51
|
Haak DC, Fukao T, Grene R, Hua Z, Ivanov R, Perrella G, Li S. Multilevel Regulation of Abiotic Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1564. [PMID: 29033955 PMCID: PMC5627039 DOI: 10.3389/fpls.2017.01564] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/28/2017] [Indexed: 05/18/2023]
Abstract
The sessile lifestyle of plants requires them to cope with stresses in situ. Plants overcome abiotic stresses by altering structure/morphology, and in some extreme conditions, by compressing the life cycle to survive the stresses in the form of seeds. Genetic and molecular studies have uncovered complex regulatory processes that coordinate stress adaptation and tolerance in plants, which are integrated at various levels. Investigating natural variation in stress responses has provided important insights into the evolutionary processes that shape the integrated regulation of adaptation and tolerance. This review primarily focuses on the current understanding of how transcriptional, post-transcriptional, post-translational, and epigenetic processes along with genetic variation orchestrate stress responses in plants. We also discuss the current and future development of computational tools to identify biologically meaningful factors from high dimensional, genome-scale data and construct the signaling networks consisting of these components.
Collapse
Affiliation(s)
- David C. Haak
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, BlacksburgVA, United States
| | - Takeshi Fukao
- Department of Crop and Soil Environmental Sciences, Virginia Tech, BlacksburgVA, United States
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, BlacksburgVA, United States
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, AthensOH, United States
| | - Rumen Ivanov
- Institut für Botanik, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Giorgio Perrella
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, United Kingdom
| | - Song Li
- Department of Crop and Soil Environmental Sciences, Virginia Tech, BlacksburgVA, United States
| |
Collapse
|
52
|
Lasky JR, Forester BR, Reimherr M. Coherent synthesis of genomic associations with phenotypes and home environments. Mol Ecol Resour 2017; 18:91-106. [DOI: 10.1111/1755-0998.12714] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 08/10/2017] [Accepted: 08/25/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Jesse R. Lasky
- Department of Biology; Pennsylvania State University; University Park PA USA
| | | | - Matthew Reimherr
- Department of Statistics; Pennsylvania State University; University Park PA USA
| |
Collapse
|
53
|
Abstract
Plant metabolic studies have traditionally focused on the role and regulation of the enzymes catalyzing key reactions within specific pathways. Within the past 20 years, reverse genetic approaches have allowed direct determination of the effects of the deficiency, or surplus, of a given protein on the biochemistry of a plant. In parallel, top-down approaches have also been taken, which rely on screening broad, natural genetic diversity for metabolic diversity. Here, we compare and contrast the various strategies that have been adopted to enhance our understanding of the natural diversity of metabolism. We also detail how these approaches have enhanced our understanding of both specific and global aspects of the genetic regulation of metabolism. Finally, we discuss how such approaches are providing important insights into the evolution of plant secondary metabolism.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
54
|
Rymaszewski W, Vile D, Bediee A, Dauzat M, Luchaire N, Kamrowska D, Granier C, Hennig J. Stress-Related Gene Expression Reflects Morphophysiological Responses to Water Deficit. PLANT PHYSIOLOGY 2017; 174:1913-1930. [PMID: 28522456 PMCID: PMC5490902 DOI: 10.1104/pp.17.00318] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/15/2017] [Indexed: 05/18/2023]
Abstract
Acclimation to water deficit (WD) enables plants to maintain growth under unfavorable environmental conditions, although the mechanisms are not completely understood. In this study, the natural variation of long-term acclimation to moderate and severe soil WD was investigated in 18 Arabidopsis (Arabidopsis thaliana) accessions using PHENOPSIS, an automated phenotyping platform. Soil water content was adjusted at an early stage of plant development and maintained at a constant level until reproductive age was achieved. The accessions were selected based on the expression levels of ANNEXIN1, a drought-related marker. Severe WD conditions had a greater effect on most of the measured morphophysiological traits than moderate WD conditions. Multivariate analyses indicated that trait responses associated with plant size and water management drove most of the variation. Accessions with similar responses at these two levels were grouped in clusters that displayed different response strategies to WD The expression levels of selected stress-response genes revealed large natural variation under WD conditions. Responses of morphophysiological traits, such as projected rosette area, transpiration rate, and rosette water content, were correlated with changes in the expression of stress-related genes, such as NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3 and N-MYC DOWNREGULATED-LIKE1 (NDL1), in response to WD Interestingly, the morphophysiological acclimation response to WD also was reflected in the gene expression levels (most notably those of NDL1, CHALCONE SYNTHASE, and MYB DOMAIN PROTEIN44) in plants cultivated under well-watered conditions. Our results may lead to the development of biomarkers and predictors of plant morphophysiological responses based on gene expression patterns.
Collapse
Affiliation(s)
- Wojciech Rymaszewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Denis Vile
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut National de la Recherche Agronomique-Supagro, 34060 Montpellier, France
| | - Alexis Bediee
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut National de la Recherche Agronomique-Supagro, 34060 Montpellier, France
| | - Myriam Dauzat
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut National de la Recherche Agronomique-Supagro, 34060 Montpellier, France
| | - Nathalie Luchaire
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut National de la Recherche Agronomique-Supagro, 34060 Montpellier, France
| | - Dominika Kamrowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Christine Granier
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut National de la Recherche Agronomique-Supagro, 34060 Montpellier, France
| | - Jacek Hennig
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
55
|
Wang H, Qin F. Genome-Wide Association Study Reveals Natural Variations Contributing to Drought Resistance in Crops. FRONTIERS IN PLANT SCIENCE 2017; 8:1110. [PMID: 28713401 PMCID: PMC5491614 DOI: 10.3389/fpls.2017.01110] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/08/2017] [Indexed: 05/18/2023]
Abstract
Crops are often cultivated in regions where they will face environmental adversities; resulting in substantial yield loss which can ultimately lead to food and societal problems. Thus, significant efforts have been made to breed stress tolerant cultivars in an attempt to minimize these problems and to produce more stability with respect to crop yields across broad geographies. Since stress tolerance is a complex and multi-genic trait, advancements with classical breeding approaches have been challenging. On the other hand, molecular breeding, which is based on transgenics, marker-assisted selection and genome editing technologies; holds great promise to enable farmers to better cope with these challenges. However, identification of the key genetic components underlying the trait is critical and will serve as the foundation for future crop genetic improvement. Recently, genome-wide association studies have made significant contributions to facilitate the discovery of natural variation contributing to stress tolerance in crops. From these studies, the identified loci can serve as targets for genomic selection or editing to enable the molecular design of new cultivars. Here, we summarize research progress on this issue and focus on the genetic basis of drought tolerance as revealed by genome-wide association studies and quantitative trait loci mapping. Although many favorable loci have been identified, elucidation of their molecular mechanisms contributing to increased stress tolerance still remains a challenge. Thus, continuous efforts are still required to functionally dissect this complex trait through comprehensive approaches, such as system biological studies. It is expected that proper application of the acquired knowledge will enable the development of stress tolerant cultivars; allowing agricultural production to become more sustainable under dynamic environmental conditions.
Collapse
Affiliation(s)
- Hongwei Wang
- Agricultural College, Yangtze UniversityJingzhou, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze UniversityJingzhou, China
| | - Feng Qin
- College of Biological Sciences, China Agricultural UniversityBeijing, China
| |
Collapse
|
56
|
Expression patterns of members of the ethylene signaling-related gene families in response to dehydration stresses in cassava. PLoS One 2017; 12:e0177621. [PMID: 28542282 PMCID: PMC5441607 DOI: 10.1371/journal.pone.0177621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 05/01/2017] [Indexed: 12/23/2022] Open
Abstract
Drought is the one of the most important environment stresses that restricts crop yield worldwide. Cassava (Manihot esculenta Crantz) is an important food and energy crop that has many desirable traits such as drought, heat and low nutrients tolerance. However, the mechanisms underlying drought tolerance in cassava are unclear. Ethylene signaling pathway, from the upstream receptors to the downstream transcription factors, plays important roles in environmental stress responses during plant growth and development. In this study, we used bioinformatics approaches to identify and characterize candidate Manihot esculenta ethylene receptor genes and transcription factor genes. Using computational methods, we localized these genes on cassava chromosomes, constructed phylogenetic trees and identified stress-responsive cis-elements within their 5’ upstream regions. Additionally, we measured the trehalose and proline contents in cassava fresh leaves after drought, osmotic, and salt stress treatments, and then it was found that the regulation patterns of contents of proline and trehalose in response to various dehydration stresses were differential, or even the opposite, which shows that plant may take different coping strategies to deal with different stresses, when stresses come. Furthermore, expression profiles of these genes in different organs and tissues under non-stress and abiotic stress were investigated through quantitative real-time PCR (qRT-PCR) analyses in cassava. Expression profiles exhibited clear differences among different tissues under non-stress and various dehydration stress conditions. We found that the leaf and tuberous root tissues had the greatest and least responses, respectively, to drought stress through the ethylene signaling pathway in cassava. Moreover, tuber and root tissues had the greatest and least reponses to osmotic and salt stresses through ethylene signaling in cassava, respectively. These results show that these plant tissues had differential expression levels of genes involved in ethylene signaling in response to the stresses tested. Moreover, after several gene duplication events, the spatiotemporally differential expression pattern of homologous genes in response to abiotic and biotic stresses may imply their functional diversity as a mechanism for adapting to the environment. Our data provide a framework for further research on the molecular mechanisms of cassava resistance to drought stress and provide a foundation for breeding drought-resistant new cultivars.
Collapse
|
57
|
Angelovici R, Batushansky A, Deason N, Gonzalez-Jorge S, Gore MA, Fait A, DellaPenna D. Network-Guided GWAS Improves Identification of Genes Affecting Free Amino Acids. PLANT PHYSIOLOGY 2017; 173:872-886. [PMID: 27872244 PMCID: PMC5210728 DOI: 10.1104/pp.16.01287] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/16/2016] [Indexed: 05/18/2023]
Abstract
Amino acids are essential for proper growth and development in plants. Amino acids serve as building blocks for proteins but also are important for responses to stress and the biosynthesis of numerous essential compounds. In seed, the pool of free amino acids (FAAs) also contributes to alternative energy, desiccation, and seed vigor; thus, manipulating FAA levels can significantly impact a seed's nutritional qualities. While genome-wide association studies (GWAS) on branched-chain amino acids have identified some regulatory genes controlling seed FAAs, the genetic regulation of FAA levels, composition, and homeostasis in seeds remains mostly unresolved. Hence, we performed GWAS on 18 FAAs from a 313-ecotype Arabidopsis (Arabidopsis thaliana) association panel. Specifically, GWAS was performed on 98 traits derived from known amino acid metabolic pathways (approach 1) and then on 92 traits generated from an unbiased correlation-based metabolic network analysis (approach 2), and the results were compared. The latter approach facilitated the discovery of additional novel metabolic interactions and single-nucleotide polymorphism-trait associations not identified by the former approach. The most prominent network-guided GWAS signal was for a histidine (His)-related trait in a region containing two genes: a cationic amino acid transporter (CAT4) and a polynucleotide phosphorylase resistant to inhibition with fosmidomycin. A reverse genetics approach confirmed CAT4 to be responsible for the natural variation of His-related traits across the association panel. Given that His is a semiessential amino acid and a potent metal chelator, CAT4 orthologs could be considered as candidate genes for seed quality biofortification in crop plants.
Collapse
Affiliation(s)
- Ruthie Angelovici
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.);
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.);
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.);
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Albert Batushansky
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Nicholas Deason
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Sabrina Gonzalez-Jorge
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Michael A Gore
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Aaron Fait
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| | - Dean DellaPenna
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 (R.A., A.B.)
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (N.D., S.G.-J., D.D.)
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom (S.G.-J.)
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14854 (M.A.G.); and
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel 84990 (A.F.)
| |
Collapse
|
58
|
Davila Olivas NH, Kruijer W, Gort G, Wijnen CL, van Loon JJA, Dicke M. Genome-wide association analysis reveals distinct genetic architectures for single and combined stress responses in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2017; 213:838-851. [PMID: 27604707 PMCID: PMC5217058 DOI: 10.1111/nph.14165] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/11/2016] [Indexed: 05/20/2023]
Abstract
Plants are commonly exposed to abiotic and biotic stresses. We used 350 Arabidopsis thaliana accessions grown under controlled conditions. We employed genome-wide association analysis to investigate the genetic architecture and underlying loci involved in genetic variation in resistance to: two specialist insect herbivores, Pieris rapae and Plutella xylostella; and combinations of stresses, i.e. drought followed by P. rapae and infection by the fungal pathogen Botrytis cinerea followed by infestation by P. rapae. We found that genetic variation in resistance to combined stresses by drought plus P. rapae was limited compared with B. cinerea plus P. rapae or P. rapae alone. Resistance to the two caterpillars is controlled by different genetic components. There is limited overlap in the quantitative trait loci (QTLs) underlying resistance to combined stresses by drought plus P. rapae or B. cinerea plus P. rapae and P. rapae alone. Finally, several candidate genes involved in the biosynthesis of aliphatic glucosinolates and proteinase inhibitors were identified to be involved in resistance to P. rapae and P. xylostella, respectively. This study underlines the importance of investigating plant responses to combinations of stresses. The value of this approach for breeding plants for resistance to combinatorial stresses is discussed.
Collapse
Affiliation(s)
| | - Willem Kruijer
- BiometrisWageningen UniversityPO Box 166700 AAWageningenthe Netherlands
| | - Gerrit Gort
- BiometrisWageningen UniversityPO Box 166700 AAWageningenthe Netherlands
| | - Cris L. Wijnen
- Laboratory of EntomologyWageningen UniversityPO Box 166700 AAWageningenthe Netherlands
| | - Joop J. A. van Loon
- Laboratory of EntomologyWageningen UniversityPO Box 166700 AAWageningenthe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen UniversityPO Box 166700 AAWageningenthe Netherlands
| |
Collapse
|
59
|
Two genomic regions associated with fiber quality traits in Chinese upland cotton under apparent breeding selection. Sci Rep 2016; 6:38496. [PMID: 27924947 PMCID: PMC5141495 DOI: 10.1038/srep38496] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/11/2016] [Indexed: 01/28/2023] Open
Abstract
Fiber quality is one of the most important agronomic traits of cotton, and understanding the genetic basis of its target traits will accelerate improvements to cotton fiber quality. In this study, a panel comprising 355 upland cotton accessions was used to perform genome-wide association studies (GWASs) of five fiber quality traits in four environments. A total of 16, 10 and 7 SNPs were associated with fiber length (FL), fiber strength (FS) and fiber uniformity (FU), respectively, based on the mixed linear model (MLM). Most importantly, two major genomic regions (MGR1 and MGR2) on chromosome Dt7 and four potential candidate genes for FL were identified. Analyzing the geographical distribution of favorable haplotypes (FHs) among these lines revealed that two favorable haplotype frequencies (FHFs) were higher in accessions from low-latitude regions than in accessions from high-latitude regions. However, the genetic diversity of lines from the low-latitude regions was lower than the diversity of lines from the high-latitude regions in China. Furthermore, the FHFs differed among cultivars developed during different breeding periods. These results indicate that FHs have undergone artificial selection during upland cotton breeding in recent decades in China and provide a foundation for the further improvement of fiber quality traits.
Collapse
|
60
|
Moghaddam SM, Mamidi S, Osorno JM, Lee R, Brick M, Kelly J, Miklas P, Urrea C, Song Q, Cregan P, Grimwood J, Schmutz J, McClean PE. Genome-Wide Association Study Identifies Candidate Loci Underlying Agronomic Traits in a Middle American Diversity Panel of Common Bean. THE PLANT GENOME 2016; 9. [PMID: 27902795 DOI: 10.3835/plantgenome2016.02.0012] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Common bean ( L.) breeding programs aim to improve both agronomic and seed characteristics traits. However, the genetic architecture of the many traits that affect common bean production are not completely understood. Genome-wide association studies (GWAS) provide an experimental approach to identify genomic regions where important candidate genes are located. A panel of 280 modern bean genotypes from race Mesoamerica, referred to as the Middle American Diversity Panel (MDP), were grown in four US locations, and a GWAS using >150,000 single-nucleotide polymorphisms (SNPs) (minor allele frequency [MAF] ≥ 5%) was conducted for six agronomic traits. The degree of inter- and intrachromosomal linkage disequilibrium (LD) was estimated after accounting for population structure and relatedness. The LD varied between chromosomes for the entire MDP and among race Mesoamerica and Durango-Jalisco genotypes within the panel. The LD patterns reflected the breeding history of common bean. Genome-wide association studies led to the discovery of new and known genomic regions affecting the agronomic traits at the entire population, race, and location levels. We observed strong colocalized signals in a narrow genomic interval for three interrelated traits: growth habit, lodging, and canopy height. Overall, this study detected ∼30 candidate genes based on a priori and candidate gene search strategies centered on the 100-kb region surrounding a significant SNP. These results provide a framework from which further research can begin to understand the actual genes controlling important agronomic production traits in common bean.
Collapse
|
61
|
Small RNA transcriptomes of mangroves evolve adaptively in extreme environments. Sci Rep 2016; 6:27551. [PMID: 27278626 PMCID: PMC4899726 DOI: 10.1038/srep27551] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/20/2016] [Indexed: 01/26/2023] Open
Abstract
MicroRNAs (miRNAs) and endogenous small interfering RNAs (siRNAs) are key players in plant stress responses. Here, we present the sRNA transcriptomes of mangroves Bruguiera gymnorrhiza and Kandelia candel. Comparative computational analyses and target predictions revealed that mangroves exhibit distinct sRNA regulatory networks that differ from those of glycophytes. A total of 32 known and three novel miRNA families were identified. Conserved and mangrove-specific miRNA targets were predicted; the latter were widely involved in stress responses. The known miRNAs showed differential expression between the mangroves and glycophytes, reminiscent of the adaptive stress-responsive changes in Arabidopsis. B. gymnorrhiza possessed highly abundant but less conserved TAS3 trans-acting siRNAs (tasiRNAs) in addition to tasiR-ARFs, with expanded potential targets. Our results indicate that the evolutionary alteration of sRNA expression levels and the rewiring of sRNA-regulatory networks are important mechanisms underlying stress adaptation. We also identified sRNAs that are involved in salt and/or drought tolerance and nutrient homeostasis as possible contributors to mangrove success in stressful environments.
Collapse
|
62
|
Li M, Li Y, Zhao J, Liu H, Jia S, Li J, Zhao H, Han S, Wang Y. GpDSR7, a Novel E3 Ubiquitin Ligase Gene in Grimmia pilifera Is Involved in Tolerance to Drought Stress in Arabidopsis. PLoS One 2016; 11:e0155455. [PMID: 27228205 PMCID: PMC4882056 DOI: 10.1371/journal.pone.0155455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/28/2016] [Indexed: 11/18/2022] Open
Abstract
The growth and development of plants under drought stress depends mainly on the expression levels of various genes and modification of proteins. To clarify the molecular mechanism of drought-tolerance of plants, suppression subtractive hybridisation cDNA libraries were screened to identify drought-stress-responsive unigenes in Grimmia pilifera, and a novel E3 ubiquitin ligase gene, GpDSR7, was identified among the 240 responsive unigenes. GpDSR7 expression was induced by various abiotic stresses, particularly by drought. GpDSR7 displayed E3 ubiquitin ligase activity in vitro and was exclusively localised on the ER membrane in Arabidopsis mesophyll protoplasts. GpDSR7-overexpressing transgenic Arabidopsis plants showed a high water content and survival ratio under drought stress. Moreover, the expression levels of some marker genes involved in drought stress were higher in the transgenic plants than in wild-type plants. These results suggest that GpDSR7, an E3 ubiquitin ligase, is involved in tolerance to drought stress at the protein modification level.
Collapse
Affiliation(s)
- Mengmeng Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yihao Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Junyi Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hai Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Shenghua Jia
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- * E-mail:
| |
Collapse
|
63
|
Branham SE, Wright SJ, Reba A, Linder CR. Genome-Wide Association Study of Arabidopsis thaliana Identifies Determinants of Natural Variation in Seed Oil Composition. J Hered 2016; 107:248-56. [PMID: 26704140 PMCID: PMC4885229 DOI: 10.1093/jhered/esv100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/24/2015] [Indexed: 01/14/2023] Open
Abstract
The renewable source of highly reduced carbon provided by plant triacylglycerols (TAGs) fills an ever increasing demand for food, biodiesel, and industrial chemicals. Each of these uses requires different compositions of fatty acid proportions in seed oils. Identifying the genes responsible for variation in seed oil composition in nature provides targets for bioengineering fatty acid proportions optimized for various industrial and nutrition goals. Here, we characterized the seed oil composition of 391 world-wide, wild accessions of Arabidopsis thaliana, and performed a genome-wide association study (GWAS) of the 9 major fatty acids in the seed oil and 4 composite measures of the fatty acids. Four to 19 regions of interest were associated with the seed oil composition traits. Thirty-four of the genes in these regions are involved in lipid metabolism or transport, with 14 specific to fatty acid synthesis or breakdown. Eight of the genes encode transcription factors. We have identified genes significantly associated with variation in fatty acid proportions that can be used as a resource across the Brassicaceae. Two-thirds of the regions identified contain candidate genes that have never been implicated in lipid metabolism and represent potential new targets for bioengineering.
Collapse
Affiliation(s)
- Sandra E Branham
- From the US Vegetable Laboratory, Agricultural Research Service, United States Department of Agriculture, Charleston, SC 29414 (Branham); Department of Biology, Washington University, St. Louis, MO 63130 (Wright); Integrative Biology Department, University of Texas at Austin, Austin, TX 78712 (Branham, Reba, and Linder).
| | - Sara J Wright
- From the US Vegetable Laboratory, Agricultural Research Service, United States Department of Agriculture, Charleston, SC 29414 (Branham); Department of Biology, Washington University, St. Louis, MO 63130 (Wright); Integrative Biology Department, University of Texas at Austin, Austin, TX 78712 (Branham, Reba, and Linder)
| | - Aaron Reba
- From the US Vegetable Laboratory, Agricultural Research Service, United States Department of Agriculture, Charleston, SC 29414 (Branham); Department of Biology, Washington University, St. Louis, MO 63130 (Wright); Integrative Biology Department, University of Texas at Austin, Austin, TX 78712 (Branham, Reba, and Linder)
| | - C Randal Linder
- From the US Vegetable Laboratory, Agricultural Research Service, United States Department of Agriculture, Charleston, SC 29414 (Branham); Department of Biology, Washington University, St. Louis, MO 63130 (Wright); Integrative Biology Department, University of Texas at Austin, Austin, TX 78712 (Branham, Reba, and Linder)
| |
Collapse
|
64
|
Kooke R, Kruijer W, Bours R, Becker F, Kuhn A, van de Geest H, Buntjer J, Doeswijk T, Guerra J, Bouwmeester H, Vreugdenhil D, Keurentjes JJB. Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:2187-203. [PMID: 26869705 PMCID: PMC4825126 DOI: 10.1104/pp.15.00997] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 02/11/2016] [Indexed: 05/05/2023]
Abstract
Quantitative traits in plants are controlled by a large number of genes and their interaction with the environment. To disentangle the genetic architecture of such traits, natural variation within species can be explored by studying genotype-phenotype relationships. Genome-wide association studies that link phenotypes to thousands of single nucleotide polymorphism markers are nowadays common practice for such analyses. In many cases, however, the identified individual loci cannot fully explain the heritability estimates, suggesting missing heritability. We analyzed 349 Arabidopsis accessions and found extensive variation and high heritabilities for different morphological traits. The number of significant genome-wide associations was, however, very low. The application of genomic prediction models that take into account the effects of all individual loci may greatly enhance the elucidation of the genetic architecture of quantitative traits in plants. Here, genomic prediction models revealed different genetic architectures for the morphological traits. Integrating genomic prediction and association mapping enabled the assignment of many plausible candidate genes explaining the observed variation. These genes were analyzed for functional and sequence diversity, and good indications that natural allelic variation in many of these genes contributes to phenotypic variation were obtained. For ACS11, an ethylene biosynthesis gene, haplotype differences explaining variation in the ratio of petiole and leaf length could be identified.
Collapse
Affiliation(s)
- Rik Kooke
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Willem Kruijer
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Ralph Bours
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Frank Becker
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - André Kuhn
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Henri van de Geest
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Jaap Buntjer
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Timo Doeswijk
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - José Guerra
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Dick Vreugdenhil
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Joost J B Keurentjes
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| |
Collapse
|
65
|
A subunit of the oligosaccharyltransferase complex is required for interspecific gametophyte recognition in Arabidopsis. Nat Commun 2016; 7:10826. [PMID: 26964640 PMCID: PMC4792959 DOI: 10.1038/ncomms10826] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/21/2016] [Indexed: 12/11/2022] Open
Abstract
Species-specific gamete recognition is a key premise to ensure reproductive success and the maintenance of species boundaries. During plant pollen tube (PT) reception, gametophyte interactions likely allow the species-specific recognition of signals from the PT (male gametophyte) by the embryo sac (female gametophyte), resulting in PT rupture, sperm release, and double fertilization. This process is impaired in interspecific crosses between Arabidopsis thaliana and related species, leading to PT overgrowth and a failure to deliver the sperm cells. Here we show that ARTUMES (ARU) specifically regulates the recognition of interspecific PTs in A. thaliana. ARU, identified in a genome-wide association study (GWAS), exclusively influences interspecific--but not intraspecific--gametophyte interactions. ARU encodes the OST3/6 subunit of the oligosaccharyltransferase complex conferring protein N-glycosylation. Our results suggest that glycosylation patterns of cell surface proteins may represent an important mechanism of gametophyte recognition and thus speciation.
Collapse
|
66
|
Zhang P, Zhong K, Shahid MQ, Tong H. Association Analysis in Rice: From Application to Utilization. FRONTIERS IN PLANT SCIENCE 2016; 7:1202. [PMID: 27582745 PMCID: PMC4987372 DOI: 10.3389/fpls.2016.01202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/28/2016] [Indexed: 05/03/2023]
Abstract
Association analysis based on linkage disequilibrium (LD) is an efficient way to dissect complex traits and to identify gene functions in rice. Although association analysis is an effective way to construct fine maps for quantitative traits, there are a few issues which need to be addressed. In this review, we will first summarize type, structure, and LD level of populations used for association analysis of rice, and then discuss the genotyping methods and statistical approaches used for association analysis in rice. Moreover, we will review current shortcomings and benefits of association analysis as well as specific types of future research to overcome these shortcomings. Furthermore, we will analyze the reasons for the underutilization of the results within association analysis in rice breeding.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
- *Correspondence: Peng Zhang
| | - Kaizhen Zhong
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
| | - Hanhua Tong
- State Key Laboratory of Rice Biology, China National Rice Research InstituteHangzhou, China
- Hanhua Tong
| |
Collapse
|
67
|
Toubiana D, Xue W, Zhang N, Kremling K, Gur A, Pilosof S, Gibon Y, Stitt M, Buckler ES, Fernie AR, Fait A. Correlation-Based Network Analysis of Metabolite and Enzyme Profiles Reveals a Role of Citrate Biosynthesis in Modulating N and C Metabolism in Zea mays. FRONTIERS IN PLANT SCIENCE 2016; 7:1022. [PMID: 27462343 PMCID: PMC4940414 DOI: 10.3389/fpls.2016.01022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/28/2016] [Indexed: 05/20/2023]
Abstract
To investigate the natural variability of leaf metabolism and enzymatic activity in a maize inbred population, statistical and network analyses were employed on metabolite and enzyme profiles. The test of coefficient of variation showed that sugars and amino acids displayed opposite trends in their variance within the population, consistently with their related enzymes. The overall higher CV values for metabolites as compared to the tested enzymes are indicative for their greater phenotypic plasticity. H(2) tests revealed galactinol (1) and asparagine (0.91) as the highest scorers among metabolites and nitrate reductase (0.73), NAD-glutamate dehydrogenase (0.52), and phosphoglucomutase (0.51) among enzymes. The overall low H(2) scores for metabolites and enzymes are suggestive for a great environmental impact or gene-environment interaction. Correlation-based network generation followed by community detection analysis, partitioned the network into three main communities and one dyad, (i) reflecting the different levels of phenotypic plasticity of the two molecular classes as observed for the CV values and (ii) highlighting the concerted changes between classes of chemically related metabolites. Community 1 is composed mainly of enzymes and specialized metabolites, community 2' is enriched in N-containing compounds and phosphorylated-intermediates. The third community contains mainly organic acids and sugars. Cross-community linkages are supported by aspartate, by the photorespiration amino acids glycine and serine, by the metabolically related GABA and putrescine, and by citrate. The latter displayed the strongest node-betweenness value (185.25) of all nodes highlighting its fundamental structural role in the connectivity of the network by linking between different communities and to the also strongly connected enzyme aldolase.
Collapse
Affiliation(s)
- David Toubiana
- Institute of Dryland Biotechnology and Agriculture, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the NegevMidreshet Ben-Gurion, Israel
| | - Wentao Xue
- Institute of Dryland Biotechnology and Agriculture, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the NegevMidreshet Ben-Gurion, Israel
| | - Nengyi Zhang
- Institute for Genomic Diversity, Cornell UniversityIthaca, NY, USA
| | - Karl Kremling
- Institute for Genomic Diversity, Cornell UniversityIthaca, NY, USA
| | - Amit Gur
- Institute for Genomic Diversity, Cornell UniversityIthaca, NY, USA
| | - Shai Pilosof
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the NegevMidreshet Ben-Gurion, Israel
| | - Yves Gibon
- Max Planck Institute of Molecular Plant PhysiologyGolm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant PhysiologyGolm, Germany
| | - Edward S. Buckler
- Institute for Genomic Diversity, Cornell UniversityIthaca, NY, USA
- *Correspondence: Edward S. Buckler
| | | | - Aaron Fait
- Institute of Dryland Biotechnology and Agriculture, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the NegevMidreshet Ben-Gurion, Israel
- *Correspondence: Edward S. Buckler
| |
Collapse
|
68
|
Abstract
Darwin's theory of evolution by natural selection is the foundation of modern biology. However, it has proven remarkably difficult to demonstrate at the genetic, genomic, and population level exactly how wild species adapt to their natural environments. We discuss how one can use large sets of multiple genome sequences from wild populations to understand adaptation, with an emphasis on the small herbaceous plant Arabidopsis thaliana. We present motivation for such studies; summarize progress in describing whole-genome, species-wide sequence variation; and then discuss what insights have emerged from these resources, either based on sequence information alone or in combination with phenotypic data. We conclude with thoughts on opportunities with other plant species and the impact of expected progress in sequencing technology and genome engineering for studying adaptation in nature.
Collapse
Affiliation(s)
- Detlef Weigel
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria;
| |
Collapse
|
69
|
Matthus E, Wu LB, Ueda Y, Höller S, Becker M, Frei M. Loci, genes, and mechanisms associated with tolerance to ferrous iron toxicity in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2085-98. [PMID: 26152574 DOI: 10.1007/s00122-015-2569-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/16/2015] [Indexed: 05/08/2023]
Abstract
A genome-wide association study in rice yielded loci and candidate genes associated with tolerance to iron toxicity, and revealed biochemical mechanisms associated with tolerance in contrasting haplotypes. Iron toxicity is a major nutrient disorder affecting rice. Therefore, understanding the genetic and physiological mechanisms associated with iron toxicity tolerance is crucial in adaptive breeding and biofortification. We conducted a genome-wide association study (GWAS) by exposing a population of 329 accessions representing all subgroups of rice to ferrous iron stress (1000 ppm, 5 days). Expression patterns and sequence polymorphisms of candidate genes were investigated, and physiological hypotheses related to candidate loci were tested using a subset of contrasting haplotypes. Both iron including and excluding tolerant genotypes were observed, and shoot iron concentrations explained around 15.5 % of the variation in foliar symptom formation. GWAS for seven traits yielded 20 SNP markers exceeding a significance threshold of -log10 P > 4.0, which represented 18 distinct loci. One locus mapped for foliar symptom formation on chromosome 1 contained two putative glutathione-S-transferases, which were strongly expressed under iron stress and showed sequence polymorphisms in complete linkage disequilibrium with the most significant SNP. Contrasting haplotypes for this locus showed significant differences in dehydroascorbate reductase activity, which affected the plants' redox status under iron stress. We conclude that maintaining foliar redox homeostasis under iron stress represented an important tolerance mechanism associated with a locus identified through GWAS.
Collapse
Affiliation(s)
- Elsa Matthus
- Institute of Crop Science and Resource Conservation (INRES) - Plant Nutrition, University of Bonn, Karlrobert-Kreiten Straße 13, Bonn, 53115, Germany
| | - Lin-Bo Wu
- Institute of Crop Science and Resource Conservation (INRES) - Plant Nutrition, University of Bonn, Karlrobert-Kreiten Straße 13, Bonn, 53115, Germany
| | - Yoshiaki Ueda
- Institute of Crop Science and Resource Conservation (INRES) - Plant Nutrition, University of Bonn, Karlrobert-Kreiten Straße 13, Bonn, 53115, Germany
| | - Stefanie Höller
- Institute of Crop Science and Resource Conservation (INRES) - Plant Nutrition, University of Bonn, Karlrobert-Kreiten Straße 13, Bonn, 53115, Germany
| | - Mathias Becker
- Institute of Crop Science and Resource Conservation (INRES) - Plant Nutrition, University of Bonn, Karlrobert-Kreiten Straße 13, Bonn, 53115, Germany
| | - Michael Frei
- Institute of Crop Science and Resource Conservation (INRES) - Plant Nutrition, University of Bonn, Karlrobert-Kreiten Straße 13, Bonn, 53115, Germany.
| |
Collapse
|
70
|
Kang Y, Sakiroglu M, Krom N, Stanton-Geddes J, Wang M, Lee YC, Young ND, Udvardi M. Genome-wide association of drought-related and biomass traits with HapMap SNPs in Medicago truncatula. PLANT, CELL & ENVIRONMENT 2015; 38:1997-2011. [PMID: 25707512 DOI: 10.1111/pce.12520] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 05/21/2023]
Abstract
Improving drought tolerance of crop plants is a major goal of plant breeders. In this study, we characterized biomass and drought-related traits of 220 Medicago truncatula HapMap accessions. Characterized traits included shoot biomass, maximum leaf size, specific leaf weight, stomatal density, trichome density and shoot carbon-13 isotope discrimination (δ(13) C) of well-watered M. truncatula plants, and leaf performance in vitro under dehydration stress. Genome-wide association analyses were carried out using the general linear model (GLM), the standard mixed linear model (MLM) and compressed MLM (CMLM) in TASSEL, which revealed significant overestimation of P-values by CMLM. For each trait, candidate genes and chromosome regions containing SNP markers were found that are in significant association with the trait. For plant biomass, a 0.5 Mbp region on chromosome 2 harbouring a plasma membrane intrinsic protein, PIP2, was discovered that could potentially be targeted to increase dry matter yield. A protein disulfide isomerase-like protein was found to be tightly associated with both shoot biomass and leaf size. A glutamate-cysteine ligase and an aldehyde dehydrogenase family protein with Arabidopsis homologs strongly expressed in the guard cells were two of the top genes identified by stomata density genome-wide association studies analysis.
Collapse
Affiliation(s)
- Yun Kang
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | | | - Nicholas Krom
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | | | - Mingyi Wang
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Yi-Ching Lee
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Nevin D Young
- Department of Plant Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Michael Udvardi
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| |
Collapse
|
71
|
Bac-Molenaar JA, Fradin EF, Becker FFM, Rienstra JA, van der Schoot J, Vreugdenhil D, Keurentjes JJB. Genome-Wide Association Mapping of Fertility Reduction upon Heat Stress Reveals Developmental Stage-Specific QTLs in Arabidopsis thaliana. THE PLANT CELL 2015; 27:1857-74. [PMID: 26163573 PMCID: PMC4531356 DOI: 10.1105/tpc.15.00248] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/16/2015] [Indexed: 05/09/2023]
Abstract
For crops that are grown for their fruits or seeds, elevated temperatures that occur during flowering and seed or fruit set have a stronger effect on yield than high temperatures during the vegetative stage. Even short-term exposure to heat can have a large impact on yield. In this study, we used Arabidopsis thaliana to study the effect of short-term heat exposure on flower and seed development. The impact of a single hot day (35°C) was determined in more than 250 natural accessions by measuring the lengths of the siliques along the main inflorescence. Two sensitive developmental stages were identified, one before anthesis, during male and female meiosis, and one after anthesis, during fertilization and early embryo development. In addition, we observed a correlation between flowering time and heat tolerance. Genome-wide association mapping revealed four quantitative trait loci (QTLs) strongly associated with the heat response. These QTLs were developmental stage specific, as different QTLs were detected before and after anthesis. For a number of QTLs, T-DNA insertion knockout lines could validate assigned candidate genes. Our findings show that the regulation of complex traits can be highly dependent on the developmental timing.
Collapse
Affiliation(s)
- Johanna A Bac-Molenaar
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Emilie F Fradin
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Juriaan A Rienstra
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - J van der Schoot
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Dick Vreugdenhil
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
72
|
Zhou Z, Ma H, Lin K, Zhao Y, Chen Y, Xiong Z, Wang L, Tian B. RNA-seq Reveals Complicated Transcriptomic Responses to Drought Stress in a Nonmodel Tropic Plant, Bombax ceiba L. Evol Bioinform Online 2015; 11:27-37. [PMID: 26157330 PMCID: PMC4479181 DOI: 10.4137/ebo.s20620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/09/2015] [Accepted: 04/20/2015] [Indexed: 11/05/2022] Open
Abstract
High-throughput transcriptome provides an unbiased approach for understanding the genetic basis and gene functions in response to different conditions. Here we sequenced RNA-seq libraries derived from a Bombax ceiba L. system under a controlled experiment. As a known medicinal and ornamental plant, B. ceiba grows mainly in hot-dry monsoon rainforests in Southeast Asia and Australia. Due to the specific growth environment, it has evolved a unique system that enables a physiologic response to drought stress. To date, few studies have characterized the genome-wide features of drought endurance in B. ceiba. In this study, we first attempted to characterize and identify the most differentially expressed genes and associated functional pathways under drought treatment and normal condition. Using RNA-seq technology, we generated the first transcriptome of B. ceiba and identified 59 differentially expressed genes with greater than 1,000-fold changes under two conditions. The set of upregulated genes implicates interplay among various pathways: plants growth, ubiquitin-mediated proteolysis, polysaccharides hydrolyzation, oxidative phosphorylation and photosynthesis, etc. In contrast, genes associated with stem growth, cell division, fruit ripening senescence, disease resistance, and proline synthesis are repressed. Notably, key genes of high RPKM levels in drought are AUX1, JAZ, and psbS, which are known to regulate the growth of plants, the resistance against abiotic stress, and the photosynthesis process. Furthermore, 16,656 microsatellite markers and 3,071 single-nucleotide polymorphisms (SNPs) were predicted by in silico methods. The identification and functional annotation of differentially expressed genes, microsatellites, and SNPs represent a major step forward and would serve as a valuable resource for understanding the complexity underlying drought endurance and adaptation in B. ceiba.
Collapse
Affiliation(s)
- Zhili Zhou
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming, China
| | - Huancheng Ma
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Kevin Lin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Youjie Zhao
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Yuan Chen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Zhi Xiong
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Bin Tian
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
73
|
Kim DJ, Bitto E, Bingman CA, Kim HJ, Han BW, Phillips GN. Crystal structure of the protein At3g01520, a eukaryotic universal stress protein-like protein from Arabidopsis thaliana in complex with AMP. Proteins 2015; 83:1368-73. [PMID: 25921306 PMCID: PMC4624624 DOI: 10.1002/prot.24821] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 11/11/2022]
Abstract
Members of the universal stress protein (USP) family are conserved in a phylogenetically diverse range of prokaryotes, fungi, protists, and plants and confer abilities to respond to a wide range of environmental stresses. Arabidopsis thaliana contains 44 USP domain‐containing proteins, and USP domain is found either in a small protein with unknown physiological function or in an N‐terminal portion of a multi‐domain protein, usually a protein kinase. Here, we report the first crystal structure of a eukaryotic USP‐like protein encoded from the gene At3g01520. The crystal structure of the protein At3g01520 was determined by the single‐wavelength anomalous dispersion method and refined to an R factor of 21.8% (Rfree = 26.1%) at 2.5 Å resolution. The crystal structure includes three At3g01520 protein dimers with one AMP molecule bound to each protomer, comprising a Rossmann‐like α/β overall fold. The bound AMP and conservation of residues in the ATP‐binding loop suggest that the protein At3g01520 also belongs to the ATP‐binding USP subfamily members. Proteins 2015; 83:1368–1373. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Do Jin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, Korea
| | - Eduard Bitto
- Department of Chemistry and Biochemistry, Georgian Court University, Lakewood, New Jersey, 08701
| | - Craig A Bingman
- Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Hyun-Jung Kim
- Laboratory of Stem Cell and Molecular Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, Korea
| | - George N Phillips
- Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison, Wisconsin, 53706.,BioSciences at Rice and Department of Chemistry, Rice University, Houston, Texas, 77251
| |
Collapse
|
74
|
Haswell ES, Verslues PE. The ongoing search for the molecular basis of plant osmosensing. ACTA ACUST UNITED AC 2015; 145:389-94. [PMID: 25870206 PMCID: PMC4411250 DOI: 10.1085/jgp.201411295] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elizabeth S Haswell
- Department of Biology, Washington University in Saint Louis, Saint Louis, MO 63130
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
75
|
Luo J. Metabolite-based genome-wide association studies in plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 24:31-8. [PMID: 25637954 DOI: 10.1016/j.pbi.2015.01.006] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 05/18/2023]
|
76
|
Ogura T, Busch W. From phenotypes to causal sequences: using genome wide association studies to dissect the sequence basis for variation of plant development. CURRENT OPINION IN PLANT BIOLOGY 2015; 23:98-108. [PMID: 25449733 DOI: 10.1016/j.pbi.2014.11.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 05/20/2023]
Abstract
Tremendous natural variation of growth and development exists within species. Uncovering the molecular mechanisms that tune growth and development promises to shed light on a broad set of biological issues including genotype to phenotype relations, regulatory mechanisms of biological processes and evolutionary questions. Recent progress in sequencing and data processing capabilities has enabled Genome Wide Association Studies (GWASs) to identify DNA sequence polymorphisms that underlie the variation of biological traits. In the last years, GWASs have proven powerful in revealing the complex genetic bases of many phenotypes in various plant species. Here we highlight successful recent GWASs that uncovered mechanistic and sequence bases of trait variation related to plant growth and development and discuss important considerations for conducting successful GWASs.
Collapse
Affiliation(s)
- Takehiko Ogura
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
77
|
Sonah H, O'Donoughue L, Cober E, Rajcan I, Belzile F. Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:211-21. [PMID: 25213593 DOI: 10.1111/pbi.12249] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/24/2014] [Accepted: 07/29/2014] [Indexed: 05/18/2023]
Abstract
Soya bean is a major source of edible oil and protein for human consumption as well as animal feed. Understanding the genetic basis of different traits in soya bean will provide important insights for improving breeding strategies for this crop. A genome-wide association study (GWAS) was conducted to accelerate molecular breeding for the improvement of agronomic traits in soya bean. A genotyping-by-sequencing (GBS) approach was used to provide dense genome-wide marker coverage (>47,000 SNPs) for a panel of 304 short-season soya bean lines. A subset of 139 lines, representative of the diversity among these, was characterized phenotypically for eight traits under six environments (3 sites × 2 years). Marker coverage proved sufficient to ensure highly significant associations between the genes known to control simple traits (flower, hilum and pubescence colour) and flanking SNPs. Between one and eight genomic loci associated with more complex traits (maturity, plant height, seed weight, seed oil and protein) were also identified. Importantly, most of these GWAS loci were located within genomic regions identified by previously reported quantitative trait locus (QTL) for these traits. In some cases, the reported QTLs were also successfully validated by additional QTL mapping in a biparental population. This study demonstrates that integrating GBS and GWAS can be used as a powerful complementary approach to classical biparental mapping for dissecting complex traits in soya bean.
Collapse
Affiliation(s)
- Humira Sonah
- Département de Phytologie and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | | | | | | | | |
Collapse
|
78
|
Ueda Y, Frimpong F, Qi Y, Matthus E, Wu L, Höller S, Kraska T, Frei M. Genetic dissection of ozone tolerance in rice (Oryza sativa L.) by a genome-wide association study. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:293-306. [PMID: 25371505 PMCID: PMC4265164 DOI: 10.1093/jxb/eru419] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tropospheric ozone causes various negative effects on plants and affects the yield and quality of agricultural crops. Here, we report a genome-wide association study (GWAS) in rice (Oryza sativa L.) to determine candidate loci associated with ozone tolerance. A diversity panel consisting of 328 accessions representing all subgroups of O. sativa was exposed to ozone stress at 60 nl l(-1) for 7h every day throughout the growth season, or to control conditions. Averaged over all genotypes, ozone significantly affected biomass-related traits (plant height -1.0%, shoot dry weight -15.9%, tiller number -8.3%, grain weight -9.3%, total panicle weight -19.7%, single panicle weight -5.5%) and biochemical/physiological traits (symptom formation, SPAD value -4.4%, foliar lignin content +3.4%). A wide range of genotypic variance in response to ozone stress were observed in all phenotypes. Association mapping based on more than 30 000 single-nucleotide polymorphism (SNP) markers yielded 16 significant markers throughout the genome by applying a significance threshold of P<0.0001. Furthermore, by determining linkage disequilibrium blocks associated with significant SNPs, we gained a total of 195 candidate genes for these traits. The following sequence analysis revealed a number of novel polymorphisms in two candidate genes for the formation of visible leaf symptoms, a RING and an EREBP gene, both of which are involved in cell death and stress defence reactions. This study demonstrated substantial natural variation of responses to ozone in rice and the possibility of using GWAS in elucidating the genetic factors underlying ozone tolerance.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Felix Frimpong
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Yitao Qi
- Key Laboratory of Crop Genetics & Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Elsa Matthus
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Linbo Wu
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Stefanie Höller
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| | - Thorsten Kraska
- Campus Klein-Altendorf, University of Bonn, Klein-Altendorf 2, 53359 Rheinbach, Germany
| | - Michael Frei
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten Strasse 13, 53115 Bonn, Germany
| |
Collapse
|
79
|
Bhaskara GB, Yang TH, Verslues PE. Dynamic proline metabolism: importance and regulation in water limited environments. FRONTIERS IN PLANT SCIENCE 2015; 6:484. [PMID: 26161086 PMCID: PMC4479789 DOI: 10.3389/fpls.2015.00484] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/16/2015] [Indexed: 05/18/2023]
Abstract
Drought-induced proline accumulation observed in many plant species has led to the hypothesis that further increases in proline accumulation would promote drought tolerance. Here we discuss both previous and new data showing that proline metabolism and turnover, rather than just proline accumulation, functions to maintain growth during water limitation. Mutants of Δ (1)-Pyrroline-5-Carboxylate Synthetase1 (P5CS1) and Proline Dehydrogenase1 (PDH1), key enzymes in proline synthesis and catabolism respectively, both have similar reductions in growth during controlled soil drying. Such results are consistent with patterns of natural variation in proline accumulation and with evidence that turnover of proline can act to buffer cellular redox status during drought. Proline synthesis and catabolism are regulated by multiple cellular mechanisms, of which we know only a few. An example of this is immunoblot detection of P5CS1 and PDH1 showing that the Highly ABA-induced (HAI) protein phosphatase 2Cs (PP2Cs) have different effects on P5CS1 and PDH1 protein levels despite having similar increases in proline accumulation. Immunoblot data also indicate that both P5CS1 and PDH1 are subjected to unknown post-translational modifications.
Collapse
Affiliation(s)
| | | | - Paul E. Verslues
- *Correspondence: Paul E. Verslues, Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Section 2 Academia Road, Nankang District, Taipei 11529, Taiwan,
| |
Collapse
|
80
|
Chao DY, Chen Y, Chen J, Shi S, Chen Z, Wang C, Danku JM, Zhao FJ, Salt DE. Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol 2014; 12:e1002009. [PMID: 25464340 PMCID: PMC4251824 DOI: 10.1371/journal.pbio.1002009] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/21/2014] [Indexed: 12/17/2022] Open
Abstract
Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice.
Collapse
Affiliation(s)
- Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail: (DYC); (FJZ); (DES)
| | - Yi Chen
- Sustainable Soils and Grassland Systems Department, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Jiugeng Chen
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shulin Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ziru Chen
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - John M. Danku
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
- * E-mail: (DYC); (FJZ); (DES)
| | - David E. Salt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail: (DYC); (FJZ); (DES)
| |
Collapse
|
81
|
Koprivova A, Harper AL, Trick M, Bancroft I, Kopriva S. Dissection of the control of anion homeostasis by associative transcriptomics in Brassica napus. PLANT PHYSIOLOGY 2014; 166:442-50. [PMID: 25049360 PMCID: PMC4149728 DOI: 10.1104/pp.114.239947] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
To assess the variation in nutrient homeostasis in oilseed rape and to identify the genes responsible for this variation, we determined foliar anion levels in a diversity panel of Brassica napus accessions, 84 of which had been genotyped previously using messenger RNA sequencing. We applied associative transcriptomics to identify sequence polymorphisms linked to variation in nitrate, phosphate, or sulfate in these accessions. The analysis identified several hundred significant associations for each anion. Using functional annotation of Arabidopsis (Arabidopsis thaliana) homologs and available microarray data, we identified 60 candidate genes for controlling variation in the anion contents. To verify that these genes function in the control of nutrient homeostasis, we obtained Arabidopsis transfer DNA insertion lines for these candidates and tested them for the accumulation of nitrate, phosphate, and sulfate. Fourteen lines differed significantly in levels of the corresponding anions. Several of these genes have been shown previously to affect the accumulation of the corresponding anions in Arabidopsis mutants. These results thus confirm the power of associative transcriptomics in dissection of the genetic control of complex traits and present a set of candidate genes for use in the improvement of efficiency of B. napus mineral nutrition.
Collapse
Affiliation(s)
- Anna Koprivova
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Andrea L Harper
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Martin Trick
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Ian Bancroft
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Stanislav Kopriva
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
82
|
Zegeye H, Rasheed A, Makdis F, Badebo A, Ogbonnaya FC. Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat. PLoS One 2014; 9:e105593. [PMID: 25153126 PMCID: PMC4143293 DOI: 10.1371/journal.pone.0105593] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/23/2014] [Indexed: 01/08/2023] Open
Abstract
Use of genetic diversity from related wild and domesticated species has made a significant contribution to improving wheat productivity. Synthetic hexaploid wheats (SHWs) exhibit natural genetic variation for resistance and/or tolerance to biotic and abiotic stresses. Stripe rust caused by (Puccinia striiformis f. sp. tritici; Pst), is an important disease of wheat worldwide. To characterise loci conferring resistance to stripe rust in SHWs, we conducted a genome-wide association study (GWAS) with a panel of 181 SHWs using the wheat 9 K SNP iSelect array. The SHWs were evaluated for their response to the prevailing races of Pst at the seedling and adult plant stages, the latter in replicated field trials at two sites in Ethiopia in 2011. About 28% of the SHWs exhibited immunity at the seedling stage while 56% and 83% were resistant to Pst at the adult plant stage at Meraro and Arsi Robe, respectively. A total of 27 SNPs in nine genomic regions (1 BS, 2 AS, 2 BL, 3 BL, 3 DL, 5A, 5 BL, 6DS and 7A) were linked with resistance to Pst at the seedling stage, while 38 SNPs on 18 genomic regions were associated with resistance at the adult plant stage. Six genomic regions were commonly detected at both locations using a mixed linear model corrected for population structure, kinship relatedness and adjusted for false discovery rate (FDR). The loci on chromosome regions 1 AS, 3 DL, 6 DS and 7 AL appeared to be novel QTL; our results confirm that resynthesized wheat involving its progenitor species is a rich source of new stripe (yellow) rust resistance that may be useful in choosing SHWs and incorporating diverse yellow rust (YR) resistance loci into locally adapted wheat cultivars.
Collapse
Affiliation(s)
| | - Awais Rasheed
- Crop Science Research Institute/National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Farid Makdis
- Department of Field Crops, Faculty of Agriculture, University of Aleppo, Aleppo, Syria
- Research Program, Grains Research and Development Corporation, Barton, Australian Capital Territory, Canberra, Australia
| | - Ayele Badebo
- Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Francis C. Ogbonnaya
- International Centre for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria
- Research Program, Grains Research and Development Corporation, Barton, Australian Capital Territory, Canberra, Australia
| |
Collapse
|