51
|
Zhou YP, Wu JH, Xiao WH, Chen W, Chen QH, Fan T, Xie CP, Tian CE. Arabidopsis IQM4, a Novel Calmodulin-Binding Protein, Is Involved With Seed Dormancy and Germination in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:721. [PMID: 29951071 PMCID: PMC6008652 DOI: 10.3389/fpls.2018.00721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/14/2018] [Indexed: 05/09/2023]
Abstract
Seed dormancy and germination are regulated by complex mechanisms controlled by diverse hormones and environmental cues. Abscisic acid (ABA) promotes seed dormancy and inhibits seed germination and post-germination growth. Calmodulin (CaM) signals are involved with the inhibition of ABA during seed germination and seedling growth. In this study, we showed that Arabidopsis thaliana IQM4 could bind with calmodulin 5 (CaM5) both in vitro and in vivo, and that the interaction was the Ca2+-independent type. The IQM4 protein was localized in the chloroplast and the IQM4 gene was expressed in most tissues, especially the embryo and germinated seedlings. The T-DNA insertion mutants of IQM4 exhibited the reduced primary seed dormancy and lower ABA levels compared with wild type seeds. Moreover, IQM4 plays key roles in modulating the responses to ABA, salt, and osmotic stress during seed germination and post-germination growth. T-DNA insertion mutants exhibited ABA-insensitive and salt-hypersensitive phenotypes during seed germination and post-germination growth, whereas IQM4-overexpressing lines had ABA- and osmotic-hypersensitive, and salt-insensitive phenotypes. Gene expression analyses showed that mutation of IQM4 inhibited the expression of ABA biosynthetic genes NCED6 and NCED9, and seed maturation regulators LEC1, LEC2, ABI3, and ABI5 during the silique development, as well as promoted the expression of WRKY40 and inhibited that of ABI5 in ABA-regulated seed germination. These observations suggest that IQM4 is a novel Ca2+-independent CaM-binding protein, which is positively involved with seed dormancy and germination in Arabidopsis.
Collapse
Affiliation(s)
- Yu Ping Zhou
- Guangzhou Key Laboratory for Functional Study on Plant Stress-Resistant Genes, Guangzhou University, Guangzhou, China
- School of life Sciences, Guangzhou University, Guangzhou, China
| | - Jing Hui Wu
- Guangzhou Key Laboratory for Functional Study on Plant Stress-Resistant Genes, Guangzhou University, Guangzhou, China
- School of life Sciences, Guangzhou University, Guangzhou, China
| | - Wen Hui Xiao
- Guangzhou Key Laboratory for Functional Study on Plant Stress-Resistant Genes, Guangzhou University, Guangzhou, China
- School of life Sciences, Guangzhou University, Guangzhou, China
| | - Wei Chen
- Guangzhou Key Laboratory for Functional Study on Plant Stress-Resistant Genes, Guangzhou University, Guangzhou, China
- School of life Sciences, Guangzhou University, Guangzhou, China
| | - Qiong Hua Chen
- Guangzhou Key Laboratory for Functional Study on Plant Stress-Resistant Genes, Guangzhou University, Guangzhou, China
- School of life Sciences, Guangzhou University, Guangzhou, China
| | - Tian Fan
- Guangzhou Key Laboratory for Functional Study on Plant Stress-Resistant Genes, Guangzhou University, Guangzhou, China
- School of life Sciences, Guangzhou University, Guangzhou, China
| | - Chu Ping Xie
- Guangzhou Key Laboratory for Functional Study on Plant Stress-Resistant Genes, Guangzhou University, Guangzhou, China
- School of life Sciences, Guangzhou University, Guangzhou, China
| | - Chang-En Tian
- Guangzhou Key Laboratory for Functional Study on Plant Stress-Resistant Genes, Guangzhou University, Guangzhou, China
- School of life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
52
|
Heyer M, Scholz SS, Voigt D, Reichelt M, Aldon D, Oelmüller R, Boland W, Mithöfer A. Herbivory-responsive calmodulin-like protein CML9 does not guide jasmonate-mediated defenses in Arabidopsis thaliana. PLoS One 2018; 13:e0197633. [PMID: 29768484 PMCID: PMC5955546 DOI: 10.1371/journal.pone.0197633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/04/2018] [Indexed: 11/17/2022] Open
Abstract
Calcium is an important second messenger in plants that is released into the cytosol early after recognition of various environmental stimuli. Decoding of such calcium signals by calcium sensors is the key for the plant to react appropriately to each stimulus. Several members of Calmodulin-like proteins (CMLs) act as calcium sensors and some are known to mediate both abiotic and biotic stress responses. Here, we study the role of the Arabidopsis thaliana CML9 in different stress responses. CML9 was reported earlier as defense regulator against Pseudomonas syringae. In contrast to salicylic acid-mediated defense against biotrophic pathogens such as P. syringae, defenses against herbivores and necrotrophic fungi are mediated by jasmonates. We demonstrate that CML9 is induced upon wounding and feeding of the insect herbivore Spodoptera littoralis. However, neither different CML9 loss-of-function mutant lines nor overexpression lines were impaired upon insect feeding. No difference in herbivore-induced phytohormone elevation was detected in cml9 lines. The defense against the spider mite Tetranychus urticae was also unaffected. In addition, cml9 mutant lines showed a wild type-like reaction to the necrotrophic fungus Alternaria brassicicola. Thus, our data suggest that CML9 might be a regulator involved only in the defense against biotrophic pathogens, independent of jasmonates. In addition, our data challenge the involvement of CML9 in plant drought stress response. Taken together, we suggest that CML9 is a specialized rather than a general regulator of stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Monika Heyer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sandra S Scholz
- Department for Plant Physiology, Matthias Schleiden Institute, Friedrich Schiller University, Jena, Germany
| | - Dagmar Voigt
- Institute for Botany, Technical University Dresden, Dresden, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Didier Aldon
- UMR 5546 CNRS-Université Toulouse III, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Ralf Oelmüller
- Department for Plant Physiology, Matthias Schleiden Institute, Friedrich Schiller University, Jena, Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
53
|
La Verde V, Dominici P, Astegno A. Towards Understanding Plant Calcium Signaling through Calmodulin-Like Proteins: A Biochemical and Structural Perspective. Int J Mol Sci 2018; 19:E1331. [PMID: 29710867 PMCID: PMC5983762 DOI: 10.3390/ijms19051331] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 11/17/2022] Open
Abstract
Ca2+ ions play a key role in a wide variety of environmental responses and developmental processes in plants, and several protein families with Ca2+-binding domains have evolved to meet these needs, including calmodulin (CaM) and calmodulin-like proteins (CMLs). These proteins have no catalytic activity, but rather act as sensor relays that regulate downstream targets. While CaM is well-studied, CMLs remain poorly characterized at both the structural and functional levels, even if they are the largest class of Ca2+ sensors in plants. The major structural theme in CMLs consists of EF-hands, and variations in these domains are predicted to significantly contribute to the functional versatility of CMLs. Herein, we focus on recent advances in understanding the features of CMLs from biochemical and structural points of view. The analysis of the metal binding and structural properties of CMLs can provide valuable insight into how such a vast array of CML proteins can coexist, with no apparent functional redundancy, and how these proteins contribute to cellular signaling while maintaining properties that are distinct from CaM and other Ca2+ sensors. An overview of the principal techniques used to study the biochemical properties of these interesting Ca2+ sensors is also presented.
Collapse
Affiliation(s)
- Valentina La Verde
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Paola Dominici
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
54
|
Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K. Advances and current challenges in calcium signaling. THE NEW PHYTOLOGIST 2018; 218:414-431. [PMID: 29332310 DOI: 10.1111/nph.14966] [Citation(s) in RCA: 352] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/21/2017] [Indexed: 05/21/2023]
Abstract
Content Summary 414 I. Introduction 415 II. Ca2+ importer and exporter in plants 415 III. The Ca2+ decoding toolkit in plants 415 IV. Mechanisms of Ca2+ signal decoding 417 V. Immediate Ca2+ signaling in the regulation of ion transport 418 VI. Ca2+ signal integration into long-term ABA responses 419 VII Integration of Ca2+ and hormone signaling through dynamic complex modulation of the CCaMK/CYCLOPS complex 420 VIII Ca2+ signaling in mitochondria and chloroplasts 422 IX A view beyond recent advances in Ca2+ imaging 423 X Modeling approaches in Ca2+ signaling 424 XI Conclusions: Ca2+ signaling a still young blooming field of plant research 424 Acknowledgements 425 ORCID 425 References 425 SUMMARY: Temporally and spatially defined changes in Ca2+ concentration in distinct compartments of cells represent a universal information code in plants. Recently, it has become evident that Ca2+ signals not only govern intracellular regulation but also appear to contribute to long distance or even organismic signal propagation and physiological response regulation. Ca2+ signals are shaped by an intimate interplay of channels and transporters, and during past years important contributing individual components have been identified and characterized. Ca2+ signals are translated by an elaborate toolkit of Ca2+ -binding proteins, many of which function as Ca2+ sensors, into defined downstream responses. Intriguing progress has been achieved in identifying specific modules that interconnect Ca2+ decoding proteins and protein kinases with downstream target effectors, and in characterizing molecular details of these processes. In this review, we reflect on recent major advances in our understanding of Ca2+ signaling and cover emerging concepts and existing open questions that should be informative also for scientists that are currently entering this field of ever-increasing breath and impact.
Collapse
Affiliation(s)
- Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7/8, 48149, Münster, Germany
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Am Hochanger 4, D-85354, Freising, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Michael Hippler
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7/8, 48149, Münster, Germany
| | - Ursula Kummer
- Department of Modeling of Biological Processes, COS Heidelberg/Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Martin Parniske
- Institute of Genetics, Biocenter University of Munich (LMU), Großhaderner Straße 4, 82152, Martinsried, Germany
| | - Tina Romeis
- Department of Plant Biochemistry, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195, Berlin, Germany
| | - Karin Schumacher
- Department of Developmental Biology, Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| |
Collapse
|
55
|
Midhat U, Ting MKY, Teresinski HJ, Snedden WA. The calmodulin-like protein, CML39, is involved in regulating seed development, germination, and fruit development in Arabidopsis. PLANT MOLECULAR BIOLOGY 2018; 96:375-392. [PMID: 29372457 DOI: 10.1007/s11103-018-0703-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 01/12/2018] [Indexed: 05/10/2023]
Abstract
We show that the calcium sensor, CML39, is important in various developmental processes from seeds to mature plants. This study bridges previous work on CML39 as a stress-induced gene and highlights the importance of calcium signalling in plant development. In addition to the evolutionarily-conserved Ca2+ sensor, calmodulin (CaM), plants possess a large family of CaM-related proteins (CMLs). Using a cml39 loss-of-function mutant, we investigated the roles of CML39 in Arabidopsis and discovered a range of phenotypes across developmental stages and in different tissues. In mature plants, loss of CML39 results in shorter siliques, reduced seed number per silique, and reduced number of ovules per pistil. We also observed changes in seed development, germination, and seed coat properties in cml39 mutants in comparison to wild-type plants. Using radicle emergence as a measure of germination, cml39 mutants showed more rapid germination than wild-type plants. In marked contrast to wild-type seeds, the germination of developing, immature cml39 seeds was not sensitive to cold-stratification. In addition, germination of cml39 seeds was less sensitive than wild-type to inhibition by ABA or by treatments that impaired gibberellic acid biosynthesis. Tetrazolium red staining indicated that the seed-coat permeability of cml39 seeds is greater than that of wild-type seeds. RNA sequencing analysis of cml39 seedlings suggests that changes in chromatin modification may underlie some of the phenotypes associated with cml39 mutants, consistent with previous reports that orthologs of CML39 participate in gene silencing. Aberrant ectopic expression of transcripts for seed storage proteins in 7-day old cml39 seedlings was observed, suggesting mis-regulation of early developmental programs. Collectively, our data support a model where CML39 serves as an important Ca2+ sensor during ovule and seed development, as well as during germination and seedling establishment.
Collapse
Affiliation(s)
- Ubaid Midhat
- Department of Biology, Queen's University, Kingston, ON, K7L3N6, Canada
| | - Michael K Y Ting
- Department of Biology, Queen's University, Kingston, ON, K7L3N6, Canada
| | | | - Wayne A Snedden
- Department of Biology, Queen's University, Kingston, ON, K7L3N6, Canada.
| |
Collapse
|
56
|
Miret JA, Munné‐Bosch S, Dijkwel PP. ABA signalling manipulation suppresses senescence of a leafy vegetable stored at room temperature. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:530-544. [PMID: 28703416 PMCID: PMC5787841 DOI: 10.1111/pbi.12793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/23/2017] [Accepted: 07/10/2017] [Indexed: 05/16/2023]
Abstract
Postharvest senescence and associated stresses limit the shelf life and nutritional value of vegetables. Improved understanding of these processes creates options for better management. After harvest, controlled exposure to abiotic stresses and/or exogenous phytohormones can enhance nutraceutical, organoleptic and commercial longevity traits. With leaf senescence, abscisic acid (ABA) contents progressively rise, but the actual biological functions of this hormone through senescence still need to be clarified. Postharvest senescence of detached green cabbage leaves (Brassica oleracea var. capitata) was characterized under cold (4 °C) and room temperature (25 °C) storage conditions. Hormonal profiling of regions of the leaf blade (apical, medial, basal) revealed a decrease in cytokinins contents during the first days under both conditions, while ABA only increased at 25 °C. Treatments with ABA and a partial agonist of ABA (pyrabactin) for 8 days did not lead to significant effects on water and pigment contents, but increased cell integrity and altered 1-aminocyclopropane-1-carboxylic acid (ACC) and cytokinins contents. Transcriptome analysis showed transcriptional regulation of ABA, cytokinin and ethylene metabolism and signalling; proteasome components; senescence regulation; protection of chloroplast functionality and cell homeostasis; and suppression of defence responses (including glucosinolates and phenylpropanoids metabolism). It is concluded that increasing the concentration of ABA (or its partial agonist pyrabactin) from the start of postharvest suppresses senescence of stored leaves, changes the transcriptional regulation of glucosinolates metabolism and down-regulates biotic stress defence mechanisms. These results suggest a potential for manipulating ABA signalling for improving postharvest quality of leafy vegetables stored at ambient temperature.
Collapse
Affiliation(s)
- Javier A. Miret
- Department of Evolutionary BiologyEcology and Environmental SciencesPlant Physiology Section, Faculty of BiologyBarcelona UniversityBarcelonaSpain
| | - Sergi Munné‐Bosch
- Department of Evolutionary BiologyEcology and Environmental SciencesPlant Physiology Section, Faculty of BiologyBarcelona UniversityBarcelonaSpain
| | - Paul P. Dijkwel
- Institute of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| |
Collapse
|
57
|
Nie S, Zhang M, Zhang L. Genome-wide identification and expression analysis of calmodulin-like (CML) genes in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genomics 2017; 18:842. [PMID: 29096605 PMCID: PMC5668983 DOI: 10.1186/s12864-017-4240-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/25/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Calmodulin-like (CML) proteins are a primary family of plant-specific Ca2+ sensors that specifically bind to Ca2+ and deliver a Ca2+ signal. CML proteins have been identified and characterized in many plant species, such as the model plant Arabidopsis and rice. Based on considerable evidence, the roles of CML proteins are crucial in plant growth and development and in the response to various external stimuli. Nevertheless, the characterization and expression profiling of CML genes in Chinese cabbage (Brassica rapa L. ssp. pekinensis) remain limited. RESULTS In this study, a genome-wide search and comprehensive analysis were performed, and a total of 79 BrCML genes were identified in Chinese cabbage. Gene structure analysis revealed that these BrCML genes contained two to four conserved EF-hand motifs. Phylogenetic analysis showed that CML homologs between Chinese cabbage and Arabidopsis shared close relationships. The identified BrCML genes were located across ten chromosomes and three different subgenomes of Chinese cabbage. Moreover, 126 pairs of orthologous CML genes were found among Chinese cabbage, Arabidopsis and Brassica oleracea. Expression analysis revealed that the expression of some BrCML genes was tissue-specific and that of some was susceptible to temperature stress. A putative interaction network of BrCML proteins was proposed, which suggested that BrCML2, BrCML6, BrCML15 and BrCML25 were co-expressed and might play roles in flower development and other relevant biological processes of Chinese cabbage. CONCLUSIONS The results of this study increased the understanding and characterization of BrCML genes in Chinese cabbage, and will be a rich resource for further studies to investigate BrCML protein function in various developmental processes of Chinese cabbage.
Collapse
Affiliation(s)
- Shanshan Nie
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Minjuan Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Lugang Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| |
Collapse
|
58
|
Yin X, Huang L, Wang M, Cui Y, Xia X. OsDSR-1, a calmodulin-like gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). MOLECULAR BREEDING 2017; 37:75. [PMID: 0 DOI: 10.1007/s11032-017-0668-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
59
|
Zhu X, Perez M, Aldon D, Galaud JP. Respective contribution of CML8 and CML9, two arabidopsis calmodulin-like proteins, to plant stress responses. PLANT SIGNALING & BEHAVIOR 2017; 12:e1322246. [PMID: 28471263 PMCID: PMC5501228 DOI: 10.1080/15592324.2017.1322246] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In their natural environment, plants have to continuously face constraints such as biotic and abiotic stresses. To achieve their life cycle, plants have to perceive and interpret the nature, but also the strength of environmental stimuli to activate appropriate physiological responses. Nowadays, it is well established that signaling pathways are crucial steps in the implementation of rapid and efficient plant responses such as genetic reprogramming. It is also reported that rapid raises in calcium (Ca2+) levels within plant cells participate in these early signaling steps and are essential to coordinate adaptive responses. However, to be informative, calcium increases need to be decoded and relayed by calcium-binding proteins also referred as calcium sensors to carry-out the appropriate responses. In a recent study, we showed that CML8, an Arabidopsis calcium sensor belonging to the calmodulin-like (CML) protein family, promotes plant immunity against the phytopathogenic bacteria Pseudomonas syringae pv tomato (strain DC3000). Interestingly, other CML proteins such as CML9 were also reported to contribute to plant immunity using the same pathosystem. In this addendum, we propose to discuss about the specific contribution of these 2 CMLs in stress responses.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- College of Horticulture, South China Agriculture University, Guangzhou, P.R. China
| | - Manon Perez
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, Castanet-Tolosan, France
| | - Didier Aldon
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, Castanet-Tolosan, France
| | - Jean-Philippe Galaud
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, Castanet-Tolosan, France
- CONTACT Jean-Philippe Galaud Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, 24, chemin de Borde-Rouge, BP 42617, Castanet-Tolosan, 31326, France
| |
Collapse
|
60
|
Liao J, Deng J, Qin Z, Tang J, Shu M, Ding C, Liu J, Hu C, Yuan M, Huang Y, Yang R, Zhou Y. Genome-Wide Identification and Analyses of Calmodulins and Calmodulin-like Proteins in Lotus japonicas. FRONTIERS IN PLANT SCIENCE 2017; 8:482. [PMID: 28424729 PMCID: PMC5380670 DOI: 10.3389/fpls.2017.00482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/20/2017] [Indexed: 05/10/2023]
Abstract
L. japonicus, a model plant of legumes plants, is widely used in symbiotic nitrogen fixation. A large number of studies on it have been published based on the genetic, biochemical, structural studies. These results are secondhand reports that CaM is a key regulator during Rhizobial infection. In plants, there are multiple CaM genes encoding several CaM isoforms with only minor amino acid differences. Moreover, the regulation mechanism of this family of proteins during rhizobia infection is still unclear. In the current study, a family of genes encoding CaMs and CMLs that possess only the Ca2+-binding EF-hand motifs were analyzed. Using ML and BI tree based on amino acid sequence similarity, seven loci defined as CaMs and 19 CMLs, with at least 23% identity to CaM, were identified. The phylogenetics, gene structures, EF hand motif organization, and expression characteristics were evaluated. Seven CaM genes, encoding only 4 isoforms, were found in L. japonicus. According to qRT-PCR, four LjCaM isoforms are involved in different rhizobia infection stages. LjCaM1 might be involved in the early rhizobia infection epidermal cells stage. Furthermore, additional structural differences and expression behaviors indicated that LjCMLs may have different potential functions from LjCaMs.
Collapse
Affiliation(s)
- Jinqiu Liao
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Jiabin Deng
- School of Geography and Tourism, Guizhou Education UniversityGuiyang, China
| | - Zongzhi Qin
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural UniversityChengdu, China
| | - Maorong Shu
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Chunbang Ding
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Jing Liu
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Chao Hu
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Yan Huang
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Ruiwu Yang
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
61
|
Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH. Role of nanomaterials in plants under challenging environments. PLANT PHYSIOLOGY AND BIOCHEMISTRY 2017; 110:194-209. [PMID: 0 DOI: 10.1016/j.plaphy.2016.05.038] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/22/2016] [Accepted: 05/26/2016] [Indexed: 05/21/2023]
|
62
|
Wu X, Qiao Z, Liu H, Acharya BR, Li C, Zhang W. CML20, an Arabidopsis Calmodulin-like Protein, Negatively Regulates Guard Cell ABA Signaling and Drought Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:824. [PMID: 28603528 PMCID: PMC5445667 DOI: 10.3389/fpls.2017.00824] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/02/2017] [Indexed: 05/19/2023]
Abstract
Guard cells shrink in response to drought and abscisic acid (ABA), which is caused by efflux of ions that in turn reduces stomatal aperture and improves the plant's ability to retain moisture. Cytosolic free calcium is an essential secondary messenger in guard cell ABA signaling, but the details of this regulatory pathway remain sketchy. Here, the calmodulin-like protein CML20, which has four EF-hand domains and calcium-binding activity in vitro, was found to be a negative regulator of ABA-induced stomatal movement in Arabidopsis. The guard cells of cml20 loss-of-function mutant plants were hypersensitive to both ABA-activated S-type anion currents, and ABA inhibited inward K+ currents than those of wild type. Additional, due to smaller stomatal aperture, cml20 showed less water loss from the leaves than wild type. These phenotypes of CML20 overexpressing plants contrasted with wild type in the opposite direction. In the cml20 mutant, the transcripts of stress responsive genes, such as MYB2, RAB18, ERD10, COR47, and RD29A were up-regulated in response to drought and ABA, while down-regulated of APX2 transcription and higher reactive oxygen species (ROS) accumulation. These observations support the CML20, a functional Ca2+ sensor, is a negative regulator in guard cell ABA signaling.
Collapse
Affiliation(s)
- Xiaomeng Wu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong UniversityJinan, China
| | - Zhu Qiao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong UniversityJinan, China
| | - Huiping Liu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong UniversityJinan, China
| | - Biswa R. Acharya
- Donald Danforth Plant Science Center, St. LouisMO, United States
| | - Chunlong Li
- College of Life Science, Jiangsu Normal UniversityXuzhou, China
- *Correspondence: Chunlong Li, Wei Zhang,
| | - Wei Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong UniversityJinan, China
- *Correspondence: Chunlong Li, Wei Zhang,
| |
Collapse
|
63
|
Wang S, Cao M, Ma X, Chen W, Zhao J, Sun C, Tan L, Liu F. Integrated RNA Sequencing and QTL Mapping to Identify Candidate Genes from Oryza rufipogon Associated with Salt Tolerance at the Seedling Stage. FRONTIERS IN PLANT SCIENCE 2017; 8:1427. [PMID: 28861103 PMCID: PMC5559499 DOI: 10.3389/fpls.2017.01427] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/02/2017] [Indexed: 05/02/2023]
Abstract
Soil salinity is a common abiotic stress affecting crop productivity. To identify favorable alleles from wild rice (Oryza rufipogon Griff.) that enhance salinity tolerance of rice (O. sativa L.), a set of introgression lines (ILs) were developed. The ILs were derived from an O. rufipogon accession collected from Chaling (Hunan Province, China) as the donor, and a widely grown O. sativa indica cultivar 93-11 as the recipient. Through evaluating the salt tolerance of 285 ILs at the seedling stage, a total of 10 quantitative trait loci (QTLs) related to salt tolerance were identified on chromosomes 1, 5, 7 and 9-12, with individual QTLs explaining 2-8% of phenotypic variance. The O. rufipogon-derived alleles at four QTLs improved salt tolerance in the 93-11 background. At the same time, a salt-tolerant IL, 9L136, was identified and characterized. Compared with the recipient parent 93-11, a total of 1,391 differentially expressed genes (DEGs) were detected specifically in 9L136 between salt stress and normal condition through genome-wide expression analysis. Of these, four DEGs located in the QTL regions carried by 9L136, suggesting that the four genes might be candidates associated with salt tolerance. Both the highly salt-tolerant ILs and the favorable O. rufipogon-derived QTLs identified in the present study will provide new genetic resources for improving the resistance of cultivated rice against salinity stress using molecular breeding strategies in the future.
Collapse
|
64
|
Ying P, Li C, Liu X, Xia R, Zhao M, Li J. Identification and molecular characterization of an IDA-like gene from litchi, LcIDL1, whose ectopic expression promotes floral organ abscission in Arabidopsis. Sci Rep 2016; 6:37135. [PMID: 27845425 PMCID: PMC5109030 DOI: 10.1038/srep37135] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/25/2016] [Indexed: 01/29/2023] Open
Abstract
Unexpected abscission of flowers or fruits is a major limiting factor for crop productivity. Key genes controlling abscission in plants, especially in popular fruit trees, are largely unknown. Here we identified a litchi (Litchi chinensis Sonn.) IDA-like (INFLORESCENCE DEFICIENT IN ABSCISSION-like) gene LcIDL1 as a potential key regulator of abscission. LcIDL1 encodes a peptide that shows the closest homology to Arabidopsis IDA, and is localized in cell membrane and cytoplasm. Real-time PCR analysis showed that the expression level of LcIDL1 accumulated gradually following flower abscission, and it was obviously induced by fruit abscission-promoting treatments. Transgenic plants expressing LcIDL1 in Arabidopsis revealed a role of LcIDL1 similar to IDA in promoting floral organ abscission. Moreover, ectopic expression of LcIDL1 in Arabidopsis activated the expression of abscission-related genes. Taken together, our findings provide evidence that LcIDL1 may act as a key regulator in control of abscission.
Collapse
Affiliation(s)
- Peiyuan Ying
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Caiqin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xuncheng Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
65
|
Munir S, Liu H, Xing Y, Hussain S, Ouyang B, Zhang Y, Li H, Ye Z. Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses. Sci Rep 2016; 6:31772. [PMID: 27546315 PMCID: PMC4992891 DOI: 10.1038/srep31772] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/26/2016] [Indexed: 11/24/2022] Open
Abstract
Calmodulin-like (CML) proteins are important Ca(2+) sensors, which play significant role in mediating plant stress tolerance. In the present study, cold responsive calmodulin-like (ShCML44) gene was isolated from cold tolerant wild tomato (Solanum habrochaites), and functionally characterized. The ShCML44 was differentially expressed in all plant tissues including root, stem, leaf, flower and fruit, and was strongly up-regulated under cold, drought and salinity stresses along with plant growth hormones. Under cold stress, progressive increase in the expression of ShCML44 was observed particularly in cold-tolerant S. habrochaites. The ShCML44-overexpressed plants showed greater tolerance to cold, drought, and salinity stresses, and recorded higher germination and better seedling growth. Transgenic tomato plants demonstrated higher antioxidant enzymes activity, gas exchange and water retention capacity with lower malondialdehyde accumulation and membrane damage under cold and drought stresses compared to wild-type. Moreover, transgenic plants exhibited reduced reactive oxygen species and higher relative water contents under cold and drought stress, respectively. Greater stress tolerance of transgenic plants was further reflected by the up-/down-regulation of stress-related genes including SOD, GST, CAT, POD, LOX, PR and ERD. In crux, these results strengthen the molecular understanding of ShCML44 gene to improve the abiotic stress tolerance in tomato.
Collapse
Affiliation(s)
- Shoaib Munir
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Liu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Yali Xing
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Saddam Hussain
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
66
|
Comparative proteomic analysis of the shoot apical meristem in maize between a ZmCCT-associated near-isogenic line and its recurrent parent. Sci Rep 2016; 6:30641. [PMID: 27468931 PMCID: PMC4965789 DOI: 10.1038/srep30641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/07/2016] [Indexed: 11/27/2022] Open
Abstract
The ZmCCT, one of the most important genes affecting photoperiod response, delays flowering under long-day conditions in maize (Zea mays). In this study we used the isobaric tags for relative and absolute quantification (iTRAQ) technique-based proteomics approach to identify differentially expressed proteins between a near-isogenic line (NIL) and its recurrent parent, contrasting in alleles of ZmCCT. A total of 5,259 distinct proteins were identified. Among them, 386 proteins were differentially expressed between NIL-cml line (ZmCCT-positive) and H4 line (ZmCCT-negative). Functional categorization showed that the differentially proteins were mainly involved in energy production, photosynthesis, signal transduction, and cell organization and biogenesis. Our results showed that during shoot apical meristem (SAM) development cell division proteins, carbohydrate metabolism–related proteins, and flower inhibition-related proteins were more abundant in the ZmCCT-positive line than the ZmCCT-negative line. These results, taken together with morphological observations, showed that the effect of ZmCCT on flowering might be caused by its effect on one or all of these biological processes. Although the exact roles of these putative related proteins remain to be examined, our results obtained using the proteomics approach lead to a better understanding of the photoperiodicity mechanism in maize plants.
Collapse
|
67
|
Munir S, Khan MRG, Song J, Munir S, Zhang Y, Ye Z, Wang T. Genome-wide identification, characterization and expression analysis of calmodulin-like (CML) proteins in tomato (Solanum lycopersicum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 102:167-79. [PMID: 26949025 DOI: 10.1016/j.plaphy.2016.02.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 05/01/2023]
Abstract
Calcium (Ca(2+)) has emerged as a significant secondary messenger that regulates the activities of hormonal and environmental signals that are associated with biotic and abiotic stresses. Ca(2+) binding proteins typically contain a Ca(2+) binding EF-hand (a helix-loop-helix structure) motif. In this study, tomato genes encoding calmodulin-like (CML) proteins that possess EF-hand motifs and no other identifiable functional domains were analyzed. Using genome analysis and BLAST searches in database, 52 CML genes were identified in tomato. Comprehensive analyses, including evolutionary relationships, gene structures, chromosomal locations, functional annotations, and gene duplications, were performed. Distribution mapping exhibited that 52 SlCML proteins containing different intron/exon patterns were unevenly distributed among ten chromosomes. In addition, 24 SlCML proteins were predicted as segmentally duplicated. Conserved motifs, promoter cis-regulatory elements, organ-based expression patterns and expression analyses indicated the potential responsiveness of SlCML proteins to abiotic stresses and phytohormones. These results illustrate the complexity of the CML gene family and indicate a potential vital role for these molecules in tomato growth and development as Ca(2+) signal transducers.
Collapse
Affiliation(s)
- Shoaib Munir
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Rehman Gul Khan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianwen Song
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Sadia Munir
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
68
|
Kwasniewski M, Daszkowska-Golec A, Janiak A, Chwialkowska K, Nowakowska U, Sablok G, Szarejko I. Transcriptome analysis reveals the role of the root hairs as environmental sensors to maintain plant functions under water-deficiency conditions. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1079-94. [PMID: 26585228 PMCID: PMC4753848 DOI: 10.1093/jxb/erv498] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
An important part of the root system is the root hairs, which play a role in mineral and water uptake. Here, we present an analysis of the transcriptomic response to water deficiency of the wild-type (WT) barley cultivar 'Karat' and its root-hairless mutant rhl1.a. A comparison of the transcriptional changes induced by water stress resulted in the identification of genes whose expression was specifically affected in each genotype. At the onset of water stress, more genes were modulated by water shortage in the roots of the WT plants than in the roots of rhl1.a. The roots of the WT plants, but not of rhl1.a, specifically responded with the induction of genes that are related to the abscisic acid biosynthesis, stomatal closure, and cell wall biogenesis, thus indicating the specific activation of processes that are related to water-stress signalling and protection. On the other hand, the processes involved in the further response to abiotic stimuli, including hydrogen peroxide, heat, and high light intensity, were specifically up-regulated in the leaves of rhl1.a. An extended period of severe stress caused more drastic transcriptome changes in the roots and leaves of the rhl1.a mutant than in those of the WT. These results are in agreement with the much stronger damage to photosystem II in the rhl1.a mutant than in its parent cultivar after 10 d of water stress. Taking into account the putative stress sensing and signalling features of the root hair transcriptome, we discuss the role of root hairs as sensors of environmental conditions.
Collapse
Affiliation(s)
- Miroslaw Kwasniewski
- Department of Genetics, University of Silesia in Katowice, 40-032 Katowice, Poland
| | | | - Agnieszka Janiak
- Department of Genetics, University of Silesia in Katowice, 40-032 Katowice, Poland
| | | | - Urszula Nowakowska
- Department of Genetics, University of Silesia in Katowice, 40-032 Katowice, Poland
| | - Gaurav Sablok
- Plant Functional Biology and Climate Change Cluster, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Iwona Szarejko
- Department of Genetics, University of Silesia in Katowice, 40-032 Katowice, Poland
| |
Collapse
|
69
|
Chen C, Sun X, Duanmu H, Zhu D, Yu Y, Cao L, Liu A, Jia B, Xiao J, Zhu Y. GsCML27, a Gene Encoding a Calcium-Binding Ef-Hand Protein from Glycine soja, Plays Differential Roles in Plant Responses to Bicarbonate, Salt and Osmotic Stresses. PLoS One 2015; 10:e0141888. [PMID: 26550992 PMCID: PMC4638360 DOI: 10.1371/journal.pone.0141888] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 10/14/2015] [Indexed: 01/29/2023] Open
Abstract
Calcium, as the most widely accepted messenger, plays an important role in plant stress responses through calcium-dependent signaling pathways. The calmodulin-like family genes (CMLs) encode Ca2+ sensors and function in signaling transduction in response to environmental stimuli. However, until now, the function of plant CML proteins, especially soybean CMLs, is largely unknown. Here, we isolated a Glycine soja CML protein GsCML27, with four conserved EF-hands domains, and identified it as a calcium-binding protein through far-UV CD spectroscopy. We further found that expression of GsCML27 was induced by bicarbonate, salt and osmotic stresses. Interestingly, ectopic expression of GsCML27 in Arabidopsis enhanced plant tolerance to bicarbonate stress, but decreased the salt and osmotic tolerance during the seed germination and early growth stages. Furthermore, we found that ectopic expression of GsCML27 decreases salt tolerance through modifying both the cellular ionic (Na+, K+) content and the osmotic stress regulation. GsCML27 ectopic expression also decreased the expression levels of osmotic stress-responsive genes. Moreover, we also showed that GsCML27 localized in the whole cell, including cytoplasm, plasma membrane and nucleus in Arabidopsis protoplasts and onion epidermal cells, and displayed high expression in roots and embryos. Together, these data present evidence that GsCML27 as a Ca2+-binding EF-hand protein plays a role in plant responses to bicarbonate, salt and osmotic stresses.
Collapse
Affiliation(s)
- Chao Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Xiaoli Sun
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Huizi Duanmu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Dan Zhu
- College of Life Science, Qingdao Agricultural University, Qingdao, P.R. China
| | - Yang Yu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Lei Cao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Ailin Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Bowei Jia
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
70
|
Chinpongpanich A, Phean-O-Pas S, Thongchuang M, Qu LJ, Buaboocha T. C-terminal extension of calmodulin-like 3 protein from Oryza sativa L.: interaction with a high mobility group target protein. Acta Biochim Biophys Sin (Shanghai) 2015; 47:880-9. [PMID: 26423116 DOI: 10.1093/abbs/gmv097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/28/2015] [Indexed: 11/14/2022] Open
Abstract
A large number of calmodulin-like (CML) proteins are present in plants, but there is little detailed information on the functions of these proteins in rice (Oryza sativa L.). Here, the CML3 protein from rice (OsCML3) and its truncated form lacking the C-terminal extension (OsCML3m) were found to exhibit a Ca2+-binding property and subsequent conformational change, but the ability to bind the CaM kinase II peptide was only observed for OsCML3m. Changes in their secondary structure upon Ca2+-binding measured by circular dichroism revealed that OsCML3m had a higher helical content than OsCML3. Moreover, OsCML3 was mainly localized in the plasma membrane, whereas OsCML3m was found in the nucleus. The rice high mobility group B1 (OsHMGB1) protein was identified as one of the putative OsCML3 target proteins. Bimolecular fluorescence complementation analysis revealed that OsHMGB1 bound OsCML3, OsCML3m or OsCML3s (cysteine to serine mutation at the prenylation site) in the nucleus presumably through the methionine and phenylalanine-rich hydrophobic patches, confirming that OsHMGB1 is a target protein in planta. The effect of OsCML3 or OsCML3m on the DNA-binding ability of OsHMGB1 was measured using an electrophoretic mobility shift assay. OsCML3m decreased the level of OsHMGB1 binding to pUC19 double-stranded DNA whereas OsCML3 did not. Taken together, OsCML3 probably provides a mechanism for manipulating the DNA-binding ability of OsHMGB1 in the nucleus and its C-terminal extension provides an intracellular Ca2+ regulatory switch.
Collapse
Affiliation(s)
- Aumnart Chinpongpanich
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Srivilai Phean-O-Pas
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mayura Thongchuang
- Division of Food Safety Management and Technology, Department of Science, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand
| | - Li-Jia Qu
- National Laboratory for Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China National Plant Gene Research Center (Beijing), Beijing 100101, China
| | - Teerapong Buaboocha
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
71
|
Zeng H, Xu L, Singh A, Wang H, Du L, Poovaiah BW. Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2015; 6:600. [PMID: 26322054 PMCID: PMC4532166 DOI: 10.3389/fpls.2015.00600] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/20/2015] [Indexed: 05/18/2023]
Abstract
Transient changes in intracellular Ca(2+) concentration have been well recognized to act as cell signals coupling various environmental stimuli to appropriate physiological responses with accuracy and specificity in plants. Calmodulin (CaM) and calmodulin-like proteins (CMLs) are major Ca(2+) sensors, playing critical roles in interpreting encrypted Ca(2+) signals. Ca(2+)-loaded CaM/CMLs interact and regulate a broad spectrum of target proteins such as channels/pumps/antiporters for various ions, transcription factors, protein kinases, protein phosphatases, metabolic enzymes, and proteins with unknown biochemical functions. Many of the target proteins of CaM/CMLs directly or indirectly regulate plant responses to environmental stresses. Basic information about stimulus-induced Ca(2+) signal and overview of Ca(2+) signal perception and transduction are briefly discussed in the beginning of this review. How CaM/CMLs are involved in regulating plant responses to abiotic stresses are emphasized in this review. Exciting progress has been made in the past several years, such as the elucidation of Ca(2+)/CaM-mediated regulation of AtSR1/CAMTA3 and plant responses to chilling and freezing stresses, Ca(2+)/CaM-mediated regulation of CAT3, MAPK8 and MKP1 in homeostasis control of reactive oxygen species signals, discovery of CaM7 as a DNA-binding transcription factor regulating plant response to light signals. However, many key questions in Ca(2+)/CaM-mediated signaling warrant further investigation. Ca(2+)/CaM-mediated regulation of most of the known target proteins is presumed based on their interaction. The downstream targets of CMLs are mostly unknown, and how specificity of Ca(2+) signaling could be realized through the actions of CaM/CMLs and their target proteins is largely unknown. Future breakthroughs in Ca(2+)/CaM-mediated signaling will not only improve our understanding of how plants respond to environmental stresses, but also provide the knowledge base to improve stress-tolerance of crops.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Luqin Xu
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Amarjeet Singh
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, PullmanWA, USA
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Liqun Du
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - B. W. Poovaiah
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, PullmanWA, USA
| |
Collapse
|
72
|
El-Maarouf-Bouteau H, Sajjad Y, Bazin J, Langlade N, Cristescu SM, Balzergue S, Baudouin E, Bailly C. Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination. PLANT, CELL & ENVIRONMENT 2015; 38:364-74. [PMID: 24811898 DOI: 10.1111/pce.12371] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 04/24/2014] [Accepted: 04/27/2014] [Indexed: 05/06/2023]
Abstract
Sunflower (Helianthus annuus L.) seed dormancy is regulated by reactive oxygen species (ROS) and can be alleviated by incubating dormant embryos in the presence of methylviologen (MV), a ROS-generating compound. Ethylene alleviates sunflower seed dormancy whereas abscisic acid (ABA) represses germination. The purposes of this study were to identify the molecular basis of ROS effect on seed germination and to investigate their possible relationship with hormone signalling pathways. Ethylene treatment provoked ROS generation in embryonic axis whereas ABA had no effect on their production. The beneficial effect of ethylene on germination was lowered in the presence of antioxidant compounds, and MV suppressed the inhibitory effect of ABA. MV treatment did not alter significantly ethylene nor ABA production during seed imbibition. Microarray analysis showed that MV treatment triggered differential expression of 120 probe sets (59 more abundant and 61 less abundant genes), and most of the identified transcripts were related to cell signalling components. Many transcripts less represented in MV-treated seeds were involved in ABA signalling, thus suggesting an interaction between ROS and ABA signalling pathways at the transcriptional level. Altogether, these results shed new light on the crosstalk between ROS and plant hormones in seed germination.
Collapse
|
73
|
Scholz SS, Reichelt M, Vadassery J, Mithöfer A. Calmodulin-like protein CML37 is a positive regulator of ABA during drought stress in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2015; 10:e1011951. [PMID: 26176898 PMCID: PMC4623549 DOI: 10.1080/15592324.2015.1011951] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/22/2015] [Indexed: 05/18/2023]
Abstract
Plants need to adapt to various stress factors originating from the environment. Signal transduction pathways connecting the recognition of environmental cues and the initiation of appropriate downstream responses in plants often involve intracellular Ca(2+) concentration changes. These changes must be deciphered into specific cellular signals. Calmodulin-like proteins, CMLs, act as Ca(2+) sensors in plants and are known to be involved in various stress reactions. Here, we show that in Arabidopsis 2 different CMLs, AtCML37 and AtCML42 are antagonistically involved in drought stress response. Whereas a CML37 knock-out line, cml37, was highly susceptible to drought stress, CML42 knockout line, cml42, showed no obvious effect compared to wild type (WT) plants. Accordingly, the analysis of the phytohormone abscisic acid (ABA) revealed a significant reduction of ABA upon drought stress in cml37 plants, while in cml42 plants an increase of ABA was detected. Summarizing, our results show that both CML37 and CML42 are involved in drought stress response but show antagonistic effects.
Collapse
Affiliation(s)
- Sandra S Scholz
- Bioorganic Chemistry Department; Max-Planck-Institute for Chemical Ecology; Jena, Germany
| | - Michael Reichelt
- Biochemistry Department; Max-Planck-Institute for Chemical Ecology; Jena, Germany
| | - Jyothilakshmi Vadassery
- Bioorganic Chemistry Department; Max-Planck-Institute for Chemical Ecology; Jena, Germany
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg, New Delhi, India
| | - Axel Mithöfer
- Bioorganic Chemistry Department; Max-Planck-Institute for Chemical Ecology; Jena, Germany
- Correspondence to: Axel Mithöfer;
| |
Collapse
|
74
|
He J, Li H, Ma C, Zhang Y, Polle A, Rennenberg H, Cheng X, Luo ZB. Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar. THE NEW PHYTOLOGIST 2015; 205:240-54. [PMID: 25229726 DOI: 10.1111/nph.13013] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/23/2014] [Indexed: 05/08/2023]
Abstract
Overexpression of bacterial γ-glutamylcysteine synthetase in the cytosol of Populus tremula × P. alba produces higher glutathione (GSH) concentrations in leaves, thereby indicating the potential for cadmium (Cd) phytoremediation. However, the net Cd(2+) influx in association with H(+) /Ca(2+) , Cd tolerance, and the underlying molecular and physiological mechanisms are uncharacterized in these poplars. We assessed net Cd(2+) influx, Cd tolerance and the transcriptional regulation of several genes involved in Cd(2+) transport and detoxification in wild-type and transgenic poplars. Poplars exhibited highest net Cd(2+) influxes into roots at pH 5.5 and 0.1 mM Ca(2+) . Transgenics had higher Cd(2+) uptake rates and elevated transcript levels of several genes involved in Cd(2+) transport and detoxification compared with wild-type poplars. Transgenics exhibited greater Cd accumulation in the aerial parts than wild-type plants in response to Cd(2+) exposure. Moreover, transgenic poplars had lower concentrations of O2 ˙(-) and H2 O2 ; higher concentrations of total thiols, GSH and oxidized GSH in roots and/or leaves; and stimulated foliar GSH reductase activity compared with wild-type plants. These results indicate that transgenics are more tolerant of 100 μM Cd(2+) than wild-type plants, probably due to the GSH-mediated induction of the transcription of genes involved in Cd(2+) transport and detoxification.
Collapse
Affiliation(s)
- Jiali He
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Pallakies H, Simon R. The CLE40 and CRN/CLV2 signaling pathways antagonistically control root meristem growth in Arabidopsis. MOLECULAR PLANT 2014; 7:1619-1636. [PMID: 25178283 DOI: 10.1093/mp/ssu094] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Differentiation processes in the primary root meristem are controlled by several signaling pathways that are regulated by phytohormones or by secreted peptides. Long-term maintenance of an active root meristem requires that the generation of new stem cells and the loss of these from the meristem due to differentiation are precisely coordinated. Via phenotypic and large-scale transcriptome analyses of mutants, we show that the signaling peptide CLE40 and the receptor proteins CLV2 and CRN act in two genetically separable pathways that antagonistically regulate cell differentiation in the proximal root meristem. CLE40 inhibits cell differentiation throughout the primary root meristem by controlling genes with roles in abscisic acid, auxin, and cytokinin signaling. CRN and CLV2 jointly control target genes that promote cell differentiation specifically in the transition zone of the proximal root meristem. While CRN and CLV2 are not acting in the CLE40 signaling pathway under normal growth conditions, both proteins are required when the levels of CLE40 or related CLE peptides increase. We show here that two antagonistically acting pathways controlling root meristem differentiation can be activated by the same peptide in a dosage-dependent manner.
Collapse
Affiliation(s)
- Helge Pallakies
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences (CEPLAS), Universitätsstr. 1, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences (CEPLAS), Universitätsstr. 1, Heinrich-Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
76
|
Yang X, Wang SS, Wang M, Qiao Z, Bao CC, Zhang W. Arabidopsis thaliana calmodulin-like protein CML24 regulates pollen tube growth by modulating the actin cytoskeleton and controlling the cytosolic Ca(2+) concentration. PLANT MOLECULAR BIOLOGY 2014; 86:225-36. [PMID: 25139229 DOI: 10.1007/s11103-014-0220-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/23/2014] [Indexed: 05/10/2023]
Abstract
Cytosolic free calcium ([Ca(2+)]cyt), which is essential during pollen germination and pollen tube growth, can be sensed by calmodulin-like proteins (CMLs). The Arabidopsis thaliana genome encodes over 50 CMLs, the physiological role(s) of most of which are unknown. Here we show that the gene AtCML24 acts as a regulator of pollen germination and pollen tube extension, since the pollen produced by loss-of-function mutants germinated less rapidly than that of wild-type (WT) plants, the rate of pollen tube extension was slower, and the final length of the pollen tube was shorter. The [Ca(2+)]cyt within germinated pollen and extending pollen tubes produced by the cml24 mutant were higher than their equivalents in WT plants, and pollen tube extension was less sensitive to changes in external [K(+)] and [Ca(2+)]. The pollen and pollen tubes produced by cml24 mutants were characterized by a disorganized actin cytoskeleton and lowered sensitivity to the action of latrunculin B. The observations support an interaction between CML24 and [Ca(2+)]cyt and an involvement of CML24 in actin organization, thereby affecting pollen germination and pollen tube elongation.
Collapse
Affiliation(s)
- Xue Yang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | | | | | | | | | | |
Collapse
|
77
|
Gläßer C, Haberer G, Finkemeier I, Pfannschmidt T, Kleine T, Leister D, Dietz KJ, Häusler RE, Grimm B, Mayer KFX. Meta-analysis of retrograde signaling in Arabidopsis thaliana reveals a core module of genes embedded in complex cellular signaling networks. MOLECULAR PLANT 2014; 7:1167-90. [PMID: 24719466 DOI: 10.1093/mp/ssu042] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plastid-to-nucleus signaling is essential for the coordination and adjustment of cellular metabolism in response to environmental and developmental cues of plant cells. A variety of operational retrograde signaling pathways have been described that are thought to be triggered by reactive oxygen species, photosynthesis redox imbalance, tetrapyrrole intermediates, and other metabolic traits. Here we report a meta-analysis based on transcriptome and protein interaction data. Comparing the output of these pathways reveals the commonalities and peculiarities stimulated by six different sources impinging on operational retrograde signaling. Our study provides novel insights into the interplay of these pathways, supporting the existence of an as-yet unknown core response module of genes being regulated under all conditions tested. Our analysis further highlights affiliated regulatory cis-elements and classifies abscisic acid and auxin-based signaling as secondary components involved in the response cascades following a plastidial signal. Our study provides a global analysis of structure and interfaces of different pathways involved in plastid-to-nucleus signaling and a new view on this complex cellular communication network.
Collapse
Affiliation(s)
- Christine Gläßer
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology (IBIS), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Georg Haberer
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology (IBIS), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Iris Finkemeier
- Biozentrum der LMU München, Department of Biologie I-Botanik, Großhaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Thomas Pfannschmidt
- Friedrich-Schiller-Universität Jena, Institut für Allgemeine Botanik und Pflanzenphysiologie, Dornburger Str. 159, D-07743 Jena, Germany Laboratoire de Physiologie Cellulaire Végétale (LPCV), CEA/CNRS/UJF iRTSV, CEA Grenoble 17, rue des Martyrs, 38054 Grenoble cedex 9, France
| | - Tatjana Kleine
- Biozentrum der LMU München, Department of Biologie I-Botanik, Großhaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Biozentrum der LMU München, Department of Biologie I-Botanik, Großhaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Rainer Erich Häusler
- University of Cologne, Botanical Institute, Cologne Biocenter, Zülpicher Str. 47B, D-50674 Cologne, Germany
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Institut für Biologie, AG Pflanzenphysiologie, Philippstrasse 13, D-10115 Berlin, Germany
| | - Klaus Franz Xaver Mayer
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology (IBIS), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| |
Collapse
|
78
|
Chitarra W, Balestrini R, Vitali M, Pagliarani C, Perrone I, Schubert A, Lovisolo C. Gene expression in vessel-associated cells upon xylem embolism repair in Vitis vinifera L. petioles. PLANTA 2014; 239:887-99. [PMID: 24402563 DOI: 10.1007/s00425-013-2017-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/20/2013] [Indexed: 05/11/2023]
Abstract
In this work, the involvement of vessel-associated cells in embolism recovery was investigated by studying leaf petiole hydraulics and expression profiles of aquaporins and genes related to sugar metabolism. Two different stress treatments were imposed onto grapevines to induce xylem embolism: one involved a pressure collar applied to the stems, while the other consisted of water deprivation (drought). Embolism formation and repair were monitored during stress application and release (recovery). At the same time, stomatal conductance (g(s)), leaf water potential (Ψ(leaf)) and leaf abscisic acid (ABA) concentration were measured. For each treatment, gene transcript levels were assessed on vessel-associated cells (isolated from leaf petioles by laser microdissection technique) and whole petioles. Both treatments induced severe xylem embolism formation and drops in g s and Ψ (leaf) at a lesser degree and with faster recovery in the case of application of the pressure collar. Leaf ABA concentration only increased upon drought and subsequent recovery. Transcripts linked to sugar mobilisation (encoding a β-amylase and a glucose-6-P transporter) were over-expressed upon stress or recovery, both in vessel-associated cells and whole petioles. However, two aquaporin genes (VvPIP2;1 and VvPIP2;4N) were activated upon stress or recovery only in vessel-associated cells, suggesting a specific effect on embolism refilling. Furthermore, the latter gene was only activated upon drought and subsequent recovery, suggesting that either severe water stress or ABA is required for its regulation.
Collapse
Affiliation(s)
- Walter Chitarra
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Via Leonardo da Vinci 44, 10095, Grugliasco, TO, Italy
| | | | | | | | | | | | | |
Collapse
|
79
|
|
80
|
Hwan Lee J, Sook Chung K, Kim SK, Ahn JH. Post-translational regulation of SHORT VEGETATIVE PHASE as a major mechanism for thermoregulation of flowering. PLANT SIGNALING & BEHAVIOR 2014; 9:e28193. [PMID: 24614351 PMCID: PMC4091520 DOI: 10.4161/psb.28193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 05/20/2023]
Abstract
In contrast to our extensive knowledge of vernalization, we know relatively little about the regulation of ambient temperature-responsive flowering. Recent reports revealed that flowering locus M (FLM) and short vegetative phase (SVP) regulate high ambient temperature-responsive flowering through two different mechanisms: degradation of SVP protein and formation of a non-functional SVP-FLM-δ complex. To investigate further the mechanism of thermoregulation of flowering, we performed real-time quantitative polymerase chain reaction (RT-qPCR) and in vitro pull-down assays. We found that FLM-β and FLM-δ transcripts show similar absolute levels at different temperatures. Also, His-SVP protein bound to the GST-FLM-β or -δ proteins with similar binding intensities. These results suggest that functional SVP-FLM-β and non-functional SVP-FLM-δ complexes form similarly at warmer temperatures, thus indicating that post-translational regulation of SVP functions as a major mechanism for thermoregulation in flowering.
Collapse
Affiliation(s)
- Jeong Hwan Lee
- Creative Research Initiatives; Department of Life Sciences; Korea University, Seoul, South Korea
| | - Kyung Sook Chung
- Creative Research Initiatives; Department of Life Sciences; Korea University, Seoul, South Korea
| | - Soon-Kap Kim
- Creative Research Initiatives; Department of Life Sciences; Korea University, Seoul, South Korea
| | - Ji Hoon Ahn
- Creative Research Initiatives; Department of Life Sciences; Korea University, Seoul, South Korea
- Correspondence to: Ji Hoon Ahn,
| |
Collapse
|
81
|
Bender KW, Dobney S, Ogunrinde A, Chiasson D, Mullen RT, Teresinski HJ, Singh P, Munro K, Smith SP, Snedden WA. The calmodulin-like protein CML43 functions as a salicylic-acid-inducible root-specific Ca(2+) sensor in Arabidopsis. Biochem J 2014; 457:127-36. [PMID: 24102643 DOI: 10.1042/bj20131080] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Many signalling pathways in plants are regulated by the second messenger calcium (Ca(2+)). In the standard model, Ca(2+)-sensor proteins, such as CaM (calmodulin), detect Ca(2+) signals and subsequently regulate downstream targets to advance the signal transduction cascade. In addition to CaM, plants possess many CMLs (CaM-like proteins) that are predicted to function as Ca(2+) sensors, but which remain largely uncharacterized. In the present study, we examined the biochemical properties, subcellular localization and tissue-specific distribution of Arabidopsis CML43. Our data indicate that CML43 displays characteristics typical of Ca(2+) sensors, including high-affinity Ca(2+) binding, conformational changes upon Ca(2+) binding that expose hydrophobic regions and stabilization of structure in the presence of Mg(2+) or Ca(2+). In vivo localization analysis demonstrates that CML43 resides in cytosolic and nuclear compartments. Transgenic plants expressing a CML43:GUS (β-glucoronidase) promoter reporter gene revealed that CML43 promoter activity is restricted almost exclusively to root tips under normal growth conditions. GUS reporter activity in these transgenic plants was strongly increased when exposed to the defence compound SA (salicylic acid). Furthermore, immunoblot analysis revealed that the CML43 protein accumulates following treatment with SA. Collectively, our findings suggest that CML43 functions as a Ca(2+) sensor in root tips during both normal growth and plant immune response.
Collapse
Affiliation(s)
- Kyle W Bender
- *Department of Biology, Queen's University, Kingston, ON, Canada, K7L 3N6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Liu B, Butenko MA, Shi CL, Bolivar JL, Winge P, Stenvik GE, Vie AK, Leslie ME, Brembu T, Kristiansen W, Bones AM, Patterson SE, Liljegren SJ, Aalen RB. NEVERSHED and INFLORESCENCE DEFICIENT IN ABSCISSION are differentially required for cell expansion and cell separation during floral organ abscission in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5345-5357. [PMID: 23963677 DOI: 10.1093/jxb/ert232] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Floral organ shedding is a cell separation event preceded by cell-wall loosening and generally accompanied by cell expansion. Mutations in NEVERSHED (NEV) or INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) block floral organ abscission in Arabidopsis thaliana. NEV encodes an ADP-ribosylation factor GTPase-activating protein, and cells of nev mutant flowers display membrane-trafficking defects. IDA encodes a secreted peptide that signals through the receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2). Analyses of single and double mutants revealed unique features of the nev and ida phenotypes. Cell-wall loosening was delayed in ida flowers. In contrast, nev and nev ida mutants displayed ectopic enlargement of abscission zone (AZ) cells, indicating that cell expansion alone is not sufficient to trigger organ loss. These results suggest that NEV initially prevents precocious cell expansion but is later integral for cell separation. IDA is involved primarily in the final cell separation step. A mutation in KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1), a suppressor of the ida mutant, could not rescue the abscission defects of nev mutant flowers, indicating that NEV-dependent activity downstream of KNAT1 is required. Transcriptional profiling of mutant AZs identified gene clusters regulated by IDA-HAE/HSL2. Several genes were more strongly downregulated in nev-7 compared with ida and hae hsl2 mutants, consistent with the rapid inhibition of organ loosening in nev mutants, and the overlapping roles of NEV and IDA in cell separation. A model of the crosstalk between the IDA signalling pathway and NEV-mediated membrane traffic during floral organ abscission is presented.
Collapse
Affiliation(s)
- Bin Liu
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Bender KW, Rosenbaum DM, Vanderbeld B, Ubaid M, Snedden WA. The Arabidopsis calmodulin-like protein, CML39, functions during early seedling establishment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:634-47. [PMID: 24033804 DOI: 10.1111/tpj.12323] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/26/2013] [Accepted: 09/02/2013] [Indexed: 05/10/2023]
Abstract
During Ca(2+) signal transduction, Ca(2+)-binding proteins known as Ca(2+) sensors function to decode stimulus-specific Ca(2+) signals into downstream responses. Plants possess extended families of unique Ca(2+) sensors termed calmodulin-like proteins (CMLs) whose cellular roles are not well understood. CML39 encodes a predicted Ca(2+) sensor whose expression is strongly increased in response to diverse external stimuli. In the present study, we explored the biochemical properties of recombinant CML39, and used a reverse genetics approach to investigate its physiological role. Our data indicate that Ca(2+) binding by CML39 induces a conformational change in the protein that results in an increase in exposed-surface hydrophobicity, a property that is consistent with its predicted function as a Ca(2+) sensor. Loss-of-function cml39 mutants resemble wild-type plants under normal growth conditions but exhibit persistent arrest at the seedling stage if grown in the absence of sucrose or other metabolizable carbon sources. Under short-day conditions, cml39 mutants display increased sucrose-induced hypocotyl elongation. When grown in the dark, cml39 mutants show impaired hypocotyl elongation in the absence of sucrose. Promoter-reporter data indicate that CML39 expression is prominent in the apical hook in dark-grown seedlings. Collectively, our data suggest that CML39 functions in Arabidopsis as a Ca(2+) sensor that plays an important role in the transduction of light signals that promote seedling establishment.
Collapse
Affiliation(s)
- Kyle W Bender
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
84
|
Chen DH, Acharya BR, Liu W, Zhang W. Interaction between Calcium and Actin in Guard Cell and Pollen Signaling Networks. PLANTS (BASEL, SWITZERLAND) 2013; 2:615-34. [PMID: 27137395 PMCID: PMC4844389 DOI: 10.3390/plants2040615] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/17/2022]
Abstract
Calcium (Ca(2+)) plays important roles in plant growth, development, and signal transduction. It is a vital nutrient for plant physical design, such as cell wall and membrane, and also serves as a counter-cation for biochemical, inorganic, and organic anions, and more particularly, its concentration change in cytosol is a ubiquitous second messenger in plant physiological signaling in responses to developmental and environmental stimuli. Actin cytoskeleton is well known for its importance in cellular architecture maintenance and its significance in cytoplasmic streaming and cell division. In plant cell system, the actin dynamics is a process of polymerization and de-polymerization of globular actin and filamentous actin and that acts as an active regulator for calcium signaling by controlling calcium evoked physiological responses. The elucidation of the interaction between calcium and actin dynamics will be helpful for further investigation of plant cell signaling networks at molecular level. This review mainly focuses on the recent advances in understanding the interaction between the two aforementioned signaling components in two well-established model systems of plant, guard cell, and pollen.
Collapse
Affiliation(s)
- Dong-Hua Chen
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, Jinan 250100, Shandong, China.
| | - Biswa R Acharya
- Biology Department, Penn State University, University Park, PA 16802, USA.
| | - Wei Liu
- High-Tech Research Center, Shandong Academy of Agricultural Sciences, Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, Shandong, China.
| | - Wei Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, Jinan 250100, Shandong, China.
| |
Collapse
|
85
|
Bender KW, Snedden WA. Calmodulin-related proteins step out from the shadow of their namesake. PLANT PHYSIOLOGY 2013; 163:486-95. [PMID: 23908390 PMCID: PMC3793030 DOI: 10.1104/pp.113.221069] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/31/2013] [Indexed: 05/18/2023]
Abstract
Emerging roles for these proteins in plant development and stress response highlight their importance in plant signaling, and their functional diversity underscores the significance of Ca2+ as a second messenger in plants .
Collapse
Affiliation(s)
- Kyle W. Bender
- Department of Plant Biology, University of Illinois, Urbana, Illinois 61801 (K.W.B.); and Department of Biology, Queen’s University, Kingston, Ontario, Canada K7L 3N6 (W.A.S.)
| | - Wayne A. Snedden
- Department of Plant Biology, University of Illinois, Urbana, Illinois 61801 (K.W.B.); and Department of Biology, Queen’s University, Kingston, Ontario, Canada K7L 3N6 (W.A.S.)
| |
Collapse
|
86
|
Lee JH, Ryu HS, Chung KS, Pose D, Kim S, Schmid M, Ahn JH. Regulation of Temperature-Responsive Flowering by MADS-Box Transcription Factor Repressors. Science 2013; 342:628-32. [DOI: 10.1126/science.1241097] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
87
|
Tsai YC, Koo Y, Delk NA, Gehl B, Braam J. Calmodulin-related CML24 interacts with ATG4b and affects autophagy progression in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:325-35. [PMID: 23039100 DOI: 10.1111/tpj.12043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/20/2012] [Accepted: 10/02/2012] [Indexed: 05/10/2023]
Abstract
Plants encounter environmental stress challenges that are distinct from those of other eukaryotes because of their relative immobility. Therefore, plants may have evolved distinct regulatory mechanisms for conserved cellular functions. Plants, like other eukaryotes, share aspects of both calcium- and calmodulin-based cellular signaling and the autophagic process of cellular renewal. Here, we report a novel function for an Arabidopsis calmodulin-related protein, CML24, and insight into ATG4-regulated autophagy. CML24 interacts with ATG4b in yeast two-hybrid, in vitro pull-down and transient tobacco cell transformation assays. Mutants with missense mutations in CML24 have aberrant ATG4 activity patterns in in vitro extract assays, altered ATG8 accumulation levels, an altered pattern of GFP-ATG8-decorated cellular structures, and altered recovery from darkness-induced starvation. Together, these results support the conclusion that CML24 affects autophagy progression through interactions with ATG4.
Collapse
Affiliation(s)
- Yu-Chang Tsai
- Biochemistry and Cell Biology, Rice University, Houston, TX, 77005-1892, USA
| | - Yeonjong Koo
- Biochemistry and Cell Biology, Rice University, Houston, TX, 77005-1892, USA
| | - Nikkí A Delk
- Biochemistry and Cell Biology, Rice University, Houston, TX, 77005-1892, USA
| | - Bernadette Gehl
- Biochemistry and Cell Biology, Rice University, Houston, TX, 77005-1892, USA
| | - Janet Braam
- Biochemistry and Cell Biology, Rice University, Houston, TX, 77005-1892, USA
| |
Collapse
|
88
|
Toyota M, Gilroy S. Gravitropism and mechanical signaling in plants. AMERICAN JOURNAL OF BOTANY 2013; 100:111-25. [PMID: 23281392 DOI: 10.3732/ajb.1200408] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mechanical stress is a critical signal affecting morphogenesis and growth and is caused by a large variety of environmental stimuli such as touch, wind, and gravity in addition to endogenous forces generated by growth. On the basis of studies dating from the early 19th century, the plant mechanical sensors and response components related to gravity can be divided into two types in terms of their temporal character: sensors of the transient stress of reorientation (phasic signaling) and sensors capable of monitoring and responding to the extended, continuous gravitropic signal for the duration of the tropic growth response (tonic signaling). In the case of transient stress, changes in the concentrations of ions in the cytoplasm play a central role in mechanosensing and are likely a key component of initial gravisensing. Potential candidates for mechanosensitive channels have been identified in Arabidopsis thaliana and may provide clues to these rapid, ionic gravisensing mechanisms. Continuous mechanical stress, on the other hand, may be sensed by other mechanisms in addition to the rapidly adapting mechnaosensitive channels of the phasic system. Sustaining such long-term responses may be through a network of biochemical signaling cascades that would therefore need to be maintained for the many hours of the growth response once they are triggered. However, classical physiological analyses and recent simulation studies also suggest involvement of the cytoskeleton in sensing/responding to long-term mechanoresponse independently of the biochemical signaling cascades triggered by initial graviperception events.
Collapse
Affiliation(s)
- Masatsugu Toyota
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Drive, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
89
|
Liu H, Ouyang B, Zhang J, Wang T, Li H, Zhang Y, Yu C, Ye Z. Differential modulation of photosynthesis, signaling, and transcriptional regulation between tolerant and sensitive tomato genotypes under cold stress. PLoS One 2012; 7:e50785. [PMID: 23226384 PMCID: PMC3511270 DOI: 10.1371/journal.pone.0050785] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/24/2012] [Indexed: 11/25/2022] Open
Abstract
The wild species Solanum habrochaites is more cold tolerant than the cultivated tomato (S. lycopersicum). To explore the mechanisms underlying cold tolerance of S. habrochaites, seedlings of S. habrochaites LA1777 introgression lines (ILs), as well as the two parents, were evaluated under low temperature (4°C). The IL LA3969 and its donor parent LA1777 were found to be more cold tolerant than the recurrent parent S. lycopersicum LA4024. The differences in physiology and global gene expression between cold-tolerant (LA1777 and LA3969) and -sensitive (LA4024) genotypes under cold stress were further investigated. Comparative transcriptome analysis identified 1613, 1456, and 1523 cold-responsive genes in LA1777, LA3969, and LA4024, respectively. Gene ontology (GO) term enrichment analysis revealed that more GO biological process terms were significantly enriched among the up-regulated genes in the two tolerant genotypes, whereas more biological processes were significantly repressed by cold stress in the sensitive one. A total of 92 genes with significant differential expression between tolerant and sensitive genotypes under cold stress were identified. Among these, many stress-related GO terms were significantly enriched, such as 'response to stimulus' and 'response to stress'. Moreover, GO terms 'response to hormone stimulus', 'response to reactive oxygen species (ROS)', and 'calcium-mediated signaling' were also overrepresented. Several transcripts involved in hormone or ROS homeostasis were also differentially expressed. ROS, hormones, and calcium as signaling molecules may play important roles in regulating gene expression in response to cold stress. Moreover, the expression of various transcription factors, post-translational proteins, metabolic enzymes, and photosynthesis-related genes was also specifically modulated. These specific modifications may play pivotal roles in conferring cold tolerance in tomato. These results not only provide new insights into the molecular mechanisms of cold tolerance in tomato, but also provide potential candidate genes for genetic improvement.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Chuying Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
90
|
Lee JH, Kim JJ, Kim SH, Cho HJ, Kim J, Ahn JH. The E3 ubiquitin ligase HOS1 regulates low ambient temperature-responsive flowering in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2012; 53:1802-14. [PMID: 22960247 DOI: 10.1093/pcp/pcs123] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Ubiquitin-dependent proteolysis regulates multiple aspects of plant growth and development, but little is known about its role in ambient temperature-responsive flowering. In addition to being regulated by daylength, the onset of flowering in many plants can also be delayed by low ambient temperatures. Here, we show that HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1), which encodes an E3 ubiquitin ligase, controls flowering time in response to ambient temperatures (16 and 23°C) and intermittent cold. hos1 mutants flowered early, and were insensitive to ambient temperature, but responded normally to vernalization and gibberellic acid. Genetic analyses suggested that this ambient temperature-insensitive flowering was independent of FLOWERING LOCUS C (FLC). Also, FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) expression was up-regulated in hos1 mutants at both temperatures. The ft tsf mutation almost completely suppressed the early flowering of hos1 mutants at different temperatures, suggesting that FT and TSF are downstream of HOS1 in the ambient temperature response. A lesion in CONSTANS (CO) did not affect the ambient temperature-insensitive flowering phenotype of hos1-3 mutants. In silico analysis showed that FVE was spatiotemporally co-expressed with HOS1. A HOS1-green fluorescent protein (GFP) fusion co-localized with FVE-GFP in the nucleus at both 16 and 23°C. HOS1 physically interacted with FVE and FLK in yeast two-hybrid and co-immunoprecipitation assays. Moreover, hos1 mutants were insensitive to intermittent cold. Collectively, our results suggest that HOS1 acts as a common regulator in the signaling pathways that control flowering time in response to low ambient temperature.
Collapse
Affiliation(s)
- Jeong Hwan Lee
- Creative Research Initiatives, Division of Life Sciences, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | |
Collapse
|
91
|
Vadassery J, Scholz SS, Mithöfer A. Multiple calmodulin-like proteins in Arabidopsis are induced by insect-derived (Spodoptera littoralis) oral secretion. PLANT SIGNALING & BEHAVIOR 2012; 7:1277-80. [PMID: 22902684 PMCID: PMC3493413 DOI: 10.4161/psb.21664] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In plant cells, diverse environmental changes often induce transient elevation in the intracellular calcium concentrations, which are involved in signaling pathways leading to the respective cellular reactions. Therefore, these calcium elevations need to be deciphered into specific downstream responses. Calmodulin-like-proteins (CMLs) are calcium-sensing proteins present only in higher plants. They are involved in signaling processes induced by both abiotic as well as biotic stress factors. However, the role of CMLs in the interaction of plants with herbivorous insects is almost unknown. Here we show that in Arabidopsis thaliana a number of CMLs genes (CML9, 11,12,16,17 and 23) are upregulated due to treatments with oral secretion of larvae of the herbivorous insect Spodoptera littoralis. We identified that these genes belong to two groups that respond with different kinetics to the treatment with oral secretion. Our data indicate that signaling networks involving multiple CMLs very likely have important functions in plant defense against insect herbivores, in addition to their involvement in many other stress-induced processes in plants.
Collapse
|
92
|
Leba LJ, Cheval C, Ortiz-Martín I, Ranty B, Beuzón CR, Galaud JP, Aldon D. CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin-dependent signalling pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:976-89. [PMID: 22563930 DOI: 10.1111/j.1365-313x.2012.05045.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Many stimuli such as hormones and elicitors induce changes in intracellular calcium levels to integrate information and activate appropriate responses. The Ca(2+) signals are perceived by various Ca(2+) sensors, and calmodulin (CaM) is one of the best characterized in eukaryotes. Calmodulin-like (CML) proteins extend the Ca(2+) toolkit in plants; they share sequence similarity with the ubiquitous and highly conserved CaM but their roles at physiological and molecular levels are largely unknown. Knowledge of the contribution of Ca(2+) decoding proteins to plant immunity is emerging, and we report here data on Arabidopsis thaliana CML9, whose expression is rapidly induced by phytopathogenic bacteria, flagellin and salicylic acid. Using a reverse genetic approach, we present evidence that CML9 is involved in plant defence by modulating responses to bacterial strains of Pseudomonas syringae. Compared to wild-type plants, the later responses normally observed upon flagellin application are altered in knockout mutants and over-expressing transgenic lines. Collectively, using PAMP treatment and P. syringae strains, we have established that CML9 participates in plant innate immunity.
Collapse
Affiliation(s)
- Louis-Jérôme Leba
- Université de Toulouse, Université de Toulouse, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan Cedex, France
| | | | | | | | | | | | | |
Collapse
|
93
|
Vadassery J, Reichelt M, Hause B, Gershenzon J, Boland W, Mithöfer A. CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. PLANT PHYSIOLOGY 2012; 159:1159-75. [PMID: 22570470 PMCID: PMC3387702 DOI: 10.1104/pp.112.198150] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/03/2012] [Indexed: 05/18/2023]
Abstract
In the interaction between Arabidopsis (Arabidopsis thaliana) and the generalist herbivorous insect Spodoptera littoralis, little is known about early events in defense signaling and their link to downstream phytohormone pathways. S. littoralis oral secretions induced both Ca²⁺ and phytohormone elevation in Arabidopsis. Plant gene expression induced by oral secretions revealed up-regulation of a gene encoding a calmodulin-like protein, CML42. Functional analysis of cml42 plants revealed more resistance to herbivory than in the wild type, because caterpillars gain less weight on the mutant, indicating that CML42 negatively regulates plant defense; cml42 also showed increased aliphatic glucosinolate content and hyperactivated transcript accumulation of the jasmonic acid (JA)-responsive genes VSP2 and Thi2.1 upon herbivory, which might contribute to increased resistance. CML42 up-regulation is negatively regulated by the jasmonate receptor Coronatine Insensitive1 (COI1), as loss of functional COI1 resulted in prolonged CML42 activation. CML42 thus acts as a negative regulator of plant defense by decreasing COI1-mediated JA sensitivity and the expression of JA-responsive genes and is independent of herbivory-induced JA biosynthesis. JA-induced Ca²⁺ elevation and root growth inhibition were more sensitive in cml42, also indicating higher JA perception. Our results indicate that CML42 acts as a crucial signaling component connecting Ca²⁺ and JA signaling. CML42 is localized to cytosol and nucleus. CML42 is also involved in abiotic stress responses, as kaempferol glycosides were down-regulated in cml42, and impaired in ultraviolet B resistance. Under drought stress, the level of abscisic acid accumulation was higher in cml42 plants. Thus, CML42 might serve as a Ca²⁺ sensor having multiple functions in insect herbivory defense and abiotic stress responses.
Collapse
Affiliation(s)
- Jyothilakshmi Vadassery
- Departments of Bioorganic Chemistry (J.V., W.B., A.M.) and Biochemistry (M.R., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; and
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D–06120 Halle/Saale, Germany (B.H.)
| | - Michael Reichelt
- Departments of Bioorganic Chemistry (J.V., W.B., A.M.) and Biochemistry (M.R., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; and
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D–06120 Halle/Saale, Germany (B.H.)
| | - Bettina Hause
- Departments of Bioorganic Chemistry (J.V., W.B., A.M.) and Biochemistry (M.R., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; and
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D–06120 Halle/Saale, Germany (B.H.)
| | - Jonathan Gershenzon
- Departments of Bioorganic Chemistry (J.V., W.B., A.M.) and Biochemistry (M.R., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; and
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D–06120 Halle/Saale, Germany (B.H.)
| | - Wilhelm Boland
- Departments of Bioorganic Chemistry (J.V., W.B., A.M.) and Biochemistry (M.R., J.G.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; and
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D–06120 Halle/Saale, Germany (B.H.)
| | | |
Collapse
|
94
|
Perrone I, Pagliarani C, Lovisolo C, Chitarra W, Roman F, Schubert A. Recovery from water stress affects grape leaf petiole transcriptome. PLANTA 2012; 235:1383-96. [PMID: 22241135 DOI: 10.1007/s00425-011-1581-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/20/2011] [Indexed: 05/20/2023]
Abstract
Fast and efficient recovery from water stress is a key determinant of plant adaptation to changing meteorological conditions modulating transpiration, i.e. air temperature and humidity. We analysed transcriptomic responses during rehydration after water stress in grapevine leaf petioles, where embolism formation and repair commonly take place, and where metabolic changes related to embolism recovery are expected to be particularly important. We compared gene expression of recovering plants with irrigated controls, upon high and low transpiration conditions, using cDNA microarrays. In parallel, we assessed the daily dynamics of water relations, embolism formation and repair, and leaf abscisic acid concentration. In recovering plants, the most affected gene categories were secondary metabolism, including genes linked to flavonoid biosynthesis; sugar metabolism and transport, and several aquaporin genes. The physiological dynamics of recovery were lower and the number of differentially expressed probes was much lower upon low transpiration than found in actively transpiring grapevines, suggesting the existence of a more intense metabolic reorganization upon high transpiration conditions and of a signal eliciting these responses. In plants recovering under high transpiration, abscisic acid concentrations significantly increased, and, in parallel, transcripts linked to abscisic acid metabolism and signalling (ABA-8'-hydroxylase, serine-threonine kinases, RD22 proteins) were upregulated; a trend that was not observed upon low transpiration. Our results show that recovery from water stress elicits complex transcriptomic responses in grapevine. The increase observed in abscisic acid cellular levels could represent a signal triggering the activation of responses to rehydration after stress.
Collapse
Affiliation(s)
- Irene Perrone
- Dipartimento di Colture Arboree, University of Torino, Via Leonardo da Vinci 44, 10095 Grugliasco, TO, Italy
| | | | | | | | | | | |
Collapse
|
95
|
Arabidopsis touch-induced morphogenesis is jasmonate mediated and protects against pests. Curr Biol 2012; 22:701-6. [PMID: 22483939 DOI: 10.1016/j.cub.2012.02.061] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/20/2012] [Accepted: 02/21/2012] [Indexed: 11/20/2022]
Abstract
Plants cannot change location to escape stressful environments. Therefore, plants evolved to respond and acclimate to diverse stimuli, including the seemingly innocuous touch stimulus [1-4]. Although some species, such as Venus flytrap, have fast touch responses, most plants display more gradual touch-induced morphological alterations, called thigmomorphogenesis [2, 3, 5, 6]. Thigmomorphogenesis may be adaptive; trees subjected to winds develop less elongated and thicker trunks and thus are less likely damaged by powerful wind gusts [7]. Despite the widespread relevance of thigmomorphogenesis, the regulation that underlies plant mechanostimulus-induced morphological responses remains largely unknown. Furthermore, whether thigmomorphogenesis confers additional advantage is not fully understood. Although aspects of thigmomorphogenesis resemble ethylene effects [8], and touch can induce ethylene synthesis [9, 10], Arabidopsis ethylene response mutants show touch-induced thigmomorphogenesis [11]; thus, ethylene response is nonessential for thigmomorphogenesis. Here we show that jasmonate (JA) phytohormone both is required for and promotes the salient characteristics of thigmomorphogenesis in Arabidopsis, including a touch-induced delay in flowering and rosette diameter reduction. Furthermore, we find that repetitive mechanostimulation enhances Arabidopsis pest resistance in a JA-dependent manner. These results highlight an important role for JA in mediating mechanostimulus-induced plant developmental responses and resultant cross-protection against biotic stress.
Collapse
|
96
|
The stomata frontline of plant interaction with the environment-perspectives from hormone regulation. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1193-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
97
|
Liu JX, Zheng CH, Xu Y. Extracting plants core genes responding to abiotic stresses by penalized matrix decomposition. Comput Biol Med 2012; 42:582-9. [PMID: 22364779 DOI: 10.1016/j.compbiomed.2012.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 01/28/2012] [Accepted: 02/01/2012] [Indexed: 01/22/2023]
Abstract
Sparse methods have a significant advantage to reduce the complexity of genes expression data and to make them more comprehensible and interpretable. In this paper, based on penalized matrix decomposition (PMD), a novel approach is proposed to extract plants core genes, i.e., the characteristic gene set, responding to abiotic stresses. Core genes can capture the changes of the samples. In other words, the features of samples can be caught by the core genes. The experimental results show that the proposed PMD-based method is efficient to extract the core genes closely related to the abiotic stresses.
Collapse
Affiliation(s)
- Jin-Xing Liu
- Bio-Computing Research Center, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China.
| | | | | |
Collapse
|
98
|
An D, Yang J, Zhang P. Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress. BMC Genomics 2012; 13:64. [PMID: 22321773 PMCID: PMC3339519 DOI: 10.1186/1471-2164-13-64] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 02/10/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cassava is an important tropical root crop adapted to a wide range of environmental stimuli such as drought and acid soils. Nevertheless, it is an extremely cold-sensitive tropical species. Thus far, there is limited information about gene regulation and signalling pathways related to the cold stress response in cassava. The development of microarray technology has accelerated the study of global transcription profiling under certain conditions. RESULTS A 60-mer oligonucleotide microarray representing 20,840 genes was used to perform transcriptome profiling in apical shoots of cassava subjected to cold at 7°C for 0, 4 and 9 h. A total of 508 transcripts were identified as early cold-responsive genes in which 319 sequences had functional descriptions when aligned with Arabidopsis proteins. Gene ontology annotation analysis identified many cold-relevant categories, including 'Response to abiotic and biotic stimulus', 'Response to stress', 'Transcription factor activity', and 'Chloroplast'. Various stress-associated genes with a wide range of biological functions were found, such as signal transduction components (e.g., MAP kinase 4), transcription factors (TFs, e.g., RAP2.11), and reactive oxygen species (ROS) scavenging enzymes (e.g., catalase 2), as well as photosynthesis-related genes (e.g., PsaL). Seventeen major TF families including many well-studied members (e.g., AP2-EREBP) were also involved in the early response to cold stress. Meanwhile, KEGG pathway analysis uncovered many important pathways, such as 'Plant hormone signal transduction' and 'Starch and sucrose metabolism'. Furthermore, the expression changes of 32 genes under cold and other abiotic stress conditions were validated by real-time RT-PCR. Importantly, most of the tested stress-responsive genes were primarily expressed in mature leaves, stem cambia, and fibrous roots rather than apical buds and young leaves. As a response to cold stress in cassava, an increase in transcripts and enzyme activities of ROS scavenging genes and the accumulation of total soluble sugars (including sucrose and glucose) were also detected. CONCLUSIONS The dynamic expression changes reflect the integrative controlling and transcriptome regulation of the networks in the cold stress response of cassava. The biological processes involved in the signal perception and physiological response might shed light on the molecular mechanisms related to cold tolerance in tropical plants and provide useful candidate genes for genetic improvement.
Collapse
Affiliation(s)
- Dong An
- National Laboratory of Plant Molecular Genetics and National Center for Plant Gene Reserach (Shanghai), Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201602, China
| | - Jun Yang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201602, China
| | - Peng Zhang
- National Laboratory of Plant Molecular Genetics and National Center for Plant Gene Reserach (Shanghai), Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201602, China
| |
Collapse
|
99
|
A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap. Proc Natl Acad Sci U S A 2011; 108:15492-7. [PMID: 21896747 DOI: 10.1073/pnas.1112535108] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Venus flytrap's leaves can catch an insect in a fraction of a second. Since the time of Charles Darwin, scientists have struggled to understand the sensory biology and biomechanics of this plant, Dionaea muscipula. Here we show that insect-capture of Dionaea traps is modulated by the phytohormone abscisic acid (ABA) and jasmonates. Water-stressed Dionaea, as well as those exposed to the drought-stress hormone ABA, are less sensitive to mechanical stimulation. In contrast, application of 12-oxo-phytodienoic acid (OPDA), a precursor of the phytohormone jasmonic acid (JA), the methyl ester of JA (Me-JA), and coronatine (COR), the molecular mimic of the isoleucine conjugate of JA (JA-Ile), triggers secretion of digestive enzymes without any preceding mechanical stimulus. Such secretion is accompanied by slow trap closure. Under physiological conditions, insect-capture is associated with Ca(2+) signaling and a rise in OPDA, Apparently, jasmonates bypass hapto-electric processes associated with trap closure. However, ABA does not affect OPDA-dependent gland activity. Therefore, signals for trap movement and secretion seem to involve separate pathways. Jasmonates are systemically active because application to a single trap induces secretion and slow closure not only in the given trap but also in all others. Furthermore, formerly touch-insensitive trap sectors are converted into mechanosensitive ones. These findings demonstrate that prey-catching Dionaea combines plant-specific signaling pathways, involving OPDA and ABA with a rapidly acting trigger, which uses ion channels, action potentials, and Ca(2+) signals.
Collapse
|
100
|
Perochon A, Aldon D, Galaud JP, Ranty B. Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie 2011; 93:2048-53. [PMID: 21798306 DOI: 10.1016/j.biochi.2011.07.012] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/09/2011] [Indexed: 01/01/2023]
Abstract
Calmodulin (CaM) is a primary calcium sensor in all eukaryotes. It binds calcium and regulates the activity of a wide range of effector proteins in response to calcium signals. The list of CaM targets includes plant-specific proteins whose functions are progressively being elucidated. Plants also possess numerous calmodulin-like proteins (CMLs) that appear to have evolved unique functions. Functional studies of CaM and CMLs in plants highlight the importance of this protein family in the regulation of plant development and stress responses by converting calcium signals into transcriptional responses, protein phosphorylation or metabolic changes. This review summarizes some of the significant progress made by biochemical and genetic studies in identifying the properties and physiological functions of plant CaMs and CMLs. We discuss emerging paradigms in the field and highlight the areas that need further investigation.
Collapse
Affiliation(s)
- Alexandre Perochon
- UMR 5546 CNRS/Universite Paul Sabatier Toulouse III, Pole de biotechnologie vegetale, Auzeville, Castanet-Tolosan Cedex, France
| | | | | | | |
Collapse
|