51
|
Macaya-Sanz D, Chen J, Kalluri UC, Muchero W, Tschaplinski TJ, Gunter LE, Simon SJ, Biswal AK, Bryan AC, Payyavula R, Xie M, Yang Y, Zhang J, Mohnen D, Tuskan GA, DiFazio SP. Agronomic performance of Populus deltoides trees engineered for biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:253. [PMID: 29213313 PMCID: PMC5707814 DOI: 10.1186/s13068-017-0934-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/19/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND One of the major barriers to the development of lignocellulosic feedstocks is the recalcitrance of plant cell walls to deconstruction and saccharification. Recalcitrance can be reduced by targeting genes involved in cell wall biosynthesis, but this can have unintended consequences that compromise the agronomic performance of the trees under field conditions. Here we report the results of a field trial of fourteen distinct transgenic Populus deltoides lines that had previously demonstrated reduced recalcitrance without yield penalties under greenhouse conditions. RESULTS Survival and productivity of the trial were excellent in the first year, and there was little evidence for reduced performance of the transgenic lines with modified target gene expression. Surprisingly, the most striking phenotypic effects in this trial were for two empty-vector control lines that had modified bud set and bud flush. This is most likely due to somaclonal variation or insertional mutagenesis. Traits related to yield, crown architecture, herbivory, pathogen response, and frost damage showed few significant differences between target gene transgenics and empty vector controls. However, there were a few interesting exceptions. Lines overexpressing the DUF231 gene, a putative O-acetyltransferase, showed early bud flush and marginally increased height growth. Lines overexpressing the DUF266 gene, a putative glycosyltransferase, had significantly decreased stem internode length and slightly higher volume index. Finally, lines overexpressing the PFD2 gene, a putative member of the prefoldin complex, had a slightly reduced volume index. CONCLUSIONS This field trial demonstrates that these cell wall modifications, which decreased cell wall recalcitrance under laboratory conditions, did not seriously compromise first-year performance in the field, despite substantial challenges, including an outbreak of a stem boring insect (Gypsonoma haimbachiana), attack by a leaf rust pathogen (Melampsora spp.), and a late frost event. This bodes well for the potential utility of these lines as advanced biofuels feedstocks.
Collapse
Affiliation(s)
- David Macaya-Sanz
- Department of Biology, West Virginia University, Morgantown, WV 26506 USA
| | - Jin‐Gui Chen
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Udaya C. Kalluri
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Wellington Muchero
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Timothy J. Tschaplinski
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Lee E. Gunter
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Sandra J. Simon
- Department of Biology, West Virginia University, Morgantown, WV 26506 USA
| | - Ajaya K. Biswal
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Anthony C. Bryan
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Raja Payyavula
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Meng Xie
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Yongil Yang
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Jin Zhang
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Debra Mohnen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
| | - Gerald A. Tuskan
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Stephen P. DiFazio
- Department of Biology, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
52
|
Pawar PMA, Derba-Maceluch M, Chong SL, Gandla ML, Bashar SS, Sparrman T, Ahvenainen P, Hedenström M, Özparpucu M, Rüggeberg M, Serimaa R, Lawoko M, Tenkanen M, Jönsson LJ, Mellerowicz EJ. In muro deacetylation of xylan affects lignin properties and improves saccharification of aspen wood. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:98. [PMID: 28428822 PMCID: PMC5397736 DOI: 10.1186/s13068-017-0782-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/11/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Lignocellulose from fast growing hardwood species is a preferred source of polysaccharides for advanced biofuels and "green" chemicals. However, the extensive acetylation of hardwood xylan hinders lignocellulose saccharification by obstructing enzymatic xylan hydrolysis and causing inhibitory acetic acid concentrations during microbial sugar fermentation. To optimize lignocellulose for cost-effective saccharification and biofuel production, an acetyl xylan esterase AnAXE1 from Aspergillus niger was introduced into aspen and targeted to cell walls. RESULTS AnAXE1-expressing plants exhibited reduced xylan acetylation and grew normally. Without pretreatment, their lignocellulose yielded over 25% more glucose per unit mass of wood (dry weight) than wild-type plants. Glucose yields were less improved (+7%) after acid pretreatment, which hydrolyses xylan. The results indicate that AnAXE1 expression also reduced the molecular weight of xylan, and xylan-lignin complexes and/or lignin co-extracted with xylan, increased cellulose crystallinity, altered the lignin composition, reducing its syringyl to guaiacyl ratio, and increased lignin solubility in dioxane and hot water. Lignin-associated carbohydrates became enriched in xylose residues, indicating a higher content of xylo-oligosaccharides. CONCLUSIONS This work revealed several changes in plant cell walls caused by deacetylation of xylan. We propose that deacetylated xylan is partially hydrolyzed in the cell walls, liberating xylo-oligosaccharides and their associated lignin oligomers from the cell wall network. Deacetylating xylan thus not only increases its susceptibility to hydrolytic enzymes during saccharification but also changes the cell wall architecture, increasing the extractability of lignin and xylan and facilitating saccharification.
Collapse
Affiliation(s)
- Prashant Mohan-Anupama Pawar
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-2063 USA
| | - Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden
| | - Sun-Li Chong
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, SE-412 96 Göteborg, Sweden
| | | | - Shamrat Shafiul Bashar
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden
| | - Tobias Sparrman
- Department of Chemistry, Umeå University, S-901 87 Umeå, Sweden
| | - Patrik Ahvenainen
- Department of Physics, University of Helsinki, P O Box. 64, 00014 Helsinki, Finland
| | | | - Merve Özparpucu
- Institute for Building Materials, Swiss Federal Institute of Technology (ETH Zürich), 8093 Zurich, Switzerland
- Laboratory of Applied Wood Materials, Empa, Dübendorf, 8600 Dübendorf, Switzerland
| | - Markus Rüggeberg
- Institute for Building Materials, Swiss Federal Institute of Technology (ETH Zürich), 8093 Zurich, Switzerland
- Laboratory of Applied Wood Materials, Empa, Dübendorf, 8600 Dübendorf, Switzerland
| | - Ritva Serimaa
- Department of Physics, University of Helsinki, P O Box. 64, 00014 Helsinki, Finland
| | - Martin Lawoko
- Department of Fiber and Polymer Technology, Wallenberg Wood Science Center, WWSC, Royal Institute of Technology, KTH, SE-100 44 Stockholm, Sweden
| | - Maija Tenkanen
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
| | - Leif J. Jönsson
- Department of Chemistry, Umeå University, S-901 87 Umeå, Sweden
| | - Ewa J. Mellerowicz
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden
| |
Collapse
|
53
|
Smith PJ, Wang HT, York WS, Peña MJ, Urbanowicz BR. Designer biomass for next-generation biorefineries: leveraging recent insights into xylan structure and biosynthesis. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:286. [PMID: 29213325 PMCID: PMC5708106 DOI: 10.1186/s13068-017-0973-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/20/2017] [Indexed: 05/02/2023]
Abstract
Xylans are the most abundant noncellulosic polysaccharides in lignified secondary cell walls of woody dicots and in both primary and secondary cell walls of grasses. These polysaccharides, which comprise 20-35% of terrestrial biomass, present major challenges for the efficient microbial bioconversion of lignocellulosic feedstocks to fuels and other value-added products. Xylans play a significant role in the recalcitrance of biomass to degradation, and their bioconversion requires metabolic pathways that are distinct from those used to metabolize cellulose. In this review, we discuss the key differences in the structural features of xylans across diverse plant species, how these features affect their interactions with cellulose and lignin, and recent developments in understanding their biosynthesis. In particular, we focus on how the combined structural and biosynthetic knowledge can be used as a basis for biomass engineering aimed at developing crops that are better suited as feedstocks for the bioconversion industry.
Collapse
Affiliation(s)
- Peter J. Smith
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Lab Laboratory, Oak Ridge, TN USA
| | - Hsin-Tzu Wang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Lab Laboratory, Oak Ridge, TN USA
| | - William S. York
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Lab Laboratory, Oak Ridge, TN USA
| | - Maria J. Peña
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Lab Laboratory, Oak Ridge, TN USA
| | - Breeanna R. Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA USA
- BioEnergy Science Center, Oak Ridge National Lab Laboratory, Oak Ridge, TN USA
| |
Collapse
|
54
|
Pauly M, Keegstra K. Biosynthesis of the Plant Cell Wall Matrix Polysaccharide Xyloglucan. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:235-59. [PMID: 26927904 DOI: 10.1146/annurev-arplant-043015-112222] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Xyloglucan (XyG) is a matrix polysaccharide that is present in the cell walls of all land plants. It consists of a β-1,4-linked glucan backbone that is further substituted with xylosyl residues. These xylosyl residues can be further substituted with other glycosyl and nonglycosyl substituents that vary depending on the plant family and specific tissue. Advances in plant mutant isolation and characterization, functional genomics, and DNA sequencing have led to the identification of nearly all transferases and synthases necessary to synthesize XyG. Thus, in terms of the molecular mechanisms of plant cell wall polysaccharide biosynthesis, XyG is the most well understood. However, much remains to be learned about the molecular mechanisms of polysaccharide assembly and the regulation of these processes. Knowledge of the XyG biosynthetic machinery allows the XyG structure to be tailored in planta to ascertain the functions of this polysaccharide and its substituents in plant growth and interactions with the environment.
Collapse
Affiliation(s)
- Markus Pauly
- Department of Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Kenneth Keegstra
- DOE Great Lakes Bioenergy Research Center, DOE Plant Research Laboratory, and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
55
|
Marriott PE, Gómez LD, McQueen-Mason SJ. Unlocking the potential of lignocellulosic biomass through plant science. THE NEW PHYTOLOGIST 2016; 209:1366-81. [PMID: 26443261 DOI: 10.1111/nph.13684] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/24/2015] [Indexed: 05/17/2023]
Abstract
The aim of producing sustainable liquid biofuels and chemicals from lignocellulosic biomass remains high on the sustainability agenda, but is challenged by the costs of producing fermentable sugars from these materials. Sugars from plant biomass can be fermented to alcohols or even alkanes, creating a liquid fuel in which carbon released on combustion is balanced by its photosynthetic capture. Large amounts of sugar are present in the woody, nonfood parts of crops and could be used for fuel production without compromising global food security. However, the sugar in woody biomass is locked up in the complex and recalcitrant lignocellulosic plant cell wall, making it difficult and expensive to extract. In this paper, we review what is known about the major polymeric components of woody plant biomass, with an emphasis on the molecular interactions that contribute to its recalcitrance to enzymatic digestion. In addition, we review the extensive research that has been carried out in order to understand and reduce lignocellulose recalcitrance and enable more cost-effective production of fuel from woody plant biomass.
Collapse
Affiliation(s)
- Poppy E Marriott
- CNAP, Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Leonardo D Gómez
- CNAP, Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | | |
Collapse
|
56
|
Yuan Y, Teng Q, Zhong R, Haghighat M, Richardson EA, Ye ZH. Mutations of Arabidopsis TBL32 and TBL33 Affect Xylan Acetylation and Secondary Wall Deposition. PLoS One 2016; 11:e0146460. [PMID: 26745802 PMCID: PMC4712945 DOI: 10.1371/journal.pone.0146460] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/17/2015] [Indexed: 01/11/2023] Open
Abstract
Xylan is a major acetylated polymer in plant lignocellulosic biomass and it can be mono- and di-acetylated at O-2 and O-3 as well as mono-acetylated at O-3 of xylosyl residues that is substituted with glucuronic acid (GlcA) at O-2. Based on the finding that ESK1, an Arabidopsis thaliana DUF231 protein, specifically mediates xylan 2-O- and 3-O-monoacetylation, we previously proposed that different acetyltransferase activities are required for regiospecific acetyl substitutions of xylan. Here, we demonstrate the functional roles of TBL32 and TBL33, two ESK1 close homologs, in acetyl substitutions of xylan. Simultaneous mutations of TBL32 and TBL33 resulted in a significant reduction in xylan acetyl content and endoxylanase digestion of the mutant xylan released GlcA-substituted xylooligomers without acetyl groups. Structural analysis of xylan revealed that the tbl32 tbl33 mutant had a nearly complete loss of 3-O-acetylated, 2-O-GlcA-substituted xylosyl residues. A reduction in 3-O-monoacetylated and 2,3-di-O-acetylated xylosyl residues was also observed. Simultaneous mutations of TBL32, TBL33 and ESK1 resulted in a severe reduction in xylan acetyl level down to 15% of that of the wild type, and concomitantly, severely collapsed vessels and stunted plant growth. In particular, the S2 layer of secondary walls in xylem vessels of tbl33 esk1 and tbl32 tbl33 esk1 exhibited an altered structure, indicating abnormal assembly of secondary wall polymers. These results demonstrate that TBL32 and TBL33 play an important role in xylan acetylation and normal deposition of secondary walls.
Collapse
Affiliation(s)
- Youxi Yuan
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, United States of America
| | - Quincy Teng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, 30602, United States of America
| | - Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, United States of America
| | - Marziyeh Haghighat
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, United States of America
| | - Elizabeth A Richardson
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, United States of America
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, United States of America
| |
Collapse
|
57
|
Pawar PMA, Derba-Maceluch M, Chong SL, Gómez LD, Miedes E, Banasiak A, Ratke C, Gaertner C, Mouille G, McQueen-Mason SJ, Molina A, Sellstedt A, Tenkanen M, Mellerowicz EJ. Expression of fungal acetyl xylan esterase in Arabidopsis thaliana improves saccharification of stem lignocellulose. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:387-97. [PMID: 25960248 PMCID: PMC11389080 DOI: 10.1111/pbi.12393] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/20/2015] [Accepted: 03/28/2015] [Indexed: 05/08/2023]
Abstract
Cell wall hemicelluloses and pectins are O-acetylated at specific positions, but the significance of these substitutions is poorly understood. Using a transgenic approach, we investigated how reducing the extent of O-acetylation in xylan affects cell wall chemistry, plant performance and the recalcitrance of lignocellulose to saccharification. The Aspergillus niger acetyl xylan esterase AnAXE1 was expressed in Arabidopsis under the control of either the constitutively expressed 35S CAMV promoter or a woody-tissue-specific GT43B aspen promoter, and the protein was targeted to the apoplast by its native signal peptide, resulting in elevated acetyl esterase activity in soluble and wall-bound protein extracts and reduced xylan acetylation. No significant alterations in cell wall composition were observed in the transgenic lines, but their xylans were more easily digested by a β-1,4-endoxylanase, and more readily extracted by hot water, acids or alkali. Enzymatic saccharification of lignocellulose after hot water and alkali pretreatments produced up to 20% more reducing sugars in several lines. Fermentation by Trametes versicolor of tissue hydrolysates from the line with a 30% reduction in acetyl content yielded ~70% more ethanol compared with wild type. Plants expressing 35S:AnAXE1 and pGT43B:AnAXE1 developed normally and showed increased resistance to the biotrophic pathogen Hyaloperonospora arabidopsidis, probably due to constitutive activation of defence pathways. However, unintended changes in xyloglucan and pectin acetylation were only observed in 35S:AnAXE1-expressing plants. This study demonstrates that postsynthetic xylan deacetylation in woody tissues is a promising strategy for optimizing lignocellulosic biomass for biofuel production.
Collapse
Affiliation(s)
- Prashant Mohan-Anupama Pawar
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, Sweden
| | - Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, Sweden
| | - Sun-Li Chong
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Leonardo D Gómez
- Center for Novel Agricultural Products Department of Biology, University of York, York, UK
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Alicja Banasiak
- Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Christine Ratke
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, Sweden
| | - Cyril Gaertner
- Institut Jean-Pierre Bourgin UMR 1318 INRA/AgroParisTech, Saclay Plant Sciences, Centre de Versailles-Grignon, Versailles Cedex, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin UMR 1318 INRA/AgroParisTech, Saclay Plant Sciences, Centre de Versailles-Grignon, Versailles Cedex, France
| | - Simon J McQueen-Mason
- Center for Novel Agricultural Products Department of Biology, University of York, York, UK
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Anita Sellstedt
- Department of Plant Physiology, Umea University, Umeå Plant Science Centre, Umeå, Sweden
| | - Maija Tenkanen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå Plant Science Centre, Umeå, Sweden
| |
Collapse
|
58
|
Guerriero G, Hausman J, Strauss J, Ertan H, Siddiqui KS. Lignocellulosic bioma
ss
: Biosynthesis, degradation, and industrial utilization. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400196] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Gea Guerriero
- Environmental Research and Innovation (ERIN) Luxembourg Institute of Science and Technology (LIST) Esch/Alzette Luxembourg
| | - Jean‐Francois Hausman
- Environmental Research and Innovation (ERIN) Luxembourg Institute of Science and Technology (LIST) Esch/Alzette Luxembourg
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology Fungal Genetics and Genomics Unit University of Natural Resources and Life Sciences Vienna (BOKU) University and Research Center Campus Tulln‐Technopol Tulln/Donau Austria
- Health and Environment Department Austrian Institute of Technology GmbH ‐ AIT University and Research Center Campus Tulln‐Technopol Tulln/Donau Austria
| | - Haluk Ertan
- School of Biotechnology and Biomolecular Sciences The University of New South Wales Sydney Australia
- Department of Molecular Biology and Genetics Istanbul University Istanbul Turkey
| | - Khawar Sohail Siddiqui
- Life Sciences Department King Fahd University of Petroleum and Minerals (KFUPM) Dhahran Kingdom of Saudi Arabia
| |
Collapse
|
59
|
Nafisi M, Stranne M, Fimognari L, Atwell S, Martens HJ, Pedas PR, Hansen SF, Nawrath C, Scheller HV, Kliebenstein DJ, Sakuragi Y. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses. FRONTIERS IN PLANT SCIENCE 2015; 6:550. [PMID: 26257757 PMCID: PMC4510344 DOI: 10.3389/fpls.2015.00550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/06/2015] [Indexed: 05/25/2023]
Abstract
The epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Majse Nafisi
- Copenhagen Plant Science CenterFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Maria Stranne
- Copenhagen Plant Science CenterFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Lorenzo Fimognari
- Copenhagen Plant Science CenterFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Susanna Atwell
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Helle J. Martens
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Pai R. Pedas
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Sara F. Hansen
- Copenhagen Plant Science CenterFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| | - Christiane Nawrath
- Department of Plant Molecular Biology, University of LausanneLausanne, Switzerland
| | - Henrik V. Scheller
- Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeley, CA, USA
| | - Daniel J. Kliebenstein
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
- Danish National Research Foundation Center DynaMOFrederiksberg, Denmark
| | - Yumiko Sakuragi
- Copenhagen Plant Science CenterFrederiksberg, Denmark
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Denmark
| |
Collapse
|
60
|
Carpita NC, McCann MC. Characterizing visible and invisible cell wall mutant phenotypes. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4145-63. [PMID: 25873661 DOI: 10.1093/jxb/erv090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
About 10% of a plant's genome is devoted to generating the protein machinery to synthesize, remodel, and deconstruct the cell wall. High-throughput genome sequencing technologies have enabled a reasonably complete inventory of wall-related genes that can be assembled into families of common evolutionary origin. Assigning function to each gene family member has been aided immensely by identification of mutants with visible phenotypes or by chemical and spectroscopic analysis of mutants with 'invisible' phenotypes of modified cell wall composition and architecture that do not otherwise affect plant growth or development. This review connects the inference of gene function on the basis of deviation from the wild type in genetic functional analyses to insights provided by modern analytical techniques that have brought us ever closer to elucidating the sequence structures of the major polysaccharide components of the plant cell wall.
Collapse
Affiliation(s)
- Nicholas C Carpita
- Department of Botany & Plant Pathology, 915 West State Street, Purdue University, West Lafayette, IN 47907, USA Department of Biological Sciences, 915 West State Street, Purdue University, West Lafayette, IN 47907, USA Bindley Bioscience Center, 1203 West State Street, Purdue University, West Lafayette, IN 47907, USA
| | - Maureen C McCann
- Department of Biological Sciences, 915 West State Street, Purdue University, West Lafayette, IN 47907, USA Bindley Bioscience Center, 1203 West State Street, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
61
|
Xiong G, Dama M, Pauly M. Glucuronic Acid Moieties on Xylan Are Functionally Equivalent to O-Acetyl-Substituents. MOLECULAR PLANT 2015; 8:1119-21. [PMID: 25743197 DOI: 10.1016/j.molp.2015.02.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/12/2015] [Accepted: 02/25/2015] [Indexed: 05/17/2023]
Affiliation(s)
- Guangyan Xiong
- Energy Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - Murali Dama
- Energy Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - Markus Pauly
- Energy Biosciences Institute, University of California, Berkeley, CA 94720, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
62
|
McCann MC, Carpita NC. Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4109-18. [PMID: 26060266 DOI: 10.1093/jxb/erv267] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Recalcitrance of plant biomass to enzymatic hydrolysis for biofuel production is thought to be a property conferred by lignin or lignin-carbohydrate complexes. However, chemical catalytic and thermochemical conversion pathways, either alone or in combination with biochemical and fermentative pathways, now provide avenues to utilize lignin and to expand the product range beyond ethanol or butanol. To capture all of the carbon in renewable biomass, both lignin-derived aromatics and polysaccharide-derived sugars need to be transformed by catalysts to liquid hydrocarbons and high-value co-products. We offer a new definition of recalcitrance as those features of biomass which disproportionately increase energy requirements in conversion processes, increase the cost and complexity of operations in the biorefinery, and/or reduce the recovery of biomass carbon into desired products. The application of novel processing technologies applied to biomass reveal new determinants of recalcitrance that comprise a broad range of molecular, nanoscale, and macroscale factors. Sampling natural genetic diversity within a species, transgenic approaches, and synthetic biology approaches are all strategies that can be used to select biomass for reduced recalcitrance in various pretreatments and conversion pathways.
Collapse
Affiliation(s)
- Maureen C McCann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | - Nicholas C Carpita
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907-1392, USA
| |
Collapse
|
63
|
Chong SL, Derba-Maceluch M, Koutaniemi S, Gómez LD, McQueen-Mason SJ, Tenkanen M, Mellerowicz EJ. Active fungal GH115 α-glucuronidase produced in Arabidopsis thaliana affects only the UX1-reactive glucuronate decorations on native glucuronoxylans. BMC Biotechnol 2015; 15:56. [PMID: 26084671 PMCID: PMC4472178 DOI: 10.1186/s12896-015-0154-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/27/2015] [Indexed: 12/22/2022] Open
Abstract
Background Expressing microbial polysaccharide-modifying enzymes in plants is an attractive approach to custom tailor plant lignocellulose and to study the importance of wall structures to plant development. Expression of α-glucuronidases in plants to modify the structures of glucuronoxylans has not been yet attempted. Glycoside hydrolase (GH) family 115 α-glucuronidases cleave the internal α-D-(4-O-methyl)glucopyranosyluronic acid ((Me)GlcA) from xylans or xylooligosaccharides. In this work, a GH115 α-glucuronidase from Schizophyllum commune, ScAGU115, was expressed in Arabidopsis thaliana and targeted to apoplast. The transgene effects on native xylans’ structures, plant development, and lignocellulose saccharification were evaluated and compared to those of knocked out glucuronyltransferases AtGUX1 and AtGUX2. Results The ScAGU115 extracted from cell walls of Arabidopsis was active on the internally substituted aldopentaouronic acid (XUXX). The transgenic plants did not show any change in growth or in lignocellulose saccharification. The cell wall (Me)GlcA and other non-cellulosic sugars, as well as the lignin content, remained unchanged. In contrast, the gux1gux2 double mutant showed a 70% decrease in (Me)GlcA to xylose molar ratio, and, interestingly, a 60% increase in the xylose content. Whereas ScAGU115-expressing plants exhibited a decreased signal in native secondary walls from the monoclonal antibody UX1 that recognizes (Me)GlcA on non-acetylated xylan, the signal was not affected after wall deacetylation. In contrast, gux1gux2 mutant was lacking UX1 signals in both native and deacetylated cell walls. This indicates that acetyl substitution on the xylopyranosyl residue carrying (Me)GlcA or on the neighboring xylopyranosyl residues may restrict post-synthetic modification of xylans by ScAGU115 in planta. Conclusions Active GH115 α-glucuronidase has been produced for the first time in plants. The cell wall–targeted ScAGU115 was shown to affect those glucuronate substitutions of xylan, which are accessible to UX1 antibody and constitute a small fraction in Arabidopsis, whereas majority of (Me)GlcA substitutions were resistant, most likely due to the shielding by acetyl groups. Plants expressing ScAGU115 did not show any defects under laboratory conditions indicating that the UX1 epitope of xylan is not essential under these conditions. Moreover the removal of the UX1 xylan epitope does not affect lignocellulose saccharification. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0154-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sun-Li Chong
- Department of Food and Environmental Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, Helsinki, 00014, Finland.
| | - Marta Derba-Maceluch
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 901-83, Sweden.
| | - Sanna Koutaniemi
- Department of Food and Environmental Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, Helsinki, 00014, Finland.
| | - Leonardo D Gómez
- Center for Novel Agricultural Products Department of Biology, University of York, York, YO10 5DD, UK.
| | - Simon J McQueen-Mason
- Center for Novel Agricultural Products Department of Biology, University of York, York, YO10 5DD, UK.
| | - Maija Tenkanen
- Department of Food and Environmental Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, Helsinki, 00014, Finland.
| | - Ewa J Mellerowicz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 901-83, Sweden.
| |
Collapse
|
64
|
Loqué D, Scheller HV, Pauly M. Engineering of plant cell walls for enhanced biofuel production. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:151-61. [PMID: 26051036 DOI: 10.1016/j.pbi.2015.05.018] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/07/2015] [Accepted: 05/16/2015] [Indexed: 05/17/2023]
Abstract
The biomass of plants consists predominately of cell walls, a sophisticated composite material composed of various polymer networks including numerous polysaccharides and the polyphenol lignin. In order to utilize this renewable, highly abundant resource for the production of commodity chemicals such as biofuels, major hurdles have to be surpassed to reach economical viability. Recently, major advances in the basic understanding of the synthesis of the various wall polymers and its regulation has enabled strategies to alter the qualitative composition of wall materials. Such emerging strategies include a reduction/alteration of the lignin network to enhance polysaccharide accessibility, reduction of polymer derived processing inhibitors, and increases in polysaccharides with a high hexose/pentose ratio.
Collapse
Affiliation(s)
- Dominique Loqué
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94702, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94702, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94702, USA
| | - Markus Pauly
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94702, USA.
| |
Collapse
|
65
|
Schultink A, Naylor D, Dama M, Pauly M. The role of the plant-specific ALTERED XYLOGLUCAN9 protein in Arabidopsis cell wall polysaccharide O-acetylation. PLANT PHYSIOLOGY 2015; 167:1271-83. [PMID: 25681330 PMCID: PMC4378174 DOI: 10.1104/pp.114.256479] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 02/05/2015] [Indexed: 05/17/2023]
Abstract
A mutation in the ALTERED XYLOGLUCAN9 (AXY9) gene was found to be causative for the decreased xyloglucan acetylation phenotype of the axy9.1 mutant, which was identified in a forward genetic screen for Arabidopsis (Arabidopsis thaliana) mutants. The axy9.1 mutant also exhibits decreased O-acetylation of xylan, implying that the AXY9 protein has a broad role in polysaccharide acetylation. An axy9 insertional mutant exhibits severe growth defects and collapsed xylem, demonstrating the importance of wall polysaccharide O-acetylation for normal plant growth and development. Localization and topological experiments indicate that the active site of the AXY9 protein resides within the Golgi lumen. The AXY9 protein appears to be a component of the plant cell wall polysaccharide acetylation pathway, which also includes the REDUCED WALL ACETYLATION and TRICHOME BIREFRINGENCE-LIKE proteins. The AXY9 protein is distinct from the TRICHOME BIREFRINGENCE-LIKE proteins, reported to be polysaccharide acetyltransferases, but does share homology with them and other acetyltransferases, suggesting that the AXY9 protein may act to produce an acetylated intermediate that is part of the O-acetylation pathway.
Collapse
Affiliation(s)
- Alex Schultink
- Department of Plant and Microbial Biology (A.S., D.N., M.P.) and Energy Biosciences Institute (M.D., M.P.), University of California, Berkeley, California 94720
| | - Dan Naylor
- Department of Plant and Microbial Biology (A.S., D.N., M.P.) and Energy Biosciences Institute (M.D., M.P.), University of California, Berkeley, California 94720
| | - Murali Dama
- Department of Plant and Microbial Biology (A.S., D.N., M.P.) and Energy Biosciences Institute (M.D., M.P.), University of California, Berkeley, California 94720
| | - Markus Pauly
- Department of Plant and Microbial Biology (A.S., D.N., M.P.) and Energy Biosciences Institute (M.D., M.P.), University of California, Berkeley, California 94720
| |
Collapse
|
66
|
|
67
|
Ratke C, Pawar PMA, Balasubramanian VK, Naumann M, Duncranz ML, Derba-Maceluch M, Gorzsás A, Endo S, Ezcurra I, Mellerowicz EJ. Populus GT43 family members group into distinct sets required for primary and secondary wall xylan biosynthesis and include useful promoters for wood modification. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:26-37. [PMID: 25100045 DOI: 10.1111/pbi.12232] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/24/2014] [Accepted: 06/29/2014] [Indexed: 05/05/2023]
Abstract
The plant GT43 protein family includes xylosyltransferases that are known to be required for xylan backbone biosynthesis, but have incompletely understood specificities. RT-qPCR and histochemical (GUS) analyses of expression patterns of GT43 members in hybrid aspen, reported here, revealed that three clades of the family have markedly differing specificity towards secondary wall-forming cells (wood and extraxylary fibres). Intriguingly, GT43A and B genes (corresponding to the Arabidopsis IRX9 clade) showed higher specificity for secondary-walled cells than GT43C and D genes (IRX14 clade), although both IRX9 and IRX14 are required for xylosyltransferase activity. The remaining genes, GT43E, F and G (IRX9-L clade), showed broad expression patterns. Transient transactivation analyses of GT43A and B reporters demonstrated that they are activated by PtxtMYB021 and PNAC085 (master secondary wall switches), mediated in PtxtMYB021 activation by an AC element. The high observed secondary cell wall specificity of GT43B expression prompted tests of the efficiency of its promoter (pGT43B), relative to the CaMV 35S (35S) promoter, for overexpressing a xylan acetyl esterase (CE5) or downregulating REDUCED WALL ACETYLATION (RWA) family genes and thus engineering wood acetylation. CE5 expression was weaker when driven by pGT43B, but it reduced wood acetyl content substantially more efficiently than the 35S promoter. RNAi silencing of the RWA family, which was ineffective using 35S, was achieved when using GT43B promoter. These results show the utility of the GT43B promoter for genetically engineering properties of wood and fibres.
Collapse
Affiliation(s)
- Christine Ratke
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
de Souza A, Hull PA, Gille S, Pauly M. Identification and functional characterization of the distinct plant pectin esterases PAE8 and PAE9 and their deletion mutants. PLANTA 2014; 240:1123-38. [PMID: 25115560 PMCID: PMC4200376 DOI: 10.1007/s00425-014-2139-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/28/2014] [Indexed: 05/20/2023]
Abstract
PAE8 and PAE9 have pectin acetylesterase activity and together remove one-third of the cell wall acetate associated with pectin formation in Arabidopsis leaves. In pae8 and pae9 mutants, substantial amounts of acetate accumulate in cell walls. In addition, the inflorescence stem height is decreased. Pectic polysaccharides constitute a significant part of the primary cell walls in dicotyledonous angiosperms. This diverse group of polysaccharides has been implicated in several physiological processes including cell-to-cell adhesion and pathogenesis. Several pectic polysaccharides contain acetyl-moieties directly affecting their physical properties such as gelling capacity, an important trait for the food industry. In order to gain further insight into the biological role of pectin acetylation, a reverse genetics approach was used to investigate the function of genes that are members of the Pectin AcetylEsterase gene family (PAE) in Arabidopsis. Mutations in two members of the PAE family (PAE8 and PAE9) lead to cell walls with an approximately 20 % increase in acetate content. High-molecular-weight fractions enriched in pectic rhamnogalacturonan I (RGI) extracted from the mutants had increased acetate content. In addition, the pae8 mutant displayed increased acetate content also in low-molecular-weight pectic fractions. The pae8/pae9-2 double mutant exhibited an additive effect by increasing wall acetate content by up to 37 %, suggesting that the two genes are not redundant and act on acetyl-substituents of different pectic domains. The pae8 and pae8/pae9-2 mutants exhibit reduced inflorescence growth underscoring the role of pectic acetylation in plant development. When heterologously expressed and purified, both gene products were shown to release acetate from the corresponding mutant pectic fractions in vitro. PAEs play a significant role in modulating the acetylation state of pectic polymers in the wall, highlighting the importance of apoplastic metabolism for the plant cell and plant growth.
Collapse
Affiliation(s)
- Amancio de Souza
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Energy Biosciences Building 212C, 2151 Berkeley Way, Berkeley, CA 94720-5230 USA
| | - Philip A. Hull
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Energy Biosciences Building 212C, 2151 Berkeley Way, Berkeley, CA 94720-5230 USA
- Gladstone Institute of Virology and Immunology, PO Box 419100, San Francisco, CA 94141-9100 USA
| | - Sascha Gille
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Energy Biosciences Building 212C, 2151 Berkeley Way, Berkeley, CA 94720-5230 USA
- Bayer CropScience, Weed Control Biochemistry and Biotechnology, 65929 Frankfurt am Main, Germany
| | - Markus Pauly
- Department of Plant and Microbial Biology, Energy Biosciences Institute, University of California, Energy Biosciences Building 212C, 2151 Berkeley Way, Berkeley, CA 94720-5230 USA
| |
Collapse
|
69
|
Urbanowicz BR, Peña MJ, Moniz HA, Moremen KW, York WS. Two Arabidopsis proteins synthesize acetylated xylan in vitro. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:197-206. [PMID: 25141999 PMCID: PMC4184958 DOI: 10.1111/tpj.12643] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/18/2014] [Accepted: 08/01/2014] [Indexed: 05/17/2023]
Abstract
Xylan is the third most abundant glycopolymer on earth after cellulose and chitin. As a major component of wood, grain and forage, this natural biopolymer has far-reaching impacts on human life. This highly acetylated cell wall polysaccharide is a vital component of the plant cell wall, which functions as a molecular scaffold, providing plants with mechanical strength and flexibility. Mutations that impair synthesis of the xylan backbone give rise to plants that fail to grow normally because of collapsed xylem cells in the vascular system. Phenotypic analysis of these mutants has implicated many proteins in xylan biosynthesis; however, the enzymes directly responsible for elongation and acetylation of the xylan backbone have not been unambiguously identified. Here we provide direct biochemical evidence that two Arabidopsis thaliana proteins, IRREGULAR XYLEM 10-L (IRX10-L) and ESKIMO1/TRICOME BIREFRINGENCE 29 (ESK1/TBL29), catalyze these respective processes in vitro. By identifying the elusive xylan synthase and establishing ESK1/TBL29 as the archetypal plant polysaccharide O-acetyltransferase, we have resolved two long-standing questions in plant cell wall biochemistry. These findings shed light on integral steps in the molecular pathways used by plants to synthesize a major component of the world's biomass and expand our toolkit for producing glycopolymers with valuable properties.
Collapse
Affiliation(s)
- Breeanna R. Urbanowicz
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Maria J. Peña
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Corresponding authors: Maria J. Peña, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA, +01 (706) 542-4419, William S. York, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA, +01 (706) 542-4628 ,
| | - Heather A. Moniz
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - William S. York
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
- Corresponding authors: Maria J. Peña, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA, +01 (706) 542-4419, William S. York, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA, +01 (706) 542-4628 ,
| |
Collapse
|
70
|
Busse-Wicher M, Gomes TCF, Tryfona T, Nikolovski N, Stott K, Grantham NJ, Bolam DN, Skaf MS, Dupree P. The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:492-506. [PMID: 24889696 PMCID: PMC4140553 DOI: 10.1111/tpj.12575] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 05/17/2023]
Abstract
The interaction between xylan and cellulose microfibrils is important for secondary cell wall properties in vascular plants; however, the molecular arrangement of xylan in the cell wall and the nature of the molecular bonding between the polysaccharides are unknown. In dicots, the xylan backbone of β-(1,4)-linked xylosyl residues is decorated by occasional glucuronic acid, and approximately one-half of the xylosyl residues are O-acetylated at C-2 or C-3. We recently proposed that the even, periodic spacing of GlcA residues in the major domain of dicot xylan might allow the xylan backbone to fold as a twofold helical screw to facilitate alignment along, and stable interaction with, cellulose fibrils; however, such an interaction might be adversely impacted by random acetylation of the xylan backbone. Here, we investigated the arrangement of acetyl residues in Arabidopsis xylan using mass spectrometry and NMR. Alternate xylosyl residues along the backbone are acetylated. Using molecular dynamics simulation, we found that a twofold helical screw conformation of xylan is stable in interactions with both hydrophilic and hydrophobic cellulose faces. Tight docking of xylan on the hydrophilic faces is feasible only for xylan decorated on alternate residues and folded as a twofold helical screw. The findings suggest an explanation for the importance of acetylation for xylan-cellulose interactions, and also have implications for our understanding of cell wall molecular architecture and properties, and biological degradation by pathogens and fungi. They will also impact strategies to improve lignocellulose processing for biorefining and bioenergy.
Collapse
Affiliation(s)
- Marta Busse-Wicher
- Department of Biochemistry, University Of CambridgeTennis Court Road, Cambridge, CB2 1QW, UK
| | - Thiago C F Gomes
- Institute of Chemistry, University of Campinas-UNICAMPPO Box 6154, Campinas, SP, 13084-862, Brazil
| | - Theodora Tryfona
- Department of Biochemistry, University Of CambridgeTennis Court Road, Cambridge, CB2 1QW, UK
| | - Nino Nikolovski
- Department of Biochemistry, University Of CambridgeTennis Court Road, Cambridge, CB2 1QW, UK
| | - Katherine Stott
- Department of Biochemistry, University Of CambridgeTennis Court Road, Cambridge, CB2 1QW, UK
| | - Nicholas J Grantham
- Department of Biochemistry, University Of CambridgeTennis Court Road, Cambridge, CB2 1QW, UK
| | - David N Bolam
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle UniversityNewcastle upon Tyne, NE2 4HH, UK
| | - Munir S Skaf
- Institute of Chemistry, University of Campinas-UNICAMPPO Box 6154, Campinas, SP, 13084-862, Brazil
| | - Paul Dupree
- Department of Biochemistry, University Of CambridgeTennis Court Road, Cambridge, CB2 1QW, UK
- *For correspondence (e-mail )
| |
Collapse
|
71
|
Chong SL, Virkki L, Maaheimo H, Juvonen M, Derba-Maceluch M, Koutaniemi S, Roach M, Sundberg B, Tuomainen P, Mellerowicz EJ, Tenkanen M. O-Acetylation of glucuronoxylan in Arabidopsis thaliana wild type and its change in xylan biosynthesis mutants. Glycobiology 2014; 24:494-506. [DOI: 10.1093/glycob/cwu017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
72
|
Plant Cell Wall Polysaccharides: Structure and Biosynthesis. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_73-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
73
|
Rennie EA, Scheller HV. Xylan biosynthesis. Curr Opin Biotechnol 2013; 26:100-7. [PMID: 24679265 DOI: 10.1016/j.copbio.2013.11.013] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/05/2013] [Accepted: 11/28/2013] [Indexed: 12/24/2022]
Abstract
Plant cells are surrounded by a rigid wall made up of cellulose microfibrils, pectins, hemicelluloses, and lignin. This cell wall provides structure and protection for plant cells. In grasses and in dicot secondary cell walls, the major hemicellulose is a polymer of β-(1,4)-linked xylose units called xylan. Unlike cellulose--which is synthesized by large complexes at the plasma membrane--xylan is synthesized by enzymes in the Golgi apparatus. Xylan synthesis thus requires the coordinated action and regulation of these synthetic enzymes as well as others that synthesize and transport substrates into the Golgi. Recent research has identified several genes involved in xylan synthesis, some of which have already been used in engineering efforts to create plants that are better suited for biofuel production.
Collapse
Affiliation(s)
- Emilie A Rennie
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Henrik Vibe Scheller
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|