51
|
Bakshi M, Vahabi K, Bhattacharya S, Sherameti I, Varma A, Yeh KW, Baldwin I, Johri AK, Oelmüller R. WRKY6 restricts Piriformospora indica-stimulated and phosphate-induced root development in Arabidopsis. BMC PLANT BIOLOGY 2015; 15:305. [PMID: 26718529 PMCID: PMC4697310 DOI: 10.1186/s12870-015-0673-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 12/03/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Arabidopsis root growth is stimulated by Piriformospora indica, phosphate limitation and inactivation of the WRKY6 transcription factor. Combinations of these factors induce unexpected alterations in root and shoot growth, root architecture and root gene expression profiles. RESULTS The results demonstrate that P. indica promotes phosphate uptake and root development under Pi limitation in wrky6 mutant. This is associated with the stimulation of PHOSPHATE1 expression and ethylene production. Expression profiles from the roots of wrky6 seedlings identified genes involved in hormone metabolism, transport, meristem, cell and plastid proliferation, and growth regulation. 25 miRNAs were also up-regulated in these roots. We generated and discuss here a list of common genes which are regulated in growing roots and which are common to all three growth stimuli investigated in this study. CONCLUSION Since root development of wrky6 plants exposed to P. indica under phosphate limitation is strongly promoted, we propose that common genes which respond to all three growth stimuli are central for the control of root growth and architecture. They can be tested for optimizing root growth in model and agricultural plants.
Collapse
Affiliation(s)
- Madhunita Bakshi
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburgerstr. 159, D-07743, Jena, Germany.
| | - Khabat Vahabi
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburgerstr. 159, D-07743, Jena, Germany.
| | - Samik Bhattacharya
- Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Irena Sherameti
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburgerstr. 159, D-07743, Jena, Germany.
| | - Ajit Varma
- Amity Institute of Microbial Technology, AUUP, Noida, India.
| | - Kai-Wun Yeh
- Institute of Plant Biology, Taiwan National University, Taipei, Taiwan.
| | - Ian Baldwin
- Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ralf Oelmüller
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburgerstr. 159, D-07743, Jena, Germany.
| |
Collapse
|
52
|
Zhuang X, Cui Y, Gao C, Jiang L. Endocytic and autophagic pathways crosstalk in plants. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:39-47. [PMID: 26453966 DOI: 10.1016/j.pbi.2015.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/25/2015] [Accepted: 08/30/2015] [Indexed: 05/19/2023]
Abstract
The vacuole is the central site for both storage and metabolism in plant cells and mediates multiple cellular events during plant development and growth. Cargo proteins are usually sequestered into membrane-bound organelles and delivered into the vacuole upon membrane fusion. Two major organelles are responsible for the recognition and transport of cargos targeted to the vacuole: the single-membrane multivesicular body (MVB) or prevacuolar compartment (PVC) and the double-membrane autophagosome. Here, we will highlight recent discoveries about MVB/PVC-mediated and autophagosome-mediated protein trafficking and degradation, and will pay special attention to a possible interplay between the endocytic and autophagic pathways in regulating vacuolar degradation in plants.
Collapse
Affiliation(s)
- Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yong Cui
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Caiji Gao
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
53
|
Lin Y, Ding Y, Wang J, Shen J, Kung CH, Zhuang X, Cui Y, Yin Z, Xia Y, Lin H, Robinson DG, Jiang L. Exocyst-Positive Organelles and Autophagosomes Are Distinct Organelles in Plants. PLANT PHYSIOLOGY 2015; 169:1917-32. [PMID: 26358417 PMCID: PMC4634068 DOI: 10.1104/pp.15.00953] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/09/2015] [Indexed: 05/23/2023]
Abstract
Autophagosomes are organelles that deliver cytosolic proteins for degradation in the vacuole of the cell. In contrast, exocyst-positive organelles (EXPO) deliver cytosolic proteins to the cell surface and therefore represent a form of unconventional protein secretion. Because both structures have two boundary membranes, it has been suggested that they may have been falsely treated as separate entities. Using suspension culture cells and root tissue cells of transgenic Arabidopsis (Arabidopsis thaliana) plants expressing either the EXPO marker Arabidopsis Exo70E2-GFP or the autophagosome marker yellow fluorescent protein (YFP)-autophagy-related gene 8e/f (ATG8e/f), and using specific antibodies against Exo70E2 and ATG8, we have now established that, in normally growing cells, EXPO and autophagosomes are distinct from one another. However, when cells/roots are subjected to autophagy induction, EXPO as well as autophagosomes fuse with the vacuole. In the presence of concanamycin A, the punctate fluorescent signals from both organelles inside the vacuole remain visible for hours and overlap to a significant degree. Tonoplast staining with FM4-64/YFP-Rab7-like GTPase/YFP-vesicle-associated membrane protein711 confirmed the internalization of tonoplast membrane concomitant with the sequestration of EXPO and autophagosomes. This suggests that EXPO and autophagosomes may be related to one another; however, whereas induction of autophagy led to an increase in the amount of ATG8 recruited to membranes, Exo70E2 did not respond in a similar manner.
Collapse
Affiliation(s)
- Youshun Lin
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.L., Y.D., J.W., J.S., C.H.K., X.Z., Y.C., L.J.);CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518057, China (L.J.);Department of Biology, Hong Kong Baptist University, Hong Kong, China (Z.Y., Y.X.);Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.X.);National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (H.L.); andCentre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany (D.G.R.)
| | - Yu Ding
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.L., Y.D., J.W., J.S., C.H.K., X.Z., Y.C., L.J.);CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518057, China (L.J.);Department of Biology, Hong Kong Baptist University, Hong Kong, China (Z.Y., Y.X.);Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.X.);National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (H.L.); andCentre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany (D.G.R.)
| | - Juan Wang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.L., Y.D., J.W., J.S., C.H.K., X.Z., Y.C., L.J.);CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518057, China (L.J.);Department of Biology, Hong Kong Baptist University, Hong Kong, China (Z.Y., Y.X.);Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.X.);National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (H.L.); andCentre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany (D.G.R.)
| | - Jinbo Shen
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.L., Y.D., J.W., J.S., C.H.K., X.Z., Y.C., L.J.);CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518057, China (L.J.);Department of Biology, Hong Kong Baptist University, Hong Kong, China (Z.Y., Y.X.);Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.X.);National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (H.L.); andCentre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany (D.G.R.)
| | - Chun Hong Kung
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.L., Y.D., J.W., J.S., C.H.K., X.Z., Y.C., L.J.);CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518057, China (L.J.);Department of Biology, Hong Kong Baptist University, Hong Kong, China (Z.Y., Y.X.);Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.X.);National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (H.L.); andCentre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany (D.G.R.)
| | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.L., Y.D., J.W., J.S., C.H.K., X.Z., Y.C., L.J.);CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518057, China (L.J.);Department of Biology, Hong Kong Baptist University, Hong Kong, China (Z.Y., Y.X.);Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.X.);National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (H.L.); andCentre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany (D.G.R.)
| | - Yong Cui
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.L., Y.D., J.W., J.S., C.H.K., X.Z., Y.C., L.J.);CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518057, China (L.J.);Department of Biology, Hong Kong Baptist University, Hong Kong, China (Z.Y., Y.X.);Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.X.);National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (H.L.); andCentre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany (D.G.R.)
| | - Zhao Yin
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.L., Y.D., J.W., J.S., C.H.K., X.Z., Y.C., L.J.);CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518057, China (L.J.);Department of Biology, Hong Kong Baptist University, Hong Kong, China (Z.Y., Y.X.);Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.X.);National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (H.L.); andCentre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany (D.G.R.)
| | - Yiji Xia
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.L., Y.D., J.W., J.S., C.H.K., X.Z., Y.C., L.J.);CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518057, China (L.J.);Department of Biology, Hong Kong Baptist University, Hong Kong, China (Z.Y., Y.X.);Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.X.);National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (H.L.); andCentre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany (D.G.R.)
| | - Hongxuan Lin
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.L., Y.D., J.W., J.S., C.H.K., X.Z., Y.C., L.J.);CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518057, China (L.J.);Department of Biology, Hong Kong Baptist University, Hong Kong, China (Z.Y., Y.X.);Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.X.);National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (H.L.); andCentre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany (D.G.R.)
| | - David G Robinson
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.L., Y.D., J.W., J.S., C.H.K., X.Z., Y.C., L.J.);CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518057, China (L.J.);Department of Biology, Hong Kong Baptist University, Hong Kong, China (Z.Y., Y.X.);Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.X.);National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (H.L.); andCentre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany (D.G.R.)
| | - Liwen Jiang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.L., Y.D., J.W., J.S., C.H.K., X.Z., Y.C., L.J.);CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518057, China (L.J.);Department of Biology, Hong Kong Baptist University, Hong Kong, China (Z.Y., Y.X.);Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (Y.X.);National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (H.L.); andCentre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany (D.G.R.)
| |
Collapse
|
54
|
Cardona-López X, Cuyas L, Marín E, Rajulu C, Irigoyen ML, Gil E, Puga MI, Bligny R, Nussaume L, Geldner N, Paz-Ares J, Rubio V. ESCRT-III-Associated Protein ALIX Mediates High-Affinity Phosphate Transporter Trafficking to Maintain Phosphate Homeostasis in Arabidopsis. THE PLANT CELL 2015; 27:2560-81. [PMID: 26342016 PMCID: PMC4815105 DOI: 10.1105/tpc.15.00393] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/03/2015] [Accepted: 08/14/2015] [Indexed: 05/18/2023]
Abstract
Prior to the release of their cargoes into the vacuolar lumen, sorting endosomes mature into multivesicular bodies (MVBs) through the action of ENDOSOMAL COMPLEX REQUIRED FOR TRANSPORT (ESCRT) protein complexes. MVB-mediated sorting of high-affinity phosphate transporters (PHT1) to the vacuole limits their plasma membrane levels under phosphate-sufficient conditions, a process that allows plants to maintain phosphate homeostasis. Here, we describe ALIX, a cytosolic protein that associates with MVB by interacting with ESCRT-III subunit SNF7 and mediates PHT1;1 trafficking to the vacuole in Arabidopsis thaliana. We show that the partial loss-of-function mutant alix-1 displays reduced vacuolar degradation of PHT1;1. ALIX derivatives containing the alix-1 mutation showed reduced interaction with SNF7, providing a simple molecular explanation for impaired cargo trafficking in alix-1 mutants. In fact, the alix-1 mutation also hampered vacuolar sorting of the brassinosteroid receptor BRI1. We also show that alix-1 displays altered vacuole morphogenesis, implying a new role for ALIX proteins in vacuolar biogenesis, likely acting as part of ESCRT-III complexes. In line with a presumed broad target spectrum, the alix-1 mutation is pleiotropic, leading to reduced plant growth and late flowering, with stronger alix mutations being lethal, indicating that ALIX participates in diverse processes in plants essential for their life.
Collapse
Affiliation(s)
| | - Laura Cuyas
- Centro Nacional de Biotecnología (CNB-CSIC) Darwin, 28049 Madrid, Spain Unité Mixte de Recherche 6191, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique, Aix-Marseille II, F-13108 Saint-Paul-lès-Durance Cedex, France
| | - Elena Marín
- Unité Mixte de Recherche 6191, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique, Aix-Marseille II, F-13108 Saint-Paul-lès-Durance Cedex, France
| | - Charukesi Rajulu
- Centro Nacional de Biotecnología (CNB-CSIC) Darwin, 28049 Madrid, Spain
| | | | - Erica Gil
- Centro Nacional de Biotecnología (CNB-CSIC) Darwin, 28049 Madrid, Spain
| | - María Isabel Puga
- Centro Nacional de Biotecnología (CNB-CSIC) Darwin, 28049 Madrid, Spain
| | - Richard Bligny
- Laboratoire de Physiologie Cellulaire Vegetale, Unité Mixte de Recherche 5168, Institut de Recherche en Technologie et Sciences pour le Vivant, CEA, Grenoble Cedex 9, France
| | - Laurent Nussaume
- Unité Mixte de Recherche 6191, Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique, Aix-Marseille II, F-13108 Saint-Paul-lès-Durance Cedex, France
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Javier Paz-Ares
- Centro Nacional de Biotecnología (CNB-CSIC) Darwin, 28049 Madrid, Spain
| | - Vicente Rubio
- Centro Nacional de Biotecnología (CNB-CSIC) Darwin, 28049 Madrid, Spain
| |
Collapse
|
55
|
Zhao Q, Gao C, Lee P, Liu L, Li S, Hu T, Shen J, Pan S, Ye H, Chen Y, Cao W, Cui Y, Zeng P, Yu S, Gao Y, Chen L, Mo B, Liu X, Xiao S, Zhao Y, Zhong S, Chen X, Jiang L. Fast-suppressor screening for new components in protein trafficking, organelle biogenesis and silencing pathway in Arabidopsis thaliana using DEX-inducible FREE1-RNAi plants. J Genet Genomics 2015; 42:319-30. [PMID: 26165498 DOI: 10.1016/j.jgg.2015.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/21/2015] [Accepted: 03/27/2015] [Indexed: 12/20/2022]
Abstract
Membrane trafficking is essential for plant growth and responses to external signals. The plant unique FYVE domain-containing protein FREE1 is a component of the ESCRT complex (endosomal sorting complex required for transport). FREE1 plays multiple roles in regulating protein trafficking and organelle biogenesis including the formation of intraluminal vesicles of multivesicular body (MVB), vacuolar protein transport and vacuole biogenesis, and autophagic degradation. FREE1 knockout plants show defective MVB formation, abnormal vacuolar transport, fragmented vacuoles, accumulated autophagosomes, and seedling lethality. To further uncover the underlying mechanisms of FREE1 function in plants, we performed a forward genetic screen for mutants that suppressed the seedling lethal phenotype of FREE1-RNAi transgenic plants. The obtained mutants are termed as suppressors of free1 (sof). To date, 229 putative sof mutants have been identified. Barely detecting of FREE1 protein with M3 plants further identified 84 FREE1-related suppressors. Also 145 mutants showing no reduction of FREE1 protein were termed as RNAi-related mutants. Through next-generation sequencing (NGS) of bulked DNA from F2 mapping population of two RNAi-related sof mutants, FREE1-RNAi T-DNA inserted on chromosome 1 was identified and the causal mutation of putative sof mutant is being identified similarly. These FREE1- and RNAi-related sof mutants will be useful tools and resources for illustrating the underlying mechanisms of FREE1 function in intracellular trafficking and organelle biogenesis, as well as for uncovering the new components involved in the regulation of silencing pathways in plants.
Collapse
Affiliation(s)
- Qiong Zhao
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Caiji Gao
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - PoShing Lee
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Lin Liu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Shaofang Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Tangjin Hu
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Jinbo Shen
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shuying Pan
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Hao Ye
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Yunru Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wenhan Cao
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yong Cui
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Peng Zeng
- Beijing Genomics Institute at Shenzhen, Shenzhen 518083, China
| | - Sheng Yu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yangbin Gao
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Liang Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Beixin Mo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, China
| | - Xin Liu
- Beijing Genomics Institute at Shenzhen, Shenzhen 518083, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Silin Zhong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Liwen Jiang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
56
|
Kolb C, Nagel MK, Kalinowska K, Hagmann J, Ichikawa M, Anzenberger F, Alkofer A, Sato MH, Braun P, Isono E. FYVE1 is essential for vacuole biogenesis and intracellular trafficking in Arabidopsis. PLANT PHYSIOLOGY 2015; 167:1361-73. [PMID: 25699591 PMCID: PMC4378156 DOI: 10.1104/pp.114.253377] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/18/2015] [Indexed: 05/18/2023]
Abstract
The plant vacuole is a central organelle that is involved in various biological processes throughout the plant life cycle. Elucidating the mechanism of vacuole biogenesis and maintenance is thus the basis for our understanding of these processes. Proper formation of the vacuole has been shown to depend on the intracellular membrane trafficking pathway. Although several mutants with altered vacuole morphology have been characterized in the past, the molecular basis for plant vacuole biogenesis has yet to be fully elucidated. With the aim to identify key factors that are essential for vacuole biogenesis, we performed a forward genetics screen in Arabidopsis (Arabidopsis thaliana) and isolated mutants with altered vacuole morphology. The vacuolar fusion defective1 (vfd1) mutant shows seedling lethality and defects in central vacuole formation. VFD1 encodes a Fab1, YOTB, Vac1, and EEA1 (FYVE) domain-containing protein, FYVE1, that has been implicated in intracellular trafficking. FYVE1 localizes on late endosomes and interacts with Src homology-3 domain-containing proteins. Mutants of FYVE1 are defective in ubiquitin-mediated protein degradation, vacuolar transport, and autophagy. Altogether, our results show that FYVE1 is essential for plant growth and development and place FYVE1 as a key regulator of intracellular trafficking and vacuole biogenesis.
Collapse
Affiliation(s)
- Cornelia Kolb
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany (C.K., M.-K.N., K.K., F.A., A.A., P.B., E.I.);Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (J.H.); andDepartment of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan (M.I., M.H.S.)
| | - Marie-Kristin Nagel
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany (C.K., M.-K.N., K.K., F.A., A.A., P.B., E.I.);Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (J.H.); andDepartment of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan (M.I., M.H.S.)
| | - Kamila Kalinowska
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany (C.K., M.-K.N., K.K., F.A., A.A., P.B., E.I.);Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (J.H.); andDepartment of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan (M.I., M.H.S.)
| | - Jörg Hagmann
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany (C.K., M.-K.N., K.K., F.A., A.A., P.B., E.I.);Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (J.H.); andDepartment of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan (M.I., M.H.S.)
| | - Mie Ichikawa
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany (C.K., M.-K.N., K.K., F.A., A.A., P.B., E.I.);Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (J.H.); andDepartment of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan (M.I., M.H.S.)
| | - Franziska Anzenberger
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany (C.K., M.-K.N., K.K., F.A., A.A., P.B., E.I.);Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (J.H.); andDepartment of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan (M.I., M.H.S.)
| | - Angela Alkofer
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany (C.K., M.-K.N., K.K., F.A., A.A., P.B., E.I.);Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (J.H.); andDepartment of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan (M.I., M.H.S.)
| | - Masa H Sato
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany (C.K., M.-K.N., K.K., F.A., A.A., P.B., E.I.);Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (J.H.); andDepartment of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan (M.I., M.H.S.)
| | - Pascal Braun
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany (C.K., M.-K.N., K.K., F.A., A.A., P.B., E.I.);Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (J.H.); andDepartment of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan (M.I., M.H.S.)
| | - Erika Isono
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany (C.K., M.-K.N., K.K., F.A., A.A., P.B., E.I.);Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (J.H.); andDepartment of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan (M.I., M.H.S.)
| |
Collapse
|
57
|
Avila JR, Lee JS, Torii KU. Co-Immunoprecipitation of Membrane-Bound Receptors. THE ARABIDOPSIS BOOK 2015; 13:e0180. [PMID: 26097438 PMCID: PMC4470539 DOI: 10.1199/tab.0180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The study of cell-surface receptor dynamics is critical for understanding how cells sense and respond to changing environments. Therefore, elucidating the mechanisms by which signals are perceived and communicated into the cell is necessary to understand immunity, development, and stress. Challenges in testing interactions of membrane-bound proteins include their dynamic nature, their abundance, and the complex dual environment (lipid/soluble) in which they reside. Co-Immunoprecipitation (Co-IP) of tagged membrane proteins is a widely used approach to test protein-protein interaction in vivo. In this protocol we present a method to perform Co-IP using enriched membrane proteins in isolated microsomal fractions. The different variations of this protocol are highlighted, including recommendations and troubleshooting guides in order to optimize its application. This Co-IP protocol has been developed to test the interaction of receptor-like kinases, their interacting partners, and peptide ligands in stable Arabidopsis thaliana lines, but can be modified to test interactions in transiently expressed proteins in tobacco, and potentially in other plant models, or scaled for large-scale protein-protein interactions at the membrane.
Collapse
Affiliation(s)
- Julian R. Avila
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
- Department of Biology, University of Washington, Seattle, WA 98195
| | - Jin Suk Lee
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
- Department of Biology, University of Washington, Seattle, WA 98195
| | - Keiko U. Torii
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
- Department of Biology, University of Washington, Seattle, WA 98195
- Address correspondence to
| |
Collapse
|
58
|
Shen J, Ding Y, Gao C, Rojo E, Jiang L. N-linked glycosylation of AtVSR1 is important for vacuolar protein sorting in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:977-92. [PMID: 25293377 DOI: 10.1111/tpj.12696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 05/18/2023]
Abstract
Vacuolar sorting receptors (VSRs) in Arabidopsis mediate the sorting of soluble proteins to vacuoles in the secretory pathway. The VSRs are post-translationally modified by the attachment of N-glycans, but the functional significance of such a modification remains unknown. Here we have studied the role(s) of glycosylation in the stability, trafficking and vacuolar protein transport of AtVSR1 in Arabidopsis protoplasts. AtVSR1 harbors three complex-type N-glycans, which are located in the N-terminal 'PA domain', the central region and the C-terminal epidermal growth factor repeat domain, respectively. We have demonstrated that: (i) the N-glycans do not affect the targeting of AtVSR1 to pre-vacuolar compartments (PVCs) and its vacuolar degradation; and (ii) N-glycosylation alters the binding affinity of AtVSR1 to cargo proteins and affects the transport of cargo into the vacuole. Hence, N-glycosylation of AtVSR1 plays a critical role in its function as a VSR in plants.
Collapse
Affiliation(s)
- Jinbo Shen
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | | | |
Collapse
|
59
|
Bhutta MS, McInerny CJ, Gould GW. ESCRT function in cytokinesis: location, dynamics and regulation by mitotic kinases. Int J Mol Sci 2014; 15:21723-39. [PMID: 25429432 PMCID: PMC4284674 DOI: 10.3390/ijms151221723] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 01/22/2023] Open
Abstract
Mammalian cytokinesis proceeds by constriction of an actomyosin ring and furrow ingression, resulting in the formation of the midbody bridge connecting two daughter cells. At the centre of the midbody resides the Flemming body, a dense proteinaceous ring surrounding the interlocking ends of anti-parallel microtubule arrays. Abscission, the terminal step of cytokinesis, occurs near the Flemming body. A series of broad processes govern abscission: the initiation and stabilisation of the abscission zone, followed by microtubule severing and membrane scission-The latter mediated by the endosomal sorting complex required for transport (ESCRT) proteins. A key goal of cell and developmental biologists is to develop a clear understanding of the mechanisms that underpin abscission, and how the spatiotemporal coordination of these events with previous stages in cell division is accomplished. This article will focus on the function and dynamics of the ESCRT proteins in abscission and will review recent work, which has begun to explore how these complex protein assemblies are regulated by the cell cycle machinery.
Collapse
Affiliation(s)
- Musab S Bhutta
- Henry Wellcome Laboratory of Cell Biology, Davidson Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Christopher J McInerny
- Henry Wellcome Laboratory of Cell Biology, Davidson Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Gwyn W Gould
- Henry Wellcome Laboratory of Cell Biology, Davidson Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
60
|
Gao C, Luo M, Zhao Q, Yang R, Cui Y, Zeng Y, Xia J, Jiang L. A unique plant ESCRT component, FREE1, regulates multivesicular body protein sorting and plant growth. Curr Biol 2014; 24:2556-63. [PMID: 25438943 DOI: 10.1016/j.cub.2014.09.014] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/16/2014] [Accepted: 09/02/2014] [Indexed: 01/10/2023]
Abstract
Tight control of membrane protein homeostasis by selective degradation is crucial for proper cell signaling and multicellular organismal development. Membrane proteins destined for degradation, such as misfolded proteins or activated receptors, are usually ubiquitinated and sorted into the intraluminal vesicles (ILVs) of prevacuolar compartments/multivesicular bodies (PVCs/MVBs), which then fuse with vacuoles/lysosomes to deliver their contents to the lumen for degradation by luminal proteases. The formation of ILVs and the sorting of ubiquitinated membrane cargoes into them are facilitated by the endosomal sorting complex required for transport (ESCRT) machinery. Plants possess most evolutionarily conserved members of the ESCRT machinery but apparently lack orthologs of ESCRT-0 subunits and the ESCRT-I component Mvb12. Here, we identified a unique plant ESCRT component called FYVE domain protein required for endosomal sorting 1 (FREE1). FREE1 binds to phosphatidylinositol-3-phosphate (PI3P) and ubiquitin and specifically interacts with Vps23 via PTAP-like tetrapeptide motifs to be incorporated into the ESCRT-I complex. Arabidopsis free1 mutant is seedling lethal and defective in the formation of ILVs in MVBs. Consequently, endocytosed plasma membrane (PM) proteins destined for degradation, such as the auxin efflux carrier PIN2, cannot reach the lumen of the vacuole and mislocalize to the tonoplast. Collectively, our findings provide the first functional characterization of a plant FYVE domain protein, which is essential for plant growth via its role as a unique evolutionary ESCRT component for MVB biogenesis and vacuolar sorting of membrane proteins.
Collapse
Affiliation(s)
- Caiji Gao
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ming Luo
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Key Laboratory of Plant Resources, Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Qiong Zhao
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Renzhi Yang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yong Cui
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jun Xia
- Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| |
Collapse
|
61
|
Wang X, Cai Y, Wang H, Zeng Y, Zhuang X, Li B, Jiang L. Trans-Golgi network-located AP1 gamma adaptins mediate dileucine motif-directed vacuolar targeting in Arabidopsis. THE PLANT CELL 2014; 26:4102-18. [PMID: 25351491 PMCID: PMC4247576 DOI: 10.1105/tpc.114.129759] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/17/2014] [Accepted: 09/29/2014] [Indexed: 05/18/2023]
Abstract
Membrane proteins on the tonoplast are indispensible for vacuolar functions in plants. However, how these proteins are transported to the vacuole and how they become separated from plasma membrane proteins remain largely unknown. In this study, we used Arabidopsis thaliana vacuolar ion transporter1 (VIT1) as a reporter to study the mechanisms of tonoplast targeting. We showed that VIT1 reached the tonoplast through a pathway involving the endoplasmic reticulum (ER), Golgi, trans-Golgi network (TGN), prevacuolar compartment, and tonoplast. VIT1 contains a putative N-terminal dihydrophobic type ER export signal, and its N terminus has a conserved dileucine motif (EKQTLL), which is responsible for tonoplast targeting. In vitro peptide binding assays with synthetic VIT1 N terminus identified adaptor protein complex-1 (AP1) subunits that interacted with the dileucine motif. A deficiency of AP1 gamma adaptins in Arabidopsis cells caused relocation of tonoplast proteins containing the dileucine motif, such as VIT1 and inositol transporter1, to the plasma membrane. The dileucine motif also effectively rerouted the plasma membrane protein SCAMP1 to the tonoplast. Together with subcellular localization studies showing that AP1 gamma adaptins localize to the TGN, we propose that the AP1 complex on the TGN mediates tonoplast targeting of membrane proteins with the dileucine motif.
Collapse
Affiliation(s)
- Xiangfeng Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Hao Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
62
|
Robinson DG. Trafficking of Vacuolar Sorting Receptors: New Data and New Problems. PLANT PHYSIOLOGY 2014; 165:1417-1423. [PMID: 24951487 PMCID: PMC4119028 DOI: 10.1104/pp.114.243303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Vacuolar sorting receptors bind cargo ligands early in the secretory pathway and show that multivesicular body-vacuole fusion requires a Rab5/Rab7 GTPase conversion with consequences for retromer binding.
Collapse
Affiliation(s)
- David G Robinson
- Centre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|