framework that integrates the information granulation as a critical preceding step; moreover, a window-length determination method is proposed based on delay estimation, so as to conduct appropriate data compression using information granulation. The effectiveness of the proposed method is demonstrated by both a numerical example and an industrial case, with a two-tank simulation model. As shown by the results, the proposed method can reduce the computational complexity significantly while holding a strong capability for accurate casuality detection.
Collapse
Affiliation(s)
- Xiangxiang Zhang
- School of Automation, China University of Geosciences, Wuhan 430074, China;
- Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China
- Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education, Wuhan 430074, China
| | - Wenkai Hu
- School of Automation, China University of Geosciences, Wuhan 430074, China;
- Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China
- Engineering Research Center of Intelligent Technology for Geo-Exploration, Ministry of Education, Wuhan 430074, China
- Correspondence:
| | - Fan Yang
- Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
70
|
Lian J, Luo Y, Zheng M, Zhang J, Liang J, Wen J, Guo X. Sleep-Dependent Anomalous Cortical Information Interaction in Patients With Depression. Front Neurosci 2022; 15:736426. [PMID: 35069093 PMCID: PMC8772413 DOI: 10.3389/fnins.2021.736426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Depression is a prevalent mental illness with high morbidity and is considered the main cause of disability worldwide. Brain activity while sleeping is reported to be affected by such mental illness. To explore the change of cortical information flow during sleep in depressed patients, a delay symbolic phase transfer entropy of scalp electroencephalography signals was used to measure effective connectivity between cortical regions in various frequency bands and sleep stages. The patient group and the control group shared similar patterns of information flow between channels during sleep. Obvious information flows to the left hemisphere and to the anterior cortex were found. Moreover, the occiput tended to be the information driver, whereas the frontal regions played the role of the receiver, and the right hemispheric regions showed a stronger information drive than the left ones. Compared with healthy controls, such directional tendencies in information flow and the definiteness of role division in cortical regions were both weakened in patients in most frequency bands and sleep stages, but the beta band during the N1 stage was an exception. The computable sleep-dependent cortical interaction may provide clues to characterize cortical abnormalities in depressed patients and should be helpful for the diagnosis of depression.
Collapse
Affiliation(s)
- Jiakai Lian
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yuxi Luo
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, Sun Yat-sen University, Guangzhou, China
| | - Minglong Zheng
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jiaxi Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jiuxing Liang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jinfeng Wen
- Department of Psychology, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Xinwen Guo
- Department of Psychology, Guangdong 999 Brain Hospital, Guangzhou, China
| |
Collapse
|
71
|
Inferring a Property of a Large System from a Small Number of Samples. ENTROPY 2022; 24:e24010125. [PMID: 35052151 PMCID: PMC8775033 DOI: 10.3390/e24010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
Inferring the value of a property of a large stochastic system is a difficult task when the number of samples is insufficient to reliably estimate the probability distribution. The Bayesian estimator of the property of interest requires the knowledge of the prior distribution, and in many situations, it is not clear which prior should be used. Several estimators have been developed so far in which the proposed prior us individually tailored for each property of interest; such is the case, for example, for the entropy, the amount of mutual information, or the correlation between pairs of variables. In this paper, we propose a general framework to select priors that is valid for arbitrary properties. We first demonstrate that only certain aspects of the prior distribution actually affect the inference process. We then expand the sought prior as a linear combination of a one-dimensional family of indexed priors, each of which is obtained through a maximum entropy approach with constrained mean values of the property under study. In many cases of interest, only one or very few components of the expansion turn out to contribute to the Bayesian estimator, so it is often valid to only keep a single component. The relevant component is selected by the data, so no handcrafted priors are required. We test the performance of this approximation with a few paradigmatic examples and show that it performs well in comparison to the ad-hoc methods previously proposed in the literature. Our method highlights the connection between Bayesian inference and equilibrium statistical mechanics, since the most relevant component of the expansion can be argued to be that with the right temperature.
Collapse
|
72
|
Fu D, Incio-Serra N, Motta-Ochoa R, Blain-Moraes S. Interpersonal Physiological Synchrony for Detecting Moments of Connection in Persons With Dementia: A Pilot Study. Front Psychol 2021; 12:749710. [PMID: 34966322 PMCID: PMC8711588 DOI: 10.3389/fpsyg.2021.749710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Interpersonal physiological synchrony has been successfully used to characterize social interactions and social processes during a variety of interpersonal interactions. There are a handful of measures of interpersonal physiological synchrony, but those that exist have only been validated on able-bodied adults. Here, we present a novel information-theory based measure of interpersonal physiological synchrony-normalized Symbolic Transfer Entropy (NSTE)-and compare its performance with a popular physiological synchrony measure-physiological concordance and single session index (SSI). Using wearable sensors, we measured the electrodermal activity (EDA) of five individuals with dementia and six able-bodied individuals as they participated in a movement activity that aimed to foster connection in persons with dementia. We calculated time-resolved NSTE and SSI measures for case studies of three dyads and compared them against moments of observed interpersonal connection in video recordings of the activity. Our findings suggest that NSTE-based measures of interpersonal physiological synchrony may provide additional advantages over SSI, including resolving moments of ambiguous SSI and providing information about the direction of information flow between participants. This study also investigated the feasibility of using interpersonal synchrony to gain insight into moments of connection experienced by individuals with dementia and further encourages exploration of these measures in other populations with reduced communicative abilities.
Collapse
Affiliation(s)
- Dannie Fu
- Biosignal Interaction and Personhood Technology (BIAPT) Lab, McGill University, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Faculty of Medicine, Montreal, QC, Canada
| | - Natalia Incio-Serra
- Biosignal Interaction and Personhood Technology (BIAPT) Lab, McGill University, Montreal, QC, Canada
| | - Rossio Motta-Ochoa
- Biosignal Interaction and Personhood Technology (BIAPT) Lab, McGill University, Montreal, QC, Canada
| | - Stefanie Blain-Moraes
- Biosignal Interaction and Personhood Technology (BIAPT) Lab, McGill University, Montreal, QC, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
| |
Collapse
|
73
|
van Leeuwen PJ, DeCaria M, Chakraborty N, Pulido M. A framework for causal discovery in non-intervenable systems. CHAOS (WOODBURY, N.Y.) 2021; 31:123128. [PMID: 34972351 DOI: 10.1063/5.0054228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Many frameworks exist to infer cause and effect relations in complex nonlinear systems, but a complete theory is lacking. A new framework is presented that is fully nonlinear, provides a complete information theoretic disentanglement of causal processes, allows for nonlinear interactions between causes, identifies the causal strength of missing or unknown processes, and can analyze systems that cannot be represented on directed acyclic graphs. The basic building blocks are information theoretic measures such as (conditional) mutual information and a new concept called certainty that monotonically increases with the information available about the target process. The framework is presented in detail and compared with other existing frameworks, and the treatment of confounders is discussed. While there are systems with structures that the framework cannot disentangle, it is argued that any causal framework that is based on integrated quantities will miss out potentially important information of the underlying probability density functions. The framework is tested on several highly simplified stochastic processes to demonstrate how blocking and gateways are handled and on the chaotic Lorentz 1963 system. We show that the framework provides information on the local dynamics but also reveals information on the larger scale structure of the underlying attractor. Furthermore, by applying it to real observations related to the El-Nino-Southern-Oscillation system, we demonstrate its power and advantage over other methodologies.
Collapse
Affiliation(s)
- Peter Jan van Leeuwen
- Department of Atmsopheric Science, Colorado State University, Fort Collins, Colorado 80523-1371, USA
| | - Michael DeCaria
- Department of Atmsopheric Science, Colorado State University, Fort Collins, Colorado 80523-1371, USA
| | | | - Manuel Pulido
- Department of Physics, Universidad Nacional del Nordeste, Corrientes 3400, Argentina
| |
Collapse
|
74
|
Arai K, Davis P. Batch and stream entropy with fixed partitions for chaos-based random bit generators. Phys Rev E 2021; 104:034217. [PMID: 34654084 DOI: 10.1103/physreve.104.034217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/14/2021] [Indexed: 11/07/2022]
Abstract
Measures are proposed for reliably estimating the entropy of bits produced in an entropy source using a chaotic physical system. The measures are reliable with respect to a "guessing" attack and depend on the end-to-end method of transfer of entropy from the chaotic physical system to the bit entropy source. Fixed partitions are considered to correspond with practical methods for fast digital sampling of analog signals. We propose two different measures corresponding to the batch and streaming modes of entropy transfer. Numerical examples are provided to demonstrate features of dependence of the batch and stream entropy on fixed partitions with uniform or nonuniform types of chaos.
Collapse
Affiliation(s)
- Kenichi Arai
- NTT Communication Science Laboratories, NTT Corporation, Kyoto 619-0237, Japan
| | - Peter Davis
- Telecognix Corporation, Kyoto 606-8314, Japan
| |
Collapse
|
75
|
Complexity Economics in a Time of Crisis: Heterogeneous Agents, Interconnections, and Contagion. SYSTEMS 2021. [DOI: 10.3390/systems9040073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this article, we consider a variety of different mechanisms through which crises such as COVID-19 can propagate from the micro-economic behaviour of individual agents through to an economy’s aggregate dynamics and subsequently spill over into the global economy. Our central theme is one of changes in the behaviour of heterogeneous agents, agents who differ in terms of some measure of size, wealth, connectivity, or behaviour, in different parts of an economy. These are illustrated through a variety of case studies, from individuals and households with budgetary constraints, to financial markets, to companies composed of thousands of small projects, to companies that implement single multi-billion dollar projects. In each case, we emphasise the role of data or theoretical models and place them in the context of measuring their inter-connectivity and emergent dynamics. Some of these are simple models that need to be ‘dressed’ in socio-economic data to be used for policy-making, and we give an example of how to do this with housing markets, while others are more similar to archaeological evidence; they provide hints about the bigger picture but have yet to be unified with other results. The result is only an outline of what is possible but it shows that we are drawing closer to an integrated set of concepts, principles, and models. In the final section, we emphasise the potential as well as the limitations and what the future of these methods hold for economics.
Collapse
|
76
|
Kang JH, Youn J, Kim SH, Kim J. Effects of Frontal Theta Rhythms in a Prior Resting State on the Subsequent Motor Imagery Brain-Computer Interface Performance. Front Neurosci 2021; 15:663101. [PMID: 34483816 PMCID: PMC8414888 DOI: 10.3389/fnins.2021.663101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/27/2021] [Indexed: 12/01/2022] Open
Abstract
Dealing with subjects who are unable to attain a proper level of performance, that is, those with brain–computer interface (BCI) illiteracy or BCI inefficients, is still a major issue in human electroencephalography (EEG) BCI systems. The most suitable approach to address this issue is to analyze the EEG signals of individual subjects independently recorded before the main BCI tasks, to evaluate their performance on these tasks. This study mainly focused on non-linear analyses and deep learning techniques to investigate the significant relationship between the intrinsic characteristics of a prior idle resting state and the subsequent BCI performance. To achieve this main objective, a public EEG motor/movement imagery dataset that constituted two individual EEG signals recorded from an idle resting state and a motor imagery BCI task was used in this study. For the EEG processing in the prior resting state, spectral analysis but also non-linear analyses, such as sample entropy, permutation entropy, and recurrent quantification analyses (RQA), were performed to obtain individual groups of EEG features to represent intrinsic EEG characteristics in the subject. For the EEG signals in the BCI tasks, four individual decoding methods, as a filter-bank common spatial pattern-based classifier and three types of convolution neural network-based classifiers, quantified the subsequent BCI performance in the subject. Statistical linear regression and ANOVA with post hoc analyses verified the significant relationship between non-linear EEG features in the prior resting state and three types of BCI performance as low-, intermediate-, and high-performance groups that were statistically discriminated by the subsequent BCI performance. As a result, we found that the frontal theta rhythm ranging from 4 to 8 Hz during the eyes open condition was highly associated with the subsequent BCI performance. The RQA findings that higher determinism and lower mean recurrent time were mainly observed in higher-performance groups indicate that more regular and stable properties in the EEG signals over the frontal regions during the prior resting state would provide a critical clue to assess an individual BCI ability in the following motor imagery task.
Collapse
Affiliation(s)
- Jae-Hwan Kang
- AI Grand ICT Research Center, Dong-eui University, Busan, South Korea
| | - Joosang Youn
- Department of Industrial ICT Engineering, Dong-eui University, Busan, South Korea
| | - Sung-Hee Kim
- Department of Industrial ICT Engineering, Dong-eui University, Busan, South Korea
| | - Junsuk Kim
- Department of Industrial ICT Engineering, Dong-eui University, Busan, South Korea
| |
Collapse
|
77
|
Driver fatigue detection based on prefrontal EEG using multi-entropy measures and hybrid model. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
78
|
Zhou GL, Pan Y, Liao YY, Liang JX, Zhang XM, Luo YX. Short-Term Impact of Sleep Apnea/Hypopnea on the Interaction Between Various Cortical Areas. Clin EEG Neurosci 2021; 52:296-306. [PMID: 34003701 DOI: 10.1177/1550059420965441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Sleep apnea/hypopnea syndrome (SAHS) can change brain structure and function. These alterations are related to respiratory event-induced abnormal sleep, however, how brain activity changes during these events is less well understood. METHODS To study information content and interaction among various cortical regions, we analyzed the variations of permutation entropy (PeEn) and symbolic transfer entropy (STE) of electroencephalography (EEG) activity during respiratory events. In this study, 57 patients with moderate SAHS were enrolled, including 2804 respiratory events. The events terminated with cortical arousal were independently researched. RESULTS PeEn and STE were lower during apnea/hypopnea, and most of the brain interaction was higher after apnea/hypopnea termination than that before apnea in N2 stage. As indicated by STE, the respiratory events also affected the stability of information transmission mode. In N1, N2, and rapid eye movement (REM) stages, the information flow direction was posterior-to-anterior, but the anterior-to-posterior increased relatively during apnea/hypopnea. The above EEG activity trends maintained in events with cortical arousal. CONCLUSIONS These results may be related to the intermittent hypoxia during apnea and the cortical response. Furthermore, increased frontal information outflow, which was related to the compensatory activation of frontal neurons, may associate with cognitive function.
Collapse
Affiliation(s)
- Guo-Lin Zhou
- School of Biomedical Engineering, 26469Sun Yat-Sen University, Guangzhou, China
| | - Yu Pan
- School of Biomedical Engineering, 26469Sun Yat-Sen University, Guangzhou, China
| | - Yuan-Yuan Liao
- School of Biomedical Engineering, 26469Sun Yat-Sen University, Guangzhou, China
| | - Jiu-Xing Liang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, 12451South China Normal University, Guangzhou, China
| | - Xiang-Min Zhang
- 373651Sleep-Disordered Breathing Center of the 6th Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yu-Xi Luo
- School of Biomedical Engineering, 26469Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
79
|
Li Y, Wang Y, Chang H, Cheng B, Miao J, Li S, Hu H, Huang L, Wang Q. Inhibitory Effects of Dexmedetomidine and Propofol on Gastrointestinal Tract Motility Involving Impaired Enteric Glia Ca 2+ Response in Mice. Neurochem Res 2021; 46:1410-1422. [PMID: 33656693 DOI: 10.1007/s11064-021-03280-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/31/2022]
Abstract
Propofol and dexmedetomidine are popular used for sedation in ICU, however, inadequate attention has been paid to their effect on gastrointestinal tract (GIT) motility. Present study aimed to compare the effect of propofol and dexmedetomidine on GIT motility at parallel level of sedation and explore the possible mechanism. Male C57BL/6 mice (8-10 weeks) were randomly divided into control, propofol and dexmedetomidine group. After intraperitoneal injection of propofol or dexmedetomidine, comparable sedative level was confirmed by sedative score, physiological parameters and electroencephalogram (EEG). Different segments of GIT motility in vivo (gastric emptying, small intestine transit, distal colon bead expulsion, stool weight and number of fecal pellets, gastrointestinal transit and whole gut transit time) and colonic migrating motor complexes (CMMCs) pattern in vitro were evaluated. The Ca2+ response of primary enteric glia was examined under the treatment of propofol or dexmedetomidine. There is little difference in physiological parameters and composite permutation entropy index (CPEI) between administration of 50 mg/kg propofol and 40 μg/kg dexmedetomidine, indicated that parallel level of sedation was reached. Data showed that propofol and dexmedetomidine had significantly inhibitory effect on GIT motility while dexmedetomidine was stronger. Also, the amplitude (ΔF/F0) of Ca2+ response in primary enteric glia was attenuated after treated with the sedatives while the effect of dexmedetomidine was greater than propofol. These findings demonstrated that dexmedetomidine caused stronger inhibitory effects on GIT motility in sedative mice, which may involve impaired Ca2+ response in enteric glia. Hence, dexmedetomidine should be carefully applied especially for potential GIT dysmotility patient.
Collapse
Affiliation(s)
- Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yubo Wang
- School of Life Science and Technology, Xidian University, Xi'an, 710061, Shaanxi, China
| | - Haiqing Chang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Bo Cheng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jiwen Miao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shuang Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi'an, 710061, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
80
|
Pan Y, Yang J, Zhang T, Wen J, Pang F, Luo Y. Characterization of the abnormal cortical effective connectivity in patients with sleep apnea hypopnea syndrome during sleep. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 204:106060. [PMID: 33813061 DOI: 10.1016/j.cmpb.2021.106060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Sleep apnea hypopnea syndrome (SAHS) is a prevalent sleep breathing disorder that can lead to brain damage and is also a risk factor for cognitive impairment and some common diseases. Studies on cortical effective connectivity (EC) during sleep may provide more direct and pathological information and shed new light on brain dysfunction due to SAHS. However, the EC is rarely explored in SAHS patients, especially during different sleep stages. METHODS To this end, six-channel EEG signals of 43 SAHS patients and 41 healthy participants were recorded by whole-night polysomnography (PSG). The symbolic transfer entropy (STE) was applied to measure the EC between cortical regions in different frequency bands. Posterior-anterior ratio (PA) was employed to evaluate the posterior-to-anterior pattern of information flow based on overall cortical EC. The statistical characteristics of the STE and PA and of the intra-individual normalized parameters (STE* and PA*) were served as different feature sets for classifying the severity of SAHS. RESULTS Although the patterns of STE across electrodes were similar, significant differences were found between the patient and the control groups. The variation trends across stages in the PA were also different in multiple frequency bands between groups. Important features extracted from the STE* and PA* were distributed in multiple rhythms, mainly in δ, α, and γ. The PA* feature set gave the best results, with accuracies of 98.8% and 83.3% for SAHS diagnosis (binary) and severity classification (four-way). CONCLUSIONS These results suggest that modifications in cortical EC were existed in SAHS patients during sleep, which may help characterize cortical abnormality in patients.
Collapse
Affiliation(s)
- Yu Pan
- School of Biomedical Engineering, Sun Yat-sen University, China
| | - Juan Yang
- School of Biomedical Engineering, Sun Yat-sen University, China
| | - Tingting Zhang
- School of Biomedical Engineering, Sun Yat-sen University, China
| | - Jinfeng Wen
- Psychology Department, Guangdong 999 Brain Hospital, China
| | - Feng Pang
- Sleep-Disordered Breathing Center, the Sixth Affiliated Hospital of Sun Yat-sen University, China
| | - Yuxi Luo
- School of Biomedical Engineering, Sun Yat-sen University, China; Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Sun Yat-sen University, China.
| |
Collapse
|
81
|
Diagnosing Schizophrenia Using Effective Connectivity of Resting-State EEG Data. ALGORITHMS 2021. [DOI: 10.3390/a14050139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a serious mental illness associated with neurobiological deficits. Even though the brain activities during tasks (i.e., P300 activities) are considered as biomarkers to diagnose schizophrenia, brain activities at rest have the potential to show an inherent dysfunctionality in schizophrenia and can be used to understand the cognitive deficits in these patients. In this study, we developed a machine learning algorithm (MLA) based on eyes closed resting-state electroencephalogram (EEG) datasets, which record the neural activity in the absence of any tasks or external stimuli given to the subjects, aiming to distinguish schizophrenic patients (SCZs) from healthy controls (HCs). The MLA has two steps. In the first step, symbolic transfer entropy (STE), which is a measure of effective connectivity, is applied to resting-state EEG data. In the second step, the MLA uses the STE matrix to find a set of features that can successfully discriminate SCZ from HC. From the results, we found that the MLA could achieve a total accuracy of 96.92%, with a sensitivity of 95%, a specificity of 98.57%, precision of 98.33%, F1-score of 0.97, and Matthews correlation coefficient (MCC) of 0.94 using only 10 out of 1900 STE features, which implies that the STE matrix extracted from resting-state EEG data may be a promising tool for the clinical diagnosis of schizophrenia.
Collapse
|
82
|
Fast and effective pseudo transfer entropy for bivariate data-driven causal inference. Sci Rep 2021; 11:8423. [PMID: 33875707 PMCID: PMC8055902 DOI: 10.1038/s41598-021-87818-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/30/2021] [Indexed: 11/08/2022] Open
Abstract
Identifying, from time series analysis, reliable indicators of causal relationships is essential for many disciplines. Main challenges are distinguishing correlation from causality and discriminating between direct and indirect interactions. Over the years many methods for data-driven causal inference have been proposed; however, their success largely depends on the characteristics of the system under investigation. Often, their data requirements, computational cost or number of parameters limit their applicability. Here we propose a computationally efficient measure for causality testing, which we refer to as pseudo transfer entropy (pTE), that we derive from the standard definition of transfer entropy (TE) by using a Gaussian approximation. We demonstrate the power of the pTE measure on simulated and on real-world data. In all cases we find that pTE returns results that are very similar to those returned by Granger causality (GC). Importantly, for short time series, pTE combined with time-shifted (T-S) surrogates for significance testing strongly reduces the computational cost with respect to the widely used iterative amplitude adjusted Fourier transform (IAAFT) surrogate testing. For example, for time series of 100 data points, pTE and T-S reduce the computational time by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$82\%$$\end{document}82% with respect to GC and IAAFT. We also show that pTE is robust against observational noise. Therefore, we argue that the causal inference approach proposed here will be extremely valuable when causality networks need to be inferred from the analysis of a large number of short time series.
Collapse
|
83
|
Stramaglia S, Scagliarini T, Antonacci Y, Faes L. Local Granger causality. Phys Rev E 2021; 103:L020102. [PMID: 33735992 DOI: 10.1103/physreve.103.l020102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/26/2021] [Indexed: 11/06/2022]
Abstract
Granger causality (GC) is a statistical notion of causal influence based on prediction via linear vector autoregression. For Gaussian variables it is equivalent to transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes. We exploit such equivalence and calculate exactly the local Granger causality, i.e., the profile of the information transferred from the driver to the target process at each discrete time point; in this frame, GC is the average of its local version. We show that the variability of the local GC around its mean relates to the interplay between driver and innovation (autoregressive noise) processes, and it may reveal transient instances of information transfer not detectable from its average values. Our approach offers a robust and computationally fast method to follow the information transfer along the time history of linear stochastic processes, as well as of nonlinear complex systems studied in the Gaussian approximation.
Collapse
Affiliation(s)
- Sebastiano Stramaglia
- Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, and INFN, Sezione di Bari, 70126 Bari, Italy
| | - Tomas Scagliarini
- Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, and INFN, Sezione di Bari, 70126 Bari, Italy
| | - Yuri Antonacci
- Dipartimento di Fisica e Chimica, Universitá di Palermo, 90123 Palermo, Italy
| | - Luca Faes
- Dipartimento di Ingegneria, Universitá di Palermo, 90128 Palermo, Italy
| |
Collapse
|
84
|
Masychev K, Ciprian C, Ravan M, Reilly JP, MacCrimmon D. Advanced Signal Processing Methods for Characterization of Schizophrenia. IEEE Trans Biomed Eng 2021; 68:1123-1130. [PMID: 33656984 DOI: 10.1109/tbme.2020.3011842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Schizophrenia is a severe mental disorder associated with nerobiological deficits. Auditory oddball P300 have been found to be one of the most consistent markers of schizophrenia. The goal of this study is to find quantitative features that can objectively distinguish patients with schizophrenia (SCZs) from healthy controls (HCs) based on their recorded auditory odd-ball P300 electroencephalogram (EEG) data. METHODS Using EEG dataset, we develop a machine learning (ML) algorithm to distinguish 57 SCZs from 66 HCs. The proposed ML algorithm has three steps. In the first step, a brain source localization (BSL) procedure using the linearly constrained minimum variance (LCMV) beamforming approach is employed on EEG signals to extract source waveforms from 30 specified brain regions. In the second step, a method for estimating effective connectivity, referred to as symbolic transfer entropy (STE), is applied to the source waveforms. In the third step the ML algorithm is applied to the STE connectivity matrix to determine whether a set of features can be found that successfully discriminate SCZ from HC. RESULTS The findings revealed that the SCZs have significantly higher effective connectivity compared to HCs and the selected STE features could achieve an accuracy of 92.68%, with a sensitivity of 92.98% and specificity of 92.42%. CONCLUSION The findings imply that the extracted features are from the regions that are mainly affected by SCZ and can be used to distinguish SCZs from HCs. SIGNIFICANCE The proposed ML algorithm may prove to be a promising tool for the clinical diagnosis of schizophrenia.
Collapse
|
85
|
Deng C, Jiang W, Wang S. Detecting interactions in discrete-time dynamics by random variable resetting. CHAOS (WOODBURY, N.Y.) 2021; 31:033146. [PMID: 33810763 DOI: 10.1063/5.0028411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Detecting the interactions in networks helps us to understand the collective behaviors of complex systems. However, doing so is challenging due to systemic noise, nonlinearity, and a lack of information. Very few researchers have attempted to reconstruct discrete-time dynamic networks. Recently, Shi et al. proposed resetting a random state variable to infer the interactions in a continuous-time dynamic network. In this paper, we introduce a random resetting method for discrete-time dynamic networks. The statistical characteristics of the method are investigated and verified with numerical simulations. In addition, this reconstruction method was evaluated for limited data and weak coupling and within multiple-attractor systems.
Collapse
Affiliation(s)
- Changbao Deng
- School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Weinuo Jiang
- School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Shihong Wang
- School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
86
|
Kottlarz I, Berg S, Toscano-Tejeida D, Steinmann I, Bähr M, Luther S, Wilke M, Parlitz U, Schlemmer A. Extracting Robust Biomarkers From Multichannel EEG Time Series Using Nonlinear Dimensionality Reduction Applied to Ordinal Pattern Statistics and Spectral Quantities. Front Physiol 2021; 11:614565. [PMID: 33597891 PMCID: PMC7882607 DOI: 10.3389/fphys.2020.614565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022] Open
Abstract
In this study, ordinal pattern analysis and classical frequency-based EEG analysis methods are used to differentiate between EEGs of different age groups as well as individuals. As characteristic features, functional connectivity as well as single-channel measures in both the time and frequency domain are considered. We compare the separation power of each feature set after nonlinear dimensionality reduction using t-distributed stochastic neighbor embedding and demonstrate that ordinal pattern-based measures yield results comparable to frequency-based measures applied to preprocessed data, and outperform them if applied to raw data. Our analysis yields no significant differences in performance between single-channel features and functional connectivity features regarding the question of age group separation.
Collapse
Affiliation(s)
- Inga Kottlarz
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Sebastian Berg
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Diana Toscano-Tejeida
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Iris Steinmann
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Luther
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Melanie Wilke
- Department of Cognitive Neurology, University Medical Center Göttingen, Göttingen, Germany.,German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Ulrich Parlitz
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Alexander Schlemmer
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
87
|
Brain network motifs are markers of loss and recovery of consciousness. Sci Rep 2021; 11:3892. [PMID: 33594110 PMCID: PMC7887248 DOI: 10.1038/s41598-021-83482-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 02/03/2021] [Indexed: 01/12/2023] Open
Abstract
Motifs are patterns of inter-connections between nodes of a network, and have been investigated as building blocks of directed networks. This study explored the re-organization of 3-node motifs during loss and recovery of consciousness. Nine healthy subjects underwent a 3-h anesthetic protocol while 128-channel electroencephalography (EEG) was recorded. In the alpha (8-13 Hz) band, 5-min epochs of EEG were extracted for: Baseline; Induction; Unconscious; 30-, 10- and 5-min pre-recovery of responsiveness; 30- and 180-min post-recovery of responsiveness. We constructed a functional brain network using the weighted and directed phase lag index, on which we calculated the frequency and topology of 3-node motifs. Three motifs (motifs 1, 2 and 5) were significantly present across participants and epochs, when compared to random networks (p < 0.05). The topology of motifs 1 and 5 changed significantly between responsive and unresponsive epochs (p-values < 0.01; Kendall's W = 0.664 (motif 1) and 0.529 (motif 5)). Motif 1 was constituted of long-range chain-like connections, while motif 5 was constituted of short-range, loop-like connections. Our results suggest that anesthetic-induced unconsciousness is associated with a topological re-organization of network motifs. As motif topological re-organization may precede (motif 5) or accompany (motif 1) the return of responsiveness, motifs could contribute to the understanding of the neural correlates of consciousness.
Collapse
|
88
|
Ciprian C, Masychev K, Ravan M, Reilly JP, Maccrimmon D. A Machine Learning Approach Using Effective Connectivity to Predict Response to Clozapine Treatment. IEEE Trans Neural Syst Rehabil Eng 2021; 28:2598-2607. [PMID: 33513093 DOI: 10.1109/tnsre.2020.3019685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Clozapine is an anti-psychotic drug that is known to be effective in the treatment of patients with chronic treatment-resistant schizophrenia (TRS-SCZ), commonly estimated to be around one third of all cases. However, clinicians sometimes delay the initiation of this drug because of its adverse side-effects. Therefore, identification of predictive biological markers of clozapine response are extremely valuable to aid on-time initiation of treatment. In this study, we develop a machine learning (ML) algorithm based on pre-treatment electroencephalogram (EEG) data sets to predict response to clozapine treatment in 57 TRS-SCZs, where the treatment outcome, after at least one-year follow-up is determined using the positive and negative syndrome scale (PANSS). The ML algorithm has three steps: 1) a brain source localization (BSL) procedure using the linearly constrained minimum variance (LCMV) beamforming approach is employed on the EEG signals to extract source waveforms from 30 specified brain regions. 2) An effective connectivity measure named symbolic transfer entropy (STE) is applied to the source waveforms. 3) A ML algorithm is applied to the STE matrix to determine whether a set of features can be found to discriminate most-responder (MR) SCZ patients from least-responder (LR) ones. The findings of this study reveal that STE features can achieve an accuracy of 95.83%. This finding implies that analysis of pre-treatment EEG could contribute to our ability to distinguish MR from LR SCZs, and that the source STE matrix may prove to be a promising tool for the prediction of the clinical response to clozapine.
Collapse
|
89
|
Heat flow random walks in biomolecular systems using symbolic transfer entropy and graph theory. J Mol Graph Model 2021; 104:107838. [PMID: 33529933 DOI: 10.1016/j.jmgm.2021.107838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/19/2020] [Accepted: 01/04/2021] [Indexed: 11/23/2022]
Abstract
This study combines the information- and graph-theoretic measures to investigate the cluster modulation of the amino acid residues and nucleotides at complex biomolecular interfaces. The symbolic transfer entropy is used as an information-theoretic measure. I also used graph theory to obtain information and heat flow weighted digraph models used to study the topology of information and heat flow paths at complex biomolecular interfaces. I introduce the graph-theoretic measures, such as the influence score and betweenness centrality, to identify the most influential amino acid and nucleotide sequences as sources of the information and absorb centers of the structure's heat flow. PageRank-like random walks algorithm is used to analyze the network of amino acid and nucleotide sequences at the protein-RNA interface combined with weighted digraph models. The cluster analysis using graph-theoretic measures revealed the modular molecular structure and the mechanism of the binding interface. In this study, the first benchmark system is an intuitive directed information flow network used to test the algorithms, and the second benchmark is a protein-RNA complex system. The approach was able to identify the most influential amino acid residues and nucleotides. Furthermore, the statistical cluster analysis using graph-theoretic measures revealed the modular molecular structure and the binding mechanism at the interface.
Collapse
|
90
|
Effect of muscle fatigue on the cortical-muscle network: A combined electroencephalogram and electromyogram study. Brain Res 2020; 1752:147221. [PMID: 33358729 DOI: 10.1016/j.brainres.2020.147221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/14/2020] [Accepted: 11/28/2020] [Indexed: 11/23/2022]
Abstract
Electroencephalogram (EEG) and electromyogram (EMG) signals during motion control reflect the interaction between the cortex and muscle. Therefore, dynamic information regarding the cortical-muscle system is of significance for the evaluation of muscle fatigue. We treated the cortex and muscle as a whole system and then applied graph theory and symbolic transfer entropy to establish an effective cortical-muscle network in the beta band (12-30 Hz) and the gamma band (30-45 Hz). Ten healthy volunteers were recruited to participate in the isometric contraction at the level of 30% maximal voluntary contraction. Pre- and post-fatigue EEG and EMG data were recorded. According to the Borg scale, only data with an index greater than 14<19 were selected as fatigue data. The results show that after muscle fatigue: (1) the decrease in the force-generating capacity leads to an increase in STE of the cortical-muscle system; (2) increases of dynamic forces in fatigue leads to a shift from the beta band to gamma band in the activity of the cortical-muscle network; (3) the areas of the frontal and parietal lobes involved in muscle activation within the ipsilateral hemibrain have a compensatory role. Classification based on support vector machine algorithm showed that the accuracy is improved compared to the brain network. These results illustrate the regulation mechanism of the cortical-muscle system during the development of muscle fatigue, and reveal the great potential of the cortical-muscle network in analyzing motor tasks.
Collapse
|
91
|
Smirnov DA. Transfer entropies within dynamical effects framework. Phys Rev E 2020; 102:062139. [PMID: 33466034 DOI: 10.1103/physreve.102.062139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/01/2020] [Indexed: 11/07/2022]
Abstract
Transfer entropy (TE) is widely used in time-series analysis to detect causal couplings between temporally evolving objects. As a coupling strength quantifier, the TE alone often seems insufficient, raising the question of its further interpretations. Here the TE is related to dynamical causal effects (DCEs) which quantify long-term responses of a coupling recipient to variations in a coupling source or in a coupling itself: Detailed relationships are established for a paradigmatic stochastic dynamical system of bidirectionally coupled linear overdamped oscillators, their practical applications and possible extensions are discussed. It is shown that two widely used versions of the TE (original and infinite-history) can become qualitatively distinct, diverging to different long-term DCEs.
Collapse
Affiliation(s)
- Dmitry A Smirnov
- Saratov Branch, Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, 38 Zelyonaya St., Saratov 410019, Russia
| |
Collapse
|
92
|
Li Z, Li S, Yu T, Li X. Measuring the Coupling Direction between Neural Oscillations with Weighted Symbolic Transfer Entropy. ENTROPY (BASEL, SWITZERLAND) 2020; 22:e22121442. [PMID: 33371251 PMCID: PMC7767336 DOI: 10.3390/e22121442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 05/30/2023]
Abstract
Neural oscillations reflect rhythmic fluctuations in the synchronization of neuronal populations and play a significant role in neural processing. To further understand the dynamic interactions between different regions in the brain, it is necessary to estimate the coupling direction between neural oscillations. Here, we developed a novel method, termed weighted symbolic transfer entropy (WSTE), that combines symbolic transfer entropy (STE) and weighted probability distribution to measure the directionality between two neuronal populations. The traditional STE ignores the degree of difference between the amplitude values of a time series. In our proposed WSTE method, this information is picked up by utilizing a weighted probability distribution. The simulation analysis shows that the WSTE method can effectively estimate the coupling direction between two neural oscillations. In comparison with STE, the new method is more sensitive to the coupling strength and is more robust against noise. When applied to epileptic electrocorticography data, a significant coupling direction from the anterior nucleus of thalamus (ANT) to the seizure onset zone (SOZ) was detected during seizures. Considering the superiorities of the WSTE method, it is greatly advantageous to measure the coupling direction between neural oscillations and consequently characterize the information flow between different brain regions.
Collapse
Affiliation(s)
- Zhaohui Li
- School of Information Science and Engineering (School of Software), Yanshan University, Qinhuangdao 066004, China; (Z.L.); (S.L.)
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao 066004, China
| | - Shuaifei Li
- School of Information Science and Engineering (School of Software), Yanshan University, Qinhuangdao 066004, China; (Z.L.); (S.L.)
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Capital Medical University, Beijing 100053, China;
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
93
|
Lehnertz K, Bröhl T, Rings T. The Human Organism as an Integrated Interaction Network: Recent Conceptual and Methodological Challenges. Front Physiol 2020; 11:598694. [PMID: 33408639 PMCID: PMC7779628 DOI: 10.3389/fphys.2020.598694] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022] Open
Abstract
The field of Network Physiology aims to advance our understanding of how physiological systems and sub-systems interact to generate a variety of behaviors and distinct physiological states, to optimize the organism's functioning, and to maintain health. Within this framework, which considers the human organism as an integrated network, vertices are associated with organs while edges represent time-varying interactions between vertices. Likewise, vertices may represent networks on smaller spatial scales leading to a complex mixture of interacting homogeneous and inhomogeneous networks of networks. Lacking adequate analytic tools and a theoretical framework to probe interactions within and among diverse physiological systems, current approaches focus on inferring properties of time-varying interactions-namely strength, direction, and functional form-from time-locked recordings of physiological observables. To this end, a variety of bivariate or, in general, multivariate time-series-analysis techniques, which are derived from diverse mathematical and physical concepts, are employed and the resulting time-dependent networks can then be further characterized with methods from network theory. Despite the many promising new developments, there are still problems that evade from a satisfactory solution. Here we address several important challenges that could aid in finding new perspectives and inspire the development of theoretic and analytical concepts to deal with these challenges and in studying the complex interactions between physiological systems.
Collapse
Affiliation(s)
- Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| | - Timo Bröhl
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| | - Thorsten Rings
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
| |
Collapse
|
94
|
Wang Y, Chen W. Effective brain connectivity for fNIRS data analysis based on multi-delays symbolic phase transfer entropy. J Neural Eng 2020; 17:056024. [PMID: 33055365 DOI: 10.1088/1741-2552/abb4a4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Recently, effective connectivity (EC) calculation methods for functional near-infrared spectroscopy (fNIRS) data mainly face two problems: the first problem is that noise can seriously affect the EC calculation and even lead to false connectivity; the second problem is that it ignores the various real neurotransmission delays between the brain region, and instead uses a fixed delay coefficient for calculation. APPROACH To overcome these two issues, a delay symbolic phase transfer entropy (dSPTE) is proposed by developing traditional transfer entropy (TE) to estimate EC for fNIRS. Firstly, the phase time sequence was obtained from the original sequence by the Hilbert transform and state-space reconstruction was realized using a uniform embedding scheme. Then, a symbolization technique was applied based on a neural-gas algorithm to improve its noise robustness. Finally, the EC was calculated on multiple time delay scales to match different inter-region neurotransmission delays. MAIN RESULTS A linear AR model, a nonlinear model and a multivariate hybrid model were introduced to simulate the performance of dSPTE, and the results showed that the accuracy of dSPTE was the highest, up to 74.27%, and specificity was 100% which means no false connectivity. The results confirmed that the dSPTE method realized better noise robustness, higher accuracy, and correct identification even if there was a long delay between series. Finally, we applied dSPTE to fNIRS dataset to analyse the EC during the finger-tapping task, the results showed that EC strength of task state significantly increased compared with the resting state. SIGNIFICANCE The proposed dSPTE method is a promising way to measure the EC for fNIRS. It incorporates the phase information TE with a symbolic process for fNIRS analysis for the first time. It has been confirmed to be noise robust and suitable for the complex network with different coupling delays.
Collapse
Affiliation(s)
- Yalin Wang
- Department of Electronic Engineering, Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, People's Republic of China. Human Phenome Institute, Fudan University, Shanghai, People's Republic of China
| | | |
Collapse
|
95
|
Martínez CGB, Niediek J, Mormann F, Andrzejak RG. Seizure Onset Zone Lateralization Using a Non-linear Analysis of Micro vs. Macro Electroencephalographic Recordings During Seizure-Free Stages of the Sleep-Wake Cycle From Epilepsy Patients. Front Neurol 2020; 11:553885. [PMID: 33041993 PMCID: PMC7527464 DOI: 10.3389/fneur.2020.553885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/12/2020] [Indexed: 11/23/2022] Open
Abstract
The application of non-linear signal analysis techniques to biomedical data is key to improve our knowledge about complex physiological and pathological processes. In particular, the use of non-linear techniques to study electroencephalographic (EEG) recordings can provide an advanced characterization of brain dynamics. In epilepsy these dynamics are altered at different spatial scales of neuronal organization. We therefore apply non-linear signal analysis to EEG recordings from epilepsy patients derived with intracranial hybrid electrodes, which are composed of classical macro contacts and micro wires. Thereby, these electrodes record EEG at two different spatial scales. Our aim is to test the degree to which the analysis of the EEG recorded at these different scales allows us to characterize the neuronal dynamics affected by epilepsy. For this purpose, we retrospectively analyzed long-term recordings performed during five nights in three patients during which no seizures took place. As a benchmark we used the accuracy with which this analysis allows determining the hemisphere that contains the seizure onset zone, which is the brain area where clinical seizures originate. We applied the surrogate-corrected non-linear predictability score (ψ), a non-linear signal analysis technique which was shown previously to be useful for the lateralization of the seizure onset zone from classical intracranial EEG macro contact recordings. Higher values of ψ were found predominantly for signals recorded from the hemisphere containing the seizure onset zone as compared to signals recorded from the opposite hemisphere. These differences were found not only for the EEG signals recorded with macro contacts, but also for those recorded with micro wires. In conclusion, the information obtained from the analysis of classical macro EEG contacts can be complemented by the one of micro wire EEG recordings. This combined approach may therefore help to further improve the degree to which quantitative EEG analysis can contribute to the diagnostics in epilepsy patients.
Collapse
Affiliation(s)
- Cristina G B Martínez
- Department of Communication and Information Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Johannes Niediek
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Florian Mormann
- Department of Epileptology, University of Bonn, Bonn, Germany
| | - Ralph G Andrzejak
- Department of Communication and Information Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
96
|
Zanin M, Papo D. Assessing functional propagation patterns in COVID-19. CHAOS, SOLITONS, AND FRACTALS 2020; 138:109993. [PMID: 32546901 PMCID: PMC7290208 DOI: 10.1016/j.chaos.2020.109993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/06/2020] [Indexed: 05/06/2023]
Abstract
Among the many efforts done by the scientific community to help coping with the COVID-19 pandemic, one of the most important has been the creation of models to describe its propagation, as these are expected to guide the deployment of containment and health policies. These models are commonly based on exogenous information, as e.g. mobility data, whose limitedness always compromise the reliability of obtained results. In this contribution we propose a different approach, based on extracting relationships between the evolution of the disease in different regions through information theoretical metrics. In a way similar to what is commonly done in neuroscience, propagation is understood as information transfer, and the resulting propagation patterns are represented and studied as functional networks. By applying this methodology to the dynamics of COVID-19 in several countries and regions thereof, we were able to reconstruct static and time-varying propagation graphs. We further discuss the advantages, promises and open research questions associated with this functional approach.
Collapse
Affiliation(s)
- Massimiliano Zanin
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain
| | - David Papo
- Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
| |
Collapse
|
97
|
Masychev K, Ciprian C, Ravan M, Manimaran A, Deshmukh A. Quantitative biomarkers to predict response to clozapine treatment using resting EEG data. Schizophr Res 2020; 223:289-296. [PMID: 32928617 DOI: 10.1016/j.schres.2020.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022]
Abstract
Clozapine is an anti-psychotic drug that is known to be effective in the treatment of patients with chronic treatment-resistant schizophrenia (TRS-SCZ), commonly estimated to be around one third of all cases. However, clinicians sometimes delay the initiation of this drug because of its adverse side-effects. Therefore, identification of predictive biomarkers of clozapine response is extremely valuable to aid on-time initiation of clozapine treatment. In this study, we develop a machine learning (ML) algorithm based on the pre-treatment electroencephalogram (EEG) data sets to predict response to clozapine treatment in TRS-SCZs, where the treatment outcome, after at least one-year follow-up is determined using the Positive and Negative Syndrome Scale (PANSS). The ML algorithm has two steps: 1) an effective connectivity named symbolic transfer entropy (STE) is applied to resting state EEG waveforms, 2) the ML algorithm is applied to STE matrix to determine whether a set of features can be found to discriminate most responder (MR) SCZ patients from least responder (LR) ones. The findings of this study revealed that the STE features could achieve an accuracy of 89.90%. This finding implies that analysis of pre-treatment EEG could contribute to our ability to distinguish MR from LR SCZs, and that the STE matrix may prove to be a promising tool for the prediction of the clinical response to clozapine.
Collapse
Affiliation(s)
- Kirill Masychev
- Department of Computing Science, New York Institute of Technology, New York, NY, USA
| | - Claudio Ciprian
- Department of Computing Science, New York Institute of Technology, New York, NY, USA
| | - Maryam Ravan
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, USA.
| | - Akshaya Manimaran
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, USA
| | - AnkitaAmol Deshmukh
- Department of Computing Science, New York Institute of Technology, New York, NY, USA
| |
Collapse
|
98
|
Karakaya M, Macrì S, Porfiri M. Behavioral Teleporting of Individual Ethograms onto Inanimate Robots: Experiments on Social Interactions in Live Zebrafish. iScience 2020; 23:101418. [PMID: 32818837 PMCID: PMC7452384 DOI: 10.1016/j.isci.2020.101418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/11/2020] [Accepted: 07/26/2020] [Indexed: 01/19/2023] Open
Abstract
Social behavior is widespread in the animal kingdom, and it remarkably influences human personal and professional lives. However, a thorough understanding of the mechanisms underlying social behavior is elusive. Integrating the seemingly different fields of robotics and preclinical research could bring new insight on social behavior. Toward this aim, we established "behavioral teleporting" as an experimental solution to independently manipulate multiple factors underpinning social interactions. Behavioral teleporting consists of real-time transfer of the complete ethogram of a live zebrafish onto a remotely-located robotic replica. Through parallel and simultaneous behavioral teleporting, we studied the interaction between two live fish swimming in remotely-located tanks: each live fish interacted with an inanimate robot that mirrored the behavior of the other fish, and the morphology of each robot was independently tailored. Our results indicate that behavioral teleporting can preserve natural interaction between two live animals, while allowing fine control over morphological features that modulate social behavior.
Collapse
Affiliation(s)
- Mert Karakaya
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA
| | - Simone Macrì
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA; Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, New York University, Tandon School of Engineering, 6 MetroTech Center, Brooklyn, NY 11201, USA; Department of Biomedical Engineering, New York University, Tandon School of Engineering, 6 MetroTech Center, Brooklyn NY 11201, USA.
| |
Collapse
|
99
|
Nadin D, Duclos C, Mahdid Y, Rokos A, Badawy M, Létourneau J, Arbour C, Plourde G, Blain-Moraes S. Brain network motif topography may predict emergence from disorders of consciousness: a case series. Neurosci Conscious 2020; 2020:niaa017. [PMID: 33376599 PMCID: PMC7751128 DOI: 10.1093/nc/niaa017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/18/2020] [Accepted: 06/03/2020] [Indexed: 11/16/2022] Open
Abstract
Neuroimaging methods have improved the accuracy of diagnosis in patients with disorders of consciousness (DOC), but novel, clinically translatable methods for prognosticating this population are still needed. In this case series, we explored the association between topographic and global brain network properties and prognosis in patients with DOC. We recorded high-density electroencephalograms in three patients with acute or chronic DOC, two of whom also underwent an anesthetic protocol. In these two cases, we compared functional network motifs, network hubs and power topography (i.e. topographic network properties), as well as relative power and graph theoretical measures (i.e. global network properties), at baseline, during exposure to anesthesia and after recovery from anesthesia. We also compared these properties to a group of healthy, conscious controls. At baseline, the topographic distribution of nodes participating in alpha motifs resembled conscious controls in patients who later recovered consciousness and high relative power in the delta band was associated with a negative outcome. Strikingly, the reorganization of network motifs, network hubs and power topography under anesthesia followed by their return to a baseline patterns upon recovery from anesthesia, was associated with recovery of consciousness. Our findings suggest that topographic network properties measured at the single-electrode level might provide more prognostic information than global network properties that are averaged across the brain network. In addition, we propose that the brain network's capacity to reorganize in response to a perturbation is a precursor to the recovery of consciousness in DOC patients.
Collapse
Affiliation(s)
- Danielle Nadin
- Montreal General Hospital, McGill University Health Center Research Institute, Montreal, QC, Canada
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Catherine Duclos
- Montreal General Hospital, McGill University Health Center Research Institute, Montreal, QC, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Yacine Mahdid
- Montreal General Hospital, McGill University Health Center Research Institute, Montreal, QC, Canada
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Alexander Rokos
- Montreal General Hospital, McGill University Health Center Research Institute, Montreal, QC, Canada
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Mohamed Badawy
- Montreal Neurological Hospital and Institute, McGill University Health Center, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Justin Létourneau
- Montreal Neurological Hospital and Institute, McGill University Health Center, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Caroline Arbour
- Centre de recherche, CIUSSS du-Nord-de-l’Île-de-Montréal, Montreal, QC, Canada
- Faculty of Nursing, Université de Montréal, Montreal, QC, Canada
| | - Gilles Plourde
- Montreal Neurological Hospital and Institute, McGill University Health Center, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
| | - Stefanie Blain-Moraes
- Montreal General Hospital, McGill University Health Center Research Institute, Montreal, QC, Canada
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
100
|
Decoding covert visual attention based on phase transfer entropy. Physiol Behav 2020; 222:112932. [DOI: 10.1016/j.physbeh.2020.112932] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 02/18/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
|