51
|
Tang C, Xiao X, Li H, Fan Y, Yang J, Qi J, Li H. Comparative analysis of latex transcriptome reveals putative molecular mechanisms underlying super productivity of Hevea brasiliensis. PLoS One 2013; 8:e75307. [PMID: 24066172 PMCID: PMC3774812 DOI: 10.1371/journal.pone.0075307] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/13/2013] [Indexed: 01/02/2023] Open
Abstract
Increasing demand for natural rubber prompts studies into the mechanisms governing the productivity of rubber tree (Heveabrasiliensis). It is very interesting to notice that a rubber tree of clone PR107 in Yunnan, China is reported to yield more than 20 times higher than the average rubber tree. This super-high-yielding (SHY) rubber tree (designated as SY107), produced 4.12 kg of latex (cytoplasm of rubber producing laticifers, containing about 30% of rubber) per tapping, more than 7-fold higher than that of the control. This rubber tree is therefore a good material to study how the rubber production is regulated at a molecular aspect. A comprehensive cDNA-AFLP transcript profiling was performed on the latex of SY107 and its average counterparts by using the 384 selective primer pairs for two restriction enzyme combinations (ApoI/MseI and TaqI/MseI). A total of 746 differentially expressed (DE) transcript-derived fragments (TDFs) were identified, of which the expression patterns of 453 TDFs were further confirmed by RT-PCR. These RT-PCR confirmed TDFs represented 352 non-redundant genes, of which 215 had known or partially known functions and were grouped into 10 functional categories. The top three largest categories were transcription and protein synthesis (representing 24.7% of the total genes), defense and stress (15.3%), and primary and secondary metabolism (14.0%). Detailed analysis of the DE-genes suggests notable characteristics of SHY phenotype in improved sucrose loading capability, rubber biosynthesis-preferred sugar utilization, enhanced general metabolism and timely stress alleviation. However, the SHY phenotype has little correlation with rubber-biosynthesis pathway genes.
Collapse
Affiliation(s)
- Chaorong Tang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, China
| | | | | | | | | | | | | |
Collapse
|
52
|
Tian WM, Zhang H, Yang SG, Shi MJ, Wang XC, Dai LJ, Chen YY. Molecular and biochemical characterization of a cyanogenic β-glucosidase in the inner bark tissues of rubber tree (Hevea brasiliensis Muell. Arg.). JOURNAL OF PLANT PHYSIOLOGY 2013; 170:723-730. [PMID: 23510639 DOI: 10.1016/j.jplph.2012.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 12/15/2012] [Accepted: 12/19/2012] [Indexed: 06/01/2023]
Abstract
Tapping causes the loss of large amounts of latex from laticifers and subsequently enhances latex regeneration, a high carbon- and nitrogen-cost activity in rubber tree. It is suggested that a 67 kDa protein associated with protein-storing cells in the inner bark tissues of rubber tree plays an important role in meeting the nitrogen demand for latex regeneration. Here, the 67 kDa protein was further characterized by a combination of cell biological, molecular biological and biochemical techniques. Immunogold labeling showed that the 67 kDa protein was specifically localized in the central vacuole of protein-storing cells. A full-length cDNA, referred to as HbVSP1, was cloned. The HbVSP1 contained a 1584 bp open reading frame encoding a protein of 527 amino acids. The putative protein HbVSP1 shared high identity with the P66 protein from rubber tree and proteins of the linamarase, and bg1A from cassava (Manihot esculenta). HbVSP1 contained the active site sequences of β-glucosidase, TFNEP and I/VTENG. In vitro analysis showed that the 67 kDa protein exhibited the activity of both β-glucosidase and linamarase and was thus characterized as a cyanogenic β-glucosidase. Proteins immuno-related to the 67 kDa protein were present in leaves and lutoids of laticifers. Tapping down-regulated the expression of HbVSP1, but up-regulated the expression of genes encoding the key enzymes for rubber biosynthesis, while the effect of resting from tapping was the reverse. Taken together, the results suggest that the 67 kDa protein is a vacuole-localized cyanogenic β-glucosidase encoded by HbVSP1 and may have a role in nitrogen storage in inner bark tissues of trunk during the leafless periods when rubber tree is rested from tapping.
Collapse
Affiliation(s)
- Wei-Min Tian
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, PR China.
| | | | | | | | | | | | | |
Collapse
|
53
|
Duan C, Argout X, Gébelin V, Summo M, Dufayard JF, Leclercq J, Kuswanhadi, Piyatrakul P, Pirrello J, Rio M, Champion A, Montoro P. Identification of the Hevea brasiliensis AP2/ERF superfamily by RNA sequencing. BMC Genomics 2013; 14:30. [PMID: 23324139 PMCID: PMC3644242 DOI: 10.1186/1471-2164-14-30] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 01/02/2013] [Indexed: 12/22/2022] Open
Abstract
Background Rubber tree (Hevea brasiliensis) laticifers are the source of natural rubber. Rubber production depends on endogenous and exogenous ethylene (ethephon). AP2/ERF transcription factors, and especially Ethylene-Response Factors, play a crucial role in plant development and response to biotic and abiotic stresses. This study set out to sequence transcript expressed in various tissues using next-generation sequencing and to identify AP2/ERF superfamily in the rubber tree. Results The 454 sequencing technique was used to produce five tissue-type transcript libraries (leaf, bark, latex, embryogenic tissues and root). Reads from all libraries were pooled and reassembled to improve mRNA lengths and produce a global library. One hundred and seventy-three AP2/ERF contigs were identified by in silico analysis based on the amino acid sequence of the conserved AP2 domain from the global library. The 142 contigs with the full AP2 domain were classified into three main families (20 AP2 members, 115 ERF members divided into 11 groups, and 4 RAV members) and 3 soloist members. Fifty-nine AP2/ERF transcripts were found in latex. Alongside the microRNA172 already described in plants, eleven additional microRNAs were predicted to inhibit Hevea AP2/ERF transcripts. Conclusions Hevea has a similar number of AP2/ERF genes to that of other dicot species. We adapted the alignment and classification methods to data from next-generation sequencing techniques to provide reliable information. We observed several specific features for the ERF family. Three HbSoloist members form a group in Hevea. Several AP2/ERF genes highly expressed in latex suggest they have a specific function in Hevea. The analysis of AP2/ERF transcripts in Hevea presented here provides the basis for studying the molecular regulation of latex production in response to abiotic stresses and latex cell differentiation.
Collapse
|
54
|
Li D, Deng Z, Qin B, Liu X, Men Z. De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.). BMC Genomics 2012; 13:192. [PMID: 22607098 PMCID: PMC3431226 DOI: 10.1186/1471-2164-13-192] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 05/03/2012] [Indexed: 01/14/2023] Open
Abstract
Background In rubber tree, bark is one of important agricultural and biological organs. However, the molecular mechanism involved in the bark formation and development in rubber tree remains largely unknown, which is at least partially due to lack of bark transcriptomic and genomic information. Therefore, it is necessary to carried out high-throughput transcriptome sequencing of rubber tree bark to generate enormous transcript sequences for the functional characterization and molecular marker development. Results In this study, more than 30 million sequencing reads were generated using Illumina paired-end sequencing technology. In total, 22,756 unigenes with an average length of 485 bp were obtained with de novo assembly. The similarity search indicated that 16,520 and 12,558 unigenes showed significant similarities to known proteins from NCBI non-redundant and Swissprot protein databases, respectively. Among these annotated unigenes, 6,867 and 5,559 unigenes were separately assigned to Gene Ontology (GO) and Clusters of Orthologous Group (COG). When 22,756 unigenes searched against the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG) database, 12,097 unigenes were assigned to 5 main categories including 123 KEGG pathways. Among the main KEGG categories, metabolism was the biggest category (9,043, 74.75%), suggesting the active metabolic processes in rubber tree bark. In addition, a total of 39,257 EST-SSRs were identified from 22,756 unigenes, and the characterizations of EST-SSRs were further analyzed in rubber tree. 110 potential marker sites were randomly selected to validate the assembly quality and develop EST-SSR markers. Among 13 Hevea germplasms, PCR success rate and polymorphism rate of 110 markers were separately 96.36% and 55.45% in this study. Conclusion By assembling and analyzing de novo transcriptome sequencing data, we reported the comprehensive functional characterization of rubber tree bark. This research generated a substantial fraction of rubber tree transcriptome sequences, which were very useful resources for gene annotation and discovery, molecular markers development, genome assembly and annotation, and microarrays development in rubber tree. The EST-SSR markers identified and developed in this study will facilitate marker-assisted selection breeding in rubber tree. Moreover, this study also supported that transcriptome analysis based on Illumina paired-end sequencing is a powerful tool for transcriptome characterization and molecular marker development in non-model species, especially those with large and complex genomes.
Collapse
Affiliation(s)
- Dejun Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan, China.
| | | | | | | | | |
Collapse
|
55
|
Molecular characterization of a novel 14-3-3 protein gene (Hb14-3-3c) from Hevea brasiliensis. Mol Biol Rep 2011; 39:4491-7. [PMID: 21947841 DOI: 10.1007/s11033-011-1239-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
The cDNA encoding a 14-3-3 protein, designated as Hb14-3-3c, was isolated from Hevea brasiliensis. Hb14-3-3c was 1,269 bp long containing a 795 bp open reading frame encoding a putative protein of 264 amino acids, flanked by a 146 bp 5'UTR and a 328 bp 3' UTR. The predicted molecular mass of Hb14-3-3c is 29.67 kDa, with an isoelectric point of 4.52 and the deduced protein showed high similarity to the 14-3-3 protein from other plant species. Expression analysis revealed more significant accumulation of Hb14-3-3c transcripts in latex than in leaves, buds and flowers. The transcription of Hb14-3-3c in latex was induced by jasmonate and ethephon. Overproduction of recombinant Hb14-3-3c protein gave the Escherichia coli cells more tolerance on Co(2+), Cu(2+) and Zn(2+). Through yeast two-hybrid screening, 11 interaction partners of the Hb14-3-3c, which are involved in rubber biosynthesis, stress-related responses, defence etc., were identified in rubber tree latex. Taking these data together, it is proposed that the Hb14-3-3c may participate in regulation of rubber biosynthesis. Thus, the results of this study provide novel insights into the 14-3-3 signaling related to rubber biosynthesis, stress-related responses in rubber tree.
Collapse
|
56
|
Li H, Qin Y, Xiao X, Tang C. Screening of valid reference genes for real-time RT-PCR data normalization in Hevea brasiliensis and expression validation of a sucrose transporter gene HbSUT3. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:132-9. [PMID: 21683878 DOI: 10.1016/j.plantsci.2011.04.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 05/08/2023]
Abstract
Real-time RT-PCR (RT-qPCR) is a sensitive and precise method of quantifying gene expression, however, suitable reference genes are required. Here, a systematic reference gene screening was performed by RT-qPCR on 22 candidate genes in Hevea brasiliensis. Two ubiquitin-protein ligases (UBC2a and UBC4) were the most stable when all samples were analyzed together. A mitosis protein (YLS8) and a eukaryotic translation initiation factor (eIF1Aa) were the most stable in response to tapping. UBC2b and UBC1 were the most stable among different genotypes. UBC2b and a DEAD box RNA helicase (RH2b) were the most stable across individual trees. YLS8 and RH8 were most stably expressed in hormone-treated samples. Expression of the candidate reference genes varied significantly across different tissues, and at least four genes (RH2b, RH8, UBC2a and eIF2) were needed for expression normalization. In addition, examination of relative expression of a sucrose transporter HbSUT3 in different RNA samples demonstrated the importance of additional reference genes to ensure accurate quantitative expression analysis. Overall, our work serves as a guide for selection of reference genes in RT-qPCR gene expression studies in H. brasiliensis.
Collapse
Affiliation(s)
- Heping Li
- Key Lab of Rubber Biology, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China.
| | | | | | | |
Collapse
|
57
|
Wang X, Li Y, Ji W, Bai X, Cai H, Zhu D, Sun XL, Chen LJ, Zhu YM. A novel Glycine soja tonoplast intrinsic protein gene responds to abiotic stress and depresses salt and dehydration tolerance in transgenic Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1241-8. [PMID: 21397356 DOI: 10.1016/j.jplph.2011.01.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 01/19/2011] [Accepted: 01/19/2011] [Indexed: 05/19/2023]
Abstract
Tonoplast intrinsic protein (TIP) is a subfamily of the aquaporin (AQP), also known as major intrinsic protein (MIP) family, and regulates water movement across vacuolar membranes. Some reports have implied that TIP genes are associated with plant tolerance to some abiotic stresses that cause water loss, such as drought and high salinity. In our previous work, we found that an expressed sequence tag (EST) representing a TIP gene in our Glycine soja EST library was inducible by abiotic stresses. This TIP was subsequently isolated from G. soja with cDNA library screening, EST assembly and PCR, and named as GsTIP2;1. The expression patterns of GsTIP2;1 in G. soja under low temperature, salt and dehydration stress were different in leaves and roots. Though GsTIP2;1 is a stress-induced gene, overexpression of GsTIP2;1 in Arabidopsis thaliana depressed tolerance to salt and dehydration stress, but did not affect seedling growth under cold or favorable conditions. Higher dehydration speed was detected in Arabidopsis plants overexpressing GsTIP2;1, implying GsTIP2;1 might mediate stress sensitivity by enhancing water loss in the plant. Such a result is not identical to previous reports, providing some new information about the relationship between TIP and plant abiotic stress tolerance.
Collapse
Affiliation(s)
- Xi Wang
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Tungngoen K, Viboonjun U, Kongsawadworakul P, Katsuhara M, Julien JL, Sakr S, Chrestin H, Narangajavana J. Hormonal treatment of the bark of rubber trees (Hevea brasiliensis) increases latex yield through latex dilution in relation with the differential expression of two aquaporin genes. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:253-262. [PMID: 20637523 DOI: 10.1016/j.jplph.2010.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/21/2010] [Accepted: 06/21/2010] [Indexed: 05/29/2023]
Abstract
Natural rubber is synthesized in laticifers in the inner liber of the rubber tree (Hevea brasiliensis). Upon bark tapping, the latex is expelled due to liber turgor pressure. The mature laticifers are devoid of plasmodesmata; therefore a corresponding decrease in the total latex solid content is likely to occur due to water influx inside the laticifers. Auxins and ethylene used as efficient yield stimulants in mature untapped rubber trees, but, bark treatments with abscisic acid (ABA) and salicylic acid (SA) could also induce a transient increase latex yield. We recently reported that there are three aquaporin genes, HbPIP2;1, HbTIP1;1 and HbPIP1;1, that are regulated differentially after ethylene bark treatment. HbPIP2;1 was up-regulated in both the laticifers and the inner liber tissues, whereas HbTIP1;1 was up-regulated in the latex cells, but very markedly down-regulated in the inner liber tissues. Conversely, HbPIP1;1 was down-regulated in both tissues. In the present study, HbPIP2;1 and HbTIP1;1 showed a similar expression in response to auxin, ABA and SA, as seen in ethylene stimulation, while HbPIP1;1 was slightly regulated by auxin, but neither by ABA nor SA. The analysis of the HbPIP1;1 promoter region indicated the presence of only ethylene and auxin responsive elements. In addition, the poor efficiency of this HbPIP1;1 in increasing plasmalemma water conductance was confirmed in Xenopus oocytes. Thus, an increase in latex yield in response to all of these hormones was proposed to be the major function of aquaporins, HbPIP2;1 and HbTIP1;1. This study emphasized that the circulation of water between the laticifers and their surrounding tissues that result in latex dilution, as well as the probable maintenance of the liber tissues turgor pressure, favor the prolongation of latex flow.
Collapse
Affiliation(s)
- Kessarin Tungngoen
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Dusotoit-Coucaud A, Porcheron B, Brunel N, Kongsawadworakul P, Franchel J, Viboonjun U, Chrestin H, Lemoine R, Sakr S. Cloning and characterization of a new polyol transporter (HbPLT2) in Hevea brasiliensis. PLANT & CELL PHYSIOLOGY 2010; 51:1878-1888. [PMID: 20929914 DOI: 10.1093/pcp/pcq151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Quebrachitol is a cyclic polyol and, along with sucrose, is one of the main sugars in Hevea latex. However, in contrast to sucrose, the mechanism and regulation of quebrachitol absorption is still unknown. Screening a latex-derived cDNA library using polyol transporter-specific probes, two full-length cDNAs were isolated, and named HbPLT1 and HbPLT2 (for Hevea brasiliensis polyol transporter 1 and 2, respectively). Their respective sequences exhibited close similarity with the previously cloned acyclic sugar polyol transporters, and shared the main features of the major facilitative superfamily. The functional activity of one of the cDNAs was determined by using an HbPLT2-complemented yeast strain. These strains displayed a marginal absorption of cyclic (inositol) and acyclic (mannitol and sorbitol) polyol but no absorption of sucrose, hexose and glycerol. Active absorption for xylitol was detected, and was competitively inhibited by quebrachitol. HbPLT1 and HbPLT2 expression patterns varied in response to different stimuli. Bark treatment with ethylene resulted in an early and significant up-regulation of HbPLT2 transcripts in laticifers as well as in inner bark cells, when compared with HbPLT1. Other treatments, especially mechanical wounding, strongly induced HbPLT2 transcripts. These data were consistent with the presence of ethylene and a wound-responsive regulatory cis-element on the sequence of the HbPLT2 promoter. All these findings together with those recently obtained for sucrose transporters and aquaporins are discussed in relation to the different roles for quebrachitol in Hevea brasiliensis.
Collapse
|
60
|
Duan C, Rio M, Leclercq J, Bonnot F, Oliver G, Montoro P. Gene expression pattern in response to wounding, methyl jasmonate and ethylene in the bark of Hevea brasiliensis. TREE PHYSIOLOGY 2010; 30:1349-59. [PMID: 20660491 DOI: 10.1093/treephys/tpq066] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Natural rubber production in Hevea brasiliensis is determined by both tapping and ethephon frequencies. It is affected by a complex physiological disorder called tapping panel dryness. This syndrome is likely to be induced by environmental and latex harvesting stresses. Defence responses, including rubber biosynthesis, are dramatically mediated by wounding, jasmonate and ethylene (ET), among other factors. Using real-time RT-PCR, the effects of wounding, methyl jasmonate (MeJA) and ET on the relative transcript abundance of a set of 25 genes involved in their signalling and metabolic pathways were studied in the bark of 3-month-old epicormic shoots. Temporal regulation was found for 9 out of 25 genes. Wounding treatment regulated the transcript abundance of 10 genes. Wounding-specific regulation was noted for the HbMAPK, HbBTF3b, HbCAS1, HbLTPP and HbPLD genes. MeJA treatment regulated the transcript abundance of nine genes. Of these, the HbMYB, HbCAS2, HbCIPK and HbChi genes were shown to be specifically MeJA inducible. ET response was accompanied by regulation of the transcript abundance of eight genes, and six genes, HbETR2, HbEIN2, HbEIN3, HbCaM, HbPIP1 and HbQM, were specifically regulated by ET treatment. Additionally, the transcript level of the HbGP and HbACR genes was enhanced by all three treatments simultaneously. Overall, a large number of genes were found to be regulated 4 h after the treatments were applied. This study nevertheless revealed some jasmonic acid-independent wound signalling pathways in H. brasiliensis, provided a general characterization of signalling pathways and will serve as a new base from which to launch advanced studies of the network of pathways operating in H. brasiliensis.
Collapse
Affiliation(s)
- Cuifang Duan
- Chinese Academy of Tropical Agriculture Sciences, Danzhou, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
61
|
Tang C, Huang D, Yang J, Liu S, Sakr S, Li H, Zhou Y, Qin Y. The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree). PLANT, CELL & ENVIRONMENT 2010; 33:1708-20. [PMID: 20492551 DOI: 10.1111/j.1365-3040.2010.02175.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Efficient sucrose loading in rubber-producing cells (laticifer cells) is essential for retaining rubber productivity in Hevea brasiliensis, but the molecular mechanisms underlying the regulation of this process remain unknown. Here, we functionally characterized a putative Hevea SUT member, HbSUT3, mainly in samples from regularly exploited trees. When expressed in yeast, HbSUT3 encodes a functional sucrose transporter that exhibits high sucrose affinity with a K(m) value of 1.24 mm at pH 4.0, and possesses features typical of sucrose/H(+) symporters. In planta, when compared to the expression of other Hevea SUT genes, HbSUT3 was found to be the predominant member expressed in the rubber-containing cytoplasm (latex) of laticifers. The comparison of HbSUT3 expression among twelve Hevea tissues demonstrates a relatively tissue-specific pattern, i.e. expression primarily in the latex and in female flowers. HbSUT3 expression is induced by the latex stimulator Ethrel (an ethylene generator), and relates to its yield-stimulating effect. Tapping (the act of rubber harvesting) markedly increased the expression of HbSUT3, whereas wounding alone had little effect. Moreover, the expression of HbSUT3 was found to be positively correlated with latex yield. Taken together, our results provide evidence favouring the involvement of HbSUT3 in sucrose loading into laticifers and in rubber productivity.
Collapse
Affiliation(s)
- Chaorong Tang
- Key Lab of Rubber Biology, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, College of Agronomy, Hainan University, Danzhou, Hainan 571737, China.
| | | | | | | | | | | | | | | |
Collapse
|