51
|
Woloszynska M, Gagliardi O, Vandenbussche F, De Groeve S, Alonso Baez L, Neyt P, Le Gall S, Fung J, Mas P, Van Der Straeten D, Van Lijsebettens M. The Elongator complex regulates hypocotyl growth in darkness and during photomorphogenesis. J Cell Sci 2018; 131:jcs.203927. [PMID: 28720596 DOI: 10.1242/jcs.203927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
The Elongator complex (hereafter Elongator) promotes RNA polymerase II-mediated transcript elongation through epigenetic activities such as histone acetylation. Elongator regulates growth, development, immune response and sensitivity to drought and abscisic acid. We demonstrate that elo mutants exhibit defective hypocotyl elongation but have a normal apical hook in darkness and are hyposensitive to light during photomorphogenesis. These elo phenotypes are supported by transcriptome changes, including downregulation of circadian clock components, positive regulators of skoto- or photomorphogenesis, hormonal pathways and cell wall biogenesis-related factors. The downregulated genes LHY, HFR1 and HYH are selectively targeted by Elongator for histone H3K14 acetylation in darkness. The role of Elongator in early seedling development in darkness and light is supported by hypocotyl phenotypes of mutants defective in components of the gene network regulated by Elongator, and by double mutants between elo and mutants in light or darkness signaling components. A model is proposed in which Elongator represses the plant immune response and promotes hypocotyl elongation and photomorphogenesis via transcriptional control of positive photomorphogenesis regulators and a growth-regulatory network that converges on genes involved in cell wall biogenesis and hormone signaling.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Magdalena Woloszynska
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Olimpia Gagliardi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Filip Vandenbussche
- Department of Physiology, Laboratory of Functional Plant Biology, Ghent University, 9000 Ghent, Belgium
| | - Steven De Groeve
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Luis Alonso Baez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Pia Neyt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Sabine Le Gall
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jorge Fung
- Center for Research in AgriGenomics (CRAG), Consortium CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | - Paloma Mas
- Center for Research in AgriGenomics (CRAG), Consortium CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
| | | | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium .,VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
52
|
Ursache R, Andersen TG, Marhavý P, Geldner N. A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:399-412. [PMID: 29171896 DOI: 10.1111/tpj.13784] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 05/04/2023]
Abstract
Higher plant function is contingent upon the complex three-dimensional (3D) architecture of plant tissues, yet severe light scattering renders deep, 3D tissue imaging very problematic. Although efforts to 'clear' tissues have been ongoing for over a century, many innovations have been made in recent years. Among them, a protocol called ClearSee efficiently clears tissues and diminishes chlorophyll autofluorescence while maintaining fluorescent proteins - thereby allowing analysis of gene expression and protein localisation in cleared samples. To further increase the usefulness of this protocol, we have developed a ClearSee-based toolbox in which a number of classical histological stains for lignin, suberin and other cell wall components can be used in conjunction with fluorescent reporter lines. We found that a number of classical dyes are highly soluble in ClearSee solution, allowing the old staining protocols to be enormously simplified; these additionally have been unsuitable for co-visualisation with fluorescent markers due to harsh fixation and clearing. Consecutive staining with several dyes allows 3D co-visualisation of distinct cell wall modifications with fluorescent proteins - used as transcriptional reporters or protein localisation tools - deep within tissues. Moreover, the protocol is easily applied on hand sections of different organs. In combination with confocal microscopy, this improves image quality while decreasing the time and cost of embedding/sectioning. It thus provides a low-cost, efficient method for studying thick plant tissues which are usually cumbersome to visualise. Our ClearSee-adapted protocols significantly improve and speed up anatomical and developmental investigations in numerous plant species, and we hope they will contribute to new discoveries in many areas of plant research.
Collapse
Affiliation(s)
- Robertas Ursache
- Department of Plant Molecular Biology, Biophore, Campus UNIL-Sorge, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Tonni Grube Andersen
- Department of Plant Molecular Biology, Biophore, Campus UNIL-Sorge, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Peter Marhavý
- Department of Plant Molecular Biology, Biophore, Campus UNIL-Sorge, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Niko Geldner
- Department of Plant Molecular Biology, Biophore, Campus UNIL-Sorge, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
53
|
Sun K, van Tuinen A, van Kan JAL, Wolters AMA, Jacobsen E, Visser RGF, Bai Y. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea. BMC PLANT BIOLOGY 2017; 17:235. [PMID: 29212470 PMCID: PMC5719932 DOI: 10.1186/s12870-017-1184-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/22/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND Botrytis cinerea, a necrotrophic pathogenic fungus, attacks many crops including potato and tomato. Major genes for complete resistance to B. cinerea are not known in plants, but a few quantitative trait loci have been described in tomato. Loss of function of particular susceptibility (S) genes appears to provide a new source of resistance to B. cinerea in Arabidopsis. RESULTS In this study, orthologs of Arabidopsis S genes (DND1, DMR6, DMR1 and PMR4) were silenced by RNAi in potato and tomato (only for DND1). DND1 well-silenced potato and tomato plants showed significantly reduced diameters of B. cinerea lesions as compared to control plants, at all-time points analysed. Reduced lesion diameter was also observed on leaves of DMR6 silenced potato plants but only at 3 days post inoculation (dpi). The DMR1 and PMR4 silenced potato transformants were as susceptible as the control cv Desiree. Microscopic analysis was performed to observe B. cinerea infection progress in DND1 well-silenced potato and tomato leaves. A significantly lower number of B. cinerea conidia remained attached to the leaf surface of DND1 well-silenced potato and tomato plants and the hyphal growth of germlings was hampered. CONCLUSIONS This is the first report of a cytological investigation of Botrytis development on DND1-silenced crop plants. Silencing of DND1 led to reduced susceptibility to Botrytis, which was associated with impediment of conidial germination and attachment as well as hyphal growth. Our results provide new insights regarding the use of S genes in resistance breeding.
Collapse
Affiliation(s)
- Kaile Sun
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ageeth van Tuinen
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jan A. L. van Kan
- Laboratory of Phytopathology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Anne-Marie A. Wolters
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Evert Jacobsen
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Richard G. F. Visser
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
54
|
Qu S, Zhang X, Song Y, Lin J, Shan X. THESEUS1 positively modulates plant defense responses against Botrytis cinerea through GUANINE EXCHANGE FACTOR4 signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:797-804. [PMID: 28646554 DOI: 10.1111/jipb.12565] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/21/2017] [Indexed: 05/22/2023]
Abstract
The plant cell wall is an important interface for sensing pathogen attack and activating signaling pathways that promote plant immune responses. THESEUS1 (THE1) acts as a sensor of cell wall integrity that controls cell elongation during plant growth. However, no specific role for THE1 in plant defense responses has been reported. Here, we found that THE1 interacts with GUANINE EXCHANGE FACTOR4 (GEF4) and that both proteins play regulatory roles in plant resistance to the necrotrophic fungus Botrytis cinerea. Genetic analysis showed that THE1 and GEF4 function in the same genetic pathway to mediate plant defense responses. In addition, using transcriptome analysis, we identified various genes (such as defense-related, secondary metabolite-related, and transcription factor genes) that are likely downstream targets in the THE1-GEF4 signaling pathway. Our results suggest that THE1 functions as an upstream regulator of GEF4 signaling to positively regulate defense responses against B. cinerea in Arabidopsis.
Collapse
Affiliation(s)
- Shaofeng Qu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xi Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yutong Song
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyi Shan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
55
|
Enhancing Plant Disease Resistance without R Genes. Trends Biotechnol 2016; 34:523-525. [PMID: 27113633 DOI: 10.1016/j.tibtech.2016.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 01/06/2023]
Abstract
Crop plants encounter constant biotic challenges, and these challenges have historically been best managed with resistance (R) genes. However, the rapid evolution of new pathogenic strains along with the nonavailability or nonidentification of R genes in cultivated crop species against a large number of plant pathogens have led researchers to think beyond R genes. Biotechnological tools have shown promise in dealing with such challenges. Technologies such as transgenerational plant immunity, interspecies transfer of pattern recognition receptors (PRRs), pathogen-derived resistance (PDR), gene regulation, and expression of antimicrobial peptides (AMPs) in host plants from other plant species have led to enhanced disease resistance and increased food security.
Collapse
|
56
|
Reem NT, Pogorelko G, Lionetti V, Chambers L, Held MA, Bellincampi D, Zabotina OA. Decreased Polysaccharide Feruloylation Compromises Plant Cell Wall Integrity and Increases Susceptibility to Necrotrophic Fungal Pathogens. FRONTIERS IN PLANT SCIENCE 2016; 7:630. [PMID: 27242834 PMCID: PMC4862258 DOI: 10.3389/fpls.2016.00630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/25/2016] [Indexed: 05/18/2023]
Abstract
The complexity of cell wall composition and structure determines the strength, flexibility, and function of the primary cell wall in plants. However, the contribution of the various components to cell wall integrity (CWI) and function remains unclear. Modifications of cell wall composition can induce plant responses known as CWI control. In this study, we used transgenic expression of the fungal feruloyl esterase AnFAE to examine the effect of post-synthetic modification of Arabidopsis and Brachypodium cell walls. Transgenic Arabidopsis plants expressing AnFAE showed a significant reduction of monomeric ferulic acid, decreased amounts of wall-associated extensins, and increased susceptibility to Botrytis cinerea, compared with wild type. Transgenic Brachypodium showed reductions in monomeric and dimeric ferulic acids and increased susceptibility to Bipolaris sorokiniana. Upon infection, transgenic Arabidopsis and Brachypodium plants also showed increased expression of several defense-related genes compared with wild type. These results demonstrate a role, in both monocot and dicot plants, of polysaccharide feruloylation in plant CWI, which contributes to plant resistance to necrotrophic pathogens.
Collapse
Affiliation(s)
- Nathan T. Reem
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
| | - Gennady Pogorelko
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
| | - Vincenzo Lionetti
- Dipartmento di Biologia e Biotechnologie
“Charles Darwin,” Sapienza Universita di Roma, RomeItaly
| | - Lauran Chambers
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
| | - Michael A. Held
- Department of Chemistry and Biochemistry, Ohio
University, Athens, OHUSA
| | - Daniela Bellincampi
- Dipartmento di Biologia e Biotechnologie
“Charles Darwin,” Sapienza Universita di Roma, RomeItaly
| | - Olga A. Zabotina
- Roy J. Carver Department of Biochemistry,
Biophysiscs and Molecular Biology, Iowa State University, Ames, IAUSA
- *Correspondence: Olga A. Zabotina,
| |
Collapse
|
57
|
Gavrilovic S, Yan Z, Jurkiewicz AM, Stougaard J, Markmann K. Inoculation insensitive promoters for cell type enriched gene expression in legume roots and nodules. PLANT METHODS 2016; 12:4. [PMID: 26807140 PMCID: PMC4724153 DOI: 10.1186/s13007-016-0105-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/05/2016] [Indexed: 05/13/2023]
Abstract
BACKGROUND Establishment and maintenance of mutualistic plant-microbial interactions in the rhizosphere and within plant roots involve several root cell types. The processes of host-microbe recognition and infection require complex signal exchange and activation of downstream responses. These molecular events coordinate host responses across root cell layers during microbe invasion, ultimately triggering changes of root cell fates. The progression of legume root interactions with rhizobial bacteria has been addressed in numerous studies. However, tools to globally resolve the succession of molecular events in the host root at the cell type level have been lacking. To this end, we aimed to identify promoters exhibiting cell type enriched expression in roots of the model legume Lotus japonicus, as no comprehensive set of such promoters usable in legume roots is available to date. RESULTS Here, we use promoter:GUS fusions to characterize promoters stemming from Arabidopsis, tomato (Lycopersicon esculentum) or L. japonicus with respect to their expression in major cell types of the L. japonicus root differentiation zone, which shows molecular and morphological responses to symbiotic bacteria and fungi. Out of 24 tested promoters, 11 showed cell type enriched activity in L. japonicus roots. Covered cell types or cell type combinations are epidermis (1), epidermis and cortex (2), cortex (1), endodermis and pericycle (2), pericycle and phloem (4), or xylem (1). Activity of these promoters in the respective cell types was stable during early stages of infection of transgenic roots with the rhizobial symbiont of L. japonicus, Mesorhizobium loti. For a subset of five promoters, expression stability was further demonstrated in whole plant transgenics as well as in active nodules. CONCLUSIONS 11 promoters from Arabidopsis (10) or tomato (1) with enriched activity in major L. japonicus root and nodule cell types have been identified. Root expression patterns are independent of infection with rhizobial bacteria, providing a stable read-out in the root section responsive to symbiotic bacteria. Promoters are available as cloning vectors. We expect these tools to help provide a new dimension to our understanding of signaling circuits and transcript dynamics in symbiotic interactions of legumes with microbial symbionts.
Collapse
Affiliation(s)
- Srdjan Gavrilovic
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Zhe Yan
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Anna M. Jurkiewicz
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Katharina Markmann
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| |
Collapse
|
58
|
MED18 interaction with distinct transcription factors regulates multiple plant functions. Nat Commun 2015; 5:3064. [PMID: 24451981 DOI: 10.1038/ncomms4064] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/04/2013] [Indexed: 12/25/2022] Open
Abstract
Mediator is an evolutionarily conserved transcriptional regulatory complex. Mechanisms of Mediator function are poorly understood. Here we show that Arabidopsis MED18 is a multifunctional protein regulating plant immunity, flowering time and responses to hormones through interactions with distinct transcription factors. MED18 interacts with YIN YANG1 to suppress disease susceptibility genes glutaredoxins GRX480, GRXS13 and thioredoxin TRX-h5. Consequently, yy1 and med18 mutants exhibit deregulated expression of these genes and enhanced susceptibility to fungal infection. In addition, MED18 interacts with ABA INSENSITIVE 4 and SUPPRESSOR OF FRIGIDA4 to regulate abscisic acid responses and flowering time, respectively. MED18 associates with the promoter, coding and terminator regions of target genes suggesting its function in transcription initiation, elongation and termination. Notably, RNA polymerase II occupancy and histone H3 lysine tri-methylation of target genes are affected in the med18 mutant, reinforcing MED18 function in different mechanisms of transcriptional control. Overall, MED18 conveys distinct cues to engender transcription underpinning plant responses.
Collapse
|
59
|
Liu S, Kracher B, Ziegler J, Birkenbihl RP, Somssich IE. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. eLife 2015. [PMID: 26076231 DOI: 10.7554/elife.07295.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 hr post inoculation. Comparative analyses revealed that WRKY33 possesses dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity.
Collapse
Affiliation(s)
- Shouan Liu
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Barbara Kracher
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Rainer P Birkenbihl
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
60
|
Liu S, Kracher B, Ziegler J, Birkenbihl RP, Somssich IE. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. eLife 2015. [PMID: 26076231 DOI: 10.7554/elife.07295.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 hr post inoculation. Comparative analyses revealed that WRKY33 possesses dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity.
Collapse
Affiliation(s)
- Shouan Liu
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Barbara Kracher
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Rainer P Birkenbihl
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
61
|
Liu S, Kracher B, Ziegler J, Birkenbihl RP, Somssich IE. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. eLife 2015; 4:e07295. [PMID: 26076231 PMCID: PMC4487144 DOI: 10.7554/elife.07295] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/13/2015] [Indexed: 02/07/2023] Open
Abstract
The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 hr post inoculation. Comparative analyses revealed that WRKY33 possesses dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity.
Collapse
Affiliation(s)
- Shouan Liu
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Barbara Kracher
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Rainer P Birkenbihl
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
62
|
Dobón A, Canet JV, García-Andrade J, Angulo C, Neumetzler L, Persson S, Vera P. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis. PLoS Pathog 2015; 11:e1004800. [PMID: 25830627 PMCID: PMC4382300 DOI: 10.1371/journal.ppat.1004800] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/11/2015] [Indexed: 11/19/2022] Open
Abstract
Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.
Collapse
Affiliation(s)
- Albor Dobón
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Valencia, Spain
| | - Juan Vicente Canet
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Valencia, Spain
| | - Javier García-Andrade
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Valencia, Spain
| | - Carlos Angulo
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Valencia, Spain
| | - Lutz Neumetzler
- Max Planck Institute of Molecular Plant Physiology, Golm/Potsdam, Germany
| | - Staffan Persson
- Max Planck Institute of Molecular Plant Physiology, Golm/Potsdam, Germany
- ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Victoria, Australia
| | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Valencia, Spain
| |
Collapse
|
63
|
Agudelo-Romero P, Erban A, Rego C, Carbonell-Bejerano P, Nascimento T, Sousa L, Martínez-Zapater JM, Kopka J, Fortes AM. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1769-85. [PMID: 25675955 PMCID: PMC4669548 DOI: 10.1093/jxb/eru517] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/04/2014] [Accepted: 12/25/2014] [Indexed: 05/20/2023]
Abstract
Vitis vinifera berries are sensitive towards infection by the necrotrophic pathogen Botrytis cinerea, leading to important economic losses worldwide. The combined analysis of the transcriptome and metabolome associated with fungal infection has not been performed previously in grapes or in another fleshy fruit. In an attempt to identify the molecular and metabolic mechanisms associated with the infection, peppercorn-sized fruits were infected in the field. Green and veraison berries were collected following infection for microarray analysis complemented with metabolic profiling of primary and other soluble metabolites and of volatile emissions. The results provided evidence of a reprogramming of carbohydrate and lipid metabolisms towards increased synthesis of secondary metabolites involved in plant defence, such as trans-resveratrol and gallic acid. This response was already activated in infected green berries with the putative involvement of jasmonic acid, ethylene, polyamines, and auxins, whereas salicylic acid did not seem to be involved. Genes encoding WRKY transcription factors, pathogenesis-related proteins, glutathione S-transferase, stilbene synthase, and phenylalanine ammonia-lyase were upregulated in infected berries. However, salicylic acid signalling was activated in healthy ripening berries along with the expression of proteins of the NBS-LRR superfamily and protein kinases, suggesting that the pathogen is able to shut down defences existing in healthy ripening berries. Furthermore, this study provided metabolic biomarkers of infection such as azelaic acid, a substance known to prime plant defence responses, arabitol, ribitol, 4-amino butanoic acid, 1-O-methyl- glucopyranoside, and several fatty acids that alone or in combination can be used to monitor Botrytis infection early in the vineyard.
Collapse
Affiliation(s)
- Patricia Agudelo-Romero
- Centre for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Cecília Rego
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja, Madre de Dios 51, 26006 Logroño, Spain
| | - Teresa Nascimento
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Lisete Sousa
- Department of Statistics and Operational Research, Centro de Estatística e Aplicações da UL, Faculdade de Ciências de Lisboa, 1749-016 Lisboa, Portugal
| | - José M Martínez-Zapater
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja, Madre de Dios 51, 26006 Logroño, Spain
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Ana Margarida Fortes
- Centre for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
64
|
Fernández-Pérez F, Vivar T, Pomar F, Pedreño MA, Novo-Uzal E. Peroxidase 4 is involved in syringyl lignin formation in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2015; 175:86-94. [PMID: 25506770 DOI: 10.1016/j.jplph.2014.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 05/11/2023]
Abstract
Syringyl lignins result from the oxidative polymerization of sinapyl alcohol in a reaction mediated by syringyl (basic) peroxidases. Several peroxidases have been identified in the genome of Arabidopsis thaliana as close homologues to ZePrx, the best characterized basic peroxidase so far, but none of these has been directly involved in lignification. We have used a knock-out mutant of AtPrx4, the closest homologue to ZePrx, to study the involvement of this basic peroxidase in the physiology of the plant under both long- and short-day light conditions. Our results suggest that AtPrx4 is involved in cell wall lignification, especially in syringyl monomer formation. The disruption of AtPrx4 causes a decrease in syringyl units proportion, but only when light conditions are optimal. Moreover, the effect of AtPrx4 disruption is age-dependent, and it is only significant when the elongation process of the stem has ceased and lignification becomes active. In conclusion, AtPrx4 emerges as a basic peroxidase regulated by day length with an important role in lignification.
Collapse
Affiliation(s)
| | - Tamara Vivar
- Department of Plant Biology, University of Murcia, Murcia 30100, Spain
| | - Federico Pomar
- Deparment of Animal Biology, Plant Biology and Ecology, University of A Coruña, A Coruña 15071, Spain
| | - María A Pedreño
- Department of Plant Biology, University of Murcia, Murcia 30100, Spain
| | - Esther Novo-Uzal
- Department of Plant Biology, University of Murcia, Murcia 30100, Spain.
| |
Collapse
|
65
|
Chai G, Wang Z, Tang X, Yu L, Qi G, Wang D, Yan X, Kong Y, Zhou G. R2R3-MYB gene pairs in Populus: evolution and contribution to secondary wall formation and flowering time. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4255-69. [PMID: 24821954 DOI: 10.1093/jxb/eru196] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In plants, the R2R3-MYB gene family contains many pairs of paralogous genes, which play the diverse roles in developmental processes and environmental responses. The paper reports the characterization of 81 pairs of Populus R2R3-MYB genes. Chromosome placement, phylogenetic, and motif structure analyses showed that these gene pairs resulted from multiple types of gene duplications and had five different gene fates. Tissue expression patterns revealed that most duplicated genes were specifically expressed in the tissues examined. qRT-PCR confirmed that nine pairs were highly expressed in xylem, of which three pairs (PdMYB10/128, PdMYB90/167, and PdMYB92/125) were further functionally characterized. The six PdMYBs were localized to the nucleus and had transcriptional activities in yeast. The heterologous expression of PdMYB10 and 128 in Arabidopsis increased stem fibre cell-wall thickness and delayed flowering. In contrast, overexpression of PdMYB90, 167, 92, and 125 in Arabidopsis decreased stem fibre and vessel cell-wall thickness and promoted flowering. Cellulose, xylose, and lignin contents were changed in overexpression plants. The expression levels of several genes involved in secondary wall formation and flowering were affected by the overexpression of the six PdMYBs in Arabidopsis. This study addresses the diversity of gene duplications in Populus R2R3-MYBs and the roles of these six genes in secondary wall formation and flowering control.
Collapse
Affiliation(s)
- Guohua Chai
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Zengguang Wang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xianfeng Tang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Li Yu
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Guang Qi
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Dian Wang
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xiaofei Yan
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yingzhen Kong
- Key Laboratory of Tobacco Gene Resource, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Chinese Academy of Sciences, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
66
|
Le Roux C, Del Prete S, Boutet-Mercey S, Perreau F, Balagué C, Roby D, Fagard M, Gaudin V. The hnRNP-Q protein LIF2 participates in the plant immune response. PLoS One 2014; 9:e99343. [PMID: 24914891 DOI: 10.1371/journal.pone.0099343.s007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/02/2014] [Indexed: 05/25/2023] Open
Abstract
Eukaryotes have evolved complex defense pathways to combat invading pathogens. Here, we investigated the role of the Arabidopsis thaliana heterogeneous nuclear ribonucleoprotein (hnRNP-Q) LIF2 in the plant innate immune response. We show that LIF2 loss-of-function in A. thaliana leads to changes in the basal expression of the salicylic acid (SA)- and jasmonic acid (JA)- dependent defense marker genes PR1 and PDF1.2, respectively. Whereas the expression of genes involved in SA and JA biosynthesis and signaling was also affected in the lif2-1 mutant, no change in SA and JA hormonal contents was detected. In addition, the composition of glucosinolates, a class of defense-related secondary metabolites, was altered in the lif2-1 mutant in the absence of pathogen challenge. The lif2-1 mutant exhibited reduced susceptibility to the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic ascomycete Botrytis cinerea. Furthermore, the lif2-1 sid2-2 double mutant was less susceptible than the wild type to P. syringae infection, suggesting that the lif2 response to pathogens was independent of SA accumulation. Together, our data suggest that lif2-1 exhibits a basal primed defense state, resulting from complex deregulation of gene expression, which leads to increased resistance to pathogens with various infection strategies. Therefore, LIF2 may function as a suppressor of cell-autonomous immunity. Similar to its human homolog, NSAP1/SYNCRIP, a trans-acting factor involved in both cellular processes and the viral life cycle, LIF2 may regulate the conflicting aspects of development and defense programs, suggesting that a conserved evolutionary trade-off between growth and defense pathways exists in eukaryotes.
Collapse
Affiliation(s)
- Clémentine Le Roux
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Stefania Del Prete
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Stéphanie Boutet-Mercey
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - François Perreau
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Claudine Balagué
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Dominique Roby
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Mathilde Fagard
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Valérie Gaudin
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| |
Collapse
|
67
|
Le Roux C, Del Prete S, Boutet-Mercey S, Perreau F, Balagué C, Roby D, Fagard M, Gaudin V. The hnRNP-Q protein LIF2 participates in the plant immune response. PLoS One 2014; 9:e99343. [PMID: 24914891 PMCID: PMC4051675 DOI: 10.1371/journal.pone.0099343] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/02/2014] [Indexed: 12/21/2022] Open
Abstract
Eukaryotes have evolved complex defense pathways to combat invading pathogens. Here, we investigated the role of the Arabidopsis thaliana heterogeneous nuclear ribonucleoprotein (hnRNP-Q) LIF2 in the plant innate immune response. We show that LIF2 loss-of-function in A. thaliana leads to changes in the basal expression of the salicylic acid (SA)- and jasmonic acid (JA)- dependent defense marker genes PR1 and PDF1.2, respectively. Whereas the expression of genes involved in SA and JA biosynthesis and signaling was also affected in the lif2-1 mutant, no change in SA and JA hormonal contents was detected. In addition, the composition of glucosinolates, a class of defense-related secondary metabolites, was altered in the lif2-1 mutant in the absence of pathogen challenge. The lif2-1 mutant exhibited reduced susceptibility to the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic ascomycete Botrytis cinerea. Furthermore, the lif2-1 sid2-2 double mutant was less susceptible than the wild type to P. syringae infection, suggesting that the lif2 response to pathogens was independent of SA accumulation. Together, our data suggest that lif2-1 exhibits a basal primed defense state, resulting from complex deregulation of gene expression, which leads to increased resistance to pathogens with various infection strategies. Therefore, LIF2 may function as a suppressor of cell-autonomous immunity. Similar to its human homolog, NSAP1/SYNCRIP, a trans-acting factor involved in both cellular processes and the viral life cycle, LIF2 may regulate the conflicting aspects of development and defense programs, suggesting that a conserved evolutionary trade-off between growth and defense pathways exists in eukaryotes.
Collapse
Affiliation(s)
- Clémentine Le Roux
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Stefania Del Prete
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Stéphanie Boutet-Mercey
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - François Perreau
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Claudine Balagué
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Dominique Roby
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Mathilde Fagard
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
| | - Valérie Gaudin
- INRA-AgroParisTech, UMR1318, Institut J.-P. Bourgin, Centre de Versailles-Grignon, Versailles, France
- * E-mail:
| |
Collapse
|
68
|
Plett JM, Khachane A, Ouassou M, Sundberg B, Kohler A, Martin F. Ethylene and jasmonic acid act as negative modulators during mutualistic symbiosis between Laccaria bicolor and Populus roots. THE NEW PHYTOLOGIST 2014; 202:270-286. [PMID: 24383411 DOI: 10.1111/nph.12655] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/18/2013] [Indexed: 05/05/2023]
Abstract
The plant hormones ethylene, jasmonic acid and salicylic acid have interconnecting roles during the response of plant tissues to mutualistic and pathogenic symbionts. We used morphological studies of transgenic- or hormone-treated Populus roots as well as whole-genome oligoarrays to examine how these hormones affect root colonization by the mutualistic ectomycorrhizal fungus Laccaria bicolor S238N. We found that genes regulated by ethylene, jasmonic acid and salicylic acid were regulated in the late stages of the interaction between L. bicolor and poplar. Both ethylene and jasmonic acid treatments were found to impede fungal colonization of roots, and this effect was correlated to an increase in the expression of certain transcription factors (e.g. ETHYLENE RESPONSE FACTOR1) and a decrease in the expression of genes associated with microbial perception and cell wall modification. Further, we found that ethylene and jasmonic acid showed extensive transcriptional cross-talk, cross-talk that was opposed by salicylic acid signaling. We conclude that ethylene and jasmonic acid pathways are induced late in the colonization of root tissues in order to limit fungal growth within roots. This induction is probably an adaptive response by the plant such that its growth and vigor are not compromised by the fungus.
Collapse
Affiliation(s)
- Jonathan M Plett
- INRA, UMR 1136 INRA-University Henri Poincaré, Lab of Excellence ARBRE, Interactions Arbres/Microorganismes, INRA-Nancy, 54280, Champenoux, France
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - Amit Khachane
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - Malika Ouassou
- INRA, UMR 1136 INRA-University Henri Poincaré, Lab of Excellence ARBRE, Interactions Arbres/Microorganismes, INRA-Nancy, 54280, Champenoux, France
| | - Björn Sundberg
- Umea Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umea, Sweden
| | - Annegret Kohler
- INRA, UMR 1136 INRA-University Henri Poincaré, Lab of Excellence ARBRE, Interactions Arbres/Microorganismes, INRA-Nancy, 54280, Champenoux, France
| | - Francis Martin
- INRA, UMR 1136 INRA-University Henri Poincaré, Lab of Excellence ARBRE, Interactions Arbres/Microorganismes, INRA-Nancy, 54280, Champenoux, France
| |
Collapse
|
69
|
Hao Z, Mohnen D. A review of xylan and lignin biosynthesis: Foundation for studying Arabidopsisirregular xylemmutants with pleiotropic phenotypes. Crit Rev Biochem Mol Biol 2014; 49:212-41. [DOI: 10.3109/10409238.2014.889651] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
70
|
Sun L, Yang DL, Kong Y, Chen Y, Li XZ, Zeng LJ, Li Q, Wang ET, He ZH. Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1 (GIF1) plays a role in pre-existing and induced defence in rice. MOLECULAR PLANT PATHOLOGY 2014; 15:161-73. [PMID: 24118770 PMCID: PMC6638756 DOI: 10.1111/mpp.12078] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sugar metabolism and sugar signalling are not only critical for plant growth and development, but are also important for stress responses. However, how sugar homeostasis is involved in plant defence against pathogen attack in the model crop rice remains largely unknown. In this study, we observed that the grains of gif1, a loss-of-function mutant of the cell wall invertase gene GRAIN INCOMPLETE FILLING 1 (GIF1), were hypersusceptible to postharvest fungal pathogens, with decreased levels of sugars and a thinner glume cell wall in comparison with the wild-type. Interestingly, constitutive expression of GIF1 enhanced resistance to both the rice bacterial pathogen Xanthomonas oryzae pv. oryzae and the fungal pathogen Magnaporthe oryzae. The GIF1-overexpressing (GIF1-OE) plants accumulated higher levels of glucose, fructose and sucrose compared with the wild-type plants. More importantly, higher levels of callose were deposited in GIF1-OE plants during pathogen infection. Moreover, the cell wall was much thicker in the infection sites of the GIF1-OE plants when compared with the wild-type plants. We also found that defence-related genes were constitutively activated in the GIF1-OE plants. Taken together, our study reveals that sugar homeostasis mediated by GIF1 plays an important role in constitutive and induced physical and chemical defence.
Collapse
Affiliation(s)
- Li Sun
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Li H, Chen S, Song A, Wang H, Fang W, Guan Z, Jiang J, Chen F. RNA-Seq derived identification of differential transcription in the chrysanthemum leaf following inoculation with Alternaria tenuissima. BMC Genomics 2014; 15:9. [PMID: 24387266 PMCID: PMC3890596 DOI: 10.1186/1471-2164-15-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 12/21/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A major production constraint on the important ornamental species chrysanthemum is black spot which is caused by the necrotrophic fungus Alternaria tenuissima. The molecular basis of host resistance to A. tenuissima has not been studied as yet in any detail. Here, high throughput sequencing was taken to characterize the transcriptomic response of the chrysanthemum leaf to A. tenuissima inoculation. RESULTS The transcriptomic data was acquired using RNA-Seq technology, based on the Illumina HiSeq™ 2000 platform. Four different libraries derived from two sets of leaves harvested from either inoculated or mock-inoculated plants were characterized. Over seven million clean reads were generated from each library, each corresponding to a coverage of >350,000 nt. About 70% of the reads could be mapped to a set of chrysanthemum unigenes. Read frequency was used as a measure of transcript abundance and therefore as an identifier of differential transcription in the four libraries. The differentially transcribed genes identified were involved in photosynthesis, pathogen recognition, reactive oxygen species generation, cell wall modification and phytohormone signalling; in addition, a number of varied transcription factors were identified. A selection of 23 of the genes was transcription-profiled using quantitative RT-PCR to validate the RNA-Seq output. CONCLUSIONS A substantial body of chrysanthemum transcriptomic sequence was generated, which led to a number of insights into the molecular basis of the host response to A. tenuissima infection. Although most of the differentially transcribed genes were up-regulated by the presence of the pathogen, those involved in photosynthesis were down-regulated.
Collapse
Affiliation(s)
- Huiyun Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing 210095, China
| | - Sumei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiping Song
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiafu Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology and Equipment, Nanjing 210095, China
| |
Collapse
|
72
|
Miedes E, Vanholme R, Boerjan W, Molina A. The role of the secondary cell wall in plant resistance to pathogens. FRONTIERS IN PLANT SCIENCE 2014; 5:358. [PMID: 25161657 PMCID: PMC4122179 DOI: 10.3389/fpls.2014.00358] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/04/2014] [Indexed: 05/18/2023]
Abstract
Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.
Collapse
Affiliation(s)
- Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica MadridMadrid, Spain
- Departamento Biotecnología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica MadridMadrid, Spain
| | - Ruben Vanholme
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology)Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology)Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica MadridMadrid, Spain
- Departamento Biotecnología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica MadridMadrid, Spain
- *Correspondence: Antonio Molina, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica Madrid, Campus Montegancedo, M40 (Km. 38), Pozuelo de Alarcón, Madrid 28223, Spain e-mail:
| |
Collapse
|
73
|
Bellincampi D, Cervone F, Lionetti V. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. FRONTIERS IN PLANT SCIENCE 2014. [PMID: 24904623 DOI: 10.3389/fpls.2017.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteria and nematodes need to degrade the plant cell wall at a certain stage of their infection process, to obtain nutrients for their growth. Plants have developed a system for sensing pathogens and monitoring the cell wall integrity, upon which they activate defense responses that lead to a dynamic cell wall remodeling required to prevent the disease. Pathogens, on the other hand, may exploit the host cell wall metabolism to support the infection. We review here the strategies utilized by both plants and pathogens to prevail in the cell wall battleground.
Collapse
Affiliation(s)
- Daniela Bellincampi
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma Rome, Italy
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma Rome, Italy
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma Rome, Italy
| |
Collapse
|
74
|
Bellincampi D, Cervone F, Lionetti V. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. FRONTIERS IN PLANT SCIENCE 2014; 5:228. [PMID: 24904623 PMCID: PMC4036129 DOI: 10.3389/fpls.2014.00228] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/06/2014] [Indexed: 05/20/2023]
Abstract
The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteria and nematodes need to degrade the plant cell wall at a certain stage of their infection process, to obtain nutrients for their growth. Plants have developed a system for sensing pathogens and monitoring the cell wall integrity, upon which they activate defense responses that lead to a dynamic cell wall remodeling required to prevent the disease. Pathogens, on the other hand, may exploit the host cell wall metabolism to support the infection. We review here the strategies utilized by both plants and pathogens to prevail in the cell wall battleground.
Collapse
Affiliation(s)
| | | | - Vincenzo Lionetti
- *Correspondence: Vincenzo Lionetti, Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, Rome 00185, Italy e-mail:
| |
Collapse
|
75
|
Hussey SG, Mizrachi E, Creux NM, Myburg AA. Navigating the transcriptional roadmap regulating plant secondary cell wall deposition. FRONTIERS IN PLANT SCIENCE 2013; 4:325. [PMID: 24009617 PMCID: PMC3756741 DOI: 10.3389/fpls.2013.00325] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/31/2013] [Indexed: 05/17/2023]
Abstract
The current status of lignocellulosic biomass as an invaluable resource in industry, agriculture, and health has spurred increased interest in understanding the transcriptional regulation of secondary cell wall (SCW) biosynthesis. The last decade of research has revealed an extensive network of NAC, MYB and other families of transcription factors regulating Arabidopsis SCW biosynthesis, and numerous studies have explored SCW-related transcription factors in other dicots and monocots. Whilst the general structure of the Arabidopsis network has been a topic of several reviews, they have not comprehensively represented the detailed protein-DNA and protein-protein interactions described in the literature, and an understanding of network dynamics and functionality has not yet been achieved for SCW formation. Furthermore the methodologies employed in studies of SCW transcriptional regulation have not received much attention, especially in the case of non-model organisms. In this review, we have reconstructed the most exhaustive literature-based network representations to date of SCW transcriptional regulation in Arabidopsis. We include a manipulable Cytoscape representation of the Arabidopsis SCW transcriptional network to aid in future studies, along with a list of supporting literature for each documented interaction. Amongst other topics, we discuss the various components of the network, its evolutionary conservation in plants, putative modules and dynamic mechanisms that may influence network function, and the approaches that have been employed in network inference. Future research should aim to better understand network function and its response to dynamic perturbations, whilst the development and application of genome-wide approaches such as ChIP-seq and systems genetics are in progress for the study of SCW transcriptional regulation in non-model organisms.
Collapse
Affiliation(s)
| | | | | | - Alexander A. Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| |
Collapse
|
76
|
Lai Z, Mengiste T. Genetic and cellular mechanisms regulating plant responses to necrotrophic pathogens. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:505-12. [PMID: 23859758 DOI: 10.1016/j.pbi.2013.06.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/14/2013] [Indexed: 05/04/2023]
Abstract
Necrotrophs are plant pathogens that kill host cells and proliferate on nutrients from dead or dying tissues causing devastating diseases of horticultural and agronomic crops. Their interactions with plants involve a complex network of pathogen disease factors and corresponding plant immune response regulators. Mechanisms of quantitative resistance and the major regulators intersect regardless of pathogen life style. By contrast, some plant immune responses, such as effector-triggered immunity (ETI), a major source of qualitative resistance to biotrophs, are co-opted by necrotrophs to promote disease, which highlights the disparate plant immunity systems. Advances towards understanding mechanisms and processes underlying host responses to necrotrophs are summarized.
Collapse
Affiliation(s)
- Zhibing Lai
- Purdue University, Department of Botany and Plant Pathology, 915 W. State Street, West Lafayette, IN 47907, United States
| | | |
Collapse
|
77
|
Raffaele S, Rivas S. Regulate and be regulated: integration of defense and other signals by the AtMYB30 transcription factor. FRONTIERS IN PLANT SCIENCE 2013; 4:98. [PMID: 23596456 PMCID: PMC3622887 DOI: 10.3389/fpls.2013.00098] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/28/2013] [Indexed: 05/23/2023]
Abstract
Transcriptional regulation in host cells plays a crucial role in the establishment of plant defense and associated cell death in response to pathogen attack. Here, we review our current knowledge of the transcriptional control of plant defenses with a focus on the MYB family of transcription factors (TFs). Within this family, the Arabidopsis MYB protein AtMYB30 is a key regulator of plant defenses and one of the best characterized MYB regulators directing defense-related transcriptional responses. The crucial role played by AtMYB30 in the regulation of plant disease resistance is underlined by the finding that AtMYB30 is targeted by the Xanthomonas type III effector XopD resulting in suppression of AtMYB30-mediated plant defenses. Moreover, the function of AtMYB30 is also tightly controlled by plant cells through protein-protein interactions and post-translational modifications (PTMs). AtMYB30 studies highlight the importance of cellular dynamics for defense-associated gene regulation in plants. Finally, we discuss how AtMYB30 and other MYB TFs mediate the interplay between disease resistance and other stress responses.
Collapse
Affiliation(s)
- Sylvain Raffaele
- INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR2594Castanet-Tolosan, France
| | - Susana Rivas
- INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR2594Castanet-Tolosan, France
| |
Collapse
|
78
|
Zou B, Jia Z, Tian S, Wang X, Gou Z, L B, Dong H. AtMYB44 positively modulates disease resistance to Pseudomonas syringae through the salicylic acid signalling pathway in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:304-313. [PMID: 32481109 DOI: 10.1071/fp12253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 10/17/2012] [Indexed: 05/18/2023]
Abstract
Plant MYB transcription factors are implicated in resistance to biotic and abiotic stresses. Here, we demonstrate that an R2-R3 MYB transcription factor, AtMYB44, plays a role in the plant defence response to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (PstDC3000). The expression of AtMYB44 was upregulated upon pathogen infection and treatments with defence-related phytohormones. Transgenic plants overexpressing AtMYB44 (35S-Ms) exhibited greater levels of PR1 gene expression, cell death, callose deposition and hydrogen peroxide (H2O2) accumulation in leaves infected with PstDC3000. Consequently, 35S-M lines displayed enhanced resistance to PstDC3000. In contrast, the atmyb44 T-DNA insertion mutant was more susceptible to PstDC3000 and exhibited decreased PR1 gene expression upon infection. Using double mutants constructed via crosses of 35S-M lines with NahG transgenic plants and nonexpressor of pathogenesis-related genes1 mutant (npr1-1), we demonstrated that the enhanced PR1 gene expression and PstDC3000 resistance in 35S-M plants occur mainly through the salicylic acid signalling pathway.
Collapse
Affiliation(s)
- Baohong Zou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenhua Jia
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, Hebei 050051, China
| | - Shuangmei Tian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaomeng Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenhua Gou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Beibei L
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
79
|
de León IP, Montesano M. Activation of Defense Mechanisms against Pathogens in Mosses and Flowering Plants. Int J Mol Sci 2013; 14:3178-200. [PMID: 23380962 PMCID: PMC3588038 DOI: 10.3390/ijms14023178] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 01/09/2023] Open
Abstract
During evolution, plants have developed mechanisms to cope with and adapt to different types of stress, including microbial infection. Once the stress is sensed, signaling pathways are activated, leading to the induced expression of genes with different roles in defense. Mosses (Bryophytes) are non-vascular plants that diverged from flowering plants more than 450 million years ago, allowing comparative studies of the evolution of defense-related genes and defensive metabolites produced after microbial infection. The ancestral position among land plants, the sequenced genome and the feasibility of generating targeted knock-out mutants by homologous recombination has made the moss Physcomitrella patens an attractive model to perform functional studies of plant genes involved in stress responses. This paper reviews the current knowledge of inducible defense mechanisms in P. patens and compares them to those activated in flowering plants after pathogen assault, including the reinforcement of the cell wall, ROS production, programmed cell death, activation of defense genes and synthesis of secondary metabolites and defense hormones. The knowledge generated in P. patens together with comparative studies in flowering plants will help to identify key components in plant defense responses and to design novel strategies to enhance resistance to biotic stress.
Collapse
Affiliation(s)
- Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, CP 11600, Montevideo, Uruguay
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +598-24872605; Fax: +598-24875548
| | - Marcos Montesano
- Laboratorio de Fisiología Vegetal, Centro de Investigaciones Nucleares, Facultad de Ciencias, Mataojo 2055, CP 11400, Montevideo, Uruguay; E-Mail:
| |
Collapse
|
80
|
Windram O, Madhou P, McHattie S, Hill C, Hickman R, Cooke E, Jenkins DJ, Penfold CA, Baxter L, Breeze E, Kiddle SJ, Rhodes J, Atwell S, Kliebenstein DJ, Kim YS, Stegle O, Borgwardt K, Zhang C, Tabrett A, Legaie R, Moore J, Finkenstadt B, Wild DL, Mead A, Rand D, Beynon J, Ott S, Buchanan-Wollaston V, Denby KJ. Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. THE PLANT CELL 2012; 24:3530-57. [PMID: 23023172 PMCID: PMC3480286 DOI: 10.1105/tpc.112.102046] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/14/2012] [Accepted: 09/07/2012] [Indexed: 05/18/2023]
Abstract
Transcriptional reprogramming forms a major part of a plant's response to pathogen infection. Many individual components and pathways operating during plant defense have been identified, but our knowledge of how these different components interact is still rudimentary. We generated a high-resolution time series of gene expression profiles from a single Arabidopsis thaliana leaf during infection by the necrotrophic fungal pathogen Botrytis cinerea. Approximately one-third of the Arabidopsis genome is differentially expressed during the first 48 h after infection, with the majority of changes in gene expression occurring before significant lesion development. We used computational tools to obtain a detailed chronology of the defense response against B. cinerea, highlighting the times at which signaling and metabolic processes change, and identify transcription factor families operating at different times after infection. Motif enrichment and network inference predicted regulatory interactions, and testing of one such prediction identified a role for TGA3 in defense against necrotrophic pathogens. These data provide an unprecedented level of detail about transcriptional changes during a defense response and are suited to systems biology analyses to generate predictive models of the gene regulatory networks mediating the Arabidopsis response to B. cinerea.
Collapse
Affiliation(s)
- Oliver Windram
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | - Stuart McHattie
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Claire Hill
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Richard Hickman
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Emma Cooke
- Molecular Organization and Assembly of Cells Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Dafyd J. Jenkins
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | - Laura Baxter
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Emily Breeze
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Steven J. Kiddle
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Johanna Rhodes
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Susanna Atwell
- Department of Plant Sciences, University of California, Davis, California 95616
| | | | - Youn-sung Kim
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Oliver Stegle
- Max Planck Institute for Developmental Biology and Max Planck Institute for Intelligent Systems, 72076 Tuebingen, Germany
| | - Karsten Borgwardt
- Max Planck Institute for Developmental Biology and Max Planck Institute for Intelligent Systems, 72076 Tuebingen, Germany
- Zentrum für Bioinformatik, Eberhard Karls Universität, 72076 Tuebingen, Germany
| | - Cunjin Zhang
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alex Tabrett
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Roxane Legaie
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jonathan Moore
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Bärbel Finkenstadt
- Department of Statistics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David L. Wild
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Andrew Mead
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - David Rand
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jim Beynon
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sascha Ott
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Vicky Buchanan-Wollaston
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Katherine J. Denby
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
- Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
- Address correspondence to
| |
Collapse
|
81
|
Birkenbihl RP, Diezel C, Somssich IE. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. PLANT PHYSIOLOGY 2012; 159:266-85. [PMID: 22392279 PMCID: PMC3375964 DOI: 10.1104/pp.111.192641] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/05/2012] [Indexed: 05/17/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) transcription factor WRKY33 is essential for defense toward the necrotrophic fungus Botrytis cinerea. Here, we aimed at identifying early transcriptional responses mediated by WRKY33. Global expression profiling on susceptible wrky33 and resistant wild-type plants uncovered massive differential transcriptional reprogramming upon B. cinerea infection. Subsequent detailed kinetic analyses revealed that loss of WRKY33 function results in inappropriate activation of the salicylic acid (SA)-related host response and elevated SA levels post infection and in the down-regulation of jasmonic acid (JA)-associated responses at later stages. This down-regulation appears to involve direct activation of several jasmonate ZIM-domain genes, encoding repressors of the JA-response pathway, by loss of WRKY33 function and by additional SA-dependent WRKY factors. Moreover, genes involved in redox homeostasis, SA signaling, ethylene-JA-mediated cross-communication, and camalexin biosynthesis were identified as direct targets of WRKY33. Genetic studies indicate that although SA-mediated repression of the JA pathway may contribute to the susceptibility of wrky33 plants to B. cinerea, it is insufficient for WRKY33-mediated resistance. Thus, WRKY33 apparently directly targets other still unidentified components that are also critical for establishing full resistance toward this necrotroph.
Collapse
Affiliation(s)
| | | | - Imre E. Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany (R.P.B., I.E.S.); Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Jena 07745, Germany (C.D.)
| |
Collapse
|
82
|
Kim WC, Ko JH, Han KH. Identification of a cis-acting regulatory motif recognized by MYB46, a master transcriptional regulator of secondary wall biosynthesis. PLANT MOLECULAR BIOLOGY 2012; 78:489-501. [PMID: 22271306 DOI: 10.1007/s11103-012-9880-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 01/04/2012] [Indexed: 05/19/2023]
Abstract
While many aspects of primary cell wall have been extensively elucidated, our current understanding of secondary wall biosynthesis is limited. Recently, transcription factor MYB46 has been identified as a master regulator of secondary wall biosynthesis in Arabidopsis thaliana. To gain better understanding of this MYB46-mediated transcriptional regulation, we analyzed the promoter region of a direct target gene, AtC3H14, of MYB46 and identified a cis-acting regulatory motif that is recognized by MYB46. This MYB46-responsive cis-regulatory element (M46RE) was further characterized and shown to have an eight-nucleotide core motif, RKTWGGTR. We used electrophoretic mobility shift assay, transient transcriptional activation assay and chromatin immunoprecipitation analysis to show that the M46RE was necessary and sufficient for MYB46-responsive transcription. Genome-wide analysis identified that the frequency of M46RE in the promoters were highly enriched among the genes upregulated by MYB46, especially in the group of genes involved in secondary wall biosynthesis.
Collapse
Affiliation(s)
- Won-Chan Kim
- Department of Horticulture, Michigan State University, East Lansing, MI 48824-1222, USA
| | | | | |
Collapse
|
83
|
Kim WC, Ko JH, Han KH. Identification of a cis-acting regulatory motif recognized by MYB46, a master transcriptional regulator of secondary wall biosynthesis. PLANT MOLECULAR BIOLOGY 2012; 78:489-501. [PMID: 22271306 DOI: 10.1007/s11103-012-9880-9887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 01/04/2012] [Indexed: 05/27/2023]
Abstract
While many aspects of primary cell wall have been extensively elucidated, our current understanding of secondary wall biosynthesis is limited. Recently, transcription factor MYB46 has been identified as a master regulator of secondary wall biosynthesis in Arabidopsis thaliana. To gain better understanding of this MYB46-mediated transcriptional regulation, we analyzed the promoter region of a direct target gene, AtC3H14, of MYB46 and identified a cis-acting regulatory motif that is recognized by MYB46. This MYB46-responsive cis-regulatory element (M46RE) was further characterized and shown to have an eight-nucleotide core motif, RKTWGGTR. We used electrophoretic mobility shift assay, transient transcriptional activation assay and chromatin immunoprecipitation analysis to show that the M46RE was necessary and sufficient for MYB46-responsive transcription. Genome-wide analysis identified that the frequency of M46RE in the promoters were highly enriched among the genes upregulated by MYB46, especially in the group of genes involved in secondary wall biosynthesis.
Collapse
Affiliation(s)
- Won-Chan Kim
- Department of Horticulture, Michigan State University, East Lansing, MI 48824-1222, USA
| | | | | |
Collapse
|
84
|
Delgado-Cerezo M, Sánchez-Rodríguez C, Escudero V, Miedes E, Fernández PV, Jordá L, Hernández-Blanco C, Sánchez-Vallet A, Bednarek P, Schulze-Lefert P, Somerville S, Estevez JM, Persson S, Molina A. Arabidopsis heterotrimeric G-protein regulates cell wall defense and resistance to necrotrophic fungi. MOLECULAR PLANT 2012; 5:98-114. [PMID: 21980142 DOI: 10.1093/mp/ssr082] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The Arabidopsis heterotrimeric G-protein controls defense responses to necrotrophic and vascular fungi. The agb1 mutant impaired in the Gβ subunit displays enhanced susceptibility to these pathogens. Gβ/AGB1 forms an obligate dimer with either one of the Arabidopsis Gγ subunits (γ1/AGG1 and γ2/AGG2). Accordingly, we now demonstrate that the agg1 agg2 double mutant is as susceptible as agb1 plants to the necrotrophic fungus Plectosphaerella cucumerina. To elucidate the molecular basis of heterotrimeric G-protein-mediated resistance, we performed a comparative transcriptomic analysis of agb1-1 mutant and wild-type plants upon inoculation with P. cucumerina. This analysis, together with metabolomic studies, demonstrated that G-protein-mediated resistance was independent of defensive pathways required for resistance to necrotrophic fungi, such as the salicylic acid, jasmonic acid, ethylene, abscisic acid, and tryptophan-derived metabolites signaling, as these pathways were not impaired in agb1 and agg1 agg2 mutants. Notably, many mis-regulated genes in agb1 plants were related with cell wall functions, which was also the case in agg1 agg2 mutant. Biochemical analyses and Fourier Transform InfraRed (FTIR) spectroscopy of cell walls from G-protein mutants revealed that the xylose content was lower in agb1 and agg1 agg2 mutants than in wild-type plants, and that mutant walls had similar FTIR spectratypes, which differed from that of wild-type plants. The data presented here suggest a canonical functionality of the Gβ and Gγ1/γ2 subunits in the control of Arabidopsis immune responses and the regulation of cell wall composition.
Collapse
Affiliation(s)
- Magdalena Delgado-Cerezo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, E-28223-Pozuelo de Alarcón (Madrid), Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Prouse MB, Campbell MM. The interaction between MYB proteins and their target DNA binding sites. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:67-77. [DOI: 10.1016/j.bbagrm.2011.10.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 02/02/2023]
|
86
|
Abstract
Plants inhabit environments crowded with infectious microbes that pose constant threats to their survival. Necrotrophic pathogens are notorious for their aggressive and wide-ranging virulence strategies that promote host cell death and acquire nutrients for growth and reproduction from dead cells. This lifestyle constitutes the axis of their pathogenesis and virulence strategies and marks contrasting immune responses to biotrophic pathogens. The diversity of virulence strategies in necrotrophic species corresponds to multifaceted host immune response mechanisms. When effective, the plant immune system disarms the infectious necrotroph of its pathogenic arsenal or attenuates its effect, restricting further ingress and disease symptom development. Simply inherited resistance traits confer protection against host-specific necrotrophs (HSNs), whereas resistance to broad host-range necrotrophs (BHNs) is complex. Components of host genetic networks, as well as the molecular and cellular processes that mediate host immune responses to necrotrophs, are being identified. In this review, recent advances in our understanding of plant immune responses to necrotrophs and comparison with responses to biotrophic pathogens are summarized, highlighting common and contrasting mechanisms.
Collapse
Affiliation(s)
- Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
87
|
Manosalva PM, Bruce M, Leach JE. Rice 14-3-3 protein (GF14e) negatively affects cell death and disease resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:777-87. [PMID: 21793954 DOI: 10.1111/j.1365-313x.2011.04728.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant 14-3-3 proteins regulate important cellular processes, including plant immune responses, through protein-protein interactions with a wide range of target proteins. In rice (Oryza sativa), the GF14e gene, which encodes a 14-3-3 protein, is induced during effector-triggered immunity (ETI) associated with pathogens such as Xanthomonas oryzae pv. oryzae (Xoo). To determine whether the GF14e gene plays a direct role in resistance to disease in rice, we suppressed its expression by RNAi silencing. GF14e suppression was correlated with the appearance of a lesion-mimic (LM) phenotype in the transgenic plants at 3 weeks after sowing. This indicates inappropriate regulation of cell death, a phenotype that is frequently associated with enhanced resistance to pathogens. GF14e-silenced rice plants showed high levels of resistance to a virulent strain of Xoo compared with plants that were not silenced. Enhanced resistance was correlated with GF14e silencing prior to and after development of the LM phenotype, higher basal expression of a defense response peroxidase gene (POX22.3), and accumulation of reactive oxygen species (ROS). In addition, GF14e-silenced plants also exhibit enhanced resistance to the necrotrophic fungal pathogen Rhizoctonia solani. Together, our findings suggest that GF14e negatively affects the induction of plant defense response genes, cell death and broad-spectrum resistance in rice.
Collapse
Affiliation(s)
- Patricia M Manosalva
- Bioagricultural Sciences and Pest Management and Program in Plant Molecular Biology, Colorado State University, Fort Collins, CO 80523-1177, USA
| | | | | |
Collapse
|
88
|
Lloyd AJ, William Allwood J, Winder CL, Dunn WB, Heald JK, Cristescu SM, Sivakumaran A, Harren FJM, Mulema J, Denby K, Goodacre R, Smith AR, Mur LAJ. Metabolomic approaches reveal that cell wall modifications play a major role in ethylene-mediated resistance against Botrytis cinerea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:852-68. [PMID: 21575089 DOI: 10.1111/j.1365-313x.2011.04639.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In Arabidopsis, resistance to the necrotrophic fungus Botrytis cinerea is conferred by ethylene via poorly understood mechanisms. Metabolomic approaches compared the responses of the wild-type, the ethylene-insensitive mutant etr1-1, which showed increased susceptibility, and the constitutively active ethylene mutants ctr1-1 and eto2 both exhibited decreased susceptibility to B. cinerea. Fourier transform-infrared (FT-IR) spectroscopy demonstrated reproducible biochemical differences between treatments and genotypes. To identify discriminatory mass-to-charge ratios (m/z) associated with resistance, discriminant function analysis was employed on spectra derived from direct injection electrospray ionisation-mass spectrometry on the derived principal components of these data. Ethylene-modulated m/z were mapped onto Arabidopsis biochemical pathways and many were associated with hydroxycinnamate and monolignol biosynthesis, both linked to cell wall modification. A high-resolution linear triple quadrupole-Orbitrap hybrid system confirmed the identity of key metabolites in these pathways. The contribution of these pathways to defence against B. cinerea was validated through the use of multiple Arabidopsis mutants. The FT-IR microspectroscopy indicated that spatial accumulation of hydroxycinnamates and monolignols at the cell wall to confine disease was linked ot ethylene. These data demonstrate the power of metabolomic approaches in elucidating novel biological phenomena, especially when coupled to validation steps exploiting relevant mutant genotypes.
Collapse
Affiliation(s)
- Amanda J Lloyd
- Aberystwyth University, Institute of Biological, Environmental and Rural Sciences, Aberystwyth SY233DA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Ramírez V, García-Andrade J, Vera P. Enhanced disease resistance to Botrytis cinerea in myb46 Arabidopsis plants is associated to an early down-regulation of CesA genes. PLANT SIGNALING & BEHAVIOR 2011; 6:911-3. [PMID: 21617373 PMCID: PMC3218503 DOI: 10.4161/psb.6.6.15354] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 03/03/2011] [Indexed: 05/24/2023]
Abstract
The cell wall is a protective barrier of paramount importance for the survival of plant cells. Monitoring the integrity of cell wall allows plants to quickly activate defence pathways to minimize pathogen entry and reduce the spread of disease. Counterintuitively, however, pharmacological effects as well as genetic lesions that affect cellulose biosynthesis and content confer plants with enhanced resistance against necrotrophic fungi. This kind of pathogens target cellulose for degradation to facilitate penetration and to generate glucose units as a food source. Our results points towards the existence of a transcriptional reprogramming mechanism in genes encoding cellulose synthases (CesAs) that occurs very soon after Botrytis cinerea attack and that results in a temporarily shut down of some CesA genes. Interestingly, the observed coordinated down-regulation of CesA genes is more pronounced, and occurs earlier, in myb46 mutant plants. In the resistant myb46 plants, pathogen infection induces transient down-regulation of CesA genes that concurs with a selective transcriptional reprogramming in a set of genes encoding structural cell wall proteins and extracellular remodelling enzymes. Together with previous indications, our results favour the hypothesis that CesAs are part of a surveillance system of the cell wall integrity that senses the presence of a pathogen and transduces that signal into a rapid transcriptional reprogramming of the affected cell.
Collapse
Affiliation(s)
- Vicente Ramírez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia, Valencia, Spain
| | | | | |
Collapse
|
90
|
Birkenbihl RP, Somssich IE. Transcriptional plant responses critical for resistance towards necrotrophic pathogens. FRONTIERS IN PLANT SCIENCE 2011; 2:76. [PMID: 22639610 PMCID: PMC3355618 DOI: 10.3389/fpls.2011.00076] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/22/2011] [Indexed: 05/21/2023]
Abstract
Plant defenses aimed at necrotrophic pathogens appear to be genetically complex. Despite the apparent lack of a specific recognition of such necrotrophs by products of major R genes, biochemical, molecular, and genetic studies, in particular using the model plant Arabidopsis, have uncovered numerous host components critical for the outcome of such interactions. Although the JA signaling pathway plays a central role in plant defense toward necrotrophs additional signaling pathways contribute to the plant response network. Transcriptional reprogramming is a vital part of the host defense machinery and several key regulators have recently been identified. Some of these transcription factors positively affect plant resistance whereas others play a role in enhancing host susceptibility toward these phytopathogens.
Collapse
Affiliation(s)
- Rainer P. Birkenbihl
- Department of Plant Microbe Interactions, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Imre E. Somssich
- Department of Plant Microbe Interactions, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
- *Correspondence: Imre E. Somssich, Department of Plant Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829 Cologne, Germany. e-mail:
| |
Collapse
|