51
|
Tewari RK, Horemans N, Watanabe M. Evidence for a role of nitric oxide in iron homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:990-1006. [PMID: 33196822 DOI: 10.1093/jxb/eraa484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/13/2020] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO), once regarded as a poisonous air pollutant, is now understood as a regulatory molecule essential for several biological functions in plants. In this review, we summarize NO generation in different plant organs and cellular compartments, and also discuss the role of NO in iron (Fe) homeostasis, particularly in Fe-deficient plants. Fe is one of the most limiting essential nutrient elements for plants. Plants often exhibit Fe deficiency symptoms despite sufficient tissue Fe concentrations. NO appears to not only up-regulate Fe uptake mechanisms but also makes Fe more bioavailable for metabolic functions. NO forms complexes with Fe, which can then be delivered into target cells/tissues. NO generated in plants can alleviate oxidative stress by regulating antioxidant defense processes, probably by improving functional Fe status and by inducing post-translational modifications in the enzymes/proteins involved in antioxidant defense responses. It is hypothesized that NO acts in cooperation with transcription factors such as bHLHs, FIT, and IRO to regulate the expression of enzymes and proteins essential for Fe homeostasis. However, further investigations are needed to disentangle the interaction of NO with intracellular target molecules that leads to enhanced internal Fe availability in plants.
Collapse
Affiliation(s)
| | - Nele Horemans
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang, Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, Belgium
| | - Masami Watanabe
- Laboratory of Plant Biochemistry, Chiba University, Inage-ward, Yayoicho, Chiba, Japan
| |
Collapse
|
52
|
Angulo M, García MJ, Alcántara E, Pérez-Vicente R, Romera FJ. Comparative Study of Several Fe Deficiency Responses in the Arabidopsis thaliana Ethylene Insensitive Mutants ein2-1 and ein2-5. PLANTS (BASEL, SWITZERLAND) 2021; 10:262. [PMID: 33573082 PMCID: PMC7912600 DOI: 10.3390/plants10020262] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 01/01/2023]
Abstract
Iron (Fe) is an essential micronutrient for plants since it participates in essential processes such as photosynthesis, respiration and nitrogen assimilation. Fe is an abundant element in most soils, but its availability for plants is low, especially in calcareous soils. Fe deficiency causes Fe chlorosis, which can affect the productivity of the affected crops. Plants favor Fe acquisition by developing morphological and physiological responses in their roots. Ethylene (ET) and nitric oxide (NO) have been involved in the induction of Fe deficiency responses in dicot (Strategy I) plants, such as Arabidopsis. In this work, we have conducted a comparative study on the development of subapical root hairs, of the expression of the main Fe acquisition genes FRO2 and IRT1, and of the master transcription factor FIT, in two Arabidopsis thaliana ET insensitive mutants, ein2-1 and ein2-5, affected in EIN2, a critical component of the ET transduction pathway. The results obtained show that both mutants do not induce subapical root hairs either under Fe deficiency or upon treatments with the ET precursor 1-aminocyclopropane-1-carboxylate (ACC) and the NO donor S-nitrosoglutathione (GSNO). By contrast, both of them upregulate the Fe acquisition genes FRO2 and IRT1 (and FIT) under Fe deficiency. However, the upregulation was different when the mutants were exposed to ET [ACC and cobalt (Co), an ET synthesis inhibitor] and GSNO treatments. All these results clearly support the participation of ET and NO, through EIN2, in the regulation of subapical root hairs and Fe acquisition genes. The results will be discussed, taking into account the role of both ET and NO in the regulation of Fe deficiency responses.
Collapse
Affiliation(s)
- Macarena Angulo
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3 de Rabanales, Universidad de Córdoba, Edificio Celestino Mutis, 14071 Córdoba, Spain; (M.A.); (E.A.); (F.J.R.)
| | - María José García
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3 de Rabanales, Universidad de Córdoba, Edificio Celestino Mutis, 14071 Córdoba, Spain;
| | - Esteban Alcántara
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3 de Rabanales, Universidad de Córdoba, Edificio Celestino Mutis, 14071 Córdoba, Spain; (M.A.); (E.A.); (F.J.R.)
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3 de Rabanales, Universidad de Córdoba, Edificio Celestino Mutis, 14071 Córdoba, Spain;
| | - Francisco Javier Romera
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3 de Rabanales, Universidad de Córdoba, Edificio Celestino Mutis, 14071 Córdoba, Spain; (M.A.); (E.A.); (F.J.R.)
| |
Collapse
|
53
|
Chen WW, Zhu HH, Wang JY, Han GH, Huang RN, Hong YG, Yang JL. Comparative Physiological and Transcriptomic Analyses Reveal Altered Fe-Deficiency Responses in Tomato Epimutant Colorless Non-ripening. FRONTIERS IN PLANT SCIENCE 2021; 12:796893. [PMID: 35126421 PMCID: PMC8813752 DOI: 10.3389/fpls.2021.796893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/27/2021] [Indexed: 05/05/2023]
Abstract
The mechanisms associated with the regulation of iron (Fe) homeostasis have been extensively examined, however, epigenetic regulation of these processes remains largely unknown. Here, we report that a naturally occurring epigenetic mutant, Colorless non-ripening (Cnr), displayed increased Fe-deficiency responses compared to its wild-type Ailsa Craig (AC). RNA-sequencing revealed that a total of 947 and 1,432 genes were up-regulated by Fe deficiency in AC and Cnr roots, respectively, while 923 and 1,432 genes were, respectively, down-regulated. Gene ontology analysis of differentially expressed genes showed that genes encoding enzymes, transporters, and transcription factors were preferentially affected by Fe deficiency. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed differential metabolic responses to Fe deficiency between AC and Cnr. Based on comparative transcriptomic analyses, 24 genes were identified as potential targets of Cnr epimutation, and many of them were found to be implicated in Fe homeostasis. By developing CRISPR/Cas9 genome editing SlSPL-CNR knockout (KO) lines, we found that some Cnr-mediated Fe-deficiency responsive genes showed similar expression patterns between SlSPL-CNR KO plants and the Cnr epimutant. Moreover, both two KO lines displayed Fe-deficiency-induced chlorosis more severe than AC plants. Additionally, the Cnr mutant displayed hypermethylation in the 286-bp epi-mutated region on the SlSPL-CNR promoter, which contributes to repressed expression of SlSPL-CNR when compared with AC plants. However, Fe-deficiency induced no change in DNA methylation both at the 286-bp epi-allele region and the entire region of SlSPL-CNR gene. Taken together, using RNA-sequencing and genetic approaches, we identified Fe-deficiency responsive genes in tomato roots, and demonstrated that SlSPL-CNR is a novel regulator of Fe-deficiency responses in tomato, thereby, paving the way for further functional characterization and regulatory network dissection.
Collapse
Affiliation(s)
- Wei Wei Chen
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hui Hui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jia Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Guang Hao Han
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ru Nan Huang
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yi Guo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Yi Guo Hong,
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Jian Li Yang,
| |
Collapse
|
54
|
Comparative Transcriptome Analysis of Iron and Zinc Deficiency in Maize ( Zea mays L.). PLANTS 2020; 9:plants9121812. [PMID: 33371388 PMCID: PMC7767415 DOI: 10.3390/plants9121812] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
Globally, one-third of the population is affected by iron (Fe) and zinc (Zn) deficiency, which is severe in developing and underdeveloped countries where cereal-based diets predominate. The genetic biofortification approach is the most sustainable and one of the cost-effective ways to address Fe and Zn malnutrition. Maize is a major source of nutrition in sub-Saharan Africa, South Asia and Latin America. Understanding systems’ biology and the identification of genes involved in Fe and Zn homeostasis facilitate the development of Fe- and Zn-enriched maize. We conducted a genome-wide transcriptome assay in maize inbred SKV616, under –Zn, –Fe and –Fe–Zn stresses. The results revealed the differential expression of several genes related to the mugineic acid pathway, metal transporters, photosynthesis, phytohormone and carbohydrate metabolism. We report here Fe and Zn deficiency-mediated changes in the transcriptome, root length, stomatal conductance, transpiration rate and reduced rate of photosynthesis. Furthermore, the presence of multiple regulatory elements and/or the co-factor nature of Fe and Zn in enzymes indicate their association with the differential expression and opposite regulation of several key gene(s). The differentially expressed candidate genes in the present investigation would help in breeding for Fe and Zn efficient and kernel Fe- and Zn-rich maize cultivars through gene editing, transgenics and molecular breeding.
Collapse
|
55
|
Tong J, Sun M, Wang Y, Zhang Y, Rasheed A, Li M, Xia X, He Z, Hao Y. Dissection of Molecular Processes and Genetic Architecture Underlying Iron and Zinc Homeostasis for Biofortification: From Model Plants to Common Wheat. Int J Mol Sci 2020; 21:E9280. [PMID: 33291360 PMCID: PMC7730113 DOI: 10.3390/ijms21239280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
The micronutrients iron (Fe) and zinc (Zn) are not only essential for plant survival and proliferation but are crucial for human health. Increasing Fe and Zn levels in edible parts of plants, known as biofortification, is seen a sustainable approach to alleviate micronutrient deficiency in humans. Wheat, as one of the leading staple foods worldwide, is recognized as a prioritized choice for Fe and Zn biofortification. However, to date, limited molecular and physiological mechanisms have been elucidated for Fe and Zn homeostasis in wheat. The expanding molecular understanding of Fe and Zn homeostasis in model plants is providing invaluable resources to biofortify wheat. Recent advancements in NGS (next generation sequencing) technologies coupled with improved wheat genome assembly and high-throughput genotyping platforms have initiated a revolution in resources and approaches for wheat genetic investigations and breeding. Here, we summarize molecular processes and genes involved in Fe and Zn homeostasis in the model plants Arabidopsis and rice, identify their orthologs in the wheat genome, and relate them to known wheat Fe/Zn QTL (quantitative trait locus/loci) based on physical positions. The current study provides the first inventory of the genes regulating grain Fe and Zn homeostasis in wheat, which will benefit gene discovery and breeding, and thereby accelerate the release of Fe- and Zn-enriched wheats.
Collapse
Affiliation(s)
- Jingyang Tong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Mengjing Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Yue Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Yong Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Awais Rasheed
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing 100081, China;
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ming Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Xianchun Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing 100081, China;
| | - Yuanfeng Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China; (J.T.); (M.S.); (Y.W.); (Y.Z.); (M.L.); (X.X.)
| |
Collapse
|
56
|
Cui M, Gu M, Lu Y, Zhang Y, Chen C, Ling HQ, Wu H. Glutamate synthase 1 is involved in iron-deficiency response and long-distance transportation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1925-1941. [PMID: 32584503 DOI: 10.1111/jipb.12985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Iron is an essential microelement for plant growth. After uptake from the soil, iron is chelated by ligands and translocated from roots to shoots for subsequent utilization. However, the number of ligands involved in iron chelation is unclear. In this study, we identified and demonstrated that GLU1, which encodes a ferredoxin-dependent glutamate synthase, was involved in iron homeostasis. First, the expression of GLU1 was strongly induced by iron deficiency condition. Second, lesion of GLU1 results in reduced transcription of many iron-deficiency-responsive genes in roots and shoots. The mutant plants revealed a decreased iron concentration in the shoots, and displayed severe leaf chlorosis under the condition of Fe limitation, compared to wild-type. Third, the product of GLU1, glutamate, could chelate iron in vivo and promote iron transportation. Last, we also found that supplementation of glutamate in the medium can alleviate cadmium toxicity in plants. Overall, our results provide evidence that GLU1 is involved in iron homeostasis through affecting glutamate synthesis under iron deficiency conditions in Arabidopsis.
Collapse
Affiliation(s)
- Man Cui
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengjun Gu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaru Lu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yue Zhang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunlin Chen
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huilan Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
57
|
Multi-Walled Carbon Nanotubes Can Promote Brassica napus L. and Arabidopsis thaliana L. Root Hair Development through Nitric Oxide and Ethylene Pathways. Int J Mol Sci 2020; 21:ijms21239109. [PMID: 33266061 PMCID: PMC7729517 DOI: 10.3390/ijms21239109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/22/2022] Open
Abstract
Here, we report that multi-walled carbon nanotubes (MWCNTs) can promote plant root hair growth in the species analyzed in this study; however, low and excessive concentrations of MWCNTs had no significant effect or even an inhibiting influence. Further results show that MWCNTs can enter rapeseed root cells. Meanwhile, nitrate reductase (NR)-dependent nitric oxide (NO) and ethylene syntheses, as well as root hair formation, were significantly stimulated by MWCNTs. Transcription of root hair growth-related genes were also modulated. The above responses were sensitive to the removal of endogenous NO or ethylene with a scavenger of NO or NO/ethylene synthesis inhibitors. Pharmacological and molecular evidence suggested that ethylene might act downstream of NR-dependent NO in MWCNTs-induced root hair morphogenesis. Genetic evidence in Arabidopsis further revealed that MWCNTs-triggered root hair growth was abolished in ethylene-insensitive mutants ein2-5 and ein3-1, and NR mutant nia1/2, but not in noa1 mutant. Further data placed NO synthesis linearly before ethylene production in root hair development triggered by MWCNTs. The above findings thus provide some insights into the molecular mechanism underlying MWCNTs control of root hair morphogenesis.
Collapse
|
58
|
Ma M, Wendehenne D, Philippot L, Hänsch R, Flemetakis E, Hu B, Rennenberg H. Physiological significance of pedospheric nitric oxide for root growth, development and organismic interactions. PLANT, CELL & ENVIRONMENT 2020; 43:2336-2354. [PMID: 32681574 DOI: 10.1111/pce.13850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) is essential for plant growth and development, as well as interactions with abiotic and biotic environments. Its importance for multiple functions in plants means that tight regulation of NO concentrations is required. This is of particular significance in roots, where NO signalling is involved in processes, such as root growth, lateral root formation, nutrient acquisition, heavy metal homeostasis, symbiotic nitrogen fixation and root-mycorrhizal fungi interactions. The NO signal can also be produced in high levels by microbial processes in the rhizosphere, further impacting root processes. To explore these interesting interactions, in the present review, we firstly summarize current knowledge of physiological processes of NO production and consumption in roots and, thereafter, of processes involved in NO homeostasis in root cells with particular emphasis on root growth, development, nutrient acquisition, environmental stresses and organismic interactions.
Collapse
Affiliation(s)
- Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - David Wendehenne
- Université Bourgogne Franche-Comté, INRA, AgroSup Dijon, Dijon, France
| | - Laurent Philippot
- Université Bourgogne Franche-Comté, INRA, AgroSup Dijon, Dijon, France
| | - Robert Hänsch
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
- Institute for Plant Biology, Technische Universität, Braunschweig, Germany
| | - Emmanouil Flemetakis
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
59
|
Tiwari JK, Buckseth T, Devi S, Varshney S, Sahu S, Patil VU, Zinta R, Ali N, Moudgil V, Singh RK, Rawat S, Dua VK, Kumar D, Kumar M, Chakrabarti SK, Rao AR, Rai A. Physiological and genome-wide RNA-sequencing analyses identify candidate genes in a nitrogen-use efficient potato cv. Kufri Gaurav. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:171-183. [PMID: 32563041 DOI: 10.1016/j.plaphy.2020.05.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/30/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen (N) is an important nutrient for plant growth. However, its excess application leads to environmental damage. Hence, improving nitrogen use efficiency (NUE) of plant is one of the plausible options to solve the problems. Aim of this study was to identify candidate genes involved in enhancing NUE in potato cv. Kufri Gaurav (N efficient). Plants were grown in aeroponic with two contrasting N regimes (low N: 0.75 mM, and high N: 7.5 mM). Higher NUE in Kufri Gaurav was observed in low N based on the parameters like NUE, NUpE (N uptake efficiency), NUtE (N utilization efficiency) and AgNUE (agronomic NUE). Further, global gene expression profiles in root, leaf and stolon tissues were analyzed by RNA-sequencing using Ion Proton™ System. Quality data (≥Q20) of 2.04-2.73 Gb per sample were mapped with the potato genome. Statistically significant (P ≤ 0.05) differentially expressed genes (DEGs) were identified such as 176 (up-regulated) and 30 (down-regulated) in leaves, 39 (up-regulated) and 105 (down-regulated) in roots, and 81 (up-regulated) and 694 (down-regulated) in stolons. The gene ontology (GO) terms like metabolic process, cellular process and catalytic activity were predominant. Our RT-qPCR analysis confirmed the gene expression profiles of RNA-seq. Overall, we identified candidate genes associated with improving NUE such as superoxide dismutase, GDSL esterase lipase, probable phosphatase 2C, high affinity nitrate transporters, sugar transporter, proline rich proteins, transcription factors (VQ motif, SPX domain, bHLH) etc. Our findings suggest that these candidate genes probably play crucial roles in enhancing NUE in potato.
Collapse
Affiliation(s)
- Jagesh Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| | - Tanuja Buckseth
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Sapna Devi
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Shivangi Varshney
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Sahu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Virupaksh U Patil
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Rasna Zinta
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Nilofer Ali
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Vaishali Moudgil
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Rajesh K Singh
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Shashi Rawat
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Vijay K Dua
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Devendra Kumar
- CAR-Central Potato Research Institute, Regional Station, Modipuram, Meerut, 250110, Uttar Pradesh, India
| | - Manoj Kumar
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India; CAR-Central Potato Research Institute, Regional Station, Modipuram, Meerut, 250110, Uttar Pradesh, India
| | | | - Atmakuri R Rao
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| |
Collapse
|
60
|
Chen J, Zhang NN, Pan Q, Lin XY, Shangguan Z, Zhang JH, Wei GH. Hydrogen sulphide alleviates iron deficiency by promoting iron availability and plant hormone levels in Glycine max seedlings. BMC PLANT BIOLOGY 2020; 20:383. [PMID: 32819279 PMCID: PMC7441670 DOI: 10.1186/s12870-020-02601-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Hydrogen sulphide (H2S) is involved in regulating physiological processes in plants. We investigated how H2S ameliorates iron (Fe) deficiency in soybean (Glycine max L.) seedlings. Multidisciplinary approaches including physiological, biochemical and molecular, and transcriptome methods were used to investigate the H2S role in regulating Fe availability in soybean seedlings. RESULTS Our results showed that H2S completely prevented leaf interveinal chlorosis and caused an increase in soybean seedling biomass under Fe deficiency conditions. Moreover, H2S decreased the amount of root-bound apoplastic Fe and increased the Fe content in leaves and roots by regulating the ferric-chelate reductase (FCR) activities and Fe homeostasis- and sulphur metabolism-related gene expression levels, thereby promoting photosynthesis in soybean seedlings. In addition, H2S changed the plant hormone concentrations by modulating plant hormone-related gene expression abundances in soybean seedlings grown in Fe-deficient solution. Furthermore, organic acid biosynthesis and related genes expression also played a vital role in modulating the H2S-mediated alleviation of Fe deficiency in soybean seedlings. CONCLUSION Our results indicated that Fe deficiency was alleviated by H2S through enhancement of Fe acquisition and assimilation, thereby regulating plant hormones and organic acid synthesis in plants.
Collapse
Affiliation(s)
- Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Ni-Na Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Qing Pan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Xue-Yuan Lin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Zhouping Shangguan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Jian-Hua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ge-Hong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
| |
Collapse
|
61
|
Zhang JC, Wang XN, Sun W, Wang XF, Tong XS, Ji XL, An JP, Zhao Q, You CX, Hao YJ. Phosphate regulates malate/citrate-mediated iron uptake and transport in apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110526. [PMID: 32563464 DOI: 10.1016/j.plantsci.2020.110526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
The accumulation of iron (Fe) in the apical meristem is considered as a critical factor involved in limiting the elongation of roots under low phosphate (Pi) conditions. Furthermore, the antagonism between Fe and Pi largely affects the effective utilization of Fe. Although the lack of Pi serves to increase the effectiveness of Fe in rice under both Fe-sufficient and Fe-deficient conditions, the underlying physiological mechanism governing this phenomenon is still unclear. In this study, we found that low Pi alleviated the Fe-deficiency phenotype in apples. Additionally, low Pi treatments increased ferric-chelated reductase (FCR) activity in the rhizosphere, promoted proton exocytosis, and enhanced the Fe concentration in both the roots and shoots. In contrast, high Pi treatments inhibited this process. Under conditions of low Pi, malate and citrate exudation from apple roots occurred under both Fe-sufficient and Fe-deficient conditions. In addition, treatment with 0.5 mM malate and citrate effectively alleviated the Fe and Pi deficiencies. Taken together, these data support the conclusion that a low Pi supply promotes organic acids exudation and enhances Fe absorption during Fe deficiency in apples.
Collapse
Affiliation(s)
- Jiu-Cheng Zhang
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Na Wang
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Wei Sun
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xian-Song Tong
- Funing Agricultural Bureau, Wenshan, 663400, Yunnan, China
| | - Xing-Long Ji
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Jian-Ping An
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Qiang Zhao
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
62
|
Asim M, Ullah Z, Xu F, An L, Aluko OO, Wang Q, Liu H. Nitrate Signaling, Functions, and Regulation of Root System Architecture: Insights from Arabidopsis thaliana. Genes (Basel) 2020; 11:E633. [PMID: 32526869 PMCID: PMC7348705 DOI: 10.3390/genes11060633] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023] Open
Abstract
Root system architecture (RSA) is required for the acquisition of water and mineral nutrients from the soil. One of the essential nutrients, nitrate (NO3-), is sensed and transported by nitrate transporters NRT1.1 and NRT2.1 in the plants. Nitrate transporter 1.1 (NRT1.1) is a dual-affinity nitrate transporter phosphorylated at the T101 residue by calcineurin B-like interacting protein kinase (CIPKs); it also regulates the expression of other key nitrate assimilatory genes. The differential phosphorylation (phosphorylation and dephosphorylation) strategies and underlying Ca2+ signaling mechanism of NRT1.1 stimulate lateral root growth by activating the auxin transport activity and Ca2+-ANR1 signaling at the plasma membrane and the endosomes, respectively. NO3- additionally functions as a signal molecule that forms a signaling system, which consists of a vast array of transcription factors that control root system architecture that either stimulate or inhibit lateral and primary root development in response to localized and high nitrate (NO3-), respectively. This review elucidates the so-far identified nitrate transporters, nitrate sensing, signal transduction, and the key roles of nitrate transporters and its downstream transcriptional regulatory network in the primary and lateral root development in Arabidopsis thaliana under stress conditions.
Collapse
Affiliation(s)
- Muhammad Asim
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Zia Ullah
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Fangzheng Xu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Lulu An
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Oluwaseun Olayemi Aluko
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Qian Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Haobao Liu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (M.A.); (Z.U.); (L.A.); (O.O.A.)
| |
Collapse
|
63
|
Pan L, Chen J, Ren S, Shen H, Rong B, Liu W, Yang Z. Complete genome sequence of Mycobacterium Mya-zh01, an endophytic bacterium, promotes plant growth and seed germination isolated from flower stalk of Doritaenopsis. Arch Microbiol 2020; 202:1965-1976. [DOI: 10.1007/s00203-020-01924-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 11/27/2022]
|
64
|
Guo Z, Du N, Li Y, Zheng S, Shen S, Piao F. Gamma-aminobutyric acid enhances tolerance to iron deficiency by stimulating auxin signaling in cucumber (Cucumis sativusL.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110285. [PMID: 32035398 DOI: 10.1016/j.ecoenv.2020.110285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Iron deficiency severely affects crop yield and quality. Gamma-aminobutyric acid (GABA) plays a vital role in plant responses to multifarious stresses. However, the role of GABA in Fe deficiency responses and the potential mechanisms remain largely unknown in cucumber. Here, we found that Fe deficiency raised the GABA levels in leaves and roots of cucumber. To probe the role of GABA in Fe deficiency, the seedlings were subjected to five levels of GABA concentrations (0, 5, 10, 20 and 40 mmol L-1) for 7 days under Fe deficiency. The results demonstrated that 20 mM GABA in alleviating the Fe deficiency-induced stress was the most effective. GABA pretreatment reduced the Fe deficiency-induced chlorosis and inhibition of photosynthesis and growth, and significantly enhanced the contents of iron in shoots and roots. Exogenous GABA significantly decreased the pH of nutrient solution and increased ferric-chelate reductase (FCR) activity induced by Fe deficiency and the transcript levels of Fe uptake-related genes HA1, FRO2 and IRT1 in roots. GABA also increased the content of auxin (IAA) and expression of auxin biosynthesis (YUC4), response (IAA1), and transport (PIN1) genes under Fe deficiency. Furthermore, exogenous the auxin transport inhibitor 1-naphthylphthalamic acid (NPA) application abolished the GABA-induced changes in Fe deficiency. In summary, we found that GABA improves tolerance to iron deficiency via an auxin-dependent mechanism in cucumber.
Collapse
Affiliation(s)
- Zhixin Guo
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Nanshan Du
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Yingnan Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Shuxin Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Shunshan Shen
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Fengzhi Piao
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450002, PR China.
| |
Collapse
|
65
|
Wei L, Zhang M, Wei S, Zhang J, Wang C, Liao W. Roles of nitric oxide in heavy metal stress in plants: Cross-talk with phytohormones and protein S-nitrosylation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113943. [PMID: 32023797 DOI: 10.1016/j.envpol.2020.113943] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Heavy metal (HM) stress is a major hazard, which significantly affects plant growth and development. In order to confront HM stress, plants directly or indirectly regulate the levels of endogenous nitric oxide (NO), a redox-related signaling molecule involved in wide range of plant growth and development as well as in response to HM stress. In addition, there is now compelling experimental evidence that NO usually mediates signaling processes through interactions with different biomolecules like phytohormones to regulate HM tolerance. Apart from phytohormones, NO partly operates through posttranslational modification of proteins, notably via S-nitrosylation in response to HM stress. Recently, the roles of S-nitrosylation as a regulator of plant responses to HM stress and S-nitrosylated candidates have also been established and detected. Here, we describe the roles of NO in confronting HM phytotoxicity in plants with a particular focus on the presentation and discussion of recent data obtained in this field, which involves in the function of various phytohormones and S-nitrosylation during plant responses to HM stress. Additionally, both importance and challenges of future work are outlined in order to further elucidate the specific mechanisms underlying the roles of NO in plant responses to HM stress.
Collapse
Affiliation(s)
- Lijuan Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China
| | - Meiling Zhang
- College of Science, Gansu Agricultural University, PR China
| | - Shouhui Wei
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, PR China.
| |
Collapse
|
66
|
Effects of Trichoderma asperellum and its siderophores on endogenous auxin in Arabidopsis thaliana under iron-deficiency stress. Int Microbiol 2020; 23:501-509. [PMID: 32080772 DOI: 10.1007/s10123-020-00122-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022]
Abstract
Iron (Fe) deficiency is one of the major limiting factors affecting crop yields. Trichoderma asperellum Q1, a biocontrol and plant growth promoting fungus, can produce the siderophore which has a high affinity to Fe3+ in the absence of iron. In this study, Trichoderma asperellum Q1 was found to be able to promote growth of Arabidopsis thaliana in an iron-deficient or insoluble iron-containing (Fe2O3) medium. It also can produce more siderophore and indole-3-acetic acid (IAA) as the concentration of iron ions decreased. However, it is unclear that the relationship between siderophore and IAA in promoting plant growth. Both Trichoderma asperellum Q1 and siderophore promotes not only the DR5::GFP transgenic Arabidopsis thaliana seedlings, in which the root IAA is labeled by green fluorescent protein gene, but also increases the content of endogenous IAA in the roots, which was shown by the fluorescence study. The strongest fluorescence was observed in the treated group inoculated with Trichoderma asperellum Q1 under the condition of insoluble iron. In the case of iron-free medium, adding siderophore also increased the observed fluorescence intensity. These results suggest that the siderophores produced by Trichoderma asperellum Q1 increased the content of IAA in Arabidopsis roots by enhancing the conversion of poorly soluble iron or by the siderophore itself.
Collapse
|
67
|
Zhu YX, Du WX, Fang XZ, Zhang LL, Jin CW. Knockdown of BTS may provide a new strategy to improve cadmium-phytoremediation efficiency by improving iron status in plants. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121473. [PMID: 31676164 DOI: 10.1016/j.jhazmat.2019.121473] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 05/21/2023]
Abstract
The identification of the key genes related to cadmium (Cd) tolerance and accumulation is a major element in genetically engineering improved plants for Cd phytoremediation. Owing to the similarity between the ionic hydrated radius of Cd2+ and Fe2+, this study investigated how the Cd tolerance and accumulation of Arabidopsis plants was affected by the knockdown of BTS, a gene that negatively regulates Fe nutrition. After exposure to 40 μM Cd, the BTS-knockdown mutant, bts-1, exhibited greater Fe nutrition and better growth than wild-type plants. In addition, the Cd concentration in both roots and shoots was approximately 50% higher in the bts-1 mutant than in wild-type plants. Consequently, the bts-1 mutant accumulated approximately 100% and 150% more Cd in the roots and shoots, respectively, than wild-type plants. Further study showed that Fe removal from the growth medium and inhibition of the Fe transporter gene, IRT1, removed the differences observed in the growth and Cd concentration of the bts-1 and wild-type plants, respectively. These results demonstrated that BTS knockdown improved Cd tolerance and accumulation in plants by improving Fe nutrition; thus, the knockdown of BTS via biotechnological pathways may represent a valuable strategy for the improvement in the efficiency of Cd phytoremediation.
Collapse
Affiliation(s)
- Ya Xin Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Wen Xin Du
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Xian Zhi Fang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Lin Lin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
68
|
Balparda M, Armas AM, Estavillo GM, Roschzttardtz H, Pagani MA, Gomez-Casati DF. The PAP/SAL1 retrograde signaling pathway is involved in iron homeostasis. PLANT MOLECULAR BIOLOGY 2020; 102:323-337. [PMID: 31900819 DOI: 10.1007/s11103-019-00950-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/16/2019] [Indexed: 05/24/2023]
Abstract
There is a link between PAP/SAL retrograde pathway, ethylene signaling and Fe metabolism in Arabidopsis. Nuclear gene expression is regulated by a diversity of retrograde signals that travel from organelles to the nucleus in a lineal or classical model. One such signal molecule is 3'-phosphoadenisine-5'-phosphate (PAP) and it's in vivo levels are regulated by SAL1/FRY1, a phosphatase enzyme located in chloroplast and mitochondria. This metabolite inhibits the action of a group of exorribonucleases which participate in post-transcriptional gene expression regulation. Transcriptome analysis of Arabidopsis thaliana mutant plants in PAP-SAL1 pathway revealed that the ferritin genes AtFER1, AtFER3, and AtFER4 are up-regulated. In this work we studied Fe metabolism in three different mutants of the PAP/SAL1 retrograde pathway. Mutant plants showed increased Fe accumulation in roots, shoots and seeds when grown in Fe-sufficient condition, and a constitutive activation of the Strategy I Fe uptake genes. As a consequence, they grew more vigorously than wild type plants in Fe-deficient medium. However, when mutant plants grown in Fe-deficient conditions were sprayed with Fe in their leaves, they were unable to deactivate root Fe uptake. Ethylene synthesis inhibition revert the constitutive Fe uptake phenotype. We propose that there is a link between PAP/SAL pathway, ethylene signaling and Fe metabolism.
Collapse
Affiliation(s)
- Manuel Balparda
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Alejandro M Armas
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | | | - Hannetz Roschzttardtz
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María A Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
69
|
Kaya C, Higgs D, Ashraf M, Alyemeni MN, Ahmad P. Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination. PHYSIOLOGIA PLANTARUM 2020; 168:256-277. [PMID: 30980533 DOI: 10.1111/ppl.12976] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/09/2019] [Accepted: 04/09/2019] [Indexed: 05/03/2023]
Abstract
There seems to be no report in the literature on the effect of melatonin (MT) in relieving the detrimental effects of combined application of salt stress (SS) and iron deficiency (ID). Therefore, the effect of MT on the accumulation/synthesis of endogenous nitric oxide (NO) and hydrogen sulphide (H2 S) and how far these molecules are involved in MT-improved tolerance to the combined application of ID and SS in pepper (Capsicum annuum L) were tested. Hence, two individual trials were set up. The treatments in the first experiment comprised: Control, ID (0.1 mM FeSO4 ), SS (100 mM NaCl) and ID + SS. The detrimental effects of combined stresses were more prominent than those by either of the single stress, with respect to growth, oxidative stress and antioxidant defense attributes. Single stress or both in combination improved the endogenous H2 S and NO, and foliar-applied MT (100 µM) led to a further increase in NO and H2 S levels. In the second experiment, 0.1 mM scavenger of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO) and that of H2 S, hypotuarine (HT) were applied along with MT to get further evidence whether NO and H2 S are involved in MT-induced tolerance to ID and SS. MT combined with cPTIO and HT under a single or combined stress showed that NO effect was reversed by the NO scavenger, cPTIO, alone but the H2 S effect was inhibited by both scavengers. These findings suggested that tolerance to ID and SS induced by MT may be involved in downstream signal crosstalk between NO and H2 S.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - David Higgs
- Department of Biological & Environmental Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Mohammed N Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| |
Collapse
|
70
|
Lei GJ, Sun L, Sun Y, Zhu XF, Li GX, Zheng SJ. Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:218-227. [PMID: 30912267 DOI: 10.1111/jipb.12801] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/07/2019] [Indexed: 05/21/2023]
Abstract
Jasmonic acid (JA) is thought to be involved in plant responses to cadmium (Cd) stress, but the underlying molecular mechanisms are poorly understood. Here, we show that Cd treatment rapidly induces the expression of genes promoting endogenous JA synthesis, and subsequently increases the JA concentration in Arabidopsis roots. Furthermore, exogenous methyl jasmonate (MeJA) alleviates Cd-generated chlorosis of new leaves by decreasing the Cd concentration in root cell sap and shoot, and decreasing the expression of the AtIRT1, AtHMA2 and AtHMA4 genes promoting Cd uptake and long-distance translocation, respectively. In contrast, mutation of a key JA synthesis gene, AtAOS, greatly enhances the expression of AtIRT1, AtHMA2 and AtHMA4, increases Cd concentration in both roots and shoots, and confers increased sensitivity to Cd. Exogenous MeJA recovers the enhanced Cd-sensitivity of the ataos mutant, but not of atcoi1, a JA receptor mutant. In addition, exogenous MeJA reduces NO levels in Cd-stressed Arabidopsis root tips. Taken together, our results suggest that Cd-induced JA acts via the JA signaling pathway and its effects on NO levels to positively restrict Cd accumulation and alleviates Cd toxicity in Arabidopsis via suppression of the expression of genes promoting Cd uptake and long-distance translocation.
Collapse
Affiliation(s)
- Gui Jie Lei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
71
|
Perea-García A, Andrés-Bordería A, Vera-Sirera F, Pérez-Amador MA, Puig S, Peñarrubia L. Deregulated High Affinity Copper Transport Alters Iron Homeostasis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:1106. [PMID: 32793263 PMCID: PMC7390907 DOI: 10.3389/fpls.2020.01106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/06/2020] [Indexed: 05/08/2023]
Abstract
The present work describes the effects on iron homeostasis when copper transport was deregulated in Arabidopsis thaliana by overexpressing high affinity copper transporters COPT1 and COPT3 (COPTOE ). A genome-wide analysis conducted on COPT1OE plants, highlighted that iron homeostasis gene expression was affected under both copper deficiency and excess. Among the altered genes were those encoding the iron uptake machinery and their transcriptional regulators. Subsequently, COPTOE seedlings contained less iron and were more sensitive than controls to iron deficiency. The deregulation of copper (I) uptake hindered the transcriptional activation of the subgroup Ib of basic helix-loop-helix (bHLH-Ib) factors under copper deficiency. Oppositely, copper excess inhibited the expression of the master regulator FIT but activated bHLH-Ib expression in COPTOE plants, in both cases leading to the lack of an adequate iron uptake response. As copper increased in the media, iron (III) was accumulated in roots, and the ratio iron (III)/iron (II) was increased in COPTOE plants. Thus, iron (III) overloading in COPTOE roots inhibited local iron deficiency responses, aimed to metal uptake from soil, leading to a general lower iron content in the COPTOE seedlings. These results emphasized the importance of appropriate spatiotemporal copper uptake for iron homeostasis under non-optimal copper supply. The understanding of the role of copper uptake in iron metabolism could be applied for increasing crops resistance to iron deficiency.
Collapse
Affiliation(s)
- Ana Perea-García
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Amparo Andrés-Bordería
- Departament de Bioquímica i Biologia Molecular and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
| | - Francisco Vera-Sirera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Miguel Angel Pérez-Amador
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de Valencia (UPV), Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjassot, Valencia, Spain
- *Correspondence: Lola Peñarrubia,
| |
Collapse
|
72
|
Li Z, Yong B, Cheng B, Wu X, Zhang Y, Zhang X, Peng Y. Nitric oxide, γ-aminobutyric acid, and mannose pretreatment influence metabolic profiles in white clover under water stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1255-1273. [PMID: 30609265 DOI: 10.1111/jipb.12770] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Nitric oxide (NO), γ-aminobutyric acid (GABA), and mannose (MAS) could be important regulators of plant growth and adaptation to water stress. The application of sodium nitroprusside (SNP, a NO donor), GABA, and MAS improved plant growth under water-sufficient conditions and effectively mitigated water stress damage to white clover. The metabonomic analysis showed that both SNP and GABA application resulted in a significant increase in myo-inositol content; the accumulation of mannose was commonly regulated by SNP and MAS; GABA and MAS induced the accumulation of aspartic acid, quinic acid, trehalose, and glycerol under water deficit. In addition, citric acid was uniquely up-regulated by SNP associated with tricarboxylic acid (TCA) cycle under water stress. GABA specially induced the accumulation of GABA, glycine, methionine, and aconitic acid related to GABA shunt, amino acids metabolism, and TCA cycle in response to water stress. MAS uniquely enhanced the accumulation of asparagine, galactose, and D-pinitol in association with amino acids and sugars metabolism under water stress. SNP-, GABA-, and MAS-induced changes of metabolic profiles and associated metabolic pathways could contribute to enhanced stress tolerance via involvement in the TCA cycle for energy supply, osmotic adjustment, antioxidant defense, and signal transduction for stress defense in white clover.
Collapse
Affiliation(s)
- Zhou Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Yong
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bizhen Cheng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xing Wu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
73
|
Lucena C, Porras R, García MJ, Alcántara E, Pérez-Vicente R, Zamarreño ÁM, Bacaicoa E, García-Mina JM, Smith AP, Romera FJ. Ethylene and Phloem Signals Are Involved in the Regulation of Responses to Fe and P Deficiencies in Roots of Strategy I Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1237. [PMID: 31649701 PMCID: PMC6795750 DOI: 10.3389/fpls.2019.01237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/05/2019] [Indexed: 05/03/2023]
Abstract
Iron (Fe) and phosphorus (P) are two essential mineral nutrients whose acquisition by plants presents important environmental and economic implications. Both elements are abundant in most soils but scarcely available to plants. To prevent Fe or P deficiency dicot plants initiate morphological and physiological responses in their roots aimed to specifically acquire these elements. The existence of common signals in Fe and P deficiency pathways suggests the signaling factors must act in conjunction with distinct nutrient-specific signals in order to confer tolerance to each deficiency. Previous works have shown the existence of cross talk between responses to Fe and P deficiency, but details of the associated signaling pathways remain unclear. Herein, the impact of foliar application of either P or Fe on P and Fe responses was studied in P- or Fe-deficient plants of Arabidopsis thaliana, including mutants exhibiting altered Fe or P homeostasis. Ferric reductase and acid phosphatase activities in roots were determined as well as the expression of genes related to P and Fe acquisition. The results obtained showed that Fe deficiency induces the expression of P acquisition genes and phosphatase activity, whereas P deficiency induces the expression of Fe acquisition genes and ferric reductase activity, although only transitorily. Importantly, these responses were reversed upon foliar application of either Fe or P on nutrient-starved plants. Taken together, the results reveal interactions between P- and Fe-related phloem signals originating in the shoots that likely interact with hormones in the roots to initiate adaptive mechanisms to tolerate deficiency of each nutrient.
Collapse
Affiliation(s)
- Carlos Lucena
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | | | - María J. García
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Esteban Alcántara
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Ángel M. Zamarreño
- Department of Environmental Biology, Faculty of Sciences, Universidad de Navarra, Pamplona (Navarra), Spain
| | - Eva Bacaicoa
- Department of Environmental Biology, Faculty of Sciences, Universidad de Navarra, Pamplona (Navarra), Spain
| | - José M. García-Mina
- Department of Environmental Biology, Faculty of Sciences, Universidad de Navarra, Pamplona (Navarra), Spain
| | - Aaron P. Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Francisco J. Romera
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
74
|
Zhu XF, Dong XY, Wu Q, Shen RF. Ammonium regulates Fe deficiency responses by enhancing nitric oxide signaling in Arabidopsis thaliana. PLANTA 2019; 250:1089-1102. [PMID: 31168664 DOI: 10.1007/s00425-019-03202-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/29/2019] [Indexed: 05/20/2023]
Abstract
The accumulation of NH4+ in response to Fe deficiency plays a role not only in the remobilization of Fe from the root cell wall, but also in the transportation of Fe from root to shoot. Ammonium (NH4+) plays an important role in phosphorus-deficiency responses in rice, but its role in responses to Fe deficiency remains unknown. Here, we demonstrate that the accumulation of NH4+ plays a pivotal role when Arabidopsis thaliana plants are subject to Fe deficiency. The Arabidopsis amt1-3 mutant, which is defective in endogenous NH4+ sensing, exhibited increased sensitivity to Fe deficiency compared to WT (wild type; Col-0). In addition, exogenous application of NH4+ significantly alleviated Fe deficiency symptoms in plants. NH4+ triggers the production of nitric oxide (NO), which then induces ferric-chelate reductase (FCR) activity and accelerates the release of Fe from the cell wall, especially hemicellulose, thereby increasing the availability of soluble Fe in roots. NH4+ also increases soluble Fe levels in shoots by upregulating genes involved in Fe translocation, such as FRD3 (FERRIC REDUCTASE DEFECTIVE3) and NAS1 (NICOTIANAMINE SYNTHASE1), hence, alleviating leaf chlorosis. Overall, NH4+ plays an important role in the reutilization of Fe from the cell wall and the redistribution of Fe from root to shoot in Fe-deficient Arabidopsis, a process dependent on NO accumulation.
Collapse
Affiliation(s)
- Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiao Ying Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qi Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
75
|
Demecsová L, Tamás L. Reactive oxygen species, auxin and nitric oxide in metal-stressed roots: toxicity or defence. Biometals 2019; 32:717-744. [PMID: 31541378 DOI: 10.1007/s10534-019-00214-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/29/2019] [Indexed: 10/25/2022]
Abstract
The presented review is a summary on the current knowledge about metal induced stress response in plants, focusing on the roles of reactive oxygen species, auxin and nitric oxide in roots. The article focuses mainly on the difference between defence and toxicity symptoms of roots during metal-induced stress. Nowadays, pollution of soils by heavy metals is a rapidly growing issue, which affects agriculture and human health. In order to deal with these problems, we must first understand the basic mechanisms and responses to environmental conditions in plants growing under such conditions. Studies so far show somewhat conflicting data, interpreting the same stress responses as both symptoms of defence and toxicity. Therefore, the aim of this review is to give a report about current knowledge of heavy metal-induced stress research, and also to differentiate between toxicity and defence, and outline the challenges of research, focusing on reactive oxygen and nitrogen species, auxin, and the interplay among them. There are still remaining questions on how reactive oxygen and nitrogen species, as well as auxin, can activate either symptoms of toxicity or defence, and adaptation responses.
Collapse
Affiliation(s)
- Loriana Demecsová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic
| | - Ladislav Tamás
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84523, Bratislava, Slovak Republic.
| |
Collapse
|
76
|
Jasmonic Acid Methyl Ester Induces Xylogenesis and Modulates Auxin-Induced Xylary Cell Identity with NO Involvement. Int J Mol Sci 2019; 20:ijms20184469. [PMID: 31510080 PMCID: PMC6770339 DOI: 10.3390/ijms20184469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
In Arabidopsis basal hypocotyls of dark-grown seedlings, xylary cells may form from the pericycle as an alternative to adventitious roots. Several hormones may induce xylogenesis, as Jasmonic acid (JA), as well as indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) auxins, which also affect xylary identity. Studies with the ethylene (ET)-perception mutant ein3eil1 and the ET-precursor 1-aminocyclopropane-1-carboxylic acid (ACC), also demonstrate ET involvement in IBA-induced ectopic metaxylem. Moreover, nitric oxide (NO), produced after IBA/IAA-treatments, may affect JA signalling and interact positively/negatively with ET. To date, NO-involvement in ET/JA-mediated xylogenesis has never been investigated. To study this, and unravel JA-effects on xylary identity, xylogenesis was investigated in hypocotyls of seedlings treated with JA methyl-ester (JAMe) with/without ACC, IBA, IAA. Wild-type (wt) and ein3eil1 responses to hormonal treatments were compared, and the NO signal was quantified and its role evaluated by using NO-donors/scavengers. Ectopic-protoxylem increased in the wt only after treatment with JAMe(10 μM), whereas in ein3eil1 with any JAMe concentration. NO was detected in cells leading to either xylogenesis or adventitious rooting, and increased after treatment with JAMe(10 μM) combined or not with IBA(10 μM). Xylary identity changed when JAMe was applied with each auxin. Altogether, the results show that xylogenesis is induced by JA and NO positively regulates this process. In addition, NO also negatively interacts with ET-signalling and modulates auxin-induced xylary identity.
Collapse
|
77
|
Buet A, Galatro A, Ramos-Artuso F, Simontacchi M. Nitric oxide and plant mineral nutrition: current knowledge. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4461-4476. [PMID: 30903155 DOI: 10.1093/jxb/erz129] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/14/2019] [Indexed: 05/20/2023]
Abstract
Plants under conditions of essential mineral deficiency trigger signaling mechanisms that involve common components. Among these components, nitric oxide (NO) has been identified as a key participant in responses to changes in nutrient availability. Usually, nutrient imbalances affect the levels of NO in specific plant tissues, via modification of its rate of synthesis or degradation. Changes in the level of NO affect plant morphology and/or trigger responses associated with nutrient homeostasis, mediated by its interaction with reactive oxygen species, phytohormones, and through post-translational modification of proteins. NO-related events constitute an exciting field of research to understand how plants adapt and respond to conditions of nutrient shortage. This review summarizes the current knowledge on NO as a component of the multiple processes related to plant performance under conditions of deficiency in mineral nutrients, focusing on macronutrients such as nitrogen, phosphate, potassium, and magnesium, as well as micronutrients such as iron and zinc.
Collapse
Affiliation(s)
- Agustina Buet
- Instituto de Fisiología Vegetal, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Andrea Galatro
- Instituto de Fisiología Vegetal, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
| | - Facundo Ramos-Artuso
- Instituto de Fisiología Vegetal, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Marcela Simontacchi
- Instituto de Fisiología Vegetal, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
78
|
GSNOR provides plant tolerance to iron toxicity via preventing iron-dependent nitrosative and oxidative cytotoxicity. Nat Commun 2019; 10:3896. [PMID: 31467270 PMCID: PMC6715714 DOI: 10.1038/s41467-019-11892-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/07/2019] [Indexed: 01/10/2023] Open
Abstract
Iron (Fe) is essential for life, but in excess can cause oxidative cytotoxicity through the generation of Fe-catalyzed reactive oxygen species. It is yet unknown which genes and mechanisms can provide Fe-toxicity tolerance. Here, we identify S-nitrosoglutathione-reductase (GSNOR) variants underlying a major quantitative locus for root tolerance to Fe-toxicity in Arabidopsis using genome-wide association studies and allelic complementation. These variants act largely through transcript level regulation. We further show that the elevated nitric oxide is essential for Fe-dependent redox toxicity. GSNOR maintains root meristem activity and prevents cell death via inhibiting Fe-dependent nitrosative and oxidative cytotoxicity. GSNOR is also required for root tolerance to Fe-toxicity throughout higher plants such as legumes and monocots, which exposes an opportunity to address crop production under high-Fe conditions using natural GSNOR variants. Overall, this study shows that genetic or chemical modulation of the nitric oxide pathway can broadly modify Fe-toxicity tolerance. How plants deal with iron toxicity is still unclear. Here, the authors reveal that S-nitrosoglutathione-reductase (GSNOR) provides tolerance to iron toxicity by preventing iron-dependent nitrosative and oxidative cytotoxicity in Arabidopsis, legumes, and rice.
Collapse
|
79
|
Tewari RK, Horemans N, Nauts R, Wannijn J, Van Hees M, Vandenhove H. The nitric oxide suppressed Arabidopsis mutants- Atnoa1 and Atnia1nia2noa1-2 produce nitric oxide in MS growth medium and on uranium exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:9-17. [PMID: 31078053 DOI: 10.1016/j.plaphy.2019.04.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/21/2019] [Accepted: 04/30/2019] [Indexed: 05/26/2023]
Abstract
The mutants Atnoa1 and Atnia1nia2noa1-2 having a defective chloroplast developmental process, showed enhanced chlorophyll levels when they were grown on Murashige and Skoog (MS) medium and on exposure with uranium (U) on Hoagland medium. Thus we hypothesized that these mutants probably produced NO in MS medium and on exposure with U. Wild-type Col-0, Atnoa1, Atnia1nia2noa1-2 plants were cultured on modified Hoagland and 1/10 MS media and NO generation in the roots of these mutants was monitored using NO selective fluorescent dyes, DAF-2DA and Fl2E. Both Atnoa1 and Atnia1nia2noa1-2 triple mutants produced NO as observed by increases in DAF-2T and Fl2E fluorescence when these mutants were grown on MS medium but not on Hoagland medium. In presence of NO scavenger, methylene blue (MB, 200 μM), DAF-2T and Fl2E fluorescence was completely abolished. On the other hand treatment of the plants with 25 μM U triggered NO generation. U-treated Atnoa1 and Atnia1nia2noa1-2 plants upregulated genes (POR B, POR D, CHL D) involved in the chlorophyll biosynthesis. From these results it was concluded that Atnoa1 and Atnia1nia2noa1-2 are conditional NO producers and it appears that NO generation in plants substantially depends on growth medium and NIA1, NIA2 or NOA1 does not appear to be really involved in NO generation in MS medium or after U exposure.
Collapse
Affiliation(s)
- Rajesh Kumar Tewari
- Department of Botany, University of Lucknow, Lucknow, 226007, India; Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang 200, Mol, 2400, Belgium.
| | - Nele Horemans
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang 200, Mol, 2400, Belgium; Hasselt University, Centre for Environmental Sciences, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| | - Robin Nauts
- Department of Botany, University of Lucknow, Lucknow, 226007, India.
| | - Jean Wannijn
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang 200, Mol, 2400, Belgium.
| | - May Van Hees
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang 200, Mol, 2400, Belgium.
| | - Hildegarde Vandenhove
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang 200, Mol, 2400, Belgium.
| |
Collapse
|
80
|
Wen D, Sun S, Yang W, Zhang L, Liu S, Gong B, Shi Q. Overexpression of S-nitrosoglutathione reductase alleviated iron-deficiency stress by regulating iron distribution and redox homeostasis. JOURNAL OF PLANT PHYSIOLOGY 2019; 237:1-11. [PMID: 30999072 DOI: 10.1016/j.jplph.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 05/22/2023]
Abstract
Iron (Fe) is an essential micronutrient element for plant growth. The S-nitrosoglutathione reductase (GSNOR) gene's functions under Fe-deficiency conditions are not well understood. Here, GSNOR expression was induced by Fe deficiency in tomato (Solanum lycopersicum L.) leaves and roots, while its overexpression alleviated chlorosis under Fe-deficiency conditions. GSNOR overexpression positively regulated the Fe distribution from root to shoot, which might result from the transcriptional regulation of genes involved in Fe metabolism. Additionally, the overexpression of GSNOR maintained redox homeostasis and protected chloroplasts from Fe-deficiency-related damage, resulting in a greater photosynthetic capacity. As a nitric oxide regulator, GSNOR's overexpression decreased the excessive accumulation of nitric oxide and S-nitrosothiols during the Fe deficiency, and maintained the homeostases of reactive oxygen species and reactive nitrogen species. Moreover, GSNOR overexpression, probably at the level of genes and proteins, along with protein S-nitrosylation, promoted Fe uptake and regulated the shoot/root Fe ratio under Fe-deficiency conditions.
Collapse
Affiliation(s)
- Dan Wen
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China; Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetables, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Shasha Sun
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | - Wanying Yang
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | - Lili Zhang
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | - Shiqi Liu
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | - Biao Gong
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China.
| | - Qinghua Shi
- State Key Laboratory of Crop Biology, Ministry of Agriculture Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Huang-Huai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
81
|
The Adaptive Mechanism of Plants to Iron Deficiency via Iron Uptake, Transport, and Homeostasis. Int J Mol Sci 2019; 20:ijms20102424. [PMID: 31100819 PMCID: PMC6566170 DOI: 10.3390/ijms20102424] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 01/31/2023] Open
Abstract
Iron is an essential element for plant growth and development. While abundant in soil, the available Fe in soil is limited. In this regard, plants have evolved a series of mechanisms for efficient iron uptake, allowing plants to better adapt to iron deficient conditions. These mechanisms include iron acquisition from soil, iron transport from roots to shoots, and iron storage in cells. The mobilization of Fe in plants often occurs via chelating with phytosiderophores, citrate, nicotianamine, mugineic acid, or in the form of free iron ions. Recent work further elucidates that these genes’ response to iron deficiency are tightly controlled at transcriptional and posttranscriptional levels to maintain iron homeostasis. Moreover, increasing evidences shed light on certain factors that are identified to be interconnected and integrated to adjust iron deficiency. In this review, we highlight the molecular and physiological bases of iron acquisition from soil to plants and transport mechanisms for tolerating iron deficiency in dicotyledonous plants and rice.
Collapse
|
82
|
Romera FJ, García MJ, Lucena C, Martínez-Medina A, Aparicio MA, Ramos J, Alcántara E, Angulo M, Pérez-Vicente R. Induced Systemic Resistance (ISR) and Fe Deficiency Responses in Dicot Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:287. [PMID: 30915094 PMCID: PMC6421314 DOI: 10.3389/fpls.2019.00287] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/21/2019] [Indexed: 05/03/2023]
Abstract
Plants develop responses to abiotic stresses, like Fe deficiency. Similarly, plants also develop responses to cope with biotic stresses provoked by biological agents, like pathogens and insects. Some of these responses are limited to the infested damaged organ, but other responses systemically spread far from the infested organ and affect the whole plant. These latter responses include the Systemic Acquired Resistance (SAR) and the Induced Systemic Resistance (ISR). SAR is induced by pathogens and insects while ISR is mediated by beneficial microbes living in the rhizosphere, like bacteria and fungi. These root-associated mutualistic microbes, besides impacting on plant nutrition and growth, can further boost plant defenses, rendering the entire plant more resistant to pathogens and pests. In the last years, it has been found that ISR-eliciting microbes can induce both physiological and morphological responses to Fe deficiency in dicot plants. These results suggest that the regulation of both ISR and Fe deficiency responses overlap, at least partially. Indeed, several hormones and signaling molecules, like ethylene (ET), auxin, and nitric oxide (NO), and the transcription factor MYB72, emerged as key regulators of both processes. This convergence between ISR and Fe deficiency responses opens the way to the use of ISR-eliciting microbes as Fe biofertilizers as well as biopesticides. This review summarizes the progress in the understanding of the molecular overlap in the regulation of ISR and Fe deficiency responses in dicot plants. Root-associated mutualistic microbes, rhizobacteria and rhizofungi species, known for their ability to induce morphological and/or physiological responses to Fe deficiency in dicot plant species are also reviewed herein.
Collapse
Affiliation(s)
- Francisco J. Romera
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - María J. García
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Carlos Lucena
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Ainhoa Martínez-Medina
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Miguel A. Aparicio
- Department of Microbiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - José Ramos
- Department of Microbiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Esteban Alcántara
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Macarena Angulo
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
83
|
Verbon EH, Trapet PL, Kruijs S, Temple-Boyer-Dury C, Rouwenhorst TG, Pieterse CMJ. Rhizobacteria-Mediated Activation of the Fe Deficiency Response in Arabidopsis Roots: Impact on Fe Status and Signaling. FRONTIERS IN PLANT SCIENCE 2019; 10:909. [PMID: 31354776 PMCID: PMC6639660 DOI: 10.3389/fpls.2019.00909] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/26/2019] [Indexed: 05/16/2023]
Abstract
The beneficial root-colonizing rhizobacterium Pseudomonas simiae WCS417 stimulates plant growth and induces systemic resistance against a broad spectrum of plant diseases. In Arabidopsis thaliana (Arabidopsis), the root transcriptional response to WCS417 shows significant overlap with the root response to iron (Fe) starvation, including activation of the marker genes MYB72 and IRT1. Here, we investigated how colonization of Arabidopsis roots by WCS417 impacts Fe homeostasis in roots and shoots. Under Fe-sufficient conditions, root colonization by WCS417 induced a transient Fe deficiency response in the root and elevated both the total amount of Fe in the shoot and the shoot fresh weight. When plants were grown under Fe-starvation conditions, WCS417 still promoted plant growth, but did not increase the total amount of Fe, resulting in chlorosis. Thus, increased Fe uptake in response to WCS417 is essential to maintain Fe homeostasis in the more rapidly growing plant. As the WCS417-induced Fe deficiency response is known to require a shoot-derived signal, we tested whether the Fe deficiency response is activated in response to an increased Fe demand in the more rapidly growing shoot. Exogenous application of Fe to the leaves to reduce a potential shoot Fe shortage did not prevent WCS417-mediated induction of the Fe deficiency response in the roots. Moreover, the leaf Fe status-dependent shoot-to-root signaling mutant opt3-2, which is impaired in the phloem-specific Fe transporter OPT3, still up-regulated the Fe deficiency response genes MYB72 and IRT1 in response to WCS417. Collectively, our results suggest that the WCS417-induced Fe deficiency response in the root is controlled by a shoot-to-root signaling system that functions independently of both leaf Fe status and OPT3.
Collapse
Affiliation(s)
- Eline H. Verbon
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Pauline L. Trapet
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Sophie Kruijs
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Coline Temple-Boyer-Dury
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - T. Gerrit Rouwenhorst
- Ecology and Biodiversity, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
- *Correspondence: Corné M. J. Pieterse,
| |
Collapse
|
84
|
Kailasam S, Chien WF, Yeh KC. Small-Molecules Selectively Modulate Iron-Deficiency Signaling Networks in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:8. [PMID: 30766541 PMCID: PMC6365448 DOI: 10.3389/fpls.2019.00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/07/2019] [Indexed: 05/02/2023]
Abstract
Plant growth requires optimal levels of iron (Fe). Fe is used for energy production, numerous enzymatic processes, and is indispensable for cellular metabolism. Recent studies have established the mechanism involved in Fe uptake and transport. However, our knowledge of Fe sensing and signaling is limited. Dissecting Fe signaling may be useful for crop improvement by Fe fortification. Here, we report two small-molecules, R3 and R6 [where R denotes repressor of IRON-REGULATED TRANSPORTER 1 (IRT1)], identified through a chemical screening, whose use blocked activation of the Fe-deficiency response in Arabidopsis thaliana. Physiological analysis of plants treated with R3 and R6 showed that these small molecules drastically attenuated the plant response to Fe starvation. Small-molecule treatment caused severe chlorosis and strongly reduced chlorophyll levels in plants. Fe content in shoots was decreased considerably by small-molecule treatments especially in Fe deficiency. Small-molecule treatments attenuated the Fe-deficiency-induced expression of the Fe uptake gene IRT1. Analysis of FER-LIKE IRON-DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) and subgroup Ib basic helix-loop-helix (bHLH) gene (bHLH38/39/100/101) expression showed that R3 affects the FIT-network, whereas R6 affects both the FIT and Ib bHLH networks. An assessment of the effects of the structural analogs of R3 and R6 on the induction of Fe-dependent chlorosis revealed the functional motif of the investigated chemicals. Our findings suggest that small-molecules selectively modulate the distinct signaling routes that operate in response to Fe-deficiency. R3 and R6 likely interrupt the activity of key upstream signaling regulators whose activities are required for the activation of the Fe-starvation transcriptional cascade in Arabidopsis roots.
Collapse
|
85
|
Chen WW, Jin JF, Lou HQ, Liu L, Kochian LV, Yang JL. LeSPL-CNR negatively regulates Cd acquisition through repressing nitrate reductase-mediated nitric oxide production in tomato. PLANTA 2018; 248:893-907. [PMID: 29959508 DOI: 10.1007/s00425-018-2949-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/02/2018] [Indexed: 05/21/2023]
Abstract
An SPL-type transcription factor, LeSPL-CNR, is negatively involved in NO production by modulating SlNR expression and nitrate reductase activity, which contributes to Cd tolerance. Cadmium (Cd) is a highly toxic pollutant. Identifying factors affecting Cd accumulation in plants is a prerequisite for minimizing dietary uptake of Cd from crops grown with contaminated soil. Here, we report the involvement of a SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) transcription factor LeSPL-CNR in Cd tolerance in tomato (Solanum lycopersicum). In comparison with the wild-type Ailsa Craig (AC) plants, the Colourless non-ripening (Cnr) epimutant displayed increased Cd accumulation and enhanced sensitivity to Cd, which was in well accordance with the repression of LeSPL-CNR expression. Cd stress-induced NO production was inhibited by nitrate reductase (NR) inhibitor, but not NO synthase-like enzyme inhibitor. Expression of LeSPL-CNR was negatively correlated with SlNR expression and the NR activity. We also demonstrated that LeSPL-CNR inhibited the SlNR promoter activity in vivo and bound to SlNR promoter sequence that does not contain a known SBP-binding motif. In addition, expression of an IRON-REGULATED TRANSPORTER1, SlIRT1, was more abundant in Cnr roots than AC roots under Cd stress. LeSPL-CNR may thus provide a molecular mechanism linking Cd stress response to regulation of NR-dependent NO production, which then contributes to Cd uptake via SlIRT1 expression in tomato.
Collapse
Affiliation(s)
- Wei Wei Chen
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jian Feng Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - He Qiang Lou
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| | - Li Liu
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, S7N 4J8, Canada
| | - Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
86
|
García MJ, Corpas FJ, Lucena C, Alcántara E, Pérez-Vicente R, Zamarreño ÁM, Bacaicoa E, García-Mina JM, Bauer P, Romera FJ. A Shoot Fe Signaling Pathway Requiring the OPT3 Transporter Controls GSNO Reductase and Ethylene in Arabidopsis thaliana Roots. FRONTIERS IN PLANT SCIENCE 2018; 9:1325. [PMID: 30254659 PMCID: PMC6142016 DOI: 10.3389/fpls.2018.01325] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/23/2018] [Indexed: 05/12/2023]
Abstract
Ethylene, nitric oxide (NO) and glutathione (GSH) increase in Fe-deficient roots of Strategy I species where they participate in the up-regulation of Fe acquisition genes. However, S-nitrosoglutathione (GSNO), derived from NO and GSH, decreases in Fe-deficient roots. GSNO content is regulated by the GSNO-degrading enzyme S-nitrosoglutathione reductase (GSNOR). On the other hand, there are several results showing that the regulation of Fe acquisition genes does not solely depend on hormones and signaling molecules (such as ethylene or NO), which would act as activators, but also on the internal Fe content of plants, which would act as a repressor. Moreover, different results suggest that total Fe in roots is not the repressor of Fe acquisition genes, but rather the repressor is a Fe signal that moves from shoots to roots through the phloem [hereafter named LOng Distance Iron Signal (LODIS)]. To look further in the possible interactions between LODIS, ethylene and GSNOR, we compared Arabidopsis WT Columbia and LODIS-deficient mutant opt3-2 plants subjected to different Fe treatments that alter LODIS content. The opt3-2 mutant is impaired in the loading of shoot Fe into the phloem and presents constitutive expression of Fe acquisition genes. In roots of both Columbia and opt3-2 plants we determined 1-aminocyclopropane-1-carboxylic acid (ACC, ethylene precursor), expression of ethylene synthesis and signaling genes, and GSNOR expression and activity. The results obtained showed that both 'ethylene' (ACC and the expression of ethylene synthesis and signaling genes) and 'GSNOR' (expression and activity) increased in Fe-deficient WT Columbia roots. Additionally, Fe-sufficient opt3-2 roots had higher 'ethylene' and 'GSNOR' than Fe-sufficient WT Columbia roots. The increase of both 'ethylene' and 'GSNOR' was not related to the total root Fe content but to the absence of a Fe shoot signal (LODIS), and was associated with the up-regulation of Fe acquisition genes. The possible relationship between GSNOR(GSNO) and ethylene is discussed.
Collapse
Affiliation(s)
- María J. García
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Francisco J. Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council, Granada, Spain
| | - Carlos Lucena
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Esteban Alcántara
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Ángel M. Zamarreño
- Department of Environmental Biology, Faculty of Sciences, University of Navarra, Pamplona, Spain
| | - Eva Bacaicoa
- Department of Environmental Biology, Faculty of Sciences, University of Navarra, Pamplona, Spain
| | - José M. García-Mina
- Department of Environmental Biology, Faculty of Sciences, University of Navarra, Pamplona, Spain
| | - Petra Bauer
- Institute of Botany, University of Düsseldorf, Düsseldorf, Germany
| | - Francisco J. Romera
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
87
|
Cui Y, Chen CL, Cui M, Zhou WJ, Wu HL, Ling HQ. Four IVa bHLH Transcription Factors Are Novel Interactors of FIT and Mediate JA Inhibition of Iron Uptake in Arabidopsis. MOLECULAR PLANT 2018; 11:1166-1183. [PMID: 29960107 DOI: 10.1016/j.molp.2018.06.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 05/15/2018] [Accepted: 06/09/2018] [Indexed: 05/18/2023]
Abstract
Plants have evolved sophisticated genetic networks to regulate iron (Fe) homeostasis for their survival. Several classes of plant hormones including jasmonic acid (JA) have been shown to be involved in regulating the expression of iron uptake and/or deficiency-responsive genes in plants. However, the molecular mechanisms by which JA regulates iron uptake remain unclear. In this study, we found that JA negatively modulates iron uptake by downregulating the expression of FIT (bHLH29), bHLH38, bHLH39, bHLH100, and bHLH101 and promoting the degradation of FIT protein, a key regulator of iron uptake in Arabidopsis. We further demonstrated that the subgroup IVa bHLH proteins, bHLH18, bHLH19, bHLH20, and bHLH25, are novel interactors of FIT, which promote JA-induced FIT protein degradation. These four IVa bHLHs function redundantly to antagonize the activity of the Ib bHLHs (such as bHLH38) in regulating FIT protein stability under iron deficiency. The four IVa bHLH genes are primarily expressed in roots, and are inducible by JA treatment. Moreover, we found that MYC2 and JAR1, two critical components of the JA signaling pathway, play critical roles in mediating JA suppression of the expression of FIT and Ib bHLH genes, whereas they differentially modulate the expression of bHLH18, bHLH19, bHLH20, and bHLH25 to regulate FIT accumulation under iron deficiency. Taken together, these results indicate that by transcriptionally regulating the expression of different sets of bHLH genes JA signaling promotes FIT degradation, resulting in reduced expression of iron-uptake genes, IRT1 and FRO2, and increased sensitivity to iron deficiency. Our data suggest that there is a multilayered inhibition of iron-deficiency response in the presence JA in Arabidopsis.
Collapse
Affiliation(s)
- Yan Cui
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Lin Chen
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Man Cui
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Juan Zhou
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui-Lan Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
88
|
Akram NA, Shafiq F, Ashraf M. Peanut (Arachis hypogaea L.): A Prospective Legume Crop to Offer Multiple Health Benefits Under Changing Climate. Compr Rev Food Sci Food Saf 2018; 17:1325-1338. [PMID: 33350163 DOI: 10.1111/1541-4337.12383] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/19/2022]
Abstract
Peanut is a multipurpose oil-seed legume, which offer benefits in many ways. Apart from the peanut plant's beneficial effects on soil quality, peanut seeds are nutritious and medicinally and economically important. In this review, insights into peanut origin and its domestication are provided. Peanut is rich in bioactive components, including phenolics, flavonoids, polyphenols, and resveratrol. In addition, the involvement of peanut in biological nitrogen fixation is highly significant. Recent reports regarding peanut responses and N2 fixation ability in response to abiotic stresses, including drought, salinity, heat stress, and iron deficiency on calcareous soils, have been incorporated. As a biotechnological note, recent advances in the development of transgenic peanut plants are also highlighted. In this context, regulation of transcriptional factors and gene transfer for the development of stress-tolerant peanut genotypes are of prime importance. Above all, this review signifies the importance of peanut cultivation and human consumption in view of the scenario of changing world climate in order to maintain food security.
Collapse
Affiliation(s)
| | - Fahad Shafiq
- Dept. of Botany, Government College Univ. Faisalabad, Pakistan
| | | |
Collapse
|
89
|
Abstract
This review deals with two essential plant mineral nutrients, iron (Fe) and phosphorus (P); the acquisition of both has important environmental and economic implications. Both elements are abundant in soils but are scarcely available to plants. To prevent deficiency, dicot plants develop physiological and morphological responses in their roots to specifically acquire Fe or P. Hormones and signalling substances, like ethylene, auxin and nitric oxide (NO), are involved in the activation of nutrient-deficiency responses. The existence of common inducers suggests that they must act in conjunction with nutrient-specific signals in order to develop nutrient-specific deficiency responses. There is evidence suggesting that P- or Fe-related phloem signals could interact with ethylene and NO to confer specificity to the responses to Fe- or P-deficiency, avoiding their induction when ethylene and NO increase due to other nutrient deficiency or stress. The mechanisms responsible for such interaction are not clearly determined, and thus, the regulatory networks that allow or prevent cross talk between P and Fe deficiency responses remain obscure. Here, fragmented information is drawn together to provide a clearer overview of the mechanisms and molecular players involved in the regulation of the responses to Fe or P deficiency and their interactions.
Collapse
|
90
|
Liu M, Zhang H, Fang X, Zhang Y, Jin C. Auxin Acts Downstream of Ethylene and Nitric Oxide to Regulate Magnesium Deficiency-Induced Root Hair Development in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2018; 59:1452-1465. [PMID: 29669031 DOI: 10.1093/pcp/pcy078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 04/12/2018] [Indexed: 05/20/2023]
Abstract
This study examines the association of auxin with ethylene and nitric oxide (NO) in regulating the magnesium (Mg) deficiency-induced root hair development in Arabidopsis thaliana. With Mg deficiency, both ethylene and NO promoted the elevation of root auxin levels in roots by inducing the expression of AUXIN-RESISTANT1 (AUX1), PIN-FORMED 1 (PIN1) and PIN2 transporters. In turn, auxin stimulated ethylene and NO production by activating the activities of 1-aminocyclopropane-1-carboxylate (ACC) oxidase (ACO), ACC synthase (ACS), nitrate reductase (NR) and NO synthase-like (NOS-L). These processes constituted an NO/ethylene-auxin feedback loop. Interestingly, however, the roles of ethylene and NO in regulating Mg deficiency-induced root hair development required the action of auxin, but not vice versa. In summary, these results suggest that Mg deficiency induces a positive interaction between the accumulation of auxin and ethylene/NO in roots, with auxin acting downstream of ethylene and NO signals to regulate Mg deficiency-induced root hair morphogenesis.
Collapse
Affiliation(s)
- Miao Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Haihua Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xianzhi Fang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yongsong Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chongwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
91
|
Hindu V, Palacios-Rojas N, Babu R, Suwarno WB, Rashid Z, Usha R, Saykhedkar GR, Nair SK. Identification and validation of genomic regions influencing kernel zinc and iron in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1443-1457. [PMID: 29574570 PMCID: PMC6004279 DOI: 10.1007/s00122-018-3089-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/16/2018] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE Genome-wide association study (GWAS) on 923 maize lines and validation in bi-parental populations identified significant genomic regions for kernel-Zinc and-Iron in maize. Bio-fortification of maize with elevated Zinc (Zn) and Iron (Fe) holds considerable promise for alleviating under-nutrition among the world's poor. Bio-fortification through molecular breeding could be an economical strategy for developing nutritious maize, and hence in this study, we adopted GWAS to identify markers associated with high kernel-Zn and Fe in maize and subsequently validated marker-trait associations in independent bi-parental populations. For GWAS, we evaluated a diverse maize association mapping panel of 923 inbred lines across three environments and detected trait associations using high-density Single nucleotide polymorphism (SNPs) obtained through genotyping-by-sequencing. Phenotyping trials of the GWAS panel showed high heritability and moderate correlation between kernel-Zn and Fe concentrations. GWAS revealed a total of 46 SNPs (Zn-20 and Fe-26) significantly associated (P ≤ 5.03 × 10-05) with kernel-Zn and Fe concentrations with some of these associated SNPs located within previously reported QTL intervals for these traits. Three double-haploid (DH) populations were developed using lines identified from the panel that were contrasting for these micronutrients. The DH populations were phenotyped at two environments and were used for validating significant SNPs (P ≤ 1 × 10-03) based on single marker QTL analysis. Based on this analysis, 11 (Zn) and 11 (Fe) SNPs were found to have significant effect on the trait variance (P ≤ 0.01, R2 ≥ 0.05) in at least one bi-parental population. These findings are being pursued in the kernel-Zn and Fe breeding program, and could hold great value in functional analysis and possible cloning of high-value genes for these traits in maize.
Collapse
Affiliation(s)
- Vemuri Hindu
- Asia Regional Maize Program, International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Hyderabad, Telangana 502324 India
- Sri Padmavati Mahila Visvavidyalayam (Women’s University), Tirupati, Andhra Pradesh 517502 India
| | - Natalia Palacios-Rojas
- International Maize and Wheat Improvement Center (CIMMYT), Km 45 Carretera Mexico-Veracruz, 56130 Texcoco, Mexico
| | - Raman Babu
- Asia Regional Maize Program, International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Hyderabad, Telangana 502324 India
- Present Address: Multi-Crop Research Center (MCRC), DuPont Pioneer, Hyderabad, Telangana 500078 India
| | - Willy B. Suwarno
- International Maize and Wheat Improvement Center (CIMMYT), Km 45 Carretera Mexico-Veracruz, 56130 Texcoco, Mexico
- Present Address: Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University, Jl. Meranti Kampus IPB Dramaga, Bogor, 16680 Indonesia
| | - Zerka Rashid
- Asia Regional Maize Program, International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Hyderabad, Telangana 502324 India
| | - Rayalcheruvu Usha
- Sri Padmavati Mahila Visvavidyalayam (Women’s University), Tirupati, Andhra Pradesh 517502 India
| | - Gajanan R Saykhedkar
- Asia Regional Maize Program, International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Hyderabad, Telangana 502324 India
- Present Address: Project Director, SPMESM, Dr. Hedgewar Hospital, Aurangabad, Maharashtra 431005 India
| | - Sudha K. Nair
- Asia Regional Maize Program, International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Hyderabad, Telangana 502324 India
| |
Collapse
|
92
|
Zhang L, Li G, Wang M, Di D, Sun L, Kronzucker HJ, Shi W. Excess iron stress reduces root tip zone growth through nitric oxide-mediated repression of potassium homeostasis in Arabidopsis. THE NEW PHYTOLOGIST 2018; 219:259-274. [PMID: 29658100 DOI: 10.1111/nph.15157] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/09/2018] [Indexed: 05/08/2023]
Abstract
The root tip zone is regarded as the principal action site for iron (Fe) toxicity and is more sensitive than other root zones, but the mechanism underpinning this remains largely unknown. We explored the mechanism underpinning the higher sensitivity at the Arabidopsis root tip and elucidated the role of nitric oxide (NO) using NO-related mutants and pharmacological methods. Higher Fe sensitivity of the root tip is associated with reduced potassium (K+ ) retention. NO in root tips is increased significantly above levels elsewhere in the root and is involved in the arrest of primary root tip zone growth under excess Fe, at least in part related to NO-induced K+ loss via SNO1 (sensitive to nitric oxide 1)/SOS4 (salt overly sensitive 4) and reduced root tip zone cell viability. Moreover, ethylene can antagonize excess Fe-inhibited root growth and K+ efflux, in part by the control of root tip NO levels. We conclude that excess Fe attenuates root growth by effecting an increase in root tip zone NO, and that this attenuation is related to NO-mediated alterations in K+ homeostasis, partly via SNO1/SOS4.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| | - Dongwei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| | - Li Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| | - Herbert J Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| |
Collapse
|
93
|
Chen L, Wang G, Chen P, Zhu H, Wang S, Ding Y. Shoot-Root Communication Plays a Key Role in Physiological Alterations of Rice ( Oryza sativa) Under Iron Deficiency. FRONTIERS IN PLANT SCIENCE 2018; 9:757. [PMID: 29922324 PMCID: PMC5996241 DOI: 10.3389/fpls.2018.00757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 05/17/2018] [Indexed: 05/29/2023]
Abstract
Iron (Fe) is an essential mineral element required for plant growth, and when soil availability of Fe is low, plants show symptoms of severe deficiency. Under conditions of Fe deficiency, plants alter several processes to acquire Fe from soil. In this study, we used rice cultivars H 9405 with high Fe accumulation in seeds and Yang 6 with low Fe accumulation in seeds to study their physiological responses to different conditions of Fe availability. In both shoots and roots, the responses of ROS enzymes, leaf and root ultrastructure and photosynthetic system to iron deficiency in Yang 6 were much sensitive than those in H 9405. For the distribution of iron, the iron content was much higher in roots of Yang 6, in contrast to higher shoot content in H 9405. Differential responses were shown with the Fe content in roots and shoots, which were the opposite in the two varieties; thus, we proposed the existence of long-distance signals. Then split root and shoot removal experiments were used to demonstrate that a long-distance signal was involved in the iron-deficient rice plant, and the signal strength was highly correlated with the functional leaves.
Collapse
Affiliation(s)
- Lin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Gaopeng Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Pengfei Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Honglei Zhu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Shaohua Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
94
|
Garnica M, Bacaicoa E, Mora V, San Francisco S, Baigorri R, Zamarreño AM, Garcia-Mina JM. Shoot iron status and auxin are involved in iron deficiency-induced phytosiderophores release in wheat. BMC PLANT BIOLOGY 2018; 18:105. [PMID: 29866051 PMCID: PMC5987636 DOI: 10.1186/s12870-018-1324-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/24/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND The release of phytosiderephores (PS) to the rhizosphere is the main root response to iron (Fe) deficiency in graminaceous plants. We have investigated the role of the Fe status in the shoot as well as of the signaling pathways controlled by three relevant phytoregulators - indolacetic acid (IAA), ethylene and nitric oxide (NO) - in the regulation of this root response in Fe-starved wheat plants. To this end, the PS accumulation in the nutrient solution and the root expression of the genes encoding the nicotianamine aminotransferase (TaNAAT) and ferritin (TaFER) have been evaluated in plants subjected to different treatments. RESULTS The application of Fe to leaves of Fe-deficient plants prevented the increase in both PS root release and TaNAAT gene expression thus showing the relevant role of the shoot to root communication in the regulation of PS root release and some steps of PS biosynthesis. Experiments with specific hormone inhibitors showed that while ethylene and NO did not positively regulate Fe-deficiency induced PS root release, auxin plays an essential role in the regulation of this process. Moreover, the application of IAA to Fe-sufficient plants promoted both PS root release and TaNAAT gene expression thus indicating that auxin might be involved in the shoot to root signaling network regulating Fe-deficiency root responses in wheat. CONCLUSIONS These results therefore indicate that PS root release in Fe-deficient wheat plants is directly modulated by the shoot Fe status through signaling pathways involving, among other possible effectors, auxin.
Collapse
Affiliation(s)
- Maria Garnica
- Department of Environmental Biology (BACh Group), School of Sciences, University of Navarra, Pamplona, Navarra Spain
| | - Eva Bacaicoa
- Department of Environmental Biology (BACh Group), School of Sciences, University of Navarra, Pamplona, Navarra Spain
| | - Veronica Mora
- Plant Physiology and Plant-Microorganism Laboratory, University of Rio Cuarto, Río Cuarto, Cordoba Argentina
| | - Sara San Francisco
- Technical and Development Department, Timac Agro Spain, Lodosa, Navarra Spain
| | - Roberto Baigorri
- Department of Environmental Biology (BACh Group), School of Sciences, University of Navarra, Pamplona, Navarra Spain
- Technical and Development Department, Timac Agro Spain, Lodosa, Navarra Spain
| | - Angel Mari Zamarreño
- Department of Environmental Biology (BACh Group), School of Sciences, University of Navarra, Pamplona, Navarra Spain
| | - Jose Maria Garcia-Mina
- Department of Environmental Biology (BACh Group), School of Sciences, University of Navarra, Pamplona, Navarra Spain
| |
Collapse
|
95
|
Sun H, Feng F, Liu J, Zhao Q. Nitric Oxide Affects Rice Root Growth by Regulating Auxin Transport Under Nitrate Supply. FRONTIERS IN PLANT SCIENCE 2018; 9:659. [PMID: 29875779 PMCID: PMC5974057 DOI: 10.3389/fpls.2018.00659] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 05/08/2023]
Abstract
Nitrogen (N) is a major essential nutrient for plant growth, and rice is an important food crop globally. Although ammonium (NH4+) is the main N source for rice, nitrate (NO3-) is also absorbed and utilized. Rice responds to NO3- supply by changing root morphology. However, the mechanisms of rice root growth and formation under NO3- supply are unclear. Nitric oxide (NO) and auxin are important regulators of root growth and development under NO3- supply. How the interactions between NO and auxin in regulating root growth in response to NO3- are unknown. In this study, the levels of indole-3-acetic acid (IAA) and NO in roots, and the responses of lateral roots (LRs) and seminal roots (SRs) to NH4+ and NO3-, were investigated using wild-type (WT) rice, as well as osnia2 and ospin1b mutants. NO3- supply promoted LR formation and SR elongation. The effects of NO donor and NO inhibitor/scavenger supply on NO levels and the root morphology of WT and nia2 mutants under NH4+ or NO3- suggest that NO3--induced NO is generated by the nitrate reductase (NR) pathway rather than the NO synthase (NOS)-like pathway. IAA levels, [3H] IAA transport, and PIN gene expression in roots were enhanced under NO3- relative to NH4+ supply. These results suggest that NO3- regulates auxin transport in roots. Application of SNP under NH4+ supply, or of cPTIO under NO3- supply, resulted in auxin levels in roots similar to those under NO3- and NH4+ supply, respectively. Compared to WT, the roots of the ospin1b mutant had lower auxin levels, fewer LRs, and shorter SRs. Thus, NO affects root growth by regulating auxin transport in response to NO3-. Overall, our findings suggest that NO3- influences LR formation and SR elongation by regulating auxin transport via a mechanism involving NO.
Collapse
Affiliation(s)
- Huwei Sun
- *Correspondence: Huwei Sun, Quanzhi Zhao,
| | | | | | - Quanzhi Zhao
- Laboratory of Rice Biology in Henan Province, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
96
|
Kailasam S, Wang Y, Lo JC, Chang HF, Yeh KC. S-Nitrosoglutathione works downstream of nitric oxide to mediate iron-deficiency signaling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:157-168. [PMID: 29396986 DOI: 10.1111/tpj.13850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/12/2017] [Accepted: 01/10/2018] [Indexed: 05/18/2023]
Abstract
Iron (Fe) is essential for plant growth and development. Knowledge of Fe signaling, from the beginning of perception to activation of the uptake process, is critical for crop improvement. Here, by using chemical screening, we identified a small molecule 3-amino-N-(3-methylphenyl)thieno[2,3-b]pyridine-2-carboxamide named R7 ('R' denoting repressor of IRON-REGULATED TRANSPORTER 1), that modulates Fe homeostasis of Arabidopsis. R7 treatment led to reduced Fe levels in plants, thus causing severe chlorosis under Fe deficiency. Expression analysis of central transcription factors, FER-LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR (FIT) and subgroup Ib basic helix-loop-helix (Ib bHLH) genes bHLH38/39/100/101, revealed that R7 targets the FIT-dependent transcriptional pathway. Exogenously supplying S-nitrosoglutathione (GSNO), but not other nitric oxide (NO) donors sodium nitroprusside (SNP) and S-nitroso-N-acetyl-dl-penicillamine (SANP), alleviated the inhibitory effects of R7 on Fe homeostasis. R7 did not inhibit cellular levels of NO or glutathione but decreased GSNO level in roots. We demonstrate that NO is involved in regulating not only the FIT transcriptional network but also the Ib bHLH networks. In addition, GSNO, from S-nitrosylation of glutathione, specifically mediates the Fe-starvation signal to FIT, which is distinct from the NO to Ib bHLH signal. Our work dissects the molecular connection between NO and the Fe-starvation response. We present a new signaling route whereby GSNO acts downstream of NO to trigger the Fe-deficiency response in Arabidopsis.
Collapse
Affiliation(s)
- Sakthivel Kailasam
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, 11529, Taiwan
| | - Ying Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Jing-Chi Lo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Fang Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
97
|
Huang J, Wei H, Li L, Yu S. Transcriptome analysis of nitric oxide-responsive genes in upland cotton (Gossypium hirsutum). PLoS One 2018; 13:e0192367. [PMID: 29513679 PMCID: PMC5841646 DOI: 10.1371/journal.pone.0192367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/21/2018] [Indexed: 12/27/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule with diverse physiological functions in plants. It is therefore important to characterize the downstream genes and signal transduction networks modulated by NO. Here, we identified 1,932 differentially expressed genes (DEGs) responding to NO in upland cotton using high throughput tag sequencing. The results of quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 25 DEGs showed good consistency. Gene Ontology (GO) and KEGG pathway were analyzed to gain a better understanding of these DEGs. We identified 157 DEGs belonging to 36 transcription factor (TF) families and 72 DEGs related to eight plant hormones, among which several TF families and hormones were involved in stress responses. Hydrogen peroxide and malondialdehyde (MDA) contents were increased, as well related genes after treatment with sodium nitroprusside (SNP) (an NO donor), suggesting a role for NO in the plant stress response. Finally, we compared of the current and previous data indicating a massive number of NO-responsive genes at the large-scale transcriptome level. This study evaluated the landscape of NO-responsive genes in cotton and identified the involvement of NO in the stress response. Some of the identified DEGs represent good candidates for further functional analysis in cotton.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, Guizhou, P. R. China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P. R. China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P. R. China
| | - Libei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P. R. China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P. R. China
| |
Collapse
|
98
|
Andresen E, Peiter E, Küpper H. Trace metal metabolism in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:909-954. [PMID: 29447378 DOI: 10.1093/jxb/erx465] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
Many trace metals are essential micronutrients, but also potent toxins. Due to natural and anthropogenic causes, vastly different trace metal concentrations occur in various habitats, ranging from deficient to toxic levels. Therefore, one focus of plant research is on the response to trace metals in terms of uptake, transport, sequestration, speciation, physiological use, deficiency, toxicity, and detoxification. In this review, we cover most of these aspects for the essential micronutrients copper, iron, manganese, molybdenum, nickel, and zinc to provide a broader overview than found in other recent reviews, to cross-link aspects of knowledge in this very active research field that are often seen in a separated way. For example, individual processes of metal usage, deficiency, or toxicity often were not mechanistically interconnected. Therefore, this review also aims to stimulate the communication of researchers following different approaches, such as gene expression analysis, biochemistry, or biophysics of metalloproteins. Furthermore, we highlight recent insights, emphasizing data obtained under physiologically and environmentally relevant conditions.
Collapse
Affiliation(s)
- Elisa Andresen
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovská, Ceské Budejovice, Czech Republic
| | - Edgar Peiter
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Plant Nutrition Laboratory, Betty-Heimann-Strasse, Halle (Saale), Germany
| | - Hendrik Küpper
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovská, České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, Department of Experimental Plant Biology, Branišovská, České Budějovice, Czech Republic
| |
Collapse
|
99
|
Singh BN, Dwivedi P, Sarma BK, Singh GS, Singh HB. Trichoderma asperellum T42 Reprograms Tobacco for Enhanced Nitrogen Utilization Efficiency and Plant Growth When Fed with N Nutrients. FRONTIERS IN PLANT SCIENCE 2018; 9:163. [PMID: 29527216 PMCID: PMC5829606 DOI: 10.3389/fpls.2018.00163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/29/2018] [Indexed: 05/29/2023]
Abstract
Trichoderma spp., are saprophytic fungi that can improve plant growth through increased nutrient acquisition and change in the root architecture. In the present study, we demonstrate that Trichoderma asperellum T42 mediate enhancement in host biomass, total nitrogen content, nitric oxide (NO) production and cytosolic Ca2+ accumulation in tobacco. T42 inoculation enhanced lateral root, root hair length, root hair density and root/shoot dry mass in tobacco under deprived nutrients condition. Interestingly, these growth attributes were further elevated in presence of T42 and supplementation of NO3- and NH4+ nutrients to tobacco at 40 and 70 days, particularly in NO3- supplementation, whereas no significant increment was observed in nia30 mutant. In addition, NO production was more in tobacco roots in T42 inoculated plants fed with NO3- nutrient confirming NO generation was dependent on NR pathway. NO3- dependent NO production contributed to increase in lateral root initiation, Ca2+ accumulation and activities of nitrate transporters (NRTs) in tobacco. Higher activities of several NRT genes in response to T42 and N nutrients and suppression of ammonium transporter (AMT1) suggested that induction of high affinity NRTs help NO3- acquisition through roots of tobacco. Among the NRTs NRT2.1 and NRT2.2 were more up-regulated compared to the other NRTs. Addition of sodium nitroprusside (SNP), relative to those supplied with NO3-/NH4+ nutrition and T42 treated plants singly, and with application of NO inhibitor, cPTIO, confirmed the altered NO fluorescence intensity in tobacco roots. Our findings suggest that T42 promoted plant growth significantly ant N content in the tobacco plants grown under N nutrients, notably higher in NO3-, providing insight of the strategy for not only tobacco but probably for other crops as well to adapt to fluctuating nitrate availability in soil.
Collapse
Affiliation(s)
- Bansh N. Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Birinchi K. Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Gopal S. Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Harikesh B. Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
100
|
An ethylene response factor (MxERF4) functions as a repressor of Fe acquisition in Malus xiaojinensis. Sci Rep 2018; 8:1068. [PMID: 29348657 PMCID: PMC5773544 DOI: 10.1038/s41598-018-19518-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022] Open
Abstract
Iron (Fe) is an essential element for plants; however, its availability is limited as it forms insoluble complexes in the soil. Consequently, plants have developed mechanisms to adapt to low Fe conditions. We demonstrate that ethylene is involved in Fe deficiency-induced physiological responses in Malus xiaojinensis, and describe the identification of MxERF4 as a protein-protein interaction partner with the MxFIT transcription factor, which is involved in the iron deficiency response. Furthermore, we demonstrate that MxERF4 acts as an MxFIT interaction partner to suppresses the expression of the Fe transporter MxIRT1, by binding directly to its promoter, requiring the EAR motif of the MxERF4 protein. Suppression of MxERF4 expression in M. xiaojinensis, using virus induced gene silencing resulted in an increase in MxIRT1 expression. Taken together, the results suggest a repression mechanism, where ethylene initiates the Fe deficiency response, and the response is then dampened, which may require a transient inhibition of Fe acquisition via the action of MxERF4.
Collapse
|