51
|
The Complex Fine-Tuning of K⁺ Fluxes in Plants in Relation to Osmotic and Ionic Abiotic Stresses. Int J Mol Sci 2019; 20:ijms20030715. [PMID: 30736441 PMCID: PMC6387338 DOI: 10.3390/ijms20030715] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
As the main cation in plant cells, potassium plays an essential role in adaptive responses, especially through its involvement in osmotic pressure and membrane potential adjustments. K+ homeostasis must, therefore, be finely controlled. As a result of different abiotic stresses, especially those resulting from global warming, K⁺ fluxes and plant distribution of this ion are disturbed. The hormone abscisic acid (ABA) is a key player in responses to these climate stresses. It triggers signaling cascades that ultimately lead to modulation of the activities of K⁺ channels and transporters. After a brief overview of transcriptional changes induced by abiotic stresses, this review deals with the post-translational molecular mechanisms in different plant organs, in Arabidopsis and species of agronomical interest, triggering changes in K⁺ uptake from the soil, K⁺ transport and accumulation throughout the plant, and stomatal regulation. These modifications involve phosphorylation/dephosphorylation mechanisms, modifications of targeting, and interactions with regulatory partner proteins. Interestingly, many signaling pathways are common to K⁺ and Cl-/NO3- counter-ion transport systems. These cross-talks are also addressed.
Collapse
|
52
|
Zhang H, Zhang Y, Deng C, Deng S, Li N, Zhao C, Zhao R, Liang S, Chen S. The Arabidopsis Ca 2+-Dependent Protein Kinase CPK12 Is Involved in Plant Response to Salt Stress. Int J Mol Sci 2018; 19:ijms19124062. [PMID: 30558245 PMCID: PMC6321221 DOI: 10.3390/ijms19124062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 11/22/2022] Open
Abstract
CDPKs (Ca2+-Dependent Protein Kinases) are very important regulators in plant response to abiotic stress. The molecular regulatory mechanism of CDPKs involved in salt stress tolerance remains unclear, although some CDPKs have been identified in salt-stress signaling. Here, we investigated the function of an Arabidopsis CDPK, CPK12, in salt-stress signaling. The CPK12-RNA interference (RNAi) mutant was much more sensitive to salt stress than the wild-type plant GL1 in terms of seedling growth. Under NaCl treatment, Na+ levels in the roots of CPK12-RNAi plants increased and were higher than levels in GL1 plants. In addition, the level of salt-elicited H2O2 production was higher in CPK12-RNAi mutants than in wild-type GL1 plants after NaCl treatment. Collectively, our results suggest that CPK12 is required for plant adaptation to salt stress.
Collapse
Affiliation(s)
- Huilong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Yinan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Chen Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shurong Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Nianfei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Chenjing Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Rui Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shan Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
53
|
Wang X, Hao L, Zhu B, Jiang Z. Plant Calcium Signaling in Response to Potassium Deficiency. Int J Mol Sci 2018; 19:E3456. [PMID: 30400321 PMCID: PMC6275041 DOI: 10.3390/ijms19113456] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 01/23/2023] Open
Abstract
Potassium (K⁺) is an essential macronutrient of living cells and is the most abundant cation in the cytosol. K⁺ plays a role in several physiological processes that support plant growth and development. However, soil K⁺ availability is very low and variable, which leads to severe reductions in plant growth and yield. Various K⁺ shortage-activated signaling cascades exist. Among these, calcium signaling is the most important signaling system within plant cells. This review is focused on the possible roles of calcium signaling in plant responses to low-K⁺ stress. In plants, intracellular calcium levels are first altered in response to K⁺ deficiency, resulting in calcium signatures that exhibit temporal and spatial features. In addition, calcium channels located within the root epidermis and root hair zone can then be activated by hyperpolarization of plasma membrane (PM) in response to low-K⁺ stress. Afterward, calcium sensors, including calmodulin (CaM), CaM-like protein (CML), calcium-dependent protein kinase (CDPK), and calcineurin B-like protein (CBL), can act in the sensing of K⁺ deprivation. In particular, the important components regarding CBL/CBL-interacting protein kinase (CBL/CIPK) complexes-involved in plant responses to K⁺ deficiency are also discussed.
Collapse
Affiliation(s)
- Xiaoping Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ling Hao
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Biping Zhu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Zhonghao Jiang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
54
|
Qi GN, Yao FY, Ren HM, Sun SJ, Hussain J, Huang CF, Wang YF. Constitutive activation of calcium-dependent protein kinase 3 confers a drought tolerance by inhibiting inward K + channel KAT1 and stomatal opening in Arabidopsis. Sci Bull (Beijing) 2018; 63:1037-1039. [PMID: 36755455 DOI: 10.1016/j.scib.2018.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Guo-Ning Qi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fen-Yong Yao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hui-Min Ren
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shu-Jing Sun
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jamshaid Hussain
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, 22060 Abbottabad, Pakistan
| | - Chao-Feng Huang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
55
|
Singh A, Yadav AK, Kaur K, Sanyal SK, Jha SK, Fernandes JL, Sharma P, Tokas I, Pandey A, Luan S, Pandey GK. A protein phosphatase 2C, AP2C1, interacts with and negatively regulates the function of CIPK9 under potassium-deficient conditions in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4003-4015. [PMID: 29767755 PMCID: PMC6054203 DOI: 10.1093/jxb/ery182] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/08/2018] [Indexed: 05/03/2023]
Abstract
Potassium (K+) is a major macronutrient required for plant growth. An adaptive mechanism to low-K+ conditions involves activation of the Ca2+ signaling network that consists of calcineurin B-like proteins (CBLs) and CBL-interacting kinases (CIPKs). The CBL-interacting protein kinase 9 (CIPK9) has previously been implicated in low-K+ responses in Arabidopsis thaliana. Here, we report a protein phosphatase 2C (PP2C), AP2C1, that interacts with CIPK9. Fluorescence resonance energy transfer (FRET), bimolecular fluorescence complementation (BiFC), and co-localization analyses revealed that CIPK9 and AP2C1 interact in the cytoplasm. AP2C1 dephosphorylates the auto-phosphorylated form of CIPK9 in vitro, presenting a regulatory mechanism for CIPK9 function. Furthermore, genetic and molecular analyses revealed that ap2c1 null mutants (ap2c1-1 and ap2c1-2) are tolerant to low-K+ conditions, retain higher K+ content, and show higher expression of K+-deficiency related genes contrary to cipk9 mutants (cipk9-1 and cipk9-2). In contrast, transgenic plants overexpressing AP2C1 were sensitive to low-K+ conditions. Thus, this study shows that AP2C1 and CIPK9 interact to regulate K+-deficiency responses in Arabidopsis. CIPK9 functions as positive regulator whereas AP2C1 acts as a negative regulator of Arabidopsis root growth and seedling development under low-K+ conditions.
Collapse
Affiliation(s)
- Amarjeet Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Akhilesh K Yadav
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Kanwaljeet Kaur
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Saroj K Jha
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Joel L Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Pankhuri Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Indu Tokas
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Amita Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Correspondence:
| |
Collapse
|
56
|
Shi S, Li S, Asim M, Mao J, Xu D, Ullah Z, Liu G, Wang Q, Liu H. The Arabidopsis Calcium-Dependent Protein Kinases (CDPKs) and Their Roles in Plant Growth Regulation and Abiotic Stress Responses. Int J Mol Sci 2018; 19:E1900. [PMID: 29958430 PMCID: PMC6073581 DOI: 10.3390/ijms19071900] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023] Open
Abstract
As a ubiquitous secondary messenger in plant signaling systems, calcium ions (Ca2+) play essential roles in plant growth and development. Within the cellular signaling network, the accurate decoding of diverse Ca2+ signal is a fundamental molecular event. Calcium-dependent protein kinases (CDPKs), identified commonly in plants, are a kind of vital regulatory protein deciphering calcium signals triggered by various developmental and environmental stimuli. This review chiefly introduces Ca2+ distribution in plant cells, the classification of Arabidopsis thaliana CDPKs (AtCDPKs), the identification of the Ca2+-AtCDPK signal transduction mechanism and AtCDPKs’ functions involved in plant growth regulation and abiotic stress responses. The review presents a comprehensive overview of AtCDPKs and may contribute to the research of CDPKs in other plants.
Collapse
Affiliation(s)
- Sujuan Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Shugui Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- College of Agriculture, Qingdao Agricultural University, Qingdao 266109, China.
| | - Muhammad Asim
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Jingjing Mao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Dizhi Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Zia Ullah
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
57
|
Saito S, Hamamoto S, Moriya K, Matsuura A, Sato Y, Muto J, Noguchi H, Yamauchi S, Tozawa Y, Ueda M, Hashimoto K, Köster P, Dong Q, Held K, Kudla J, Utsumi T, Uozumi N. N-myristoylation and S-acylation are common modifications of Ca 2+ -regulated Arabidopsis kinases and are required for activation of the SLAC1 anion channel. THE NEW PHYTOLOGIST 2018; 218:1504-1521. [PMID: 29498046 DOI: 10.1111/nph.15053] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/12/2018] [Indexed: 05/26/2023]
Abstract
N-myristoylation and S-acylation promote protein membrane association, allowing regulation of membrane proteins. However, how widespread this targeting mechanism is in plant signaling processes remains unknown. Through bioinformatics analyses, we determined that among plant protein kinase families, the occurrence of motifs indicative for dual lipidation by N-myristoylation and S-acylation is restricted to only five kinase families, including the Ca2+ -regulated CDPK-SnRK and CBL protein families. We demonstrated N-myristoylation of CDPK-SnRKs and CBLs by incorporation of radiolabeled myristic acid. We focused on CPK6 and CBL5 as model cases and examined the impact of dual lipidation on their function by fluorescence microscopy, electrophysiology and functional complementation of Arabidopsis mutants. We found that both lipid modifications were required for proper targeting of CBL5 and CPK6 to the plasma membrane. Moreover, we identified CBL5-CIPK11 complexes as phosphorylating and activating the guard cell anion channel SLAC1. SLAC1 activation by CPK6 or CBL5-CIPK11 was strictly dependent on dual lipid modification, and loss of CPK6 lipid modification prevented functional complementation of cpk3 cpk6 guard cell mutant phenotypes. Our findings establish the general importance of dual lipid modification for Ca2+ signaling processes, and demonstrate their requirement for guard cell anion channel regulation.
Collapse
Affiliation(s)
- Shunya Saito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Shin Hamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Koko Moriya
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Aiko Matsuura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yoko Sato
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Jun Muto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Hiroto Noguchi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| | - Seiji Yamauchi
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Minoru Ueda
- Graduate School of Science, Tohoku University, Aramaki-Aza Aoba 6-3, Aoba-ku, Sendai, 980-8579, Japan
| | - Kenji Hashimoto
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Philipp Köster
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Qiuyan Dong
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Katrin Held
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7, 48149, Münster, Germany
- College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Toshihiko Utsumi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai, 980-8579, Japan
| |
Collapse
|
58
|
Zhu L, Jin X, Xie Q, Yao Q, Wang X, Li H. Calcium-Dependent Protein Kinase Family Genes Involved in Ethylene-Induced Natural Rubber Production in Different Hevea brasiliensis Cultivars. Int J Mol Sci 2018; 19:ijms19040947. [PMID: 29565813 PMCID: PMC5979512 DOI: 10.3390/ijms19040947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/10/2018] [Accepted: 03/16/2018] [Indexed: 11/16/2022] Open
Abstract
Natural rubber latex production can be improved by ethylene stimulation in the rubber tree (Hevea brasiliensis). However, the expression levels of most functional proteins for natural rubber biosynthesis are not induced after ethylene application, indicating that post-translational modifications, especially protein phosphorylation, may play important roles in ethylene signaling in Hevea. Here, we performed a comprehensive investigation on evolution, ethylene-induced expression and protein-protein interaction of calcium-dependent protein kinases (CPKs), an important serine/threonine protein kinase family, in Hevea. Nine duplication events were determined in the 30 identified HbCPK genes. Expression profiling of HbCPKs in three rubber tree cultivars with low, medium and high ethylene sensitivity showed that HbCPK6, 17, 20, 22, 24, 28 and 30 are induced by ethylene in at least one cultivar. Evolution rate analysis suggested accelerated evolution rates in two paralogue pairs, HbCPK9/18 and HbCPK19/20. Analysis of proteomic data for rubber latex after ethylene treatment showed that seven HbCPK proteins could be detected, including six ethylene-induced ones. Protein-protein interaction analysis of the 493 different abundant proteins revealed that protein kinases, especially calcium-dependent protein kinases, possess most key nodes of the interaction network, indicating that protein kinase and protein phosphorylation play important roles in ethylene signaling in latex of Hevea. In summary, our data revealed the expression patterns of HbCPK family members and functional divergence of two HbCPK paralogue pairs, as well as the potential important roles of HbCPKs in ethylene-induced rubber production improvement in Hevea.
Collapse
Affiliation(s)
- Liping Zhu
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| | - Xiang Jin
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China.
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Quanliang Xie
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| | - Qi Yao
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China.
| | - Xuchu Wang
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
- College of Life Sciences, Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China.
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
59
|
Qi GN, Yao FY, Ren HM, Sun SJ, Tan YQ, Zhang ZC, Qiu BS, Wang YF. The S-Type Anion Channel ZmSLAC1 Plays Essential Roles in Stomatal Closure by Mediating Nitrate Efflux in Maize. PLANT & CELL PHYSIOLOGY 2018; 59:614-623. [PMID: 29390155 DOI: 10.1093/pcp/pcy015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/17/2018] [Indexed: 05/20/2023]
Abstract
Diverse stimuli induce stomatal closure by triggering the efflux of osmotic anions, which is mainly mediated by the main anion channel SLAC1 in plants, and the anion permeability and selectivity of SLAC1 channels from several plant species have been reported to be variable. However, the genetic identity as well as the anion permeability and selectivity of the main S-type anion channel ZmSLAC1 in maize are still unknown. In this study, we identified GRMZM2G106921 as the gene encoding ZmSLAC1 in maize, and the maize mutants zmslac1-1 and zmslac1-2 harboring a mutator (Mu) transposon in ZmSLAC1 exhibited strong insensitive phenotypes of stomatal closure in response to diverse stimuli. We further found that ZmSLAC1 functions as a nitrate-selective anion channel without obvious permeability to chloride, sulfate and malate, clearly different from SLAC1 channels of Arabidopsis thaliana, Brassica rapa ssp. chinensis and Solanum lycopersicum L. Further experimental data show that the expression of ZmSLAC1 successfully rescued the stomatal movement phenotypes of the Arabidopsis double mutant atslac1-3atslah3-2 by mainly restoring nitrate-carried anion channel currents of guard cells. Together, these findings demonstrate that ZmSLAC1 is involved in stomatal closure mainly by mediating the efflux of nitrate in maize.
Collapse
Affiliation(s)
- Guo-Ning Qi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Fen-Yong Yao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hui-Min Ren
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310016, Zhejiang Province, China
| | - Shu-Jing Sun
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yan-Qiu Tan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhong-Chun Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei Province, China
| | - Bao-Sheng Qiu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei Province, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
60
|
Canales J, Henriquez-Valencia C, Brauchi S. The Integration of Electrical Signals Originating in the Root of Vascular Plants. FRONTIERS IN PLANT SCIENCE 2018; 8:2173. [PMID: 29375591 PMCID: PMC5767606 DOI: 10.3389/fpls.2017.02173] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/12/2017] [Indexed: 05/07/2023]
Abstract
Plants have developed different signaling systems allowing for the integration of environmental cues to coordinate molecular processes associated to both early development and the physiology of the adult plant. Research on systemic signaling in plants has traditionally focused on the role of phytohormones as long-distance signaling molecules, and more recently the importance of peptides and miRNAs in building up this communication process has also been described. However, it is well-known that plants have the ability to generate different types of long-range electrical signals in response to different stimuli such as light, temperature variations, wounding, salt stress, or gravitropic stimulation. Presently, it is unclear whether short or long-distance electrical communication in plants is linked to nutrient uptake. This review deals with aspects of sensory input in plant roots and the propagation of discrete signals to the plant body. We discuss the physiological role of electrical signaling in nutrient uptake and how nutrient variations may become an electrical signal propagating along the plant.
Collapse
Affiliation(s)
- Javier Canales
- Facultad de Ciencias, Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile
| | - Carlos Henriquez-Valencia
- Facultad de Ciencias, Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastian Brauchi
- Facultad de Medicina, Instituto de Fisiologia, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases, Valdivia, Chile
| |
Collapse
|
61
|
Xu W, Huang W. Calcium-Dependent Protein Kinases in Phytohormone Signaling Pathways. Int J Mol Sci 2017; 18:ijms18112436. [PMID: 29156607 PMCID: PMC5713403 DOI: 10.3390/ijms18112436] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/07/2017] [Accepted: 11/12/2017] [Indexed: 02/06/2023] Open
Abstract
Calcium-dependent protein kinases (CPKs/CDPKs) are Ca2+-sensors that decode Ca2+ signals into specific physiological responses. Research has reported that CDPKs constitute a large multigene family in various plant species, and play diverse roles in plant growth, development, and stress responses. Although numerous CDPKs have been exhaustively studied, and many of them have been found to be involved in plant hormone biosynthesis and response mechanisms, a comprehensive overview of the manner in which CDPKs participate in phytohormone signaling pathways, regulating nearly all aspects of plant growth, has not yet been undertaken. In this article, we reviewed the structure of CDPKs and the mechanism of their subcellular localization. Some CDPKs were elucidated to influence the intracellular localization of their substrates. Since little work has been done on the interaction between CDPKs and cytokinin signaling pathways, or on newly defined phytohormones such as brassinosteroids, strigolactones and salicylic acid, this paper mainly focused on discussing the integral associations between CDPKs and five plant hormones: auxins, gibberellins, ethylene, jasmonates, and abscisic acid. A perspective on future work is provided at the end.
Collapse
Affiliation(s)
- Wuwu Xu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration & Innovation Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration & Innovation Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
62
|
Wang Y, Wu WH. Regulation of potassium transport and signaling in plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:123-128. [PMID: 28710919 DOI: 10.1016/j.pbi.2017.06.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 05/06/2023]
Abstract
As an essential macronutrient, potassium (K+) plays crucial roles in diverse physiological processes during plant growth and development. The K+ concentration in soils is relatively low and fluctuating. Plants are able to perceive external K+ changes and generate chemical and physical signals in plant cells. The signals can be transducted across the plasma membrane and into the cytosol, and eventually regulates the downstream targets, particularly K+ channels and transporters. As a result, K+ homeostasis in plant cells is modulated, which facilitates plant adaptation to K+ deficient conditions. This minireview focuses on the latest research progress in the diverse functions of K+ channels and transporters as well as their regulatory mechanisms in plant response to low-K+ stress.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
63
|
Wang J, Cheng G, Wang C, He Z, Lan X, Zhang S, Lan H. The bHLH transcription factor CgbHLH001 is a potential interaction partner of CDPK in halophyte Chenopodium glaucum. Sci Rep 2017; 7:8441. [PMID: 28814803 PMCID: PMC5559460 DOI: 10.1038/s41598-017-06706-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 06/16/2017] [Indexed: 11/19/2022] Open
Abstract
Plants have evolved different abilities to adapt to the ever-fluctuating environments for sessility. Calcium-dependent protein kinase (CDPK) is believed to play a pivotal role in abiotic stress signaling. So far, study on the specific substrates that CDPK recognized in response to adversity is limited. In the present study, we revealed a potential interaction between CDPK and a bHLH transcription factor under salt stress in Chenopodium glaucum. First, we identified a CgCDPK, which was up-regulated under salt and drought stress; then by Y2H screening, CgCDPK was detected to be involved in interaction with a bHLH TF (named as CgbHLH001), which also positively respond to salt and drought stress. Further computational prediction and experiments including GST-pulldown and BiFC assays revealed that potential interaction existed between CgCDPK and CgbHLH001, and they might interact on the plasma membrane. In addition, CgCDPK-overexpressed transgenic tobacco line could significantly accumulate transcripts of NtbHLH (a homolog of CgbHLH001 in N. tabacum), which provided another evidence of correlation between CgCDPK and CgbHLH001. Our results suggest that CgbHLH001 can interact with CgCDPK in signal transduction pathway in response to abiotic stress, which should provide new evidence for further understanding of the substrate specificity of plant CDPK signaling pathway.
Collapse
Affiliation(s)
- Juan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Gang Cheng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Cui Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Zhuanzhuan He
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Xinxin Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Shiyue Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
64
|
Denay G, Vachon G, Dumas R, Zubieta C, Parcy F. Plant SAM-Domain Proteins Start to Reveal Their Roles. TRENDS IN PLANT SCIENCE 2017; 22:718-725. [PMID: 28668510 DOI: 10.1016/j.tplants.2017.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
Proteins often act in complexes assembled via protein-protein interaction domains. The sterile alpha motif (SAM) domain is one of the most prominent interaction domains in animals and is present in proteins of diverse functions. This domain allows head-to-tail closed oligomerisation or polymer formation resulting in homo- and/or heterocomplexes that have been shown to be important for proper protein localisation and function. In plants this domain is also present but has been poorly studied except for recent studies on the LEAFY floral regulator and the tRNA import component (TRIC)1/2 proteins. Here we catalogue SAM domain-containing proteins from arabidopsis (Arabidopsis thaliana), compare plant and other eukaryotic SAM domains, and perform homology modelling to probe plant SAM domain interaction capabilities.
Collapse
Affiliation(s)
- Grégoire Denay
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000 Grenoble, France; Institute for Developmental Genetics, Heinrich-Heine-Universität Düsseldorf, Universitätstraße, D-40225 Düsseldorf, Germany
| | - Gilles Vachon
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000 Grenoble, France
| | - Renaud Dumas
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000 Grenoble, France
| | - Chloe Zubieta
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000 Grenoble, France
| | - François Parcy
- LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000 Grenoble, France.
| |
Collapse
|
65
|
Fantino E, Segretin ME, Santin F, Mirkin FG, Ulloa RM. Analysis of the potato calcium-dependent protein kinase family and characterization of StCDPK7, a member induced upon infection with Phytophthora infestans. PLANT CELL REPORTS 2017; 36:1137-1157. [PMID: 28451820 DOI: 10.1007/s00299-017-2144-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/15/2017] [Indexed: 05/25/2023]
Abstract
We describe the potato CDPK family and place StCDPK7 as a player in potato response to Phytophthora infestans infection, identifying phenylalanine ammonia lyase as its specific phosphorylation target in vitro. Calcium-dependent protein kinases (CDPKs) decode calcium (Ca2+) signals and activate different signaling pathways involved in hormone signaling, plant growth, development, and both abiotic and biotic stress responses. In this study, we describe the potato CDPK/CRK multigene family; bioinformatic analysis allowed us to identify 20 new CDPK isoforms, three CDPK-related kinases (CRKs), and a CDPK-like kinase. Phylogenetic analysis indicated that 26 StCDPKs can be classified into four groups, whose members are predicted to undergo different acylation patterns and exhibited diverse expression levels in different tissues and in response to various stimuli. With the aim of characterizing those members that are particularly involved in plant-pathogen interaction, we focused on StCDPK7. Tissue expression profile revealed that StCDPK7 transcript levels are high in swollen stolons, roots, and mini tubers. Moreover, its expression is induced upon Phytophthora infestans infection in systemic leaves. Transient expression assays showed that StCDPK7 displays a cytosolic/nuclear localization in spite of having a predicted chloroplast transit peptide. The recombinant protein, StCDPK7:6xHis, is an active Ca2+-dependent protein kinase that can phosphorylate phenylalanine ammonia lyase, an enzyme involved in plant defense response. The analysis of the potato CDPK family provides the first step towards the identification of CDPK isoforms involved in biotic stress. StCDPK7 emerges as a relevant player that could be manipulated to deploy disease resistance in potato crops.
Collapse
Affiliation(s)
- Elisa Fantino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET) Vuelta de Obligado 2490, 2do piso, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Eugenia Segretin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET) Vuelta de Obligado 2490, 2do piso, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Franco Santin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET) Vuelta de Obligado 2490, 2do piso, Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico Gabriel Mirkin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET) Vuelta de Obligado 2490, 2do piso, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rita M Ulloa
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor Torres" (INGEBI-CONICET) Vuelta de Obligado 2490, 2do piso, Ciudad Autónoma de Buenos Aires, Argentina.
- Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
66
|
Corratgé-Faillie C, Ronzier E, Sanchez F, Prado K, Kim JH, Lanciano S, Leonhardt N, Lacombe B, Xiong TC. The Arabidopsis guard cell outward potassium channel GORK is regulated by CPK33. FEBS Lett 2017; 591:1982-1992. [PMID: 28543075 DOI: 10.1002/1873-3468.12687] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 11/10/2022]
Abstract
A complex signaling network involving voltage-gated potassium channels from the Shaker family contributes to the regulation of stomatal aperture. Several kinases and phosphatases have been shown to be crucial for ABA-dependent regulation of the ion transporters. To date, the Ca2+ -dependent regulation of Shaker channels by Ca2+ -dependent protein kinases (CPKs) is still elusive. A functional screen in Xenopus oocytes was launched to identify such CPKs able to regulate the three main guard cell Shaker channels KAT1, KAT2, and GORK. Seven guard cell CPKs were tested and multiple CPK/Shaker couples were identified. Further work on CPK33 indicates that GORK activity is enhanced by CPK33 and unaffected by a nonfunctional CPK33 (CPK33-K102M). Furthermore, Ca2+ -induced stomatal closure is impaired in two cpk33 mutant plants.
Collapse
Affiliation(s)
- Claire Corratgé-Faillie
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/Montpellier SupAgro/UM, Montpellier, France
| | - Elsa Ronzier
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/Montpellier SupAgro/UM, Montpellier, France
| | - Frédéric Sanchez
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/Montpellier SupAgro/UM, Montpellier, France
| | - Karine Prado
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/Montpellier SupAgro/UM, Montpellier, France
| | - Jeong-Hyeon Kim
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/Montpellier SupAgro/UM, Montpellier, France
| | - Sophie Lanciano
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/Montpellier SupAgro/UM, Montpellier, France
| | - Nathalie Leonhardt
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, CNRS-CEA-Université Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Benoît Lacombe
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/Montpellier SupAgro/UM, Montpellier, France
| | - Tou Cheu Xiong
- Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/Montpellier SupAgro/UM, Montpellier, France
| |
Collapse
|
67
|
Jezek M, Blatt MR. The Membrane Transport System of the Guard Cell and Its Integration for Stomatal Dynamics. PLANT PHYSIOLOGY 2017; 174:487-519. [PMID: 28408539 PMCID: PMC5462021 DOI: 10.1104/pp.16.01949] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/11/2017] [Indexed: 05/17/2023]
Abstract
Stomatal guard cells are widely recognized as the premier plant cell model for membrane transport, signaling, and homeostasis. This recognition is rooted in half a century of research into ion transport across the plasma and vacuolar membranes of guard cells that drive stomatal movements and the signaling mechanisms that regulate them. Stomatal guard cells surround pores in the epidermis of plant leaves, controlling the aperture of the pore to balance CO2 entry into the leaf for photosynthesis with water loss via transpiration. The position of guard cells in the epidermis is ideally suited for cellular and subcellular research, and their sensitivity to endogenous signals and environmental stimuli makes them a primary target for physiological studies. Stomata underpin the challenges of water availability and crop production that are expected to unfold over the next 20 to 30 years. A quantitative understanding of how ion transport is integrated and controlled is key to meeting these challenges and to engineering guard cells for improved water use efficiency and agricultural yields.
Collapse
Affiliation(s)
- Mareike Jezek
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
68
|
Pi Z, Zhao ML, Peng XJ, Shen SH. Phosphoproteomic Analysis of Paper Mulberry Reveals Phosphorylation Functions in Chilling Tolerance. J Proteome Res 2017; 16:1944-1961. [PMID: 28357858 DOI: 10.1021/acs.jproteome.6b01016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Paper mulberry is a valuable woody species with a good chilling tolerance. In this study, phosphoproteomic analysis, physiological measurement, and mRNA quantification were employed to explore the molecular mechanism of chilling (4 °C) tolerance in paper mulberry. After chilling for 6 h, 427 significantly changed phosphoproteins were detected in paper mulberry seedlings without obvious physiological injury. When obvious physiological injury occurred after chilling for 48 h, a total of 611 phosphoproteins were found to be significantly changed at the phosphorylation level. Several protein kinases, especially CKII, were possibly responsible for these changes according to conserved sequence analysis. The results of Gene Ontology analysis showed that phosphoproteins were mainly responsible for signal transduction, protein modification, and translation during chilling. Additionally, transport and cellular component organization were enriched after chilling for 6 and 48 h, respectively. On the basis of the protein-protein interaction network analysis, a protein kinase and phosphatases hub protein (P1959) were found to be involved in cross-talk between Ca2+, BR, ABA, and ethylene-mediated signaling pathways. We also highlighted the phosphorylation of BpSIZ1 and BpICE1 possibly impacted on the CBF/DREB-responsive pathway. From these results, we developed a schematic for the chilling tolerance mechanism at phosphorylation level.
Collapse
Affiliation(s)
- Zhi Pi
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences , Beijing 100093, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Mei-Ling Zhao
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences , Beijing 100093, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xian-Jun Peng
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences , Beijing 100093, China
| | - Shi-Hua Shen
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences , Beijing 100093, China
| |
Collapse
|
69
|
Calcium-dependent protein kinase CPK31 interacts with arsenic transporter AtNIP1;1 and regulates arsenite uptake in Arabidopsis thaliana. PLoS One 2017; 12:e0173681. [PMID: 28296918 PMCID: PMC5351991 DOI: 10.1371/journal.pone.0173681] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 02/25/2017] [Indexed: 12/01/2022] Open
Abstract
Although arsenite [As(III)] is non-essential and toxic for plants, it is effectively absorbed through various transporters into the roots. Here we identified a calcium-dependent protein kinase (CPK31) response for As(III) tolerance in Arabidopsis. We identified CPK31 as an interacting protein of a nodulin 26-like intrinsic protein (NIP1;1), an aquaporin involved in As(III) uptake. Similarly to the nip1;1 mutants, the loss-of-function mutants of CPK31 improved the tolerance against As(III) but not As(V), and accumulated less As(III) in roots than that of the wild-type plants. The promoter-β-glucuronidase and quantitative Real-Time PCR analysis revealed that CPK31 displayed overlapping expression profiles with NIP1;1 in the roots, suggesting that they might function together in roots. Indeed, the cpk31 nip1;1 double mutants exhibited stronger As(III) tolerance than cpk31 mutants, but similar to nip1;1 mutants, supporting the idea that CPK31 might serve as an upstream regulator of NIP1;1. Furthermore, transient CPK31 overexpression induced by dexamethasone caused the decrease in As(III) tolerance of transgenic Arabidopsis lines. These findings reveal that CPK31 is a key factor in As(III) response in plants.
Collapse
|
70
|
Li K, Yang F, Zhang G, Song S, Li Y, Ren D, Miao Y, Song CP. AIK1, A Mitogen-Activated Protein Kinase, Modulates Abscisic Acid Responses through the MKK5-MPK6 Kinase Cascade. PLANT PHYSIOLOGY 2017; 173:1391-1408. [PMID: 27913741 PMCID: PMC5291029 DOI: 10.1104/pp.16.01386] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/29/2016] [Indexed: 05/03/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily conserved signal transduction module involved in transducing extracellular signals to the nucleus for appropriate cellular adjustment. This cascade essentially consists of three components: a MAPK kinase kinase (MAPKKK), a MAPK kinase, and a MAPK, connected to each other by the event of phosphorylation. Here, we report the characterization of a MAPKKK, ABA-INSENSITIVE PROTEIN KINASE1 (AIK1), which regulates abscisic acid (ABA) responses in Arabidopsis (Arabidopsis thaliana). T-DNA insertion mutants of AIK1 showed insensitivity to ABA in terms of both root growth and stomatal response. AIK1 functions in ABA responses via regulation of root cell division and elongation, as well as stomatal responses. The activity of AIK1 is induced by ABA in Arabidopsis and tobacco (Nicotiana benthamiana), and the Arabidopsis protein phosphatase type 2C, ABI1, a negative regulator of ABA signaling, restricts AIK1 activity by dephosphorylation. Bimolecular fluorescence complementation analysis showed that MPK3, MPK6, and AIK1 interact with MKK5. The single mutant seedlings of mpk6 and mkk5 have similar phenotypes to aik1, but mkk4 does not. AIK1 was localized in the cytoplasm and shown to activate MKK5 by protein phosphorylation, which was an ABA-activated process. Constitutively active MKK5 in aik1 mutant seedlings complements the ABA-insensitive root growth phenotype of aik1 The activity of MPK6 was increased by ABA in wild-type seedlings, but its activation by ABA was impaired in aik1 and aik1 mkk5 mutants. These findings clearly suggest that the AIK1-MKK5-MPK6 cascade functions in the ABA regulation of primary root growth and stomatal response.
Collapse
Affiliation(s)
- Kun Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Fengbo Yang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Guozeng Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Shufei Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Yuan Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Dongtao Ren
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| | - Chun-Peng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China (K.L., F.Y., G.Z., S.S., Y.M., C.-P.S.); and
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100193, China (Y.L., D.R.)
| |
Collapse
|
71
|
Braguy J, Zurbriggen MD. Synthetic strategies for plant signalling studies: molecular toolbox and orthogonal platforms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:118-38. [PMID: 27227549 DOI: 10.1111/tpj.13218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 05/15/2023]
Abstract
Plants deploy a wide array of signalling networks integrating environmental cues with growth, defence and developmental responses. The high level of complexity, redundancy and connection between several pathways hampers a comprehensive understanding of involved functional and regulatory mechanisms. The implementation of synthetic biology approaches is revolutionizing experimental biology in prokaryotes, yeasts and animal systems and can likewise contribute to a new era in plant biology. This review gives an overview on synthetic biology approaches for the development and implementation of synthetic molecular tools and techniques to interrogate, understand and control signalling events in plants, ranging from strategies for the targeted manipulation of plant genomes up to the spatiotemporally resolved control of gene expression using optogenetic approaches. We also describe strategies based on the partial reconstruction of signalling pathways in orthogonal platforms, like yeast, animal and in vitro systems. This allows a targeted analysis of individual signalling hubs devoid of interconnectivity with endogenous interacting components. Implementation of the interdisciplinary synthetic biology tools and strategies is not exempt of challenges and hardships but simultaneously most rewarding in terms of the advances in basic and applied research. As witnessed in other areas, these original theoretical-experimental avenues will lead to a breakthrough in the ability to study and comprehend plant signalling networks.
Collapse
Affiliation(s)
- Justine Braguy
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse 1, Building 26.12.U1.25, Düsseldorf, 40225, Germany
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse 1, Building 26.12.U1.25, Düsseldorf, 40225, Germany
| |
Collapse
|
72
|
Simeunovic A, Mair A, Wurzinger B, Teige M. Know where your clients are: subcellular localization and targets of calcium-dependent protein kinases. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3855-72. [PMID: 27117335 DOI: 10.1093/jxb/erw157] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are at the forefront of decoding transient Ca(2+) signals into physiological responses. They play a pivotal role in many aspects of plant life starting from pollen tube growth, during plant development, and in stress response to senescence and cell death. At the cellular level, Ca(2+) signals have a distinct, narrow distribution, thus requiring a conjoined localization of the decoders. Accordingly, most CDPKs have a distinct subcellular distribution which enables them to 'sense' the local Ca(2+) concentration and to interact specifically with their targets. Here we present a comprehensive overview of identified CDPK targets and discuss them in the context of kinase-substrate specificity and subcellular distribution of the CDPKs. This is particularly relevant for calcium-mediated phosphorylation where different CDPKs, as well as other kinases, were frequently reported to be involved in the regulation of the same target. However, often these studies were not performed in an in situ context. Thus, considering the specific expression patterns, distinct subcellular distribution, and different Ca(2+) affinities of CDPKs will narrow down the number of potential CDPKs for one given target. A number of aspects still remain unresolved, giving rise to pending questions for future research.
Collapse
Affiliation(s)
- Andrea Simeunovic
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Andrea Mair
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Bernhard Wurzinger
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| |
Collapse
|
73
|
Zhang A, Ren HM, Tan YQ, Qi GN, Yao FY, Wu GL, Yang LW, Hussain J, Sun SJ, Wang YF. S-type Anion Channels SLAC1 and SLAH3 Function as Essential Negative Regulators of Inward K+ Channels and Stomatal Opening in Arabidopsis. THE PLANT CELL 2016; 28. [PMID: 27002025 PMCID: PMC4863386 DOI: 10.1105/tpc.15.01050] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Drought stress induces stomatal closure and inhibits stomatal opening simultaneously. However, the underlying molecular mechanism is still largely unknown. Here we show that S-type anion channels SLAC1 and SLAH3 mainly inhibit inward K+ (K+in) channel KAT1 by protein-protein interaction, and consequently prevent stomatal opening in Arabidopsis. Voltage-clamp results demonstrated that SLAC1 inhibited KAT1 dramatically, but did not inhibit KAT2. SLAH3 inhibited KAT1 to a weaker degree relative to SLAC1. Both the N terminus and the C terminuses of SLAC1 inhibited KAT1, but the inhibition by the N terminus was stronger. The C terminus was essential for the inhibition of KAT1 by SLAC1. Furthermore, drought stress strongly up-regulated the expression of SLAC1 and SLAH3 in Arabidopsis guard cells, and the over-expression of wild type and truncated SLAC1 dramatically impaired K+in currents of guard cells and light-induced stomatal opening. Additionally, the inhibition of KAT1 by SLAC1 and KC1 only partially overlapped, suggesting that SLAC1 and KC1 inhibited K+in channels using different molecular mechanisms. Taken together, we discovered a novel regulatory mechanism for stomatal movement, in which singling pathways for stomatal closure and opening are directly coupled together by protein-protein interaction between SLAC1/SLAH3 and KAT1 in Arabidopsis.
Collapse
Affiliation(s)
- An Zhang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Hui-Min Ren
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghaic China [CN]
| | - Yan-Qiu Tan
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghaic China [CN]
| | - Guo-Ning Qi
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Fen-Yong Yao
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Gui-Li Wu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Lu-Wen Yang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Jamshaid Hussain
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Shu-Jing Sun
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Yong-Fei Wang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai POSTAL_CODE: 200032 China [CN]
| |
Collapse
|
74
|
Zhang A, Ren HM, Tan YQ, Qi GN, Yao FY, Wu GL, Yang LW, Hussain J, Sun SJ, Wang YF. S-type Anion Channels SLAC1 and SLAH3 Function as Essential Negative Regulators of Inward K+ Channels and Stomatal Opening in Arabidopsis. THE PLANT CELL 2016; 28:949-955. [PMID: 27002025 PMCID: PMC4863386 DOI: 10.1105/tpc.16.01050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/22/2016] [Accepted: 03/17/2016] [Indexed: 05/08/2023]
Abstract
Drought stress induces stomatal closure and inhibits stomatal opening simultaneously. However, the underlying molecular mechanism is still largely unknown. Here we show that S-type anion channels SLAC1 and SLAH3 mainly inhibit inward K+ (K+in) channel KAT1 by protein-protein interaction, and consequently prevent stomatal opening in Arabidopsis. Voltage-clamp results demonstrated that SLAC1 inhibited KAT1 dramatically, but did not inhibit KAT2. SLAH3 inhibited KAT1 to a weaker degree relative to SLAC1. Both the N terminus and the C terminuses of SLAC1 inhibited KAT1, but the inhibition by the N terminus was stronger. The C terminus was essential for the inhibition of KAT1 by SLAC1. Furthermore, drought stress strongly up-regulated the expression of SLAC1 and SLAH3 in Arabidopsis guard cells, and the over-expression of wild type and truncated SLAC1 dramatically impaired K+in currents of guard cells and light-induced stomatal opening. Additionally, the inhibition of KAT1 by SLAC1 and KC1 only partially overlapped, suggesting that SLAC1 and KC1 inhibited K+in channels using different molecular mechanisms. Taken together, we discovered a novel regulatory mechanism for stomatal movement, in which singling pathways for stomatal closure and opening are directly coupled together by protein-protein interaction between SLAC1/SLAH3 and KAT1 in Arabidopsis.
Collapse
Affiliation(s)
- An Zhang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Hui-Min Ren
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghaic China [CN]
| | - Yan-Qiu Tan
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghaic China [CN]
| | - Guo-Ning Qi
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Fen-Yong Yao
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Gui-Li Wu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Lu-Wen Yang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Jamshaid Hussain
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Shu-Jing Sun
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai China [CN]
| | - Yong-Fei Wang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences CITY: Shanghai STATE: Shanghai POSTAL_CODE: 200032 China [CN]
| |
Collapse
|
75
|
Li CL, Wang M, Wu XM, Chen DH, Lv HJ, Shen JL, Qiao Z, Zhang W. THI1, a Thiamine Thiazole Synthase, Interacts with Ca2+-Dependent Protein Kinase CPK33 and Modulates the S-Type Anion Channels and Stomatal Closure in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:1090-104. [PMID: 26662273 PMCID: PMC4734576 DOI: 10.1104/pp.15.01649] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/09/2015] [Indexed: 05/06/2023]
Abstract
Thiamine is required for both plant growth and development. Here, the involvement of a thiamine thiazole synthase, THI1, has been demonstrated in both guard cell abscisic acid (ABA) signaling and the drought response in Arabidopsis (Arabidopsis thaliana). THI1 overexpressors proved to be more sensitive to ABA than the wild type with respect to both the activation of guard cell slow type anion channels and stomatal closure; this effectively reduced the rate of water loss from the plant and thereby enhanced its level of drought tolerance. A yeast two-hybrid strategy was used to screen a cDNA library from epidermal strips of leaves for THI1 regulatory factors, and identified CPK33, a Ca(2+)-dependent protein kinase, as interactor with THI1 in a plasma membrane-delimited manner. Loss-of-function cpk33 mutants were hypersensitive to ABA activation of slow type anion channels and ABA-induced stomatal closure, while the CPK33 overexpression lines showed opposite phenotypes. CPK33 kinase activity was essential for ABA-induced stomatal closure. Consistent with their contrasting regulatory role over stomatal closure, THI1 suppressed CPK33 kinase activity in vitro. Together, our data reveal a novel regulatory role of thiamine thiazole synthase to kinase activity in guard cell signaling.
Collapse
Affiliation(s)
- Chun-Long Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Mei Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Xiao-Meng Wu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Dong-Hua Chen
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Hong-Jun Lv
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Jian-Lin Shen
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Zhu Qiao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Wei Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| |
Collapse
|
76
|
Zhang K, Han YT, Zhao FL, Hu Y, Gao YR, Ma YF, Zheng Y, Wang YJ, Wen YQ. Genome-wide Identification and Expression Analysis of the CDPK Gene Family in Grape, Vitis spp. BMC PLANT BIOLOGY 2015; 15:164. [PMID: 26122404 PMCID: PMC4485369 DOI: 10.1186/s12870-015-0552-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/15/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Calcium-dependent protein kinases (CDPKs) play vital roles in plant growth and development, biotic and abiotic stress responses, and hormone signaling. Little is known about the CDPK gene family in grapevine. RESULTS In this study, we performed a genome-wide analysis of the 12X grape genome (Vitis vinifera) and identified nineteen CDPK genes. Comparison of the structures of grape CDPK genes allowed us to examine their functional conservation and differentiation. Segmentally duplicated grape CDPK genes showed high structural conservation and contributed to gene family expansion. Additional comparisons between grape and Arabidopsis thaliana demonstrated that several grape CDPK genes occured in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of grapevine and Arabidopsis. Phylogenetic analysis divided the grape CDPK genes into four groups. Furthermore, we examined the expression of the corresponding nineteen homologous CDPK genes in the Chinese wild grape (Vitis pseudoreticulata) under various conditions, including biotic stress, abiotic stress, and hormone treatments. The expression profiles derived from reverse transcription and quantitative PCR suggested that a large number of VpCDPKs responded to various stimuli on the transcriptional level, indicating their versatile roles in the responses to biotic and abiotic stresses. Moreover, we examined the subcellular localization of VpCDPKs by transiently expressing six VpCDPK-GFP fusion proteins in Arabidopsis mesophyll protoplasts; this revealed high variability consistent with potential functional differences. CONCLUSIONS Taken as a whole, our data provide significant insights into the evolution and function of grape CDPKs and a framework for future investigation of grape CDPK genes.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Yong-Tao Han
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Feng-Li Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Yang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Yu-Rong Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Yan-Fei Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Yi Zheng
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA.
| | - Yue-Jin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Ying-Qiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
77
|
Zhao R, Sun H, Zhao N, Jing X, Shen X, Chen S. The Arabidopsis Ca²⁺-dependent protein kinase CPK27 is required for plant response to salt-stress. Gene 2015; 563:203-14. [PMID: 25791495 DOI: 10.1016/j.gene.2015.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/08/2015] [Accepted: 03/13/2015] [Indexed: 02/04/2023]
Abstract
Ca(2+)-dependent protein kinases (CDPKs) play vital roles in plant adaptations to environmental challenges. The precise regulatory mechanism of CDPKs in mediating salt stress still remains unclear, although several CDPK members have been identified to be involved in salt stress accumulation in various plants, such as Arabidopsis thaliana and Oryza sativa. Here, we investigated the function of an Arabidopsis CDPK, CPK27, in salt stress-signaling. CPK27 is a membrane-localized protein kinase; its expression was induced by NaCl. cpk27-1, a T-DNA insertion mutant of CPK27, was much more sensitive to salt stress than wild-type plants in terms of seed germination and post-germination seedling growth. In ion-flux assay, cpk27-1 mutants exhibited a lower capacity than wild-type plants to extrude Na(+) and import H(+) after a long-term salt treatment (110mM NaCl for 10days). Moreover, the content of Na(+) was higher and K(+) was lower in cpk27-1 mutants than in wild-type plants under salt stress. In addition, the level of salt-elicited H2O2 production was higher in cpk27-1 mutants than in wild-type plants Col after a short-term NaCl shock and long-term salt treatment. Collectively, our results suggest that CPK27 is required for plant adaptation to salt stress.
Collapse
Affiliation(s)
- Rui Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Huimin Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Nan Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Xiaoshu Jing
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Xin Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shaoliang Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
78
|
Murata Y, Mori IC, Munemasa S. Diverse stomatal signaling and the signal integration mechanism. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:369-92. [PMID: 25665132 DOI: 10.1146/annurev-arplant-043014-114707] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Guard cells perceive a variety of chemicals produced metabolically in response to abiotic and biotic stresses, integrate the signals into reactive oxygen species and calcium signatures, and convert these signatures into stomatal movements by regulating turgor pressure. Guard cell behaviors in response to such complex signals are critical for plant growth and sustenance in stressful, ever-changing environments. The key open question is how guard cells achieve the signal integration to optimize stomatal aperture. Abscisic acid is responsible for stomatal closure in plants in response to drought, and its signal transduction has been well studied. Other plant hormones and low-molecular-weight compounds function as inducers of stomatal closure and mediators of signaling in guard cells. In this review, we summarize recent advances in research on the diverse stomatal signaling pathways, with specific emphasis on signal integration and signal interaction in guard cell movement.
Collapse
Affiliation(s)
- Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; ,
| | | | | |
Collapse
|