51
|
Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis. Proc Natl Acad Sci U S A 2015; 113:E41-50. [PMID: 26607451 DOI: 10.1073/pnas.1521248112] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The exocyst complex regulates the last steps of exocytosis, which is essential to organisms across kingdoms. In humans, its dysfunction is correlated with several significant diseases, such as diabetes and cancer progression. Investigation of the dynamic regulation of the evolutionarily conserved exocyst-related processes using mutants in genetically tractable organisms such as Arabidopsis thaliana is limited by the lethality or the severity of phenotypes. We discovered that the small molecule Endosidin2 (ES2) binds to the EXO70 (exocyst component of 70 kDa) subunit of the exocyst complex, resulting in inhibition of exocytosis and endosomal recycling in both plant and human cells and enhancement of plant vacuolar trafficking. An EXO70 protein with a C-terminal truncation results in dominant ES2 resistance, uncovering possible distinct regulatory roles for the N terminus of the protein. This study not only provides a valuable tool in studying exocytosis regulation but also offers a potentially new target for drugs aimed at addressing human disease.
Collapse
|
52
|
Li M, Wang K, Li S, Yang P. Exploration of rice pistil responses during early post-pollination through a combined proteomic and transcriptomic analysis. J Proteomics 2015; 131:214-226. [PMID: 26546731 DOI: 10.1016/j.jprot.2015.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 11/27/2022]
Abstract
UNLABELLED Pollen-stigma interaction is a multi-step and complex physiological process which contains different signaling and biochemical pathways. However, little is known about the molecular mechanism underlying this process in rice (Oryza sativa). In this study, the changes of gene expression were investigated through a combination study of transcriptome and proteome profiles in rice pistil during pollination. Totally, 1117 differentially expressed genes were identified, among which 962 and 167 were detected at transcriptional and protein level respectively. Functional categorization analysis showed that the genes involved in central metabolism were up-regulated, which can lead to the enhancement of these metabolisms. The reactive oxygen species (ROS) were over-accumulated in the stigma. In response to this, the proteins or transcripts involved in redox homeostasis regulation were differentially expressed. Furthermore, significant changes of protein ubiquitination and its related genes or proteins, especially some E3 ligases encoding genes, indicate that protein ubiquitination might play important roles in cell signal transduction during the pollination process. Our study sheds some lights on gene and protein expression profiles of rice pistil pollination process, and gives us a comprehensive understanding of the basic molecular mechanisms controlling pollination in rice. BIOLOGICAL SIGNIFICANCE Using RNA-seq, 2-DE and iTRAQ assays, we have generated the large-scale transcriptomic and proteomic data containing abundant information on genes involved in pollen and pistil interaction. Our results showed that ROS were significantly accumulated in stigma after pollination, and the abundance of genes involve in redox homeostasis system were changed variously. We also show that, changes of some E3 ligases encoding genes might indicate that protein ubiquitination play important roles in cell signal transduction during the pollination process. Data in this study might be helpful to deeply understand the pollination in rice.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Kun Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
53
|
Zermiani M, Begheldo M, Nonis A, Palme K, Mizzi L, Morandini P, Nonis A, Ruperti B. Identification of the Arabidopsis RAM/MOR signalling network: adding new regulatory players in plant stem cell maintenance and cell polarization. ANNALS OF BOTANY 2015; 116:69-89. [PMID: 26078466 PMCID: PMC4479753 DOI: 10.1093/aob/mcv066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/02/2015] [Accepted: 04/13/2015] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS The RAM/MOR signalling network of eukaryotes is a conserved regulatory module involved in co-ordination of stem cell maintenance, cell differentiation and polarity establishment. To date, no such signalling network has been identified in plants. METHODS Genes encoding the bona fide core components of the RAM/MOR pathway were identified in Arabidopsis thaliana (arabidopsis) by sequence similarity searches conducted with the known components from other species. The transcriptional network(s) of the arabidopsis RAM/MOR signalling pathway were identified by running in-depth in silico analyses for genes co-regulated with the core components. In situ hybridization was used to confirm tissue-specific expression of selected RAM/MOR genes. KEY RESULTS Co-expression data suggested that the arabidopsis RAM/MOR pathway may include genes involved in floral transition, by co-operating with chromatin remodelling and mRNA processing/post-transcriptional gene silencing factors, and genes involved in the regulation of pollen tube polar growth. The RAM/MOR pathway may act upstream of the ROP1 machinery, affecting pollen tube polar growth, based on the co-expression of its components with ROP-GEFs. In silico tissue-specific co-expression data and in situ hybridization experiments suggest that different components of the arabidopsis RAM/MOR are expressed in the shoot apical meristem and inflorescence meristem and may be involved in the fine-tuning of stem cell maintenance and cell differentiation. CONCLUSIONS The arabidopsis RAM/MOR pathway may be part of the signalling cascade that converges in pollen tube polarized growth and in fine-tuning stem cell maintenance, differentiation and organ polarity.
Collapse
Affiliation(s)
- Monica Zermiani
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Maura Begheldo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Alessandro Nonis
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Klaus Palme
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 2
| | - Luca Mizzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Piero Morandini
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Alberto Nonis
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Italy, University Centre of Statistics for Biomedical Sciences, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy, Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany, Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, D-79104 Freiburg, Germany, Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany, Department of BioSciences, University of Milan, Via Celoria 26, 20133 Milan, Italy and CNR Biophysics Institute (Milan Section), Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
54
|
Chi Y, Yang Y, Li G, Wang F, Fan B, Chen Z. Identification and characterization of a novel group of legume-specific, Golgi apparatus-localized WRKY and Exo70 proteins from soybean. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3055-70. [PMID: 25805717 PMCID: PMC4449531 DOI: 10.1093/jxb/erv104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Many plant genes belong to families that arise from extensive proliferation and diversification allowing the evolution of functionally new proteins. Here we report the characterization of a group of proteins evolved from WRKY and exocyst complex subunit Exo70 proteins through fusion with a novel transmembrane (TM) domain in soybean (Glycine max). From the soybean genome, we identified a novel WRKY-related protein (GmWRP1) that contains a WRKY domain with no binding activity for W-box sequences. GFP fusion revealed that GmWRP1 was targeted to the Golgi apparatus through its N-terminal TM domain. Similar Golgi-targeting TM domains were also identified in members of a new subfamily of Exo70J proteins involved in vesicle trafficking. The novel TM domains are structurally most similar to the endosomal cytochrome b561 from birds and close homologues of GmWRP1 and GmEx070J proteins with the novel TM domain have only been identified in legumes. Transient expression of some GmExo70J proteins or the Golgi-targeting TM domain in tobacco altered the subcellular structures labelled by a fluorescent Golgi marker. GmWRP1 transcripts were detected at high levels in roots, flowers, pods, and seeds, and the expression levels of GmWRP1 and GmExo70J genes were elevated with increased age in leaves. The legume-specific, Golgi apparatus-localized GmWRP1 and GmExo70J proteins are probably involved in Golgi-mediated vesicle trafficking of biological molecules that are uniquely important to legumes.
Collapse
Affiliation(s)
- Yingjun Chi
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yang
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou, 310058, China
| | - Guiping Li
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou, 310058, China
| | - Fei Wang
- Department of Botany and Plant Pathology, 915W. State Street, Purdue University, West Lafayette, IN 47907, USA
| | - Baofang Fan
- Department of Botany and Plant Pathology, 915W. State Street, Purdue University, West Lafayette, IN 47907, USA
| | - Zhixiang Chen
- Department of Horticulture, Zijingang Campus, 866 Yuhangtang Road, Zhejiang University, Hangzhou, 310058, China Department of Botany and Plant Pathology, 915W. State Street, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
55
|
Kulich I, Vojtíková Z, Glanc M, Ortmannová J, Rasmann S, Žárský V. Cell wall maturation of Arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. PLANT PHYSIOLOGY 2015; 168:120-31. [PMID: 25767057 PMCID: PMC4424025 DOI: 10.1104/pp.15.00112] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/10/2015] [Indexed: 05/22/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) leaf trichomes are single-cell structures with a well-studied development, but little is understood about their function. Developmental studies focused mainly on the early shaping stages, and little attention has been paid to the maturation stage. We focused on the EXO70H4 exocyst subunit, one of the most up-regulated genes in the mature trichome. We uncovered EXO70H4-dependent development of the secondary cell wall layer, highly autofluorescent and callose rich, deposited only in the upper part of the trichome. The boundary is formed between the apical and the basal parts of mature trichome by a callose ring that is also deposited in an EXO70H4-dependent manner. We call this structure the Ortmannian ring (OR). Both the secondary cell wall layer and the OR are absent in the exo70H4 mutants. Ecophysiological aspects of the trichome cell wall thickening include interference with antiherbivore defense and heavy metal accumulation. Ultraviolet B light induces EXO70H4 transcription in a CONSTITUTIVE PHOTOMORPHOGENIC1-dependent way, resulting in stimulation of trichome cell wall thickening and the OR biogenesis. EXO70H4-dependent trichome cell wall hardening is a unique phenomenon, which may be conserved among a variety of the land plants. Our analyses support a concept that Arabidopsis trichome is an excellent model to study molecular mechanisms of secondary cell wall deposition.
Collapse
Affiliation(s)
- Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, 12844 Prague, Czech Republic (I.K., Z.V., M.G., J.O., V.Z.);Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 16502 Prague, Czech Republic (J.O., V.Z.); andDepartment of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland (S.R.)
| | - Zdeňka Vojtíková
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, 12844 Prague, Czech Republic (I.K., Z.V., M.G., J.O., V.Z.);Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 16502 Prague, Czech Republic (J.O., V.Z.); andDepartment of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland (S.R.)
| | - Matouš Glanc
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, 12844 Prague, Czech Republic (I.K., Z.V., M.G., J.O., V.Z.);Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 16502 Prague, Czech Republic (J.O., V.Z.); andDepartment of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland (S.R.)
| | - Jitka Ortmannová
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, 12844 Prague, Czech Republic (I.K., Z.V., M.G., J.O., V.Z.);Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 16502 Prague, Czech Republic (J.O., V.Z.); andDepartment of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland (S.R.)
| | - Sergio Rasmann
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, 12844 Prague, Czech Republic (I.K., Z.V., M.G., J.O., V.Z.);Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 16502 Prague, Czech Republic (J.O., V.Z.); andDepartment of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland (S.R.)
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, 12844 Prague, Czech Republic (I.K., Z.V., M.G., J.O., V.Z.);Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 16502 Prague, Czech Republic (J.O., V.Z.); andDepartment of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland (S.R.)
| |
Collapse
|
56
|
Oda Y, Iida Y, Nagashima Y, Sugiyama Y, Fukuda H. Novel coiled-coil proteins regulate exocyst association with cortical microtubules in xylem cells via the conserved oligomeric golgi-complex 2 protein. PLANT & CELL PHYSIOLOGY 2015; 56:277-86. [PMID: 25541219 DOI: 10.1093/pcp/pcu197] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Xylem vessel cells develop secondary cell walls in distinct patterns. Cortical microtubules are rearranged into distinct patterns and regulate secondary cell wall deposition; however, it is unclear how exocytotic membrane trafficking is linked to cortical microtubules. Here, we show that the novel coiled-coil proteins vesicle tethering 1 (VETH1) and VETH2 recruit EXO70A1, an exocyst subunit essential for correct patterning of secondary cell wall deposition, to cortical microtubules via the conserved oligomeric Golgi complex (COG) 2 protein. VETH1 and VETH2 encode an uncharacterized domain of an unknown function designated DUF869, and were preferentially up-regulated in xylem cells. VETH1-green fluorescent protein (GFP) and VETH2-GFP co-localized at novel vesicle-like small compartments, which exhibited microtubule plus-end-directed and end-tracking dynamics. VETH1 and VETH2 interacted with COG2, and this interaction promoted the association between cortical microtubules and EXO70A1 These results suggest that the VETH-COG2 complex ensures the correct secondary cell wall deposition pattern by recruiting exocyst components to cortical microtubules.
Collapse
Affiliation(s)
- Yoshihisa Oda
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540 Japan Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka, 411 8540 Japan Precursory Research for Embryonic Science and Technology Project, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012 Japan
| | - Yuki Iida
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yoshinobu Nagashima
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yuki Sugiyama
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Hiroo Fukuda
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
57
|
Bashline L, Li S, Gu Y. The trafficking of the cellulose synthase complex in higher plants. ANNALS OF BOTANY 2014; 114:1059-67. [PMID: 24651373 PMCID: PMC4195546 DOI: 10.1093/aob/mcu040] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/14/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND Cellulose is an important constituent of plant cell walls in a biological context, and is also a material commonly utilized by mankind in the pulp and paper, timber, textile and biofuel industries. The biosynthesis of cellulose in higher plants is a function of the cellulose synthase complex (CSC). The CSC, a large transmembrane complex containing multiple cellulose synthase proteins, is believed to be assembled in the Golgi apparatus, but is thought only to synthesize cellulose when it is localized at the plasma membrane, where CSCs synthesize and extrude cellulose directly into the plant cell wall. Therefore, the delivery and endocytosis of CSCs to and from the plasma membrane are important aspects for the regulation of cellulose biosynthesis. SCOPE Recent progress in the visualization of CSC dynamics in living plant cells has begun to reveal some of the routes and factors involved in CSC trafficking. This review highlights the most recent major findings related to CSC trafficking, provides novel perspectives on how CSC trafficking can influence the cell wall, and proposes potential avenues for future exploration.
Collapse
Affiliation(s)
- Logan Bashline
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Shundai Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ying Gu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
58
|
Safavian D, Jamshed M, Sankaranarayanan S, Indriolo E, Samuel MA, Goring DR. High humidity partially rescues the Arabidopsis thaliana exo70A1 stigmatic defect for accepting compatible pollen. PLANT REPRODUCTION 2014; 27:121-7. [PMID: 24973977 DOI: 10.1007/s00497-014-0245-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/22/2014] [Indexed: 05/21/2023]
Abstract
We have previously proposed that Exo70A1 is required in the Brassicaceae stigma to control the early stages of pollen hydration and pollen tube penetration through the stigmatic surface, following compatible pollination. However, recent work has raised questions regarding Arabidopsis thaliana Exo70A1's expression in the stigma and its role in stigma receptivity to compatible pollen. Here, we verified the expression of Exo70A1 in stigmas from three Brassicaceae species and carefully re-examined Exo70A1's function in the stigmatic papillae. With previous studies showing that high relative humidity can rescue some pollination defects, essentially bypassing the control of pollen hydration by the Brassicaceae dry stigma, the effect of high humidity was investigated on pollinations with the Arabidopsis exo70A1-1 mutant. Pollinations under low relative humidity resulted in a complete failure of wild-type compatible pollen acceptance by the exo70A1-1 mutant stigma as we had previously seen. However, high relative humidity resulted in a partial rescue of the exo70A1-1 stigmatic papillar defect resulting is some wild-type compatible pollen acceptance and seed set. Thus, these results reaffirmed Exo70A1's proposed role in the stigma regulating compatible pollen hydration and pollen tube entry and demonstrate that high relative humidity can partially bypass these functions.
Collapse
Affiliation(s)
- Darya Safavian
- Department of Cell and Systems Biology, University of Toronto, Toronto, M5S 3B2, Canada
| | | | | | | | | | | |
Collapse
|
59
|
Pizarro L, Norambuena L. Regulation of protein trafficking: posttranslational mechanisms and the unexplored transcriptional control. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 225:24-33. [PMID: 25017156 DOI: 10.1016/j.plantsci.2014.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 05/29/2023]
Abstract
Endomembrane protein trafficking assures protein location through the endocytic and secretory routes. Trafficking pathways are diverse, depending on the proteins being trafficked, the final destination as well as their itinerary. Trafficking pathways are operated by machineries composed of a set of coordinately acting factors that transport proteins between compartments. Different machineries participate in each protein trafficking pathway, providing specificity and accuracy. Changes in the activity and abundance of trafficking proteins regulate protein flux. The preponderance of one pathway over another regulates protein location and relocation. Cellular requirements change during different processes and in response to stimuli; modulation of trafficking mechanisms must relocate proteins or alternatively increase/decrease the targeting rate of certain proteins. Conventionally, protein trafficking modulation has been explained as posttranslational modification of components of the relevant trafficking machinery. However, trafficking components are also transcriptionally regulated and several reports support that this regulation can modulate protein trafficking as well. This transcriptional modulation has an impact on plant physiology, and is a critical and fundamental mechanism. This scenario suggests a determinant mechanism that must be considered in the endomembrane protein trafficking research field.
Collapse
Affiliation(s)
- Lorena Pizarro
- Plant Molecular Biology Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Lorena Norambuena
- Plant Molecular Biology Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile.
| |
Collapse
|
60
|
Schmitz J, Heinrichs L, Scossa F, Fernie AR, Oelze ML, Dietz KJ, Rothbart M, Grimm B, Flügge UI, Häusler RE. The essential role of sugar metabolism in the acclimation response of Arabidopsis thaliana to high light intensities. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1619-36. [PMID: 24523502 PMCID: PMC3967092 DOI: 10.1093/jxb/eru027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Retrograde signals from chloroplasts are thought to control the expression of nuclear genes associated with plastidial processes such as acclimation to varying light conditions. Arabidopsis mutants altered in the day and night path of photoassimilate export from the chloroplasts served as tools to study the involvement of carbohydrates in high light (HL) acclimation. A double mutant impaired in the triose phosphate/phosphate translocator (TPT) and ADP-glucose pyrophosphorylase (AGPase) (adg1-1/tpt-2) exhibits a HL-dependent depletion in endogenous carbohydrates combined with a severe growth and photosynthesis phenotype. The acclimation response of mutant and wild-type plants has been assessed in time series after transfer from low light (LL) to HL by analysing photosynthetic performance, carbohydrates, MgProtoIX (a chlorophyll precursor), and the ascorbate/glutathione redox system, combined with microarray-based transcriptomic and GC-MS-based metabolomic approaches. The data indicate that the accumulation of soluble carbohydrates (predominantly glucose) acts as a short-term response to HL exposure in both mutant and wild-type plants. Only if carbohydrates are depleted in the long term (e.g. after 2 d) is the acclimation response impaired, as observed in the adg1-1/tpt-2 double mutant. Furthermore, meta-analyses conducted with in-house and publicly available microarray data suggest that, in the long term, reactive oxygen species such as H₂O₂ can replace carbohydrates as signals. Moreover, a cross-talk exists between genes associated with the regulation of starch and lipid metabolism. The involvement of genes responding to phytohormones in HL acclimation appears to be less likely. Various candidate genes involved in retrograde control of nuclear gene expression emerged from the analyses of global gene expression.
Collapse
Affiliation(s)
- Jessica Schmitz
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
- * Present address: Plant Molecular Physiology and Biotechnology, Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Luisa Heinrichs
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Federico Scossa
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam OT Golm, Germany
- Agriculture Research Council, Research Center for Vegetable Crops, Via Cavalleggeri 25, 84098 Pontecagnano (Salerno), Italy
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam OT Golm, Germany
| | - Marie-Luise Oelze
- Biochemistry and Physiology of Plants, University of Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, University of Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Maxi Rothbart
- Institute of Biology, Plant Physiology, Humboldt-University Berlin, Philippstraße 13, D-10115 Berlin, Germany
| | - Bernhard Grimm
- Institute of Biology, Plant Physiology, Humboldt-University Berlin, Philippstraße 13, D-10115 Berlin, Germany
| | - Ulf-Ingo Flügge
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Rainer E. Häusler
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicher Straße 47b, D-50674 Cologne, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
61
|
Song X, Li Y, Liu T, Duan W, Huang Z, Wang L, Tan H, Hou X. Genes associated with agronomic traits in non-heading Chinese cabbage identified by expression profiling. BMC PLANT BIOLOGY 2014; 14:71. [PMID: 24655567 PMCID: PMC3998049 DOI: 10.1186/1471-2229-14-71] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/18/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND The genomes of non-heading Chinese cabbage (Brassica rapa ssp. chinensis), heading Chinese cabbage (Brassica rapa ssp. pekinensis) and their close relative Arabidopsis thaliana have provided important resources for studying the evolution and genetic improvement of cruciferous plants. Natural growing conditions present these plants with a variety of physiological challenges for which they have a repertoire of genes that ensure adaptability and normal growth. We investigated the differential expressions of genes that control adaptability and development in plants growing in the natural environment to study underlying mechanisms of their expression. RESULTS Using digital gene expression tag profiling, we constructed an expression profile to identify genes related to important agronomic traits under natural growing conditions. Among three non-heading Chinese cabbage cultivars, we found thousands of genes that exhibited significant differences in expression levels at five developmental stages. Through comparative analysis and previous reports, we identified several candidate genes associated with late flowering, cold tolerance, self-incompatibility, and leaf color. Two genes related to cold tolerance were verified using quantitative real-time PCR. CONCLUSIONS We identified a large number of genes associated with important agronomic traits of non-heading Chinese cabbage. This analysis will provide a wealth of resources for molecular-assisted breeding of cabbage. The raw data and detailed results of this analysis are available at the website http://nhccdata.njau.edu.cn.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
62
|
Zhang T, Zhao X, Wang W, Huang L, Liu X, Zong Y, Zhu L, Yang D, Fu B, Li Z. Deep transcriptome sequencing of rhizome and aerial-shoot in Sorghum propinquum. PLANT MOLECULAR BIOLOGY 2014; 84:315-27. [PMID: 24104862 DOI: 10.1007/s11103-013-0135-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 09/23/2013] [Indexed: 05/25/2023]
Abstract
Transcriptomic data for Sorghum propinquum, the wild-type sorghum, are limited in public databases. S. propinquum has a subterranean rhizome and transcriptome data will help in understanding the molecular mechanisms underlying rhizome formation. We sequenced the transcriptome of S. propinquum aerial-shoot and rhizome using an Illumina platform. More than 70 % of the genes in the S. propinquum genome were expressed in aerial-shoot and rhizome. The expression patterns of 1963 and 599 genes, including transcription factors, were specific or enriched in aerial-shoot and rhizome respectively, indicating their possible roles in physiological processes in these tissues. Comparative analysis revealed several cis-elements, ACGT box, GCCAC, GATC and TGACG box, which showed significantly higher abundance in aerial-shoot-specific genes. In rhizome-specific genes MYB and ROOTMOTIFTAPOX1 motifs, and 10 promoter and cytokinin-responsive elements were highly enriched. Of the S. propinquum genes, 27.9 % were identified as alternatively spliced and about 60 % of the alternative splicing (AS) events were tissue-specific, suggesting that AS played a crucial role in determining tissue-specific cellular function. The transcriptome data, especially the co-localized rhizome-enriched expressed transcripts that mapped to the publicly available rhizome-related quantitative trait loci, will contribute to gene discovery in S. propinquum and to functional studies of the sorghum genome. Deep transcriptome sequencing revealed a clear difference in the expression patterns of genes between aerial-shoot and rhizome in S. propinquum. This data set provides essential information for future studies into the molecular genetic mechanisms involved in rhizome formation.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing, 100081, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Trinh NN, Huang TL, Chi WC, Fu SF, Chen CC, Huang HJ. Chromium stress response effect on signal transduction and expression of signaling genes in rice. PHYSIOLOGIA PLANTARUM 2014; 150:205-24. [PMID: 24033343 DOI: 10.1111/ppl.12088] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/15/2013] [Accepted: 07/01/2013] [Indexed: 05/04/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a non-essential metal for normal plants and is toxic to plants at high concentrations. However, signaling pathways and molecular mechanisms of its action on cell function and gene expression remain elusive. In this study, we found that Cr(VI) induced endogenous reactive oxygen species (ROS) generation and Ca(2+) accumulation and activated NADPH oxidase and calcium-dependent protein kinase. We investigated global transcriptional changes in rice roots by microarray analysis. Gene expression profiling indicated activation of abscisic acid-, ethylene- and jasmonic acid-mediated signaling and inactivation of gibberellic acid-related pathways in Cr(VI) stress-treated rice roots. Genes encoding signaling components such as the protein kinases domain of unknown function 26, receptor-like cytoplasmic kinase, LRK10-like kinase type 2 and protein phosphatase 2C, as well as transcription factors WRKY and apetala2/ethylene response factor were predominant during Cr(VI) stress. Genes involved in vesicle trafficking were subjected to functional characterization. Pretreating rice roots with a vesicle trafficking inhibitor, brefeldin A, effectively reduced Cr(VI)-induced ROS production. Suppression of the vesicle trafficking gene, Exo70, by virus-induced gene silencing strategies revealed that vesicle trafficking is required for mediation of Cr(VI)-induced ROS production. Taken together, these findings shed light on the molecular mechanisms in signaling pathways and transcriptional regulation in response to Cr stress in plants.
Collapse
Affiliation(s)
- Ngoc-Nam Trinh
- Department of Life Sciences, National Cheng Kung University, No.1 University Road 701, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
64
|
Oda Y, Fukuda H. Emerging roles of small GTPases in secondary cell wall development. FRONTIERS IN PLANT SCIENCE 2014; 5:428. [PMID: 25206358 PMCID: PMC4143617 DOI: 10.3389/fpls.2014.00428] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 08/12/2014] [Indexed: 05/08/2023]
Abstract
Regulation of plant cell wall deposition and patterning is essential for the normal growth and development of plants. Small GTPases play pivotal roles in the modulation of primary cell wall formation by controlling cytoskeletal organization and membrane trafficking. However, the functions of small GTPases in secondary cell wall development are poorly understood. Recent studies on xylem cells revealed that the Rho of plants (ROP) group of small GTPases critically participates in the spatial patterning of secondary cell walls. In differentiating xylem cells, a specific GTPase-activating protein (GAP)/guanine nucleotide exchange factor (GEF) pair facilitates local activation of ROP11 to establish de novo plasma membrane domains. The activated ROP11 then recruits a microtubule-associated protein, MIDD1, to mediate the mutual inhibition between cortical microtubules and active ROP. Furthermore, recent works suggest that certain small GTPases, including ROP and Rab GTPases, regulate membrane trafficking to establish secondary cell wall deposition and patterning. Accordingly, this mini-review assesses and summarizes the current literature regarding the emerging functions of small GTPases in the development of secondary cell walls.
Collapse
Affiliation(s)
- Yoshihisa Oda
- Center for Frontier Research, National Institute of GeneticsMishima, Japan
- The Graduate University For Advanced StudiesMishima, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencyKawaguchi, Japan
- *Correspondence: Yoshihisa Oda, Center for Frontier Research, National Institute of Genetics, Yata1111, Mishima, Shizuoka 411-8540, Japan e-mail:
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyo, Japan
| |
Collapse
|
65
|
Ding Y, Wang J, Chun Lai JH, Ling Chan VH, Wang X, Cai Y, Tan X, Bao Y, Xia J, Robinson DG, Jiang L. Exo70E2 is essential for exocyst subunit recruitment and EXPO formation in both plants and animals. Mol Biol Cell 2013; 25:412-26. [PMID: 24307681 PMCID: PMC3907280 DOI: 10.1091/mbc.e13-10-0586] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In contrast to a single copy of Exo70 in yeast and mammals, the Arabidopsis genome contains 23 paralogues of Exo70 (AtExo70). Using AtExo70E2 and its GFP fusion as probes, we recently identified a novel double-membrane organelle termed exocyst-positive organelle (EXPO) that mediates an unconventional protein secretion in plant cells. Here we further demonstrate that AtExo70E2 is essential for exocyst subunit recruitment and for EXPO formation in both plants and animals. By performing transient expression in Arabidopsis protoplasts, we established that a number of exocyst subunits (especially the members of the Sec family) are unable to be recruited to EXPO in the absence of AtExo70E2. The paralogue AtExo70A1 is unable to substitute for AtExo70E2 in this regard. Fluorescence resonance energy transfer assay and bimolecular fluorescence complementation analyses confirm the interaction between AtExo70E2 and Sec6 and Sec10. AtExo70E2, but not its yeast counterpart, is also capable of inducing EXPO formation in an animal cell line (HEK293A cells). Electron microscopy confirms the presence of double-membraned, EXPO-like structures in HEK293A cells expressing AtExo70E2. Inversely, neither human nor yeast Exo70 homologues cause the formation of EXPO in Arabidopsis protoplasts. These results point to a specific and crucial role for AtExo70E2 in EXPO formation.
Collapse
Affiliation(s)
- Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518057, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Zárský V, Kulich I, Fendrych M, Pečenková T. Exocyst complexes multiple functions in plant cells secretory pathways. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:726-33. [PMID: 24246229 DOI: 10.1016/j.pbi.2013.10.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 05/18/2023]
Abstract
The exocyst is a complex of proteins mediating first contact (tethering) between secretory vesicles and the target membrane. Discovered in yeast as an effector of RAB and RHO small GTPases, it was also found to function in land plants. Plant cells and tissues rely on targeted exocytosis and this implies that the exocyst is involved in regulation of cell polarity and morphogenesis, including cytokinesis, plasma membrane protein recycling (including PINs, the auxin efflux carriers), cell wall biogenesis, fertilization, stress and biotic interactions including defence against pathogens. The dramatic expansion of the EXO70 subunit gene family, of which individual members are likely responsible for exocyst complex targeting, implies that there are specialized functions of different exocysts with different EXO70s. One of these functions comprises a role in autophagy-related Golgi independent membrane trafficking into the vacuole or apoplast. It is also possible, that some EXO70 paralogues have been recruited into exocyst independent functions. The exocyst has the potential to function as an important regulatory hub to coordinate endomembrane dynamics in plants.
Collapse
Affiliation(s)
- Viktor Zárský
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, Prague 2, 128 43, Czech Republic; Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, Prague 6, 165 02, Czech Republic.
| | | | | | | |
Collapse
|
67
|
Wu J, Tan X, Wu C, Cao K, Li Y, Bao Y. Regulation of cytokinesis by exocyst subunit SEC6 and KEULE in Arabidopsis thaliana. MOLECULAR PLANT 2013; 6:1863-76. [PMID: 23702595 DOI: 10.1093/mp/sst082] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Proper vesicle tethering and membrane fusion at the cell plate are essential for cytokinesis. Both the vesicle tethering complex exocyst and membrane fusion regulator KEULE were shown to function in cell plate formation, but the exact mechanisms still remain to be explored. In this study, using yeast two-hybrid (Y-2-H) assay, we found that SEC6 interacted with KEULE, and that a small portion of C-terminal region of KEULE was required for the interaction. The direct SEC6-KEULE interaction was supported by further studies using in vitro pull-down assay, immunoprecipitation, and in vivo bimolecular fluorescence complementation (BIFC) microscopy. sec6 mutants were male gametophytic lethal as reported; however, pollen-rescued sec6 mutants (PRsec6) displayed cytokinesis defects in the embryonic cells and later in the leaf pavement cells and the guard cells. SEC6 and KEULE proteins were co-localized to the cell plate during cytokinesis in transgenic Arabidopsis. Furthermore, only SEC6 but not other exocyst subunits located in the cell plate interacted with KEULE in vitro. These results demonstrated that, like KEULE, SEC6 plays a physiological role in cytokinesis, and the SEC6-KEULE interaction may serve as a novel molecular linkage between arriving vesicles and membrane fusion machinery or directly regulate membrane fusion during cell plate formation in plants.
Collapse
Affiliation(s)
- Jiandong Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | | | | | | | | | | |
Collapse
|
68
|
Zhang Y, Immink R, Liu CM, Emons AM, Ketelaar T. The Arabidopsis exocyst subunit SEC3A is essential for embryo development and accumulates in transient puncta at the plasma membrane. THE NEW PHYTOLOGIST 2013; 199:74-88. [PMID: 23495664 DOI: 10.1111/nph.12236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/19/2013] [Indexed: 05/08/2023]
Abstract
The exocyst is a protein complex that is essential for polarized secretion in mammals and fungi. Although the exocyst is essential for plant development, its precise function has not been elucidated. We studied the role of exocyst subunit SEC3A in plant development and its subcellular localization. T-DNA insertional mutants were identified and complemented with a SEC3A-green fluorescent protein (GFP) fusion construct. SEC3A-GFP localization was determined using confocal microscopy. sec3a mutants are defective in the globular to heart stage transition in embryogenesis. SEC3A-GFP has similar cell plate localization to the other plant exocyst subunits. In interphase cells, SEC3A-GFP localizes to the cytoplasm and to the plasma membrane, where it forms immobile, punctate structures with discrete lifetimes of 2-40 s. These puncta are equally distributed over the cell surface of root epidermal cells and tip growing root hairs. The density of puncta does not decrease after growth termination of these cells, but decreases strongly when exocytosis is inhibited by treatment with brefeldin A. SEC3A does not appear to be involved in polarized secretion for cell expansion in tip growing root hairs. The landmark function performed by SEC3 in mammals and yeast is likely to be conserved in plants.
Collapse
Affiliation(s)
- Ying Zhang
- Laboratory of Cell Biology, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Richard Immink
- Bioscience, Plant Research International, Wageningen University and Research Center, 6708 PB, Wageningen, the Netherlands
| | - Chun-Ming Liu
- Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Anne Mie Emons
- Laboratory of Cell Biology, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
69
|
Li S, Chen M, Yu D, Ren S, Sun S, Liu L, Ketelaar T, Emons AMC, Liu CM. EXO70A1-mediated vesicle trafficking is critical for tracheary element development in Arabidopsis. THE PLANT CELL 2013; 25:1774-86. [PMID: 23709627 PMCID: PMC3694705 DOI: 10.1105/tpc.113.112144] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 04/20/2013] [Accepted: 05/14/2013] [Indexed: 05/18/2023]
Abstract
Exocysts are highly conserved octameric complexes that play an essential role in the tethering of Golgi-derived vesicles to target membranes in eukaryotic organisms. Genes encoding the EXO70 subunit are highly duplicated in plants. Based on expression analyses, we proposed previously that individual EXO70 members may provide the exocyst with functional specificity to regulate cell type- or cargo-specific exocytosis, although direct evidence is not available. Here, we show that, as a gene expressed primarily during tracheary element (TE) development, EXO70A1 regulates vesicle trafficking in TE differentiation in Arabidopsis thaliana. Mutations of EXO70A1 led to aberrant xylem development, producing dwarfed and nearly sterile plants with very low fertility, reduced cell expansion, and decreased water potential and hydraulic transport. Grafting of a mutant shoot onto wild-type rootstock rescued most of these aboveground phenotypes, while grafting of a wild-type shoot to the mutant rootstock did not rescue the short root hair phenotype, consistent with the role of TEs in hydraulic transport from roots to shoots. Histological analyses revealed an altered pattern of secondary cell wall thickening and accumulation of large membrane-bound compartments specifically in developing TEs of the mutant. We thus propose that EXO70A1 functions in vesicle trafficking in TEs to regulate patterned secondary cell wall thickening.
Collapse
Affiliation(s)
- Shipeng Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Laboratory of Cell Biology, Wageningen University, 6708PB Wageningen, The Netherlands
- Department of Life Science, Qilu Normal University, Jinan 250013, China
| | - Min Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Dali Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Department of Life Science, Qilu Normal University, Jinan 250013, China
| | - Shichao Ren
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shufeng Sun
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Linde Liu
- College of Life Science, Ludong University, Yantai 264025, China
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Anne-Mie C. Emons
- Laboratory of Cell Biology, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Address correspondence to
| |
Collapse
|
70
|
New putative chloroplast vesicle transport components and cargo proteins revealed using a bioinformatics approach: an Arabidopsis model. PLoS One 2013; 8:e59898. [PMID: 23573218 PMCID: PMC3613420 DOI: 10.1371/journal.pone.0059898] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/19/2013] [Indexed: 11/23/2022] Open
Abstract
Proteins and lipids are known to be transported to targeted cytosolic compartments in vesicles. A similar system in chloroplasts is suggested to transfer lipids from the inner envelope to the thylakoids. However, little is known about both possible cargo proteins and the proteins required to build a functional vesicle transport system in chloroplasts. A few components have been suggested, but only one (CPSAR1) has a verified location in chloroplast vesicles. This protein is localized in the donor membrane (envelope) and vesicles, but not in the target membrane (thylakoids) suggesting it plays a similar role to a cytosolic homologue, Sar1, in the secretory pathway. Thus, we hypothesized that there may be more similarities, in addition to lipid transport, between the vesicle transport systems in the cytosol and chloroplast, i.e. similar vesicle transport components, possible cargo proteins and receptors. Therefore, using a bioinformatics approach we searched for putative chloroplast components in the model plant Arabidopsis thaliana, corresponding mainly to components of the cytosolic vesicle transport system that may act in coordination with previously proposed COPII chloroplast homologues. We found several additional possible components, supporting the notion of a fully functional vesicle transport system in chloroplasts. Moreover, we found motifs in thylakoid-located proteins similar to those of COPII vesicle cargo proteins, supporting the hypothesis that chloroplast vesicles may transport thylakoid proteins from the envelope to the thylakoid membrane. Several putative cargo proteins are involved in photosynthesis, thus we propose the existence of a novel thylakoid protein pathway that is important for construction and maintenance of the photosynthetic machinery.
Collapse
|
71
|
Lin CY, Trinh NN, Fu SF, Hsiung YC, Chia LC, Lin CW, Huang HJ. Comparison of early transcriptome responses to copper and cadmium in rice roots. PLANT MOLECULAR BIOLOGY 2013; 81:507-22. [PMID: 23400832 DOI: 10.1007/s11103-013-0020-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 01/25/2013] [Indexed: 05/22/2023]
Abstract
The phytotoxic effects of copper (Cu) and cadmium (Cd) on plant growth are well documented. However, Cu and Cd toxicity targets and the cellular systems contributing to acquisition of tolerance are not fully understood at the molecular level. We aimed to identify genes and pathways that discriminate the actions of Cu and Cd in rice roots (Oryza sativa L. cv. TN67). The transcripts of 1,450 and 1,172 genes were regulated after Cu and Cd treatments, respectively. We identified 882 genes specifically respond to Cu treatment, and 604 unique genes as Cd-responsive by comparison of expression profiles of these two regulated gene groups. Gene ontology analysis for 538 genes involved in primary metabolism, oxidation reduction and response to stimulus was changed in response to both metals. In the individual aspect, Cu specifically altered levels of genes involved in vesicle trafficking transport, fatty acid metabolism and cellular component biogenesis. Cd-regulated genes related to unfolded protein binding and sulfate assimilation. To further characterize the functions of vesicle trafficking transport under Cu stress, interference of excytosis in root tissues was conducted by inhibitors and silencing of Exo70 genes. It was demonstrated that vesicle-trafficking is required for mediation of Cu-induced reactive oxygen species (ROS) production in root tissues. These results may provide new insights into understanding the molecular basis of the early metal stress response in plants.
Collapse
Affiliation(s)
- Chung-Yi Lin
- Department of Life Sciences, National Cheng Kung University, No.1 University Road 701, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
72
|
McMichael CM, Bednarek SY. Cytoskeletal and membrane dynamics during higher plant cytokinesis. THE NEW PHYTOLOGIST 2013; 197:1039-1057. [PMID: 23343343 DOI: 10.1111/nph.12122] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 12/02/2012] [Indexed: 05/08/2023]
Abstract
Following mitosis, cytoplasm, organelles and genetic material are partitioned into daughter cells through the process of cytokinesis. In somatic cells of higher plants, two cytoskeletal arrays, the preprophase band and the phragmoplast, facilitate the positioning and de novo assembly of the plant-specific cytokinetic organelle, the cell plate, which develops across the division plane and fuses with the parental plasma membrane to yield distinct new cells. The coordination of cytoskeletal and membrane dynamics required to initiate, assemble and shape the cell plate as it grows toward the mother cell cortex is dependent upon a large array of proteins, including molecular motors, membrane tethering, fusion and restructuring factors and biosynthetic, structural and regulatory elements. This review focuses on the temporal and molecular requirements of cytokinesis in somatic cells of higher plants gleaned from recent studies using cell biology, genetics, pharmacology and biochemistry.
Collapse
Affiliation(s)
- Colleen M McMichael
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr, Madison, WI, 53713, USA
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr, Madison, WI, 53713, USA
| |
Collapse
|
73
|
Lai KS, Kaothien-Nakayama P, Iwano M, Takayama S. A TILLING resource for functional genomics in Arabidopsis thaliana accession C24. Genes Genet Syst 2013; 87:291-7. [PMID: 23412631 DOI: 10.1266/ggs.87.291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse genetic method that can be employed to generate allelic series of induced mutations in targeted genes for functional analyses. To date, TILLING resources in Arabidopsis thaliana are only available in accessions Columbia and Landsberg erecta. Here, we extended the Arabidopsis TILLING resources by developing a new population of ethyl methanesulfonate (EMS)-induced mutant lines in another commonly used A. thaliana accession C24. A permanent collection of 3,509 independent EMS mutagenized M2 lines was developed in A. thaliana accession C24, and designated C24TILL. Using the TILLING method to search C24TILL for mutations in four selected genes identified a total of 73 mutations, comprising 69.6% missense, 29.0% sense, and 1.4% nonsense mutations. Consistent with the propensity of EMS to induce guanine alkylation, 98.4% of the observed mutations were G/C to A/T transitions. Based on the mutations identified in the four target genes, the overall mutation density in the C24TILL collection was estimated to be 1/345 kb. TILLING the DUO POLLEN 1 (DUO1) gene from the C24TILL collection identified a truncation mutation leading to a deficiency in sperm cell differentiation. Taken together, a new TILLING resource, the C24TILL collection, was generated for A. thaliana accession C24. The C24TILL collection provides an allelic series of induced point mutations that will serve as a useful alternative reverse genetic resource for functional genetic studies in A. thaliana.
Collapse
Affiliation(s)
- Kok-Song Lai
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | | | | | | |
Collapse
|
74
|
Abstract
Tip growth is employed throughout the plant kingdom. Our understanding of tip growth has benefited from modern tools in molecular genetics, which have enabled the functional characterization of proteins mediating tip growth. Here we first discuss the evolutionary role of tip growth in land plants and then describe the prominent model tip-growth systems, elaborating on some advantages and disadvantages of each. Next we review the organization of tip-growing cells, the role of the cytoskeleton, and recent developments concerning the physiological basis of tip growth. Finally, we review advances in the understanding of the extracellular signals that are known to guide tip-growing cells.
Collapse
Affiliation(s)
- Caleb M Rounds
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| | | |
Collapse
|
75
|
Zhang X, Zhao H, Gao S, Wang WC, Katiyar-Agarwal S, Huang HD, Raikhel N, Jin H. Arabidopsis Argonaute 2 regulates innate immunity via miRNA393(∗)-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol Cell 2011; 42:356-66. [PMID: 21549312 DOI: 10.1016/j.molcel.2011.04.010] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/10/2011] [Accepted: 04/20/2011] [Indexed: 11/16/2022]
Abstract
Argonaute (AGO) proteins are critical components of RNA silencing pathways that bind small RNAs and mediate gene silencing at their target sites. We found that Arabidopsis AGO2 is highly induced by the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Further genetic analysis demonstrated that AGO2 functions in antibacterial immunity. One abundant species of AGO2-bound small RNA is miR393b(∗), which targets a Golgi-localized SNARE gene, MEMB12. Pst infection downregulates MEMB12 in a miR393b(∗)-dependent manner. Loss of function of MEMB12, but not SYP61, another intracellular SNARE, leads to increased exocytosis of an antimicrobial pathogenesis-related protein, PR1. Overexpression of miR393b(∗) resembles memb12 mutant in resistance responses. Thus, AGO2 functions in antibacterial immunity by binding miR393b(∗) to modulate exocytosis of antimicrobial PR proteins via MEMB12. Since miR393 also contributes to antibacterial responses, miR393(∗)/miR393 represent an example of a miRNA(∗)/miRNA pair that functions in immunity through two distinct AGOs: miR393(∗) through AGO2 and miR393 through AGO1.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA 92521, USA
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Murray JD. Invasion by invitation: rhizobial infection in legumes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:631-9. [PMID: 21542766 DOI: 10.1094/mpmi-08-10-0181] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nodulation of legume roots typically begins with rhizobia attaching to the tip of a growing root-hair cell. The attached rhizobia secrete Nod factors (NF), which are perceived by the plant. This initiates a series of preinfection events that include cytoskeletal rearrangements, curling at the root-hair tip, and formation of radially aligned cytoplasmic bridges called preinfection threads (PIT) in outer cortical cells. Within the root-hair curl, an infection pocket filled with bacteria forms, from which originates a tubular invagination of cell wall and membrane called an infection thread (IT). IT formation is coordinated with nodule development in the underlying root cortex tissues. The IT extends from the infection pocket down through the root hair and into the root cortex, where it passes through PIT and eventually reaches the nascent nodule. As the IT grows, it is colonized by rhizobia that are eventually released into cells within the nodule, where they fix nitrogen. NF can also induce cortical root hairs that appear to originate from PIT and can become infected like normal root hairs. Several genes involved in NF signaling and some of the downstream transcription factors required for infection have been characterized. More recently, several genes with direct roles in infection have been identified, some with roles in actin rearrangement and others with possible roles in protein turnover and secretion. This article provides an overview of the infection process, including the roles of NF signaling, actin, and calcium and the influence of the hormones ethylene and cytokinin.
Collapse
|