51
|
Abstract
Chloroplasts contain high amounts of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) and low levels of the anionic lipids sulfoquinovosyldiacylglycerol (SQDG), phosphatidylglycerol (PG), and glucuronosyldiacylglycerol (GlcADG). The mostly extraplastidial lipid phosphatidylcholine is found only in the outer envelope. Chloroplasts are the major site for fatty acid synthesis. In Arabidopsis, a certain proportion of glycerolipids is entirely synthesized in the chloroplast (prokaryotic lipids). Fatty acids are also exported to the endoplasmic reticulum and incorporated into lipids that are redistributed to the chloroplast (eukaryotic lipids). MGDG, DGDG, SQDG, and PG establish the thylakoid membranes and are integral constituents of the photosynthetic complexes. Phosphate deprivation induces phospholipid degradation accompanied by the increase in DGDG, SQDG, and GlcADG. During freezing and drought stress, envelope membranes are stabilized by the conversion of MGDG into oligogalactolipids. Senescence and chlorotic stress lead to lipid and chlorophyll degradation and the deposition of acyl and phytyl moieties as fatty acid phytyl esters.
Collapse
Affiliation(s)
- Georg Hölzl
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany;
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 53115 Bonn, Germany;
| |
Collapse
|
52
|
Genome-Wide Identification and Comparative Expression Profile Analysis of the Long-Chain Acyl-CoA synthetase (LACS) Gene Family in Two Different Oil Content Cultivars of Brassica napus. Biochem Genet 2019; 57:781-800. [DOI: 10.1007/s10528-019-09921-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
|
53
|
Vanhercke T, Dyer JM, Mullen RT, Kilaru A, Rahman MM, Petrie JR, Green AG, Yurchenko O, Singh SP. Metabolic engineering for enhanced oil in biomass. Prog Lipid Res 2019; 74:103-129. [PMID: 30822461 DOI: 10.1016/j.plipres.2019.02.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023]
Abstract
The world is hungry for energy. Plant oils in the form of triacylglycerol (TAG) are one of the most reduced storage forms of carbon found in nature and hence represent an excellent source of energy. The myriad of applications for plant oils range across foods, feeds, biofuels, and chemical feedstocks as a unique substitute for petroleum derivatives. Traditionally, plant oils are sourced either from oilseeds or tissues surrounding the seed (mesocarp). Most vegetative tissues, such as leaves and stems, however, accumulate relatively low levels of TAG. Since non-seed tissues constitute the majority of the plant biomass, metabolic engineering to improve their low-intrinsic TAG-biosynthetic capacity has recently attracted significant attention as a novel, sustainable and potentially high-yielding oil production platform. While initial attempts predominantly targeted single genes, recent combinatorial metabolic engineering strategies have focused on the simultaneous optimization of oil synthesis, packaging and degradation pathways (i.e., 'push, pull, package and protect'). This holistic approach has resulted in dramatic, seed-like TAG levels in vegetative tissues. With the first proof of concept hurdle addressed, new challenges and opportunities emerge, including engineering fatty acid profile, translation into agronomic crops, extraction, and downstream processing to deliver accessible and sustainable bioenergy.
Collapse
Affiliation(s)
- Thomas Vanhercke
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia.
| | - John M Dyer
- USDA-ARS, US Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA
| | - James R Petrie
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia; Folear, Goulburn, NSW, Australia
| | - Allan G Green
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Olga Yurchenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Surinder P Singh
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| |
Collapse
|
54
|
Engineering Arabidopsis long-chain acyl-CoA synthetase 9 variants with enhanced enzyme activity. Biochem J 2019; 476:151-164. [DOI: 10.1042/bcj20180787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 11/17/2022]
Abstract
Abstract
Long-chain acyl-CoA synthetase (LACS, EC 6.2.1.3) catalyzes the ATP-dependent activation of free fatty acid to form acyl-CoA, which, in turn, serves as the major acyl donor for various lipid metabolic pathways. Increasing the size of acyl-CoA pool by enhancing LACS activity appears to be a useful approach to improve the production and modify the composition of fatty acid-derived compounds, such as triacylglycerol. In the present study, we aimed to improve the enzyme activity of Arabidopsis thaliana LACS9 (AtLACS9) by introducing random mutations into its cDNA using error-prone PCR. Two AtLACS9 variants containing multiple amino acid residue substitutions were identified with enhanced enzyme activity. To explore the effect of each amino acid residue substitution, single-site mutants were generated and the amino acid substitutions C207F and D238E were found to be primarily responsible for the increased activity of the two variants. Furthermore, evolutionary analysis revealed that the beneficial amino acid site C207 is conserved among LACS9 from plant eudicots, whereas the other beneficial amino acid site D238 might be under positive selection. Together, our results provide valuable information for the production of LACS variants for applications in the metabolic engineering of lipid biosynthesis in oleaginous organisms.
Collapse
|
55
|
Michaud M, Jouhet J. Lipid Trafficking at Membrane Contact Sites During Plant Development and Stress Response. FRONTIERS IN PLANT SCIENCE 2019; 10:2. [PMID: 30713540 PMCID: PMC6346683 DOI: 10.3389/fpls.2019.00002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/03/2019] [Indexed: 05/20/2023]
Abstract
The biogenesis of cellular membranes involves an important traffic of lipids from their site of synthesis to their final destination. Lipid transfer can be mediated by vesicular or non-vesicular pathways. The non-vesicular pathway requires the close apposition of two membranes to form a functional platform, called membrane contact sites (MCSs), where lipids are exchanged. These last decades, MCSs have been observed between virtually all organelles and a role in lipid transfer has been demonstrated for some of them. In plants, the lipid composition of membranes is highly dynamic and can be drastically modified in response to environmental changes. This highlights the importance of understanding the mechanisms involved in the regulation of membrane lipid homeostasis in plants. This review summarizes our current knowledge about the non-vesicular transport of lipids at MCSs in plants and its regulation during stress.
Collapse
|
56
|
Li N, Zhang Y, Meng H, Li S, Wang S, Xiao Z, Chang P, Zhang X, Li Q, Guo L, Igarashi Y, Luo F. Characterization of Fatty Acid Exporters involved in fatty acid transport for oil accumulation in the green alga Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:14. [PMID: 30651755 PMCID: PMC6330502 DOI: 10.1186/s13068-018-1332-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/06/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND In the past few decades, microalgae biofuel has become one of the most interesting sources of renewable energy. However, the higher cost of microalgae biofuel compared to that of petroleum prevented microalgae biofuel production. Therefore, the research on increasing lipid productivity from microalgae becomes more important. The lipid production source, triacylglycerol biosynthesis in microalgae requires short chain fatty acids as substrates, which are synthesized in chloroplasts. However, the transport mechanism of fatty acids from microalgae chloroplasts to cytosol remains unknown. RESULTS cDNAs from two homologs of the Arabidopsis fatty acid exporter 1 (FAX1) were cloned from Chlamydomonas reinhardtii and were named crfax1 and crfax2. Both CrFAXs were involved in fatty acid transport, and their substrates were mainly C16 and C18 fatty acids. Overexpression of both CrFAXs increased the accumulation of the total lipid content in algae cells, and the fatty acid compositions were changed under normal TAP or nitrogen deprivation conditions. Overexpression of both CrFAXs also increased the chlorophyll content. The MGDG content was decreased but the TAG, DAG, DGDG and other lipid contents were increased in CrFAXs overexpression strains. CONCLUSION These results reveal that CrFAX1 and CrFAX2 were involved in mediating fatty acid export for lipids biosynthesis in C. reinhardtii. In addition, overexpression of both CrFAXs obviously increased the intracellular lipid content, especially the triacylglycerol content in microalgae, which provides a potential technology for the production of more biofuels using microalgae.
Collapse
Affiliation(s)
- Nannan Li
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
- Academy of Agricultural Science, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Yan Zhang
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Hongjun Meng
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Shengting Li
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Shufeng Wang
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Zhongchun Xiao
- Academy of Agricultural Science, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Peng Chang
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Xiaohui Zhang
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yasuo Igarashi
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| | - Feng Luo
- Research Center of Bioremediation and Bioenergy, College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715 People’s Republic of China
| |
Collapse
|
57
|
Gayral M, Fanuel M, Rogniaux H, Dalgalarrondo M, Elmorjani K, Bakan B, Marion D. The Spatiotemporal Deposition of Lysophosphatidylcholine Within Starch Granules of Maize Endosperm and its Relationships to the Expression of Genes Involved in Endoplasmic Reticulum-Amyloplast Lipid Trafficking and Galactolipid Synthesis. PLANT & CELL PHYSIOLOGY 2019; 60:139-151. [PMID: 30295886 DOI: 10.1093/pcp/pcy198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/28/2018] [Indexed: 05/19/2023]
Abstract
The presence of lipids within starch granules is specific to cereal endosperm starches. These starch lipids are composed of lysophospholipids, especially lysophosphatidylcholine (LysoPC) and free fatty acids that strongly impact the assembly and properties of cereal starches. However, the molecular mechanisms associated with this specific lipid routing have never been investigated. In this study, matrix-assisted laser desorption ionization mass spectrometry imaging revealed decreasing gradients in starch LysoPC concentrations from the periphery to the center of developing maize endosperms. This spatiotemporal deposition of starch LysoPC was similar to that previously observed for endoplasmic reticulum (ER)-synthesized storage proteins, i.e. zeins, suggesting that LysoPC might originate in the ER, as already reported for chloroplasts. Furthermore, a decrease of the palmitate concentration of amyloplast galactolipids was observed during endosperm development, correlated with the preferential trapping of palmitoyl-LysoPC by starch carbohydrates, suggesting a link between LysoPC and galactolipid synthesis. Using microarray, the homologous genes of the Arabidopsis ER-chloroplast lipid trafficking and galactolipid synthesis pathways were also expressed in maize endosperm. These strong similarities suggest that the encoded enzymes and transporters are adapted to managing the differences between chloroplast and amyloplast lipid homeostasis. Altogether, our results led us to propose a model where ER-amyloplast lipid trafficking directs the LysoPC towards one of two routes, the first towards the stroma and starch granules and the other towards galactolipid synthesis.
Collapse
Affiliation(s)
- Mathieu Gayral
- INRA, Biopolymers, Interactions, Assemblies Research Unit, La Géraudière, Nantes Cedex 3, France
| | - Mathieu Fanuel
- INRA, Biopolymers, Interactions, Assemblies Research Unit, La Géraudière, Nantes Cedex 3, France
| | - Hélène Rogniaux
- INRA, Biopolymers, Interactions, Assemblies Research Unit, La Géraudière, Nantes Cedex 3, France
| | - Michèle Dalgalarrondo
- INRA, Biopolymers, Interactions, Assemblies Research Unit, La Géraudière, Nantes Cedex 3, France
| | - Khalil Elmorjani
- INRA, Biopolymers, Interactions, Assemblies Research Unit, La Géraudière, Nantes Cedex 3, France
| | - Bénédicte Bakan
- INRA, Biopolymers, Interactions, Assemblies Research Unit, La Géraudière, Nantes Cedex 3, France
| | - Didier Marion
- INRA, Biopolymers, Interactions, Assemblies Research Unit, La Géraudière, Nantes Cedex 3, France
| |
Collapse
|
58
|
Low-oxygen response is triggered by an ATP-dependent shift in oleoyl-CoA in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E12101-E12110. [PMID: 30509981 PMCID: PMC6304976 DOI: 10.1073/pnas.1809429115] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To control adaptive responses to the ever-changing environment that plants are continuously exposed to, plant cells must integrate a multitude of information to make optimal decisions. Here, we reveal how plants can link information about the cellular energy status with the actual oxygen concentration of the cell to trigger a response reaction to low-oxygen stress. We reveal that oleoyl-CoA has a moonlighting function in an energy (ATP)-dependent signal transduction pathway in plants, and we provide a model that explains how diminishing oxygen availability can initiate adaptive responses when it coincides with a decreased energy status of the cell. Plant response to environmental stimuli involves integration of multiple signals. Upon low-oxygen stress, plants initiate a set of adaptive responses to circumvent an energy crisis. Here, we reveal how these stress responses are induced by combining (i) energy-dependent changes in the composition of the acyl-CoA pool and (ii) the cellular oxygen concentration. A hypoxia-induced decline of cellular ATP levels reduces LONG-CHAIN ACYL-COA SYNTHETASE activity, which leads to a shift in the composition of the acyl-CoA pool. Subsequently, we show that different acyl-CoAs induce unique molecular responses. Altogether, our data disclose a role for acyl-CoAs acting in a cellular signaling pathway in plants. Upon hypoxia, high oleoyl-CoA levels provide the initial trigger to release the transcription factor RAP2.12 from its interaction partner ACYL-COA BINDING PROTEIN at the plasma membrane. Subsequently, according to the N-end rule for proteasomal degradation, oxygen concentration-dependent stabilization of the subgroup VII ETHYLENE-RESPONSE FACTOR transcription factor RAP2.12 determines the level of hypoxia-specific gene expression. This research unveils a specific mechanism activating low-oxygen stress responses only when a decrease in the oxygen concentration coincides with a drop in energy.
Collapse
|
59
|
LaBrant E, Barnes AC, Roston RL. Lipid transport required to make lipids of photosynthetic membranes. PHOTOSYNTHESIS RESEARCH 2018; 138:345-360. [PMID: 29961189 DOI: 10.1007/s11120-018-0545-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/20/2018] [Indexed: 05/21/2023]
Abstract
Photosynthetic membranes provide much of the usable energy for life on earth. To produce photosynthetic membrane lipids, multiple transport steps are required, including fatty acid export from the chloroplast stroma to the endoplasmic reticulum, and lipid transport from the endoplasmic reticulum to the chloroplast envelope membranes. Transport of hydrophobic molecules through aqueous space is energetically unfavorable and must be catalyzed by dedicated enzymes, frequently on specialized membrane structures. Here, we review photosynthetic membrane lipid transport to the chloroplast in the context of photosynthetic membrane lipid synthesis. We independently consider the identity of transported lipids, the proteinaceous transport components, and membrane structures which may allow efficient transport. Recent advances in lipid transport of chloroplasts, bacteria, and other systems strongly suggest that lipid transport is achieved by multiple mechanisms which include membrane contact sites with specialized protein machinery. This machinery is likely to include the TGD1, 2, 3 complex with the TGD5 and TGD4/LPTD1 systems, and may also include a number of proteins with domains similar to other membrane contact site lipid-binding proteins. Importantly, the likelihood of membrane contact sites does not preclude lipid transport by other mechanisms including vectorial acylation and vesicle transport. Substantial progress is needed to fully understand all photosynthetic membrane lipid transport processes and how they are integrated.
Collapse
Affiliation(s)
- Evan LaBrant
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Allison C Barnes
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Rebecca L Roston
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA.
| |
Collapse
|
60
|
Könnel A, Bugaeva W, Gügel IL, Philippar K. BANFF: bending of bilayer membranes by amphiphilic α-helices is necessary for form and function of organelles 1. Biochem Cell Biol 2018; 97:243-256. [PMID: 30208283 DOI: 10.1139/bcb-2018-0150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
By binding to and inserting into the lipid bilayer, amphiphilic α-helices of proteins are involved in the curvature of biological membranes in all organisms. In particular, they are involved in establishing the complex membrane architecture of intracellular organelles like the endoplasmatic reticulum, Golgi apparatus, mitochondria, and chloroplasts. Thus, amphiphilic α-helices are essential for maintenance of cellular metabolism and fitness of organisms. Here we focus on the structure and function of membrane-intrinsic proteins, which are involved in membrane curvature by amphiphilic α-helices, in mitochondria and chloroplasts of the eukaryotic model organisms yeast and Arabidopsis thaliana. Further, we propose a model for transport of fatty acids and lipid compounds across the envelope of chloroplasts in which amphiphilic α-helices might play a role.
Collapse
Affiliation(s)
- Anne Könnel
- a Center for Human- and Molecular Biology (ZHMB) - Plant Biology, Saarland University, Campus A 2.4, 66123 Saarbrücken, Germany
| | - Wassilina Bugaeva
- a Center for Human- and Molecular Biology (ZHMB) - Plant Biology, Saarland University, Campus A 2.4, 66123 Saarbrücken, Germany
| | - Irene L Gügel
- b Department of Biology I - Botany, Ludwig-Maximilians University München, Großhaderner-Str. 2, 82152 Planegg-Martinsried, Germany
| | - Katrin Philippar
- a Center for Human- and Molecular Biology (ZHMB) - Plant Biology, Saarland University, Campus A 2.4, 66123 Saarbrücken, Germany
| |
Collapse
|
61
|
Substrate preferences of long-chain acyl-CoA synthetase and diacylglycerol acyltransferase contribute to enrichment of flax seed oil with α-linolenic acid. Biochem J 2018. [PMID: 29523747 DOI: 10.1042/bcj20170910] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Seed oil from flax (Linum usitatissimum) is enriched in α-linolenic acid (ALA; 18:3Δ9cis,12cis,15cis ), but the biochemical processes underlying the enrichment of flax seed oil with this polyunsaturated fatty acid are not fully elucidated. Here, a potential process involving the catalytic actions of long-chain acyl-CoA synthetase (LACS) and diacylglycerol acyltransferase (DGAT) is proposed for ALA enrichment in triacylglycerol (TAG). LACS catalyzes the ATP-dependent activation of free fatty acid to form acyl-CoA, which in turn may serve as an acyl-donor in the DGAT-catalyzed reaction leading to TAG. To test this hypothesis, flax LACS and DGAT cDNAs were functionally expressed in Saccharomyces cerevisiae strains to probe their possible involvement in the enrichment of TAG with ALA. Among the identified flax LACSs, LuLACS8A exhibited significantly enhanced specificity for ALA over oleic acid (18:1Δ9cis ) or linoleic acid (18:2Δ9cis,12cis ). Enhanced α-linolenoyl-CoA specificity was also observed in the enzymatic assay of flax DGAT2 (LuDGAT2-3), which displayed ∼20 times increased preference toward α-linolenoyl-CoA over oleoyl-CoA. Moreover, when LuLACS8A and LuDGAT2-3 were co-expressed in yeast, both in vitro and in vivo experiments indicated that the ALA-containing TAG enrichment process was operative between LuLACS8A- and LuDGAT2-3-catalyzed reactions. Overall, the results support the hypothesis that the cooperation between the reactions catalyzed by LACS8 and DGAT2 may represent a route to enrich ALA production in the flax seed oil.
Collapse
|
62
|
Identification of the Candidate Proteins Related to Oleic Acid Accumulation during Peanut ( Arachis hypogaea L.) Seed Development through Comparative Proteome Analysis. Int J Mol Sci 2018; 19:ijms19041235. [PMID: 29670063 PMCID: PMC5979506 DOI: 10.3390/ijms19041235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/14/2023] Open
Abstract
Peanuts (Arachis hypogaea L.) are an important oilseed crop, containing high contents of protein and fatty acids (FA). The major components of FA found in peanut oil are unsaturated FAs, including oleic acid (OA, C18:1) and linoleic acid (LOA, C18:2). Moreover, the high content of OA in peanut oil is beneficial for human health and long-term storage due to its antioxidant activity. However, the dynamic changes in proteomics related to OA accumulation during seed development still remain largely unexplored. In the present study, a comparative proteome analysis based on iTRAQ (isobaric Tags for Relative and Absolute Quantification) was performed to identify the critical candidate factors involved in OA formation. A total of 389 differentially expressed proteins (DEPs) were identified between high-oleate cultivar Kainong176 and low-oleate cultivar Kainong70. Among these DEPs, 201 and 188 proteins were upregulated and downregulated, respectively. In addition, these DEPs were categorized into biosynthesis pathways of unsaturated FAs at the early stage during the high-oleic peanut seed development, and several DEPs involved in lipid oxidation pathway were found at the stage of seed maturation. Meanwhile, 28 DEPs were sporadically distributed in distinct stages of seed formation, and their molecular functions were directly correlated to FA biosynthesis and degradation. Fortunately, the expression of FAB2 (stearoyl-acyl carrier protein desaturase), the rate-limiting enzyme in the upstream biosynthesis process of OA, was significantly increased in the early stage and then decreased in the late stage of seed development in the high-oleate cultivar Kainong176. Furthermore, real-time PCR verified the expression pattern of FAB2 at the mRNA level, which was consistent with its protein abundance. However, opposite results were found for the low-oleate cultivar Kainong70. Overall, the comparative proteome analysis provided valuable insight into the molecular dynamics of OA accumulation during peanut seed development.
Collapse
|
63
|
Lin H, Shen H, Lee YK. Cellular and Molecular Responses of Dunaliella tertiolecta by Expression of a Plant Medium Chain Length Fatty Acid Specific Acyl-ACP Thioesterase. Front Microbiol 2018; 9:619. [PMID: 29670594 PMCID: PMC5893845 DOI: 10.3389/fmicb.2018.00619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/16/2018] [Indexed: 01/18/2023] Open
Abstract
Metabolic engineering of microalgae to accumulate high levels of medium chain length fatty acids (MCFAs) has met with limited success. Traditional approaches employ single introduction of MCFA specific acyl-ACP thioesterases (TEs), but our current research in transgenic Dunaliella tertiolecta line has highlighted that, there is no single rate-limiting approach that can effectively increase MCFA levels. Here, we explore the accumulation of MCFAs in D. tertiolecta after transgenic expression of myristic acid biased TE (C14TE). We observe that the MCFA levels were negatively correlated to the fatty acid (FA) synthesis genes, ketoacyl-ACP synthase II (KASII), stearoyl-CoA-9-desaturase (Δ9D), and oleoyl-CoA-12-desaturase (Δ12D). To further examine the molecular mechanism of MCFA accumulation in microalgae, we investigate the transcriptomic dynamics of the MCFA producing strain of D. tertiolecta. At the transcript level, enhanced MCFA accumulation primarily involved up-regulation of photosynthetic genes and down-regulation of genes from central carbon metabolic processes, resulting in an overall decrease in carbon precursors for FA synthesis. We additionally observe that MCFA specific peroxisomal β-oxidation gene (ACX3) was greatly enhanced to prevent excessive build-up of unusual MCFA levels. Besides, long chain acyl-CoA synthetase gene (LACS) was down-regulated, likely in attempt to control fatty acyl supply flux to FA synthesis cycle. This article provides a spatial regulation model of unusual FA accumulation in microalgae and a platform for additional metabolic engineering targeting pathways from FA synthesis, FA transport, and peroxisomal β-oxidation to achieve microalgae oils with higher levels of MCFAs.
Collapse
Affiliation(s)
- Huixin Lin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui Shen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuan K Lee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
64
|
Guan M, Huang X, Xiao Z, Jia L, Wang S, Zhu M, Qiao C, Wei L, Xu X, Liang Y, Wang R, Lu K, Li J, Qu C. Association Mapping Analysis of Fatty Acid Content in Different Ecotypic Rapeseed Using mrMLM. FRONTIERS IN PLANT SCIENCE 2018; 9:1872. [PMID: 30662447 PMCID: PMC6328494 DOI: 10.3389/fpls.2018.01872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/04/2018] [Indexed: 05/06/2023]
Abstract
Brassica napus L. is a widely cultivated oil crop and provides important resources of edible vegetable oil, and its quality is determined by fatty acid composition and content. To explain the genetic basis and identify more minor loci for fatty acid content, the multi-locus random-SNP-effect mixed linear model (mrMLM) was used to identify genomic regions associated with fatty acid content in a genetically diverse population of 435 rapeseed accessions, including 77 winter-type, 55 spring-type, and 303 semi-winter-type accessions grown in different environments. A total of 149 quantitative trait nucleotides (QTNs) were found to be associated with fatty acid content and composition, including 34 QTNs that overlapped with the previously reported loci, and 115 novel QTNs. Of these, 35 novel QTNs, located on chromosome A01, A02, A03, A05, A06, A09, A10, and C02, respectively, were repeatedly detected across different environments. Subsequently, we annotated 95 putative candidate genes by BlastP analysis using sequences from Arabidopsis thaliana homologs of the identified regions. The candidate genes included 34 environmentally-insensitive genes (e.g., CER4, DGK2, KCS17, KCS18, MYB4, and TT16) and 61 environment-sensitive genes (e.g., FAB1, FAD6, FAD7, KCR1, KCS9, KCS12, and TT1) as well as genes invloved in the fatty acid biosynthesis. Among these, BnaA08g08280D and BnaC03g60080D differed in genomic sequence between the high- and low-oleic acid lines, and might thus be the novel alleles regulating oleic acid content. Furthermore, RT-qPCR analysis of these genes showed differential expression levels during seed development. Our results highlight the practical and scientific value of mrMLM or QTN detection and the accuracy of linking specific QTNs to fatty acid content, and suggest a useful strategy to improve the fatty acid content of B. napus seeds by molecular marker-assisted breeding.
Collapse
Affiliation(s)
- Mingwei Guan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiaohu Huang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhongchun Xiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ledong Jia
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shuxian Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Meichen Zhu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Cailin Qiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ying Liang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Rui Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- *Correspondence: Jiana Li
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Cunmin Qu
| |
Collapse
|
65
|
Xu L, Wang L, Zhou XR, Chen WC, Singh S, Hu Z, Huang FH, Wan X. Stepwise metabolic engineering of Escherichia coli to produce triacylglycerol rich in medium-chain fatty acids. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:177. [PMID: 29983740 PMCID: PMC6016142 DOI: 10.1186/s13068-018-1177-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/18/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Triacylglycerols (TAGs) rich in medium-chain fatty acids (MCFAs, C10-14 fatty acids) are valuable feedstocks for biofuels and chemicals. Natural sources of TAGs rich in MCFAs are restricted to a limited number of plant species, which are unsuitable for mass agronomic production. Instead, the modification of seed or non-seed tissue oils to increase MCFA content has been investigated. In addition, microbial oils are considered as promising sustainable feedstocks for providing TAGs, although little has been done to tailor the fatty acids in microbial TAGs. RESULTS Here, we first assessed various wax synthase/acyl-coenzyme A:diacylglycerol acyltransferases, phosphatidic acid phosphatases, acyl-CoA synthetases as well as putative fatty acid metabolism regulators for producing high levels of TAGs in Escherichia coli. Activation of endogenous free fatty acids with tailored chain length via overexpression of the castor thioesterase RcFatB and the subsequent incorporation of such fatty acids into glycerol backbones shifted the TAG profile in the desired way. Metabolic and nutrient optimization of the engineered bacterial cells resulted in greatly elevated TAG levels (399.4 mg/L) with 43.8% MCFAs, representing the highest TAG levels in E. coli under shake flask conditions. Engineered cells were observed to contain membrane-bound yet robust lipid droplets. CONCLUSIONS We introduced a complete Kennedy pathway into non-oleaginous E. coli towards developing a bacterial platform for the sustainable production of TAGs rich in MCFAs. Strategies reported here illustrate the possibility of prokaryotic cell factories for the efficient production of TAGs rich in MCFAs.
Collapse
Affiliation(s)
- Lin Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 People’s Republic of China
| | - Lian Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 People’s Republic of China
| | | | - Wen-Chao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 People’s Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 People’s Republic of China
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062 People’s Republic of China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062 People’s Republic of China
| | | | - Zhe Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Feng-Hong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 People’s Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 People’s Republic of China
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062 People’s Republic of China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062 People’s Republic of China
| | - Xia Wan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062 People’s Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062 People’s Republic of China
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan, 430062 People’s Republic of China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, 430062 People’s Republic of China
| |
Collapse
|
66
|
Mueller-Schuessele SJ, Michaud M. Plastid Transient and Stable Interactions with Other Cell Compartments. Methods Mol Biol 2018; 1829:87-109. [PMID: 29987716 DOI: 10.1007/978-1-4939-8654-5_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plastids are organelles delineated by two envelopes that play important roles in different cellular processes such as energy production or lipid biosynthesis. To regulate their biogenesis and their function, plastids have to communicate with other cellular compartments. This communication can be mediated by signaling molecules and by the establishment of direct contacts between the plastid envelope and other organelles such as the endoplasmic reticulum, the mitochondria, the plasma membrane, the peroxisomes and the nucleus. These interactions are highly dynamic and respond to different biotic and abiotic stresses. However, the mechanisms involved in the formation of plastid-organelle contact sites and their functions are still enigmatic. In this chapter, we summarize our current knowledge about plastid contact sites and their role in the regulation of plastid biogenesis and function.
Collapse
Affiliation(s)
| | - Morgane Michaud
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA. .,Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, CEA Grenoble, UMR5168, Université Grenoble Alpes, Grenoble, France.
| |
Collapse
|
67
|
Li-Beisson Y, Neunzig J, Lee Y, Philippar K. Plant membrane-protein mediated intracellular traffic of fatty acids and acyl lipids. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:138-146. [PMID: 28985576 DOI: 10.1016/j.pbi.2017.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 05/24/2023]
Abstract
In plants, de novo synthesis of fatty acids (FAs) occurs in plastids, whereas assembly and modification of acyl lipids is accomplished in the endoplasmic reticulum (ER) and plastids as well as in mitochondria. Subsequently, lipophilic compounds are distributed within the cell and delivered to their destination site. Thus, constant acyl-exchanges between subcellular compartments exist. These can occur via several modes of transport and plant membrane-intrinsic proteins for FA/lipid transfer have been shown to play an essential role in delivery and distribution. Lately, substantial progress has been made in identification and characterization of transport proteins for lipid compounds in plant organelle membranes. In this review, we focus on our current understanding of protein mediated lipid traffic between organelles of land plants.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- CEA, CNRS and Aix-Marseille Université, Institut de Biosciences et Biotechnologies d'Aix-Marseille, UMR 7265, CEA Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Jens Neunzig
- Saarland University, Center for Human- and Molecular Biology - Plant Biology, Campus A 2.4, D-66123 Saarbrücken, Germany
| | - Youngsook Lee
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang 37673, Republic of Korea
| | - Katrin Philippar
- Saarland University, Center for Human- and Molecular Biology - Plant Biology, Campus A 2.4, D-66123 Saarbrücken, Germany.
| |
Collapse
|
68
|
Hsueh YC, Ehmann C, Flinner N, Ladig R, Schleiff E. The plastid outer membrane localized LPTD1 is important for glycerolipid remodelling under phosphate starvation. PLANT, CELL & ENVIRONMENT 2017; 40:1643-1657. [PMID: 28433003 DOI: 10.1111/pce.12973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
Glycerolipid synthesis in plants is coordinated between plastids and the endoplasmic reticulum (ER). A central step within the glycerolipid synthesis is the transport of phosphatidic acid from ER to chloroplasts. The chloroplast outer envelope protein TGD4 belongs to the LptD family conserved in bacteria and plants and selectively binds and may transport phosphatidic acid. We describe a second LptD-family protein in A. thaliana (atLPTD1; At2g44640) characterized by a barrel domain with an amino-acid signature typical for cyanobacterial LptDs. It forms a cation selective channel in vitro with a diameter of about 9 Å. atLPTD1 levels are induced under phosphate starvation. Plants expressing an RNAi construct against atLPTD1 show a growth phenotype under normal conditions. Expressing the RNAi against atLPTD1 in the tgd4-1 background renders the plants more sensitive to light stress or phosphate limitation than the individual mutants. Moreover, lipid analysis revealed that digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol levels remain constant in the RNAi mutants under phosphate starvation, while these two lipids are enhanced in wild-type. Based on our results, we propose a function of atLPTD1 in the transport of lipids from ER to chloroplast under phosphate starvation, which is combinatory with the function of TGD4.
Collapse
Affiliation(s)
- Yi-Ching Hsueh
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
- Department of Physics, Syracuse University, 201 Physics Bldg., Syracuse, New York, NY, 13244-1130, USA
| | - Christian Ehmann
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Nadine Flinner
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Ruth-Moufang-Straße 1, 60438, Frankfurt am Main, Germany
| | - Roman Ladig
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
- Cluster of Excellence Frankfurt, Goethe University, Max von Laue Str. 9, 60438, Frankfurt am Main, Germany
- Buchman Institute of Molecular Life Sciences, Goethe University, Max von Laue Str. 15, 60438, Frankfurt am Main, Germany
| |
Collapse
|
69
|
Iskandarov U, Silva JE, Kim HJ, Andersson M, Cahoon RE, Mockaitis K, Cahoon EB. A Specialized Diacylglycerol Acyltransferase Contributes to the Extreme Medium-Chain Fatty Acid Content of Cuphea Seed Oil. PLANT PHYSIOLOGY 2017; 174:97-109. [PMID: 28325847 PMCID: PMC5411140 DOI: 10.1104/pp.16.01894] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/20/2017] [Indexed: 05/14/2023]
Abstract
Seed oils of many Cuphea sp. contain >90% of medium-chain fatty acids, such as decanoic acid (10:0). These seed oils, which are among the most compositionally variant in the plant kingdom, arise from specialized fatty acid biosynthetic enzymes and specialized acyltransferases. These include lysophosphatidic acid acyltransferases (LPAT) and diacylglycerol acyltransferases (DGAT) that are required for successive acylation of medium-chain fatty acids in the sn-2 and sn-3 positions of seed triacylglycerols (TAGs). Here we report the identification of a cDNA for a DGAT1-type enzyme, designated CpuDGAT1, from the transcriptome of C. avigera var pulcherrima developing seeds. Microsomes of camelina (Camelina sativa) seeds engineered for CpuDGAT1 expression displayed DGAT activity with 10:0-CoA and the diacylglycerol didecanoyl, that was approximately 4-fold higher than that in camelina seed microsomes lacking CpuDGAT1. In addition, coexpression in camelina seeds of CpuDGAT1 with a C. viscosissima FatB thioesterase (CvFatB1) that generates 10:0 resulted in TAGs with nearly 15 mol % of 10:0. More strikingly, expression of CpuDGAT1 and CvFatB1 with the previously described CvLPAT2, a 10:0-CoA-specific Cuphea LPAT, increased 10:0 amounts to 25 mol % in camelina seed TAG. These TAGs contained up to 40 mol % 10:0 in the sn-2 position, nearly double the amounts obtained from coexpression of CvFatB1 and CvLPAT2 alone. Although enriched in diacylglycerol, 10:0 was not detected in phosphatidylcholine in these seeds. These findings are consistent with channeling of 10:0 into TAG through the combined activities of specialized LPAT and DGAT activities and demonstrate the biotechnological use of these enzymes to generate 10:0-rich seed oils.
Collapse
Affiliation(s)
- Umidjon Iskandarov
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (U.I., J.E.S., H.J.K., R.E.C., E.B.C.)
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden (M.A.); and
- Pervasive Technology Institute and Department of Biology, Indiana University, Bloomington, Indiana 47405 (K.M.)
| | - Jillian E Silva
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (U.I., J.E.S., H.J.K., R.E.C., E.B.C.)
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden (M.A.); and
- Pervasive Technology Institute and Department of Biology, Indiana University, Bloomington, Indiana 47405 (K.M.)
| | - Hae Jin Kim
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (U.I., J.E.S., H.J.K., R.E.C., E.B.C.)
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden (M.A.); and
- Pervasive Technology Institute and Department of Biology, Indiana University, Bloomington, Indiana 47405 (K.M.)
| | - Mariette Andersson
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (U.I., J.E.S., H.J.K., R.E.C., E.B.C.)
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden (M.A.); and
- Pervasive Technology Institute and Department of Biology, Indiana University, Bloomington, Indiana 47405 (K.M.)
| | - Rebecca E Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (U.I., J.E.S., H.J.K., R.E.C., E.B.C.)
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden (M.A.); and
- Pervasive Technology Institute and Department of Biology, Indiana University, Bloomington, Indiana 47405 (K.M.)
| | - Keithanne Mockaitis
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (U.I., J.E.S., H.J.K., R.E.C., E.B.C.)
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden (M.A.); and
- Pervasive Technology Institute and Department of Biology, Indiana University, Bloomington, Indiana 47405 (K.M.)
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (U.I., J.E.S., H.J.K., R.E.C., E.B.C.);
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden (M.A.); and
- Pervasive Technology Institute and Department of Biology, Indiana University, Bloomington, Indiana 47405 (K.M.)
| |
Collapse
|
70
|
Liu J, Yuan Y, Wang Y, Jiang C, Chen T, Zhu F, Zhao Y, Zhou J, Huang L. Regulation of fatty acid and flavonoid biosynthesis by miRNAs in Lonicera japonica. RSC Adv 2017. [DOI: 10.1039/c7ra05800d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This is the first report on miRNAs in different varieties of honeysuckle, the results of which can further facilitate the discovery of functional regulatory miRNAs involved in the secondary metabolism in L. japonica.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory Breeding Base of Dao-di Herbs
- National Resource Center for Chinese Materia Medica
- Chinese Academy of Chinese Medical Sciences
- Beijing 100107
- PR China
| | - Yuan Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs
- National Resource Center for Chinese Materia Medica
- Chinese Academy of Chinese Medical Sciences
- Beijing 100107
- PR China
| | - Yaolong Wang
- State Key Laboratory Breeding Base of Dao-di Herbs
- National Resource Center for Chinese Materia Medica
- Chinese Academy of Chinese Medical Sciences
- Beijing 100107
- PR China
| | - Chao Jiang
- State Key Laboratory Breeding Base of Dao-di Herbs
- National Resource Center for Chinese Materia Medica
- Chinese Academy of Chinese Medical Sciences
- Beijing 100107
- PR China
| | - Tiying Chen
- State Key Laboratory Breeding Base of Dao-di Herbs
- National Resource Center for Chinese Materia Medica
- Chinese Academy of Chinese Medical Sciences
- Beijing 100107
- PR China
| | - Fengjie Zhu
- Anhui University of Chinese Medicine
- Hefei 230012
- PR China
| | - Yuyang Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs
- National Resource Center for Chinese Materia Medica
- Chinese Academy of Chinese Medical Sciences
- Beijing 100107
- PR China
| | - Junhui Zhou
- State Key Laboratory Breeding Base of Dao-di Herbs
- National Resource Center for Chinese Materia Medica
- Chinese Academy of Chinese Medical Sciences
- Beijing 100107
- PR China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs
- National Resource Center for Chinese Materia Medica
- Chinese Academy of Chinese Medical Sciences
- Beijing 100107
- PR China
| |
Collapse
|
71
|
Dolch LJ, Rak C, Perin G, Tourcier G, Broughton R, Leterrier M, Morosinotto T, Tellier F, Faure JD, Falconet D, Jouhet J, Sayanova O, Beaudoin F, Maréchal E. A Palmitic Acid Elongase Affects Eicosapentaenoic Acid and Plastidial Monogalactosyldiacylglycerol Levels in Nannochloropsis. PLANT PHYSIOLOGY 2017; 173:742-759. [PMID: 27895203 PMCID: PMC5210741 DOI: 10.1104/pp.16.01420] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/24/2016] [Indexed: 05/03/2023]
Abstract
Nannochloropsis species are oleaginous eukaryotes containing a plastid limited by four membranes, deriving from a secondary endosymbiosis. In Nannochloropsis, thylakoid lipids, including monogalactosyldiacylglycerol (MGDG), are enriched in eicosapentaenoic acid (EPA). The need for EPA in MGDG is not understood. Fatty acids are de novo synthesized in the stroma, then converted into very-long-chain polyunsaturated fatty acids (FAs) at the endoplasmic reticulum (ER). The production of MGDG relies therefore on an EPA supply from the ER to the plastid, following an unknown process. We identified seven elongases and five desaturases possibly involved in EPA production in Nannochloropsis gaditana Among the six heterokont-specific saturated FA elongases possibly acting upstream in this pathway, we characterized the highly expressed isoform Δ0-ELO1 Heterologous expression in yeast (Saccharomyces cerevisiae) showed that NgΔ0-ELO1 could elongate palmitic acid. Nannochloropsis Δ0-elo1 mutants exhibited a reduced EPA level and a specific decrease in MGDG In NgΔ0-elo1 lines, the impairment of photosynthesis is consistent with a role of EPA-rich MGDG in nonphotochemical quenching control, possibly providing an appropriate MGDG platform for the xanthophyll cycle. Concomitantly with MGDG decrease, the level of triacylglycerol (TAG) containing medium chain FAs increased. In Nannochloropsis, part of EPA used for MGDG production is therefore biosynthesized by a channeled process initiated at the elongation step of palmitic acid by Δ0-ELO1, thus acting as a committing enzyme for galactolipid production. Based on the MGDG/TAG balance controlled by Δ0-ELO1, this study also provides novel prospects for the engineering of oleaginous microalgae for biotechnological applications.
Collapse
Affiliation(s)
- Lina-Juana Dolch
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.)
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.);
| | - Camille Rak
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.)
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.);
| | - Giorgio Perin
- Padua Algae Research Laboratory, Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy (G.P., T.M.)
- Padua Algae Research Laboratory, Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy (G.P., T.M.);
| | - Guillaume Tourcier
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.)
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.);
| | - Richard Broughton
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom (R.B., O.S., F.B.)
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom (R.B., O.S., F.B.);
| | - Marina Leterrier
- Fermentalg, 4 Rue Rivière, 33500, Libourne, France (M.L.); and
- Fermentalg, 4 Rue Rivière, 33500, Libourne, France (M.L.); and
| | - Tomas Morosinotto
- Padua Algae Research Laboratory, Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy (G.P., T.M.)
- Padua Algae Research Laboratory, Department of Biology, University of Padova, Via U. Bassi 58/B, 35121 Padova, Italy (G.P., T.M.);
| | - Frédérique Tellier
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France (J.-D.F.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France (J.-D.F.)
| | - Jean-Denis Faure
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France (J.-D.F.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France (J.-D.F.)
| | - Denis Falconet
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.)
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.);
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.)
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.);
| | - Olga Sayanova
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom (R.B., O.S., F.B.)
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom (R.B., O.S., F.B.);
| | - Frédéric Beaudoin
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom (R.B., O.S., F.B.)
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom (R.B., O.S., F.B.);
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.)
- Laboratoire de Physiologie Cellulaire et Végétale, Unité mixte de recherche 5168 CNRS - CEA - Université Grenoble 1, Institut de Recherche en Sciences et Technologies pour le Vivant, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France (L.-J.D., C.R., G.T., D.F., J.J., E.M.);
| |
Collapse
|
72
|
Botella C, Jouhet J, Block MA. Importance of phosphatidylcholine on the chloroplast surface. Prog Lipid Res 2017; 65:12-23. [DOI: 10.1016/j.plipres.2016.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/04/2016] [Accepted: 11/06/2016] [Indexed: 12/11/2022]
|
73
|
Yang Z, Ji H, Liu D. Oil Biosynthesis in Underground Oil-Rich Storage Vegetative Tissue: Comparison of Cyperus esculentus Tuber with Oil Seeds and Fruits. PLANT & CELL PHYSIOLOGY 2016; 57:2519-2540. [PMID: 27742886 DOI: 10.1093/pcp/pcw165] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/16/2016] [Indexed: 05/25/2023]
Abstract
Cyperus esculentus is unique in that it can accumulate rich oil in its tubers. However, the underlying mechanism of tuber oil biosynthesis is still unclear. Our transcriptional analyses of the pathways from pyruvate production up to triacylglycerol (TAG) accumulation in tubers revealed many distinct species-specific lipid expression patterns from oil seeds and fruits, indicating that in C. esculentus tuber: (i) carbon flux from sucrose toward plastid pyruvate could be produced mostly through the cytosolic glycolytic pathway; (ii) acetyl-CoA synthetase might be an important contributor to acetyl-CoA formation for plastid fatty acid biosynthesis; (iii) the expression pattern for stearoyl-ACP desaturase was associated with high oleic acid composition; (iv) it was most likely that endoplasmic reticulum (ER)-associated acyl-CoA synthetase played a significant role in the export of fatty acids between the plastid and ER; (v) lipid phosphate phosphatase (LPP)-δ was most probably related to the formation of the diacylglycerol (DAG) pool in the Kennedy pathway; and (vi) diacylglyceroltransacylase 2 (DGAT2) and phospholipid:diacylglycerolacyltransferase 1 (PDAT1) might play crucial roles in tuber oil biosynthesis. In contrast to oil-rich fruits, there existed many oleosins, caleosins and steroleosins with very high transcripts in tubers. Surprisingly, only a single ortholog of WRINKLED1 (WRI1)-like transcription factor was identified and it was poorly expressed during tuber development. Our study not only provides insights into lipid metabolism in tuber tissues, but also broadens our understanding of TAG synthesis in oil plants. Such knowledge is of significance in exploiting this oil-rich species and manipulating other non-seed tissues to enhance storage oil production.
Collapse
Affiliation(s)
- Zhenle Yang
- Key Lab of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Hongying Ji
- Key Lab of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Dantong Liu
- Key Lab of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
74
|
Wang J, Singh SK, Du C, Li C, Fan J, Pattanaik S, Yuan L. Comparative Transcriptomic Analysis of Two Brassica napus Near-Isogenic Lines Reveals a Network of Genes That Influences Seed Oil Accumulation. FRONTIERS IN PLANT SCIENCE 2016; 7:1498. [PMID: 27746810 PMCID: PMC5040705 DOI: 10.3389/fpls.2016.01498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/20/2016] [Indexed: 05/31/2023]
Abstract
Rapeseed (Brassica napus) is an important oil seed crop, providing more than 13% of the world's supply of edible oils. An in-depth knowledge of the gene network involved in biosynthesis and accumulation of seed oil is critical for the improvement of B. napus. Using available genomic and transcriptomic resources, we identified 1,750 acyl-lipid metabolism (ALM) genes that are distributed over 19 chromosomes in the B. napus genome. B. rapa and B. oleracea, two diploid progenitors of B. napus, contributed almost equally to the ALM genes. Genome collinearity analysis demonstrated that the majority of the ALM genes have arisen due to genome duplication or segmental duplication events. In addition, we profiled the expression patterns of the ALM genes in four different developmental stages. Furthermore, we developed two B. napus near isogenic lines (NILs). The high oil NIL, YC13-559, accumulates significantly higher (∼10%) seed oil compared to the other, YC13-554. Comparative gene expression analysis revealed upregulation of lipid biosynthesis-related regulatory genes in YC13-559, including SHOOTMERISTEMLESS, LEAFY COTYLEDON 1 (LEC1), LEC2, FUSCA3, ABSCISIC ACID INSENSITIVE 3 (ABI3), ABI4, ABI5, and WRINKLED1, as well as structural genes, such as ACETYL-CoA CARBOXYLASE, ACYL-CoA DIACYLGLYCEROL ACYLTRANSFERASE, and LONG-CHAIN ACYL-CoA SYNTHETASES. We observed that several genes related to the phytohormones, gibberellins, jasmonate, and indole acetic acid, were differentially expressed in the NILs. Our findings provide a broad account of the numbers, distribution, and expression profiles of acyl-lipid metabolism genes, as well as gene networks that potentially control oil accumulation in B. napus seeds. The upregulation of key regulatory and structural genes related to lipid biosynthesis likely plays a major role for the increased seed oil in YC13-559.
Collapse
Affiliation(s)
- Jingxue Wang
- College of Life Sciences, Shanxi UniversityTaiyuan, China
| | - Sanjay K. Singh
- Department of Plant and Soil Sciences, University of Kentucky, LexingtonKY, USA
| | - Chunfang Du
- Cotton Research Institute of Shanxi Academy of Agricultural SciencesYuncheng, China
| | - Chen Li
- College of Life Sciences, Shanxi UniversityTaiyuan, China
| | - Jianchun Fan
- Cotton Research Institute of Shanxi Academy of Agricultural SciencesYuncheng, China
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, University of Kentucky, LexingtonKY, USA
| | - Ling Yuan
- College of Life Sciences, Shanxi UniversityTaiyuan, China
- Department of Plant and Soil Sciences, University of Kentucky, LexingtonKY, USA
| |
Collapse
|
75
|
Lung SC, Chye ML. Deciphering the roles of acyl-CoA-binding proteins in plant cells. PROTOPLASMA 2016; 253:1177-95. [PMID: 26340904 DOI: 10.1007/s00709-015-0882-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/21/2015] [Indexed: 05/18/2023]
Abstract
Lipid trafficking is vital for metabolite exchange and signal communications between organelles and endomembranes. Acyl-CoA-binding proteins (ACBPs) are involved in the intracellular transport, protection, and pool formation of acyl-CoA esters, which are important intermediates and regulators in lipid metabolism and cellular signaling. In this review, we highlight recent advances in our understanding of plant ACBP families from a cellular and developmental perspective. Plant ACBPs have been extensively studied in Arabidopsis thaliana (a dicot) and to a lesser extent in Oryza sativa (a monocot). Thus far, they have been detected in the plasma membrane, vesicles, endoplasmic reticulum, Golgi apparatus, apoplast, cytosol, nuclear periphery, and peroxisomes. In combination with biochemical and molecular genetic tools, the widespread subcellular distribution of respective ACBP members has been explicitly linked to their functions in lipid metabolism during development and in response to stresses. At the cellular level, strong expression of specific ACBP homologs in specialized cells, such as embryos, stem epidermis, guard cells, male gametophytes, and phloem sap, is of relevance to their corresponding distinct roles in organ development and stress responses. Other interesting patterns in their subcellular localization and spatial expression that prompt new directions in future investigations are discussed.
Collapse
Affiliation(s)
- Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
76
|
Guerin C, Joët T, Serret J, Lashermes P, Vaissayre V, Agbessi MDT, Beulé T, Severac D, Amblard P, Tregear J, Durand-Gasselin T, Morcillo F, Dussert S. Gene coexpression network analysis of oil biosynthesis in an interspecific backcross of oil palm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:423-41. [PMID: 27145323 DOI: 10.1111/tpj.13208] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 05/25/2023]
Abstract
Global demand for vegetable oils is increasing at a dramatic rate, while our understanding of the regulation of oil biosynthesis in plants remains limited. To gain insights into the mechanisms that govern oil synthesis and fatty acid (FA) composition in the oil palm fruit, we used a multilevel approach combining gene coexpression analysis, quantification of allele-specific expression and joint multivariate analysis of transcriptomic and lipid data, in an interspecific backcross population between the African oil palm, Elaeis guineensis, and the American oil palm, Elaeis oleifera, which display contrasting oil contents and FA compositions. The gene coexpression network produced revealed tight transcriptional coordination of fatty acid synthesis (FAS) in the plastid with sugar sensing, plastidial glycolysis, transient starch storage and carbon recapture pathways. It also revealed a concerted regulation, along with FAS, of both the transfer of nascent FA to the endoplasmic reticulum, where triacylglycerol assembly occurs, and of the production of glycerol-3-phosphate, which provides the backbone of triacylglycerols. Plastid biogenesis and auxin transport were the two other biological processes most tightly connected to FAS in the network. In addition to WRINKLED1, a transcription factor (TF) known to activate FAS genes, two novel TFs, termed NF-YB-1 and ZFP-1, were found at the core of the FAS module. The saturated FA content of palm oil appeared to vary above all in relation to the level of transcripts of the gene coding for β-ketoacyl-acyl carrier protein synthase II. Our findings should facilitate the development of breeding and engineering strategies in this and other oil crops.
Collapse
Affiliation(s)
- Chloé Guerin
- PalmElit SAS, Montferrier-sur-Lez, F-34980, France
| | - Thierry Joët
- IRD, UMR DIADE, 911 Av. Agropolis, Montpellier, 34394, France
| | - Julien Serret
- IRD, UMR DIADE, 911 Av. Agropolis, Montpellier, 34394, France
| | | | | | | | | | - Dany Severac
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 Rue de la Cardonille, Montpellier Cedex 5, 34094, France
| | | | - James Tregear
- IRD, UMR DIADE, 911 Av. Agropolis, Montpellier, 34394, France
| | | | | | | |
Collapse
|
77
|
Manan S, Chen B, She G, Wan X, Zhao J. Transport and transcriptional regulation of oil production in plants. Crit Rev Biotechnol 2016; 37:641-655. [DOI: 10.1080/07388551.2016.1212185] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sehrish Manan
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Beibei Chen
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Guangbiao She
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Jian Zhao
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
78
|
Zhang L, Wang SB, Li QG, Song J, Hao YQ, Zhou L, Zheng HQ, Dunwell JM, Zhang YM. An Integrated Bioinformatics Analysis Reveals Divergent Evolutionary Pattern of Oil Biosynthesis in High- and Low-Oil Plants. PLoS One 2016; 11:e0154882. [PMID: 27159078 PMCID: PMC4861283 DOI: 10.1371/journal.pone.0154882] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/20/2016] [Indexed: 11/19/2022] Open
Abstract
Seed oils provide a renewable source of food, biofuel and industrial raw materials that is important for humans. Although many genes and pathways for acyl-lipid metabolism have been identified, little is known about whether there is a specific mechanism for high-oil content in high-oil plants. Based on the distinct differences in seed oil content between four high-oil dicots (20~50%) and three low-oil grasses (<3%), comparative genome, transcriptome and differential expression analyses were used to investigate this mechanism. Among 4,051 dicot-specific soybean genes identified from 252,443 genes in the seven species, 54 genes were shown to directly participate in acyl-lipid metabolism, and 93 genes were found to be associated with acyl-lipid metabolism. Among the 93 dicot-specific genes, 42 and 27 genes, including CBM20-like SBDs and GPT2, participate in carbohydrate degradation and transport, respectively. 40 genes highly up-regulated during seed oil rapid accumulation period are mainly involved in initial fatty acid synthesis, triacylglyceride assembly and oil-body formation, for example, ACCase, PP, DGAT1, PDAT1, OLEs and STEROs, which were also found to be differentially expressed between high- and low-oil soybean accessions. Phylogenetic analysis revealed distinct differences of oleosin in patterns of gene duplication and loss between high-oil dicots and low-oil grasses. In addition, seed-specific GmGRF5, ABI5 and GmTZF4 were predicted to be candidate regulators in seed oil accumulation. This study facilitates future research on lipid biosynthesis and potential genetic improvement of seed oil content.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Shi-Bo Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- Statistical Genomics Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Qi-Gang Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People’s Republic of China
| | - Jian Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Yu-Qi Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Ling Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- Institute of Biotechnology, Jiangsu Academy of Agricultural Science, Nanjing 210014, People’s Republic of China
| | - Huan-Quan Zheng
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AS, United Kingdom
| | - Yuan-Ming Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- Statistical Genomics Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
- * E-mail: ;
| |
Collapse
|
79
|
Xu C, Shanklin J. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:179-206. [PMID: 26845499 DOI: 10.1146/annurev-arplant-043015-111641] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oils in the form of triacylglycerols are the most abundant energy-dense storage compounds in eukaryotes, and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerols as a renewable and sustainable bioenergy source. Here, we review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.
Collapse
Affiliation(s)
- Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973; ,
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973; ,
| |
Collapse
|
80
|
Allen DK. Assessing compartmentalized flux in lipid metabolism with isotopes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1226-1242. [PMID: 27003250 DOI: 10.1016/j.bbalip.2016.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/28/2022]
Abstract
Metabolism in plants takes place across multiple cell types and within distinct organelles. The distributions equate to spatial heterogeneity; though the limited means to experimentally assess metabolism frequently involve homogenizing tissues and mixing metabolites from different locations. Most current isotope investigations of metabolism therefore lack the ability to resolve spatially distinct events. Recognition of this limitation has resulted in inspired efforts to advance metabolic flux analysis and isotopic labeling techniques. Though a number of these efforts have been applied to studies in central metabolism; recent advances in instrumentation and techniques present an untapped opportunity to make similar progress in lipid metabolism where the use of stable isotopes has been more limited. These efforts will benefit from sophisticated radiolabeling reports that continue to enrich our knowledge on lipid biosynthetic pathways and provide some direction for stable isotope experimental design and extension of MFA. Evidence for this assertion is presented through the review of several elegant stable isotope studies and by taking stock of what has been learned from radioisotope investigations when spatial aspects of metabolism were considered. The studies emphasize that glycerolipid production occurs across several locations with assembly of lipids in the ER or plastid, fatty acid biosynthesis occurring in the plastid, and the generation of acetyl-CoA and glycerol-3-phosphate taking place at multiple sites. Considering metabolism in this context underscores the cellular and subcellular organization that is important to enhanced production of glycerolipids in plants. An attempt is made to unify salient features from a number of reports into a diagrammatic model of lipid metabolism and propose where stable isotope labeling experiments and further flux analysis may help address questions in the field. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Doug K Allen
- United States Department of Agriculture, Agricultural Research Service, 975 North Warson Road, St. Louis, MO 63132, United States; Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, United States.
| |
Collapse
|
81
|
Botella C, Sautron E, Boudiere L, Michaud M, Dubots E, Yamaryo-Botté Y, Albrieux C, Marechal E, Block MA, Jouhet J. ALA10, a Phospholipid Flippase, Controls FAD2/FAD3 Desaturation of Phosphatidylcholine in the ER and Affects Chloroplast Lipid Composition in Arabidopsis thaliana. PLANT PHYSIOLOGY 2016; 170:1300-14. [PMID: 26620528 PMCID: PMC4775126 DOI: 10.1104/pp.15.01557] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/29/2015] [Indexed: 05/18/2023]
Abstract
The biogenesis of photosynthetic membranes relies on galactoglycerolipids, which are synthesized via pathways that are dispatched over several cell compartments. This membrane biogenesis requires both trafficking of lipid intermediates and a tight homeostatic regulation. In this work, we address the role of ALA10 (for aminophospholipid ATPase), a P4-type ATPase, in a process counteracting the monogalactosyldiacylglycerol (MGDG) shortage in Arabidopsis (Arabidopsis thaliana) leaves. ALA10 can interact with protein partners, ALIS1 (for ALA-interacting subunit1) or ALIS5, leading to differential endomembrane localizations of the interacting proteins, close to the plasma membrane with ALIS1 or to chloroplasts with ALIS5. ALA10 interacts also with FATTY ACID DESATURASE2 (FAD2), and modification of ALA10 expression affects phosphatidylcholine (PC) fatty acyl desaturation by disturbing the balance between FAD2 and FAD3 activities. Modulation of ALA10 expression downstream impacts the fatty acyl composition of chloroplast PC. ALA10 expression also enhances leaf growth and improves the MGDG-PC ratio, possibly through MGDG SYNTHASE1 (MGD1) activation by phosphatidic acid. The positive effect of ALA10 on leaf development is significant in conditions such as upon treatment of plants with Galvestine-1, an inhibitor of MGDG synthases, or when plants are grown at chilling temperature.
Collapse
Affiliation(s)
- César Botella
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Université Grenoble-Alpes, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
| | - Emeline Sautron
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Université Grenoble-Alpes, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
| | - Laurence Boudiere
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Université Grenoble-Alpes, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Université Grenoble-Alpes, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
| | - Emmanuelle Dubots
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Université Grenoble-Alpes, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
| | - Yoshiki Yamaryo-Botté
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Université Grenoble-Alpes, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
| | - Catherine Albrieux
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Université Grenoble-Alpes, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
| | - Eric Marechal
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Université Grenoble-Alpes, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
| | - Maryse A Block
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Université Grenoble-Alpes, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Université Grenoble-Alpes, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
| |
Collapse
|
82
|
Li X, Zhang R, Patena W, Gang SS, Blum SR, Ivanova N, Yue R, Robertson JM, Lefebvre PA, Fitz-Gibbon ST, Grossman AR, Jonikas MC. An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological Processes in Chlamydomonas reinhardtii. THE PLANT CELL 2016; 28:367-87. [PMID: 26764374 PMCID: PMC4790863 DOI: 10.1105/tpc.15.00465] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/30/2015] [Accepted: 01/11/2016] [Indexed: 05/18/2023]
Abstract
The green alga Chlamydomonas reinhardtii is a leading unicellular model for dissecting biological processes in photosynthetic eukaryotes. However, its usefulness has been limited by difficulties in obtaining mutants in specific genes of interest. To allow generation of large numbers of mapped mutants, we developed high-throughput methods that (1) enable easy maintenance of tens of thousands of Chlamydomonas strains by propagation on agar media and by cryogenic storage, (2) identify mutagenic insertion sites and physical coordinates in these collections, and (3) validate the insertion sites in pools of mutants by obtaining >500 bp of flanking genomic sequences. We used these approaches to construct a stably maintained library of 1935 mapped mutants, representing disruptions in 1562 genes. We further characterized randomly selected mutants and found that 33 out of 44 insertion sites (75%) could be confirmed by PCR, and 17 out of 23 mutants (74%) contained a single insertion. To demonstrate the power of this library for elucidating biological processes, we analyzed the lipid content of mutants disrupted in genes encoding proteins of the algal lipid droplet proteome. This study revealed a central role of the long-chain acyl-CoA synthetase LCS2 in the production of triacylglycerol from de novo-synthesized fatty acids.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Ru Zhang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Weronika Patena
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Spencer S Gang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Sean R Blum
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Nina Ivanova
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Rebecca Yue
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Jacob M Robertson
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Paul A Lefebvre
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Sorel T Fitz-Gibbon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Martin C Jonikas
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| |
Collapse
|
83
|
Li N, Xu C, Li-Beisson Y, Philippar K. Fatty Acid and Lipid Transport in Plant Cells. TRENDS IN PLANT SCIENCE 2016; 21:145-158. [PMID: 26616197 DOI: 10.1016/j.tplants.2015.10.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/29/2015] [Accepted: 10/15/2015] [Indexed: 05/18/2023]
Abstract
Fatty acids (FAs) and lipids are essential - not only as membrane constituents but also for growth and development. In plants and algae, FAs are synthesized in plastids and to a large extent transported to the endoplasmic reticulum for modification and lipid assembly. Subsequently, lipophilic compounds are distributed within the cell, and thus are transported across most membrane systems. Membrane-intrinsic transporters and proteins for cellular FA/lipid transfer therefore represent key components for delivery and dissemination. In addition to highlighting their role in lipid homeostasis and plant performance, different transport mechanisms for land plants and green algae - in the model systems Arabidopsis thaliana, Chlamydomonas reinhardtii - are compared, thereby providing a current perspective on protein-mediated FA and lipid trafficking in photosynthetic cells.
Collapse
Affiliation(s)
- Nannan Li
- Research Center of Bioenergy and Bioremediation (RCBB), College of Resources and Environment, Southwest University, Beibei District, Chongqing, 400715, P.R. China
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973-5000, USA
| | - Yonghua Li-Beisson
- Institute of Environmental Biology and Biotechnology, The French Atomic and Alternative Energy Commission, Unité Mixte de Recherche 7265, Commissariat à l'Energie Atomique (CEA) Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Katrin Philippar
- Department of Biology I, Ludwig-Maximilians-University München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
84
|
Hernández ML, Sicardo MD, Martínez-Rivas JM. Differential Contribution of Endoplasmic Reticulum and Chloroplast ω-3 Fatty Acid Desaturase Genes to the Linolenic Acid Content of Olive (Olea europaea) Fruit. PLANT & CELL PHYSIOLOGY 2016; 57:138-51. [PMID: 26514651 DOI: 10.1093/pcp/pcv159] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/22/2015] [Indexed: 05/20/2023]
Abstract
Linolenic acid is a polyunsaturated fatty acid present in plant lipids, which plays key roles in plant metabolism as a structural component of storage and membrane lipids, and as a precursor of signaling molecules. The synthesis of linolenic acid is catalyzed by two different ω-3 fatty acid desaturases, which correspond to microsomal- (FAD3) and chloroplast- (FAD7 and FAD8) localized enzymes. We have investigated the specific contribution of each enzyme to the linolenic acid content in olive fruit. With that aim, we isolated two different cDNA clones encoding two ω-3 fatty acid desaturases from olive (Olea europaea cv. Picual). Sequence analysis indicates that they code for microsomal (OepFAD3B) and chloroplast (OepFAD7-2) ω-3 fatty acid desaturase enzymes, different from the previously characterized OekFAD3A and OekFAD7-1 genes. Functional expression in yeast of the corresponding OepFAD3A and OepFAD3B cDNAs confirmed that they encode microsomal ω-3 fatty acid desaturases. The linolenic acid content and transcript levels of olive FAD3 and FAD7 genes were measured in different tissues of Picual and Arbequina cultivars, including mesocarp and seed during development and ripening of olive fruit. Gene expression and lipid analysis indicate that FAD3A is the gene mainly responsible for the linolenic acid present in the seed, while FAD7-1 and FAD7-2 contribute mostly to the linolenic acid present in the mesocarp and, therefore, in the olive oil. These results also indicate the relevance of lipid trafficking between the endoplasmic reticulum and chloroplast in determining the linolenic acid content of membrane and storage lipids in oil-accumulating photosynthetic tissues.
Collapse
Affiliation(s)
- M Luisa Hernández
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - M Dolores Sicardo
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - José M Martínez-Rivas
- Department of Biochemistry and Molecular Biology of Plant Products, Instituto de la Grasa (IG-CSIC), Campus Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
85
|
Abstract
Photosynthetic organelles in plants and algae are characterized by the high abundance of glycolipids, including the galactolipids mono- and digalactosyldiacylglycerol (MGDG, DGDG) and the sulfolipid sulfoquinovosyldiacylglycerol (SQDG). Glycolipids are crucial to maintain an optimal efficiency of photosynthesis. During phosphate limitation, the amounts of DGDG and SQDG increase in the plastids of plants, and DGDG is exported to extraplastidial membranes to replace phospholipids. Algae often use betaine lipids as surrogate for phospholipids. Glucuronosyldiacylglycerol (GlcADG) is a further glycolipid that accumulates under phosphate deprived conditions. In contrast to plants, a number of eukaryotic algae contain very long chain polyunsaturated fatty acids of 20 or more carbon atoms in their glycolipids. The pathways and genes for galactolipid and sulfolipid synthesis are largely conserved between plants, Chlorophyta, Rhodophyta and algae with complex plastids derived from secondary or tertiary endosymbiosis. However, the relative contribution of the endoplasmic reticulum- and plastid-derived lipid pathways for glycolipid synthesis varies between plants and algae. The genes for glycolipid synthesis encode precursor proteins imported into the photosynthetic organelles. While most eukaryotic algae contain the plant-like galactolipid (MGD1, DGD1) and sulfolipid (SQD1, SQD2) synthases, the red alga Cyanidioschyzon harbors a cyanobacterium-type DGDG synthase (DgdA), and the amoeba Paulinella, derived from a more recent endosymbiosis event, contains cyanobacterium-type enzymes for MGDG and DGDG synthesis (MgdA, MgdE, DgdA).
Collapse
Affiliation(s)
- Barbara Kalisch
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Straße 13, 53115, Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Straße 13, 53115, Bonn, Germany.
| | - Georg Hölzl
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Straße 13, 53115, Bonn, Germany
| |
Collapse
|
86
|
Chen G, Woodfield HK, Pan X, Harwood JL, Weselake RJ. Acyl-Trafficking During Plant Oil Accumulation. Lipids 2015; 50:1057-68. [DOI: 10.1007/s11745-015-4069-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/28/2015] [Indexed: 11/25/2022]
|
87
|
Fan J, Zhai Z, Yan C, Xu C. Arabidopsis TRIGALACTOSYLDIACYLGLYCEROL5 Interacts with TGD1, TGD2, and TGD4 to Facilitate Lipid Transfer from the Endoplasmic Reticulum to Plastids. THE PLANT CELL 2015; 27:2941-55. [PMID: 26410300 PMCID: PMC4682317 DOI: 10.1105/tpc.15.00394] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/24/2015] [Accepted: 09/04/2015] [Indexed: 05/20/2023]
Abstract
The biogenesis of photosynthetic membranes in the plastids of higher plants requires an extensive supply of lipid precursors from the endoplasmic reticulum (ER). Four TRIGALACTOSYLDIACYLGLYCEROL (TGD) proteins (TGD1,2,3,4) have thus far been implicated in this lipid transfer process. While TGD1, TGD2, and TGD3 constitute an ATP binding cassette transporter complex residing in the plastid inner envelope, TGD4 is a transmembrane lipid transfer protein present in the outer envelope. These observations raise questions regarding how lipids transit across the aqueous intermembrane space. Here, we describe the isolation and characterization of a novel Arabidopsis thaliana gene, TGD5. Disruption of TGD5 results in similar phenotypic effects as previously described in tgd1,2,3,4 mutants, including deficiency of ER-derived thylakoid lipids, accumulation of oligogalactolipids, and triacylglycerol. Genetic analysis indicates that TGD4 is epistatic to TGD5 in ER-to-plastid lipid trafficking, whereas double mutants of a null tgd5 allele with tgd1-1 or tgd2-1 show a synergistic embryo-lethal phenotype. TGD5 encodes a small glycine-rich protein that is localized in the envelope membranes of chloroplasts. Coimmunoprecipitation assays show that TGD5 physically interacts with TGD1, TGD2, TGD3, and TGD4. Collectively, these results suggest that TGD5 facilitates lipid transfer from the outer to the inner plastid envelope by bridging TGD4 with the TGD1,2,3 transporter complex.
Collapse
Affiliation(s)
- Jilian Fan
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Zhiyang Zhai
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Chengshi Yan
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Changcheng Xu
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
88
|
Kilaru A, Cao X, Dabbs PB, Sung HJ, Rahman MM, Thrower N, Zynda G, Podicheti R, Ibarra-Laclette E, Herrera-Estrella L, Mockaitis K, Ohlrogge JB. Oil biosynthesis in a basal angiosperm: transcriptome analysis of Persea Americana mesocarp. BMC PLANT BIOLOGY 2015. [PMID: 26276496 DOI: 10.1186/s12870-015-0586-582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND The mechanism by which plants synthesize and store high amounts of triacylglycerols (TAG) in tissues other than seeds is not well understood. The comprehension of controls for carbon partitioning and oil accumulation in nonseed tissues is essential to generate oil-rich biomass in perennial bioenergy crops. Persea americana (avocado), a basal angiosperm with unique features that are ancestral to most flowering plants, stores ~ 70 % TAG per dry weight in its mesocarp, a nonseed tissue. Transcriptome analyses of select pathways, from generation of pyruvate and leading up to TAG accumulation, in mesocarp tissues of avocado was conducted and compared with that of oil-rich monocot (oil palm) and dicot (rapeseed and castor) tissues to identify tissue- and species-specific regulation and biosynthesis of TAG in plants. RESULTS RNA-Seq analyses of select lipid metabolic pathways of avocado mesocarp revealed patterns similar to that of other oil-rich species. However, only some predominant orthologs of the fatty acid biosynthetic pathway genes in this basal angiosperm were similar to those of monocots and dicots. The accumulation of TAG, rich in oleic acid, was associated with higher transcript levels for a putative stearoyl-ACP desaturase and endoplasmic reticulum (ER)-associated acyl-CoA synthetases, during fruit development. Gene expression levels for enzymes involved in terminal steps to TAG biosynthesis in the ER further indicated that both acyl-CoA-dependent and -independent mechanisms might play a role in TAG assembly, depending on the developmental stage of the fruit. Furthermore, in addition to the expression of an ortholog of WRINKLED1 (WRI1), a regulator of fatty acid biosynthesis, high transcript levels for WRI2-like and WRI3-like suggest a role for additional transcription factors in nonseed oil accumulation. Plastid pyruvate necessary for fatty acid synthesis is likely driven by the upregulation of genes involved in glycolysis and transport of its intermediates. Together, a comparative transcriptome analyses for storage oil biosynthesis in diverse plants and tissues suggested that several distinct and conserved features in this basal angiosperm species might contribute towards its rich TAG content. CONCLUSIONS Our work represents a comprehensive transcriptome resource for a basal angiosperm species and provides insight into their lipid metabolism in mesocarp tissues. Furthermore, comparison of the transcriptome of oil-rich mesocarp of avocado, with oil-rich seed and nonseed tissues of monocot and dicot species, revealed lipid gene orthologs that are highly conserved during evolution. The orthologs that are distinctively expressed in oil-rich mesocarp tissues of this basal angiosperm, such as WRI2, ER-associated acyl-CoA synthetases, and lipid-droplet associated proteins were also identified. This study provides a foundation for future investigations to increase oil-content and has implications for metabolic engineering to enhance storage oil content in nonseed tissues of diverse species.
Collapse
Affiliation(s)
- Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
| | - Xia Cao
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
- Bayer CropSciences, Morrisville, NC, 27560, USA.
| | - Parker B Dabbs
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| | - Ha-Jung Sung
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| | - Nicholas Thrower
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
| | - Greg Zynda
- School of Informatics and Computing, Indiana University, Bloomington, IN, 47408, USA.
| | - Ram Podicheti
- School of Informatics and Computing, Indiana University, Bloomington, IN, 47408, USA.
| | - Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, Mexico.
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., 91070, Xalapa, Veracruz, Mexico.
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, Mexico.
| | | | - John B Ohlrogge
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
89
|
Kilaru A, Cao X, Dabbs PB, Sung HJ, Rahman MM, Thrower N, Zynda G, Podicheti R, Ibarra-Laclette E, Herrera-Estrella L, Mockaitis K, Ohlrogge JB. Oil biosynthesis in a basal angiosperm: transcriptome analysis of Persea Americana mesocarp. BMC PLANT BIOLOGY 2015; 15:203. [PMID: 26276496 PMCID: PMC4537532 DOI: 10.1186/s12870-015-0586-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/29/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND The mechanism by which plants synthesize and store high amounts of triacylglycerols (TAG) in tissues other than seeds is not well understood. The comprehension of controls for carbon partitioning and oil accumulation in nonseed tissues is essential to generate oil-rich biomass in perennial bioenergy crops. Persea americana (avocado), a basal angiosperm with unique features that are ancestral to most flowering plants, stores ~ 70 % TAG per dry weight in its mesocarp, a nonseed tissue. Transcriptome analyses of select pathways, from generation of pyruvate and leading up to TAG accumulation, in mesocarp tissues of avocado was conducted and compared with that of oil-rich monocot (oil palm) and dicot (rapeseed and castor) tissues to identify tissue- and species-specific regulation and biosynthesis of TAG in plants. RESULTS RNA-Seq analyses of select lipid metabolic pathways of avocado mesocarp revealed patterns similar to that of other oil-rich species. However, only some predominant orthologs of the fatty acid biosynthetic pathway genes in this basal angiosperm were similar to those of monocots and dicots. The accumulation of TAG, rich in oleic acid, was associated with higher transcript levels for a putative stearoyl-ACP desaturase and endoplasmic reticulum (ER)-associated acyl-CoA synthetases, during fruit development. Gene expression levels for enzymes involved in terminal steps to TAG biosynthesis in the ER further indicated that both acyl-CoA-dependent and -independent mechanisms might play a role in TAG assembly, depending on the developmental stage of the fruit. Furthermore, in addition to the expression of an ortholog of WRINKLED1 (WRI1), a regulator of fatty acid biosynthesis, high transcript levels for WRI2-like and WRI3-like suggest a role for additional transcription factors in nonseed oil accumulation. Plastid pyruvate necessary for fatty acid synthesis is likely driven by the upregulation of genes involved in glycolysis and transport of its intermediates. Together, a comparative transcriptome analyses for storage oil biosynthesis in diverse plants and tissues suggested that several distinct and conserved features in this basal angiosperm species might contribute towards its rich TAG content. CONCLUSIONS Our work represents a comprehensive transcriptome resource for a basal angiosperm species and provides insight into their lipid metabolism in mesocarp tissues. Furthermore, comparison of the transcriptome of oil-rich mesocarp of avocado, with oil-rich seed and nonseed tissues of monocot and dicot species, revealed lipid gene orthologs that are highly conserved during evolution. The orthologs that are distinctively expressed in oil-rich mesocarp tissues of this basal angiosperm, such as WRI2, ER-associated acyl-CoA synthetases, and lipid-droplet associated proteins were also identified. This study provides a foundation for future investigations to increase oil-content and has implications for metabolic engineering to enhance storage oil content in nonseed tissues of diverse species.
Collapse
Affiliation(s)
- Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
| | - Xia Cao
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
- Bayer CropSciences, Morrisville, NC, 27560, USA.
| | - Parker B Dabbs
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| | - Ha-Jung Sung
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| | - Md Mahbubur Rahman
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, 37614, USA.
| | - Nicholas Thrower
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
| | - Greg Zynda
- School of Informatics and Computing, Indiana University, Bloomington, IN, 47408, USA.
| | - Ram Podicheti
- School of Informatics and Computing, Indiana University, Bloomington, IN, 47408, USA.
| | - Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, Mexico.
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., 91070, Xalapa, Veracruz, Mexico.
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Langebio/Unidad de Genómica Avanzada UGA, Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, Mexico.
| | | | - John B Ohlrogge
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
90
|
Block MA, Jouhet J. Lipid trafficking at endoplasmic reticulum-chloroplast membrane contact sites. Curr Opin Cell Biol 2015; 35:21-9. [PMID: 25868077 DOI: 10.1016/j.ceb.2015.03.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/17/2015] [Accepted: 03/21/2015] [Indexed: 10/23/2022]
Abstract
Glycerolipid synthesis in plant cells is characterized by an intense trafficking of lipids between the endoplasmic reticulum (ER) and chloroplasts. Initially, fatty acids are synthesized within chloroplasts and are exported to the ER where they are used to build up phospholipids and triacylglycerol. Ultimately, derivatives of these phospholipids return to chloroplasts to form galactolipids, monogalactosyldiacylglycerol and digalactosyldiacylglycerol, the main and essential lipids of photosynthetic membranes. Lipid trafficking was proposed to transit through membrane contact sites (MCSs) connecting both organelles. Here, we review recent insights into ER-chloroplast MCSs and lipid trafficking between chloroplasts and the ER.
Collapse
Affiliation(s)
- Maryse A Block
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Université de Grenoble-Alpes, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, 17 Avenue des Martyrs, F-38054 Grenoble, France.
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Université de Grenoble-Alpes, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, 17 Avenue des Martyrs, F-38054 Grenoble, France
| |
Collapse
|
91
|
Allen DK, Bates PD, Tjellström H. Tracking the metabolic pulse of plant lipid production with isotopic labeling and flux analyses: Past, present and future. Prog Lipid Res 2015; 58:97-120. [PMID: 25773881 DOI: 10.1016/j.plipres.2015.02.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/30/2015] [Accepted: 02/11/2015] [Indexed: 11/25/2022]
Abstract
Metabolism is comprised of networks of chemical transformations, organized into integrated biochemical pathways that are the basis of cellular operation, and function to sustain life. Metabolism, and thus life, is not static. The rate of metabolites transitioning through biochemical pathways (i.e., flux) determines cellular phenotypes, and is constantly changing in response to genetic or environmental perturbations. Each change evokes a response in metabolic pathway flow, and the quantification of fluxes under varied conditions helps to elucidate major and minor routes, and regulatory aspects of metabolism. To measure fluxes requires experimental methods that assess the movements and transformations of metabolites without creating artifacts. Isotopic labeling fills this role and is a long-standing experimental approach to identify pathways and quantify their metabolic relevance in different tissues or under different conditions. The application of labeling techniques to plant science is however far from reaching it potential. In light of advances in genetics and molecular biology that provide a means to alter metabolism, and given recent improvements in instrumentation, computational tools and available isotopes, the use of isotopic labeling to probe metabolism is becoming more and more powerful. We review the principal analytical methods for isotopic labeling with a focus on seminal studies of pathways and fluxes in lipid metabolism and carbon partitioning through central metabolism. Central carbon metabolic steps are directly linked to lipid production by serving to generate the precursors for fatty acid biosynthesis and lipid assembly. Additionally some of the ideas for labeling techniques that may be most applicable for lipid metabolism in the future were originally developed to investigate other aspects of central metabolism. We conclude by describing recent advances that will play an important future role in quantifying flux and metabolic operation in plant tissues.
Collapse
Affiliation(s)
- Doug K Allen
- United States Department of Agriculture, Agricultural Research Service, 975 North Warson Road, St. Louis, MO 63132, United States; Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, United States.
| | - Philip D Bates
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, United States
| | - Henrik Tjellström
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, United States; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|