51
|
Miri M, Janakirama P, Huebert T, Ross L, McDowell T, Orosz K, Markmann K, Szczyglowski K. Inside out: root cortex-localized LHK1 cytokinin receptor limits epidermal infection of Lotus japonicus roots by Mesorhizobium loti. THE NEW PHYTOLOGIST 2019; 222:1523-1537. [PMID: 30636324 DOI: 10.1111/nph.15683] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/03/2019] [Indexed: 05/27/2023]
Abstract
During Lotus japonicus-Mesorhizobium loti symbiosis, the LOTUS HISTIDINE KINASE1 (LHK1) cytokinin receptor regulates both the initiation of nodule formation and the scope of root infection. However, the exact spatiotemporal mechanism by which this receptor exerts its symbiotic functions has remained elusive. In this study, we performed cell type-specific complementation experiments in the hyperinfected lhk1-1 mutant background, targeting LHK1 to either the root epidermis or the root cortex. We also utilized various genetic backgrounds to characterize expression of several genes regulating symbiotic infection. We show here that expression of LHK1 in the root cortex is required and sufficient to regulate both nodule formation and epidermal infections. The LHK1-dependent signalling that restricts subsequent infection events is triggered before initial cell divisions for nodule primordium formation. We also demonstrate that AHK4, the Arabidopsis orthologue of LHK1, is able to regulate M. loti infection in L. japonicus, suggesting that an endogenous cytokinin receptor could be sufficient for engineering nitrogen-fixing root nodule symbiosis in nonlegumes. Our data provide experimental evidence for the existence of an LHK1-dependent root cortex-to-epidermis feedback mechanism regulating rhizobial infection. This root-localized regulatory module functionally links with the systemic autoregulation of nodulation (AON) to maintain the homeostasis of symbiotic infection.
Collapse
Affiliation(s)
- Mandana Miri
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, ON, N6A 5BF, Canada
| | - Preetam Janakirama
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
| | - Terry Huebert
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
| | - Loretta Ross
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
| | - Tim McDowell
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
| | - Kathleen Orosz
- Fanshawe College, 1001 Fanshawe College Boulevard, London, ON, N5Y 5R6, Canada
| | - Katharina Markmann
- The Center for Plant Molecular Biology, Tübingen University, 72076, Tübingen, Germany
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, ON, N6A 5BF, Canada
| |
Collapse
|
52
|
Garagounis C, Tsikou D, Plitsi PK, Psarrakou IS, Avramidou M, Stedel C, Anagnostou M, Georgopoulou ME, Papadopoulou KK. Lotus SHAGGY-like kinase 1 is required to suppress nodulation in Lotus japonicus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:228-242. [PMID: 30570783 DOI: 10.1111/tpj.14207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/02/2018] [Accepted: 12/10/2018] [Indexed: 05/28/2023]
Abstract
Glycogen synthase kinase/SHAGGY-like kinases (SKs) are a highly conserved family of signaling proteins that participate in many developmental, cell-differentiation, and metabolic signaling pathways in plants and animals. Here, we investigate the involvement of SKs in legume nodulation, a process requiring the integration of multiple signaling pathways. We describe a group of SKs in the model legume Lotus japonicus (LSKs), two of which respond to inoculation with the symbiotic nitrogen-fixing bacterium Mesorhizobium loti. RNAi knock-down plants and an insertion mutant for one of these genes, LSK1, display increased nodulation. Ηairy-root lines overexpressing LSK1 form only marginally fewer mature nodules compared with controls. The expression levels of genes involved in the autoregulation of nodulation (AON) mechanism are affected in LSK1 knock-down plants at low nitrate levels, both at early and late stages of nodulation. At higher levels of nitrate, these same plants show the opposite expression pattern of AON-related genes and lose the hypernodulation phenotype. Our findings reveal an additional role for the versatile SK gene family in integrating the signaling pathways governing legume nodulation, and pave the way for further study of their functions in legumes.
Collapse
Affiliation(s)
- Constantine Garagounis
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Enviromental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Daniela Tsikou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Enviromental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Panagiota K Plitsi
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Enviromental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Ioanna S Psarrakou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Enviromental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Marianna Avramidou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Enviromental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Catalina Stedel
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Enviromental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Maria Anagnostou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Enviromental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Maria E Georgopoulou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Enviromental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Enviromental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| |
Collapse
|
53
|
Gauthier-Coles C, White RG, Mathesius U. Nodulating Legumes Are Distinguished by a Sensitivity to Cytokinin in the Root Cortex Leading to Pseudonodule Development. FRONTIERS IN PLANT SCIENCE 2019; 9:1901. [PMID: 30671068 PMCID: PMC6331541 DOI: 10.3389/fpls.2018.01901] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/07/2018] [Indexed: 05/11/2023]
Abstract
Root nodule symbiosis (RNS) is a feature confined to a single clade of plants, the Fabids. Among Fabids capable of RNS, legumes form root cortex-based nodules in symbioses with rhizobia, while actinorhizal species form lateral root-based nodules with actinomycetes. Cytokinin has previously been shown to be sufficient for "pseudonodule" initiation in model legumes. Here, we tested whether this response correlates with the ability to nodulate across a range of plant species. We analyzed the formation of pseudonodules in 17 nodulating and non-nodulating legume species, and 11 non-legumes, including nodulating actinorhizal species, using light and fluorescence microscopy. Cytokinin-induced pseudonodules arising from cortical cell divisions occurred in all nodulating legume species, but not in any of the other species, including non-nodulating legumes. Pseudonodule formation was dependent on the CRE1 cytokinin receptor in Medicago truncatula. Inhibition of root growth by cytokinin occurred across plant groups, indicating that pseudonodule development is the result of a specific cortical cytokinin response unique to nodulating legumes. Lack of a cortical cytokinin response from the Arabidopsis thaliana cytokinin reporter TCSn::GFP supported this hypothesis. Our results suggest that the ability to form cortical cell-derived nodules was gained in nodulating legumes, and likely lost in non-nodulating legumes, due to a specific root cortical response to cytokinin.
Collapse
Affiliation(s)
- Christopher Gauthier-Coles
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
54
|
Nadzieja M, Stougaard J, Reid D. A Toolkit for High Resolution Imaging of Cell Division and Phytohormone Signaling in Legume Roots and Root Nodules. FRONTIERS IN PLANT SCIENCE 2019; 10:1000. [PMID: 31428118 PMCID: PMC6688427 DOI: 10.3389/fpls.2019.01000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/17/2019] [Indexed: 05/22/2023]
Abstract
Legume plants benefit from a nitrogen-fixing symbiosis in association with rhizobia hosted in specialized root nodules. Formation of root nodules is initiated by de novo organogenesis and coordinated infection of these developing lateral root organs by rhizobia. Both bacterial infection and nodule organogenesis involve cell cycle activation and regulation by auxin and cytokinin is tightly integrated in the process. To characterize the hormone dynamics and cell division patterns with cellular resolution during nodulation, sensitive and specific sensors suited for imaging of multicellular tissues are required. Here we report a modular toolkit, optimized in the model legume Lotus japonicus, for use in legume roots and root nodules. This toolkit includes synthetic transcriptional reporters for auxin and cytokinin, auxin accumulation sensors and cell cycle progression markers optimized for fluorescent and bright field microscopy. The developed vectors allow for efficient one-step assembly of multiple units using the GoldenGate cloning system. Applied together with a fluorescence-compatible clearing approach, these reporters improve imaging depth and facilitate fluorescence examination in legume roots. We additionally evaluate the utility of the dynamic gravitropic root response in altering the timing and location of auxin accumulation and nodule emergence. We show that alteration of auxin distribution in roots allows for preferential nodule emergence at the outer side of the bend corresponding to a region of high auxin signaling capacity. The presented tools and procedures open new possibilities for comparative mutant studies and for developing a more comprehensive understanding of legume-rhizobia interactions.
Collapse
|
55
|
Comparative transcriptome analysis provides insights into dwarfism in cherry tomato (Solanum lycopersicum var. cerasiforme). PLoS One 2018; 13:e0208770. [PMID: 30532198 PMCID: PMC6286132 DOI: 10.1371/journal.pone.0208770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/21/2018] [Indexed: 11/19/2022] Open
Abstract
Tomato, which can be eaten as a vegetable or fruit, is one of the most popular and nutritionally important crops around the world. Although most plants of the cherry tomato cultivar 'Minichal' have a normal phenotype, some plants have a stunted phenotype with reduced plant height, leaf size, and fruit size, as well as altered leaf and fruit shape. To investigate the molecular mechanisms underlying these differences, we generated RNA-seq libraries from pooled leaf samples of 10 normal (N) and 10 stunted (S) plants. Using the Illumina sequencing platform, we obtained a total of 115.45 million high-quality clean reads assembled into 35,216 genes and 35,216 transcripts. A total of 661 genes were differentially expressed between N and S plants. Of these, 420 differentially expressed genes (DEGs) were up-regulated, and 221 DEGs were down-regulated. The RNA-seq data were validated using quantitative reverse-transcription PCR. Enrichment analysis of DEGs using the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that the enriched pathways were involved in steroid biosynthesis, homologous recombination, and mismatch repair. Among these, three genes related to steroid biosynthesis, including 3BETAHSD/D2, DIM and DWF5 were down-regulated in S compared to N. Of these, DIM and DWF5 are known to be involved in brassinosteroid biosynthesis. Our results thus provide a useful insight into dwarfism in cherry tomato, and offer a platform for evaluating related species.
Collapse
|
56
|
Liu H, Sandal N, Andersen KR, James EK, Stougaard J, Kelly S, Kawaharada Y. A genetic screen for plant mutants with altered nodulation phenotypes in response to rhizobial glycan mutants. THE NEW PHYTOLOGIST 2018; 220:526-538. [PMID: 29959893 DOI: 10.1111/nph.15293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/24/2018] [Indexed: 05/08/2023]
Abstract
Nodule primordia induced by rhizobial glycan mutants often remain uninfected. To identify processes involved in infection and organogenesis we used forward genetics to identify plant genes involved in perception and responses to bacterial glycans. To dissect the mechanisms underlying the negative plant responses to the Mesorhizobium loti R7AexoU and ML001cep mutants, a screen for genetic suppressors of the nodulation phenotypes was performed on a chemically mutagenized Lotus population. Two mutant lines formed infected nitrogen-fixing pink nodules, while five mutant lines developed uninfected large white nodules, presumably altered in processes controlling organogenesis. Genetic mapping identified a mutation in the cytokinin receptor Lhk1 resulting in an alanine to valine substitution adjacent to a coiled-coil motif in the juxta-membrane region of LHK1. This results in a spontaneous nodulation phenotype and increased ethylene production. The allele was renamed snf5, and segregation studies of snf5 together with complementation studies suggest that snf5 is a gain-of-function allele. This forward genetic approach to investigate the role of glycans in the pathway synchronizing infection and organogenesis shows that a combination of plant and bacterial genetics opens new possibilities to study glycan responses in plants as well as identification of mutant alleles affecting nodule organogenesis.
Collapse
Affiliation(s)
- Huijun Liu
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Yasuyuki Kawaharada
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
- Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8-Ueda, Morioka, Iwate, Japan
| |
Collapse
|
57
|
Cai K, Yin J, Chao H, Ren Y, Jin L, Cao Y, Duanmu D, Zhang Z. A C3HC4-type RING finger protein regulates rhizobial infection and nodule organogenesis in Lotus japonicus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:878-896. [PMID: 30047576 DOI: 10.1111/jipb.12703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/22/2018] [Indexed: 05/16/2023]
Abstract
During the establishment of rhizobia-legume symbiosis, the cytokinin receptor LHK1 (Lotus Histidine Kinase 1) is essential for nodule formation. However, the mechanism by which cytokinin signaling regulates symbiosis remains largely unknown. In this study, an LHK1-interacting protein, LjCZF1, was identified and further characterized. LjCZF1 is a C3HC4-type RING finger protein that is highly conserved in plants. LjCZF1 specifically interacted with LHK1 in yeast two-hybrid, in vitro pull-down and co-immunoprecipitation assays conducted in tobacco. Phosphomimetic mutation of the potential threonine (T167D) phosphorylation site enhanced the interaction between LjCZF1 and LHK1, whereas phosphorylation mutation (T167A) eliminated this interaction. Transcript abundance of LjCZF1 was up-regulated significantly after inoculation with rhizobia. The LORE1 insertion mutant and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated knockout mutant Lotus japonicus plants demonstrated significantly reduced number of infection threads and nodules. In contrast, plants over-expressing LjCZF1 exhibited increased numbers of infection threads and nodules. Collectively, these data support the notion that LjCZF1 is a positive regulator of symbiotic nodulation, possibly through interaction with LHK1.
Collapse
Affiliation(s)
- Kai Cai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Yin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmin Chao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaping Ren
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Jin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangrong Cao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
58
|
Liu H, Zhang C, Yang J, Yu N, Wang E. Hormone modulation of legume-rhizobial symbiosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:632-648. [PMID: 29578639 DOI: 10.1111/jipb.12653] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/23/2018] [Indexed: 05/16/2023]
Abstract
Leguminous plants can establish symbiotic associations with diazotropic rhizobia to form nitrogen-fixating nodules, which are classified as determinate or indeterminate based on the persistence of nodule meristem. The formation of nitrogen-fixing nodules requires coordinating rhizobial infection and root nodule organogenesis. The formation of an infection thread and the extent of nodule formation are largely under plant control, but vary with environmental conditions and the physiological state of the host plants. Many achievements in these two areas have been made in recent decades. Phytohormone signaling pathways have gradually emerged as important regulators of root nodule symbiosis. Cytokinin, strigolactones (SLs) and local accumulation of auxin can promote nodule development. Ethylene, jasmonic acid (JA), abscisic acid (ABA) and gibberellic acid (GA) all negatively regulate infection thread formation and nodule development. However, salicylic acid (SA) and brassinosteroids (BRs) have different effects on the formation of these two nodule types. Some peptide hormones are also involved in nodulation. This review summarizes recent findings on the roles of these plant hormones in legume-rhizobial symbiosis, and we propose that DELLA proteins may function as a node to integrate plant hormones to regulate nodulation.
Collapse
Affiliation(s)
- Huan Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nan Yu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
59
|
Nishida H, Suzaki T. Nitrate-mediated control of root nodule symbiosis. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:129-136. [PMID: 29684704 DOI: 10.1016/j.pbi.2018.04.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 05/14/2023]
Abstract
Nitrogen is an indispensable inorganic nutrient that is required by plants throughout their life. Root nodule symbiosis (RNS) is an important strategy mainly adopted by legumes to enhance nitrogen acquisition, where several key processes required for the establishment of the symbiosis, are pleiotropically controlled by nitrate availability in soil. Although the autoregulation of nodulation (AON), a systemic long-range signaling, has been suggested to be implicated in nitrate-induced control of RNS, AON alone is insufficient to fully explain the pleiotropic regulation that is induced by nitrate. A recent elucidation of the function of a NIN-LIKE PROTEIN transcription factor has provided greater insights into the genetic mechanisms underlying nitrate-induced control of RNS in varying nitrate environments.
Collapse
Affiliation(s)
- Hanna Nishida
- National Institute for Basic Biology, Okazaki, Aichi, Japan; School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takuya Suzaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
60
|
Nadzieja M, Kelly S, Stougaard J, Reid D. Epidermal auxin biosynthesis facilitates rhizobial infection in Lotus japonicus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:101-111. [PMID: 29676826 DOI: 10.1111/tpj.13934] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 05/08/2023]
Abstract
Symbiotic nitrogen fixation in legumes requires nodule organogenesis to be coordinated with infection by rhizobia. The plant hormone auxin influences symbiotic infection, but the precise timing of auxin accumulation and the genetic network governing it remain unclear. We used a Lotus japonicus optimised variant of the DII-based auxin accumulation sensor and identified a rapid accumulation of auxin in the epidermis, specifically in the root hair cells. This auxin accumulation occurs in the infected root hairs during rhizobia invasion, while Nod factor application induces this response across a broader range of root hairs. Using the DR5 auxin responsive promoter, we demonstrate that activation of auxin signalling also occurs specifically in infected root hairs. Analysis of root hair transcriptome data identified induction of an auxin biosynthesis gene of the Tryptophan Amino-transferase Related (LjTar1) family following both bacteria inoculation and Nod factor treatment. Genetic analysis showed that both expression of the LjTar1 biosynthesis gene and the auxin response requires Nod factor perception, while common symbiotic pathway transcription factors are only partially required or act redundantly to initiate auxin accumulation. Using a chemical genetics approach, we confirmed that auxin biosynthesis has a functional role in promoting symbiotic infection events in the epidermis.
Collapse
Affiliation(s)
- Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| |
Collapse
|
61
|
Lace B, Ott T. Commonalities and Differences in Controlling Multipartite Intracellular Infections of Legume Roots by Symbiotic Microbes. PLANT & CELL PHYSIOLOGY 2018; 59:661-672. [PMID: 29474692 DOI: 10.1093/pcp/pcy043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 05/11/2023]
Abstract
Legumes have the almost unique ability to establish symbiotic associations with rhizobia and arbuscular mycorrhizal fungi. Forward and reverse genetics have identified a large number of genes that are required for either or both interactions. However, and in sharp contrast to natural soils, these interactions have been almost exclusively investigated under laboratory conditions by using separate inoculation systems, whereas both symbionts are simultaneously present in the field. Considering our recent understanding of the individual symbioses, the community is now promisingly positioned to co-inoculate plants with two or more microbes in order to understand mechanistically how legumes efficiently balance, regulate and potentially separate these symbioses and other endophytic microbes within the same root. Here, we discuss a number of key control layers that should be considered when assessing tri- or multipartite beneficial interactions and that may contribute to colonization patterns in legume roots.
Collapse
Affiliation(s)
- Beatrice Lace
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Thomas Ott
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr. 1, D-79104 Freiburg, Germany
| |
Collapse
|
62
|
Azarakhsh M, Lebedeva MA, Lutova LA. Identification and Expression Analysis of Medicago truncatula Isopentenyl Transferase Genes ( IPTs) Involved in Local and Systemic Control of Nodulation. FRONTIERS IN PLANT SCIENCE 2018; 9:304. [PMID: 29593763 PMCID: PMC5855100 DOI: 10.3389/fpls.2018.00304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 02/22/2018] [Indexed: 05/26/2023]
Abstract
Cytokinins are essential for legume plants to establish a nitrogen-fixing symbiosis with rhizobia. Recently, the expression level of cytokinin biosynthesis IPTs (ISOPENTENYLTRANSFERASES) genes was shown to be increased in response to rhizobial inoculation in Lotus japonicus, Medicago truncatula and Pisum sativum. In addition to its well-established positive role in nodule primordium initiation in root cortex, cytokinin negatively regulates infection processes in the epidermis. Moreover, it was reported that shoot-derived cytokinin inhibits the subsequent nodule formation through AON (autoregulation of nodulation) pathway. In L. japonicus, LjIPT3 gene was shown to be activated in the shoot phloem via the components of AON system, negatively affecting nodulation. However, in M. truncatula, the detailed analysis of MtIPTs expression, both in roots and shoots, in response to nodulation has not been performed yet, and the link between IPTs and AON has not been studied so far. In this study, we performed an extensive analysis of MtIPTs expression levels in different organs, focusing on the possible role of MtIPTs in nodule development. MtIPTs expression dynamics in inoculated roots suggest that besides its early established role in the nodule primordia development, cytokinin may be also important for later stages of nodulation. According to expression analysis, MtIPT3, MtIPT4, and MtIPT5 are activated in the shoots in response to inoculation. Among these genes, MtIPT3 is the only one the induction of which was not observed in leaves of the sunn-3 mutant defective in CLV1-like kinase, the key component of AON, suggesting that MtIPT3 is activated in the shoots in an AON-dependent manner. Taken together, our findings suggest that MtIPTs are involved in the nodule development at different stages, both locally in inoculated roots and systemically in shoots, where their expression can be activated in an AON-dependent manner.
Collapse
|
63
|
Kundu A, DasGupta M. Silencing of Putative Cytokinin Receptor Histidine Kinase1 Inhibits Both Inception and Differentiation of Root Nodules in Arachis hypogaea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:187-199. [PMID: 28876173 DOI: 10.1094/mpmi-06-17-0144-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rhizobia-legume interaction activates the SYM pathway that recruits cytokinin signaling for induction of nodule primordia in the cortex. In Arachis hypogaea, bradyrhizobia invade through natural cracks developed in the lateral root base and are directly endocytosed in the cortical cells to generate the nodule primordia. To unravel the role of cytokinin signaling in A. hypogaea, RNA-interference (RNAi) of cytokinin receptor histidine-kinase1 (AhHK1) was done. AhHK1-RNAi downregulated the expression of type-A response regulators such as AhRR5 and AhRR3 along with several symbiotic genes, indicating that both cytokinin signaling and the SYM pathway were affected. Accordingly, there was a drastic downregulation of nodulation in AhHK1-RNAi roots and the nodules that developed were ineffective. These nodules were densely packed, with infected cells having a higher nucleo-cytoplasmic ratio and distinctively high mitotic index, where the rod-shaped rhizobia failed to differentiate into bacteroids within spherical symbiosomes. In accordance with the proliferating state, expression of a mitotic-cyclin AhCycB2.1 was higher in AhHK1-RNAi nodules, whereas expression of a retinoblastoma-related (AhRBR) nodule that restrains proliferation was lower. Also, higher expression of the meristem maintenance factor WUSCHEL-RELATED HOMEOBOX5 correlated with the undifferentiated state of AhHK1-RNAi nodules. Our results suggest that AhHK1-mediated cytokinin signaling is important for both inception and differentiation during nodule development in A. hypogaea.
Collapse
Affiliation(s)
- Anindya Kundu
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| |
Collapse
|
64
|
Reid D, Liu H, Kelly S, Kawaharada Y, Mun T, Andersen SU, Desbrosses G, Stougaard J. Dynamics of Ethylene Production in Response to Compatible Nod Factor. PLANT PHYSIOLOGY 2018; 176:1764-1772. [PMID: 29187569 PMCID: PMC5813561 DOI: 10.1104/pp.17.01371] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/28/2017] [Indexed: 05/22/2023]
Abstract
Establishment of symbiotic nitrogen-fixation in legumes is regulated by the plant hormone ethylene, but it has remained unclear whether and how its biosynthesis is regulated by the symbiotic pathway. We established a sensitive ethylene detection system for Lotus japonicus and found that ethylene production increased as early as 6 hours after inoculation with Mesorhizobium loti This ethylene response was dependent on Nod factor production by compatible rhizobia. Analyses of nodulation mutants showed that perception of Nod factor was required for ethylene emission, while downstream transcription factors including CYCLOPS, NIN, and ERN1 were not required for this response. Activation of the nodulation signaling pathway in spontaneously nodulating mutants was also sufficient to elevate ethylene production. Ethylene signaling is controlled by EIN2, which is duplicated in L. japonicus We obtained a L. japonicus Ljein2a Ljein2b double mutant that exhibits complete ethylene insensitivity and confirms that these two genes act redundantly in ethylene signaling. Consistent with this redundancy, both LjEin2a and LjEin2b are required for negative regulation of nodulation and Ljein2a Ljein2b double mutants are hypernodulating and hyperinfected. We also identified an unexpected role for ethylene in the onset of nitrogen fixation, with the Ljein2a Ljein2b double mutant showing severely reduced nitrogen fixation. These results demonstrate that ethylene production is an early and sustained nodulation response that acts at multiple stages to regulate infection, nodule organogenesis, and nitrogen fixation in L. japonicus.
Collapse
Affiliation(s)
- Dugald Reid
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Huijun Liu
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Simon Kelly
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Yasuyuki Kawaharada
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Terry Mun
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Stig U Andersen
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| | - Guilhem Desbrosses
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Université Montpellier 2, IRD, CIRAD, SupAgro, INRA Montpellier Cedex 05 France
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
65
|
Buhian WP, Bensmihen S. Mini-Review: Nod Factor Regulation of Phytohormone Signaling and Homeostasis During Rhizobia-Legume Symbiosis. FRONTIERS IN PLANT SCIENCE 2018; 9:1247. [PMID: 30319665 PMCID: PMC6166096 DOI: 10.3389/fpls.2018.01247] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/06/2018] [Indexed: 05/22/2023]
Abstract
The rhizobia-legume symbiosis is a mutualistic association in which bacteria provide plants with nitrogen compounds and the plant provides bacteria with carbon sources. A successful symbiotic interaction relies on a molecular dialog between the plant and the bacteria, and generally involves rhizobial lipo-chitooligosaccharide signals called Nod factors (NFs). In most cases, specific NF perception is required for rhizobia to enter root cells through newly formed intracellular structures called infection threads (ITs). Concomitantly to IT formation in root hairs, root cortical cells start to divide to create a new root organ called the nodule, which will provide the bacteria with a specific micro-environment required for symbiotic nitrogen fixation. During all these steps of plant-bacteria interaction, new plant cellular compartments and developmental programs are activated. This interaction is costly for the plant that tightly controls symbiosis establishment and functioning. Phytohormones are key regulators of cellular and developmental plasticity in plants, and they are influential endogenous signals that rapidly control plant responses. Although early symbiotic responses were known for decades to be linked to phytohormone-related responses, new data reveal the molecular mechanisms involved and links between phytohormones and the control of early symbiotic events. Reciprocally, NF signaling also targets phytohormone signaling pathways. In this review, we will focus on the emerging notion of NF and phytohormone signaling crosstalk, and how it could contribute to the tight control of symbiosis establishment in legume host plants.
Collapse
|
66
|
Kelly S, Mun T, Stougaard J, Ben C, Andersen SU. Distinct Lotus japonicus Transcriptomic Responses to a Spectrum of Bacteria Ranging From Symbiotic to Pathogenic. FRONTIERS IN PLANT SCIENCE 2018; 9:1218. [PMID: 30177945 PMCID: PMC6110179 DOI: 10.3389/fpls.2018.01218] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/30/2018] [Indexed: 05/12/2023]
Abstract
Lotus japonicus is a well-studied nodulating legume and a model organism for the investigation of plant-microbe interactions. The majority of legume transcriptome studies have focused on interactions with compatible symbionts, whereas responses to non-adapted rhizobia and pathogenic bacteria have not been well-characterized. In this study, we first characterized the transcriptomic response of L. japonicus to its compatible symbiont, Mesorhizobium loti R7A, through RNA-seq analysis of various plant tissues. Early symbiotic signaling was largely Nod factor-dependent and enhanced within root hairs, and we observed large-scale transcriptional reprogramming in nodule primordia and mature nitrogen-fixing nodules. We then characterized root transcriptional responses to a spectrum of L. japonicus interacting bacteria ranging from semi-compatible symbionts to pathogens. M. loti R7A and the semi-compatible strain Sinorhizobium fredii HH103 showed remarkably similar responses, allowing us to identify a small number of genes potentially involved in differentiating between fully and semi-compatible symbionts. The incompatible symbiont Bradyrhizobium elkanii USDA61 induced a more attenuated response, but the weakest response was observed for the foliar pathogen Pseudomonas syringae pv. tomato DC3000, where the affected genes also responded to other tested bacteria, pointing to a small set of common bacterial response genes. In contrast, the root pathogen Ralstonia solanacearum JS763 induced a pronounced and distinct transcriptomic pathogen response, which we compared to the results of the other treatments. This comparative analysis did not support the concept that an early defense-like response is generally evoked by compatible rhizobia during establishment of symbiosis.
Collapse
Affiliation(s)
- Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Terry Mun
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Cécile Ben
- ECOLAB, Université de Toulouse, CNRS, INP, UPS, Toulouse, France
| | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- *Correspondence: Stig U. Andersen,
| |
Collapse
|
67
|
García-Calderón M, Pérez-Delgado CM, Credali A, Vega JM, Betti M, Márquez AJ. Genes for asparagine metabolism in Lotus japonicus: differential expression and interconnection with photorespiration. BMC Genomics 2017; 18:781. [PMID: 29025409 PMCID: PMC5639745 DOI: 10.1186/s12864-017-4200-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 10/08/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Asparagine is a very important nitrogen transport and storage compound in plants due to its high nitrogen/carbon ratio and stability. Asparagine intracellular concentration depends on a balance between asparagine biosynthesis and degradation. The main enzymes involved in asparagine metabolism are asparagine synthetase (ASN), asparaginase (NSE) and serine-glyoxylate aminotransferase (SGAT). The study of the genes encoding for these enzymes in the model legume Lotus japonicus is of particular interest since it has been proposed that asparagine is the principal molecule used to transport reduced nitrogen within the plant in most temperate legumes. RESULTS A differential expression of genes encoding for several enzymes involved in asparagine metabolism was detected in L. japonicus. ASN is encoded by three genes, LjASN1 was the most highly expressed in mature leaves while LjASN2 expression was negligible and LjASN3 showed a low expression in this organ, suggesting that LjASN1 is the main gene responsible for asparagine synthesis in mature leaves. In young leaves, LjASN3 was the only ASN gene expressed although at low levels, while all the three genes encoding for NSE were highly expressed, especially LjNSE1. In nodules, LjASN2 and LjNSE2 were the most highly expressed genes, suggesting an important role for these genes in this organ. Several lines of evidence support the connection between asparagine metabolic genes and photorespiration in L. japonicus: a) a mutant plant deficient in LjNSE1 showed a dramatic decrease in the expression of the two genes encoding for SGAT; b) expression of the genes involved in asparagine metabolism is altered in a photorespiratory mutant lacking plastidic glutamine synthetase; c) a clustering analysis indicated a similar pattern of expression among several genes involved in photorespiratory and asparagine metabolism, indicating a clear link between LjASN1 and LjSGAT genes and photorespiration. CONCLUSIONS The results obtained in this paper indicate the existence of a differential expression of asparagine metabolic genes in L. japonicus and point out the crucial relevance of particular genes in different organs. Moreover, the data presented establish clear links between asparagine and photorespiratory metabolic genes in this plant.
Collapse
Affiliation(s)
- Margarita García-Calderón
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, C/ Profesor García González, 1, 41012, Sevilla, Spain
| | - Carmen M Pérez-Delgado
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, C/ Profesor García González, 1, 41012, Sevilla, Spain
| | - Alfredo Credali
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, C/ Profesor García González, 1, 41012, Sevilla, Spain
| | - José M Vega
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, C/ Profesor García González, 1, 41012, Sevilla, Spain
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, C/ Profesor García González, 1, 41012, Sevilla, Spain.
| | - Antonio J Márquez
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, C/ Profesor García González, 1, 41012, Sevilla, Spain
| |
Collapse
|
68
|
Gamas P, Brault M, Jardinaud MF, Frugier F. Cytokinins in Symbiotic Nodulation: When, Where, What For? TRENDS IN PLANT SCIENCE 2017; 22:792-802. [PMID: 28739135 DOI: 10.1016/j.tplants.2017.06.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 05/21/2023]
Abstract
Substantial progress has been made in the understanding of early stages of the symbiotic interaction between legume plants and rhizobium bacteria. Those include the specific recognition of symbiotic partners, the initiation of bacterial infection in root hair cells, and the inception of a specific organ in the root cortex, the nodule. Increasingly complex regulatory networks have been uncovered in which cytokinin (CK) phytohormones play essential roles in different aspects of early symbiotic stages. Intriguingly, these roles can be either positive or negative, cell autonomous or non-cell autonomous, and vary, depending on time, root tissues, and possibly legume species. Recent developments on CK symbiotic functions and interconnections with other signaling pathways during nodule initiation are the focus of this review.
Collapse
Affiliation(s)
- Pascal Gamas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Mathias Brault
- IPS2 (Institute of Plant Sciences - Paris Saclay), CNRS, INRA, Université Paris-Sud, Université Paris-Diderot, Université d'Evry, Université Paris-Saclay, Bâtiment 630, Gif-sur-Yvette, France
| | - Marie-Françoise Jardinaud
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France; INPT-Université de Toulouse, ENSAT, Castanet-Tolosan, France
| | - Florian Frugier
- IPS2 (Institute of Plant Sciences - Paris Saclay), CNRS, INRA, Université Paris-Sud, Université Paris-Diderot, Université d'Evry, Université Paris-Saclay, Bâtiment 630, Gif-sur-Yvette, France.
| |
Collapse
|
69
|
Reid D, Nadzieja M, Novák O, Heckmann AB, Sandal N, Stougaard J. Cytokinin Biosynthesis Promotes Cortical Cell Responses during Nodule Development. PLANT PHYSIOLOGY 2017; 175:361-375. [PMID: 28733389 PMCID: PMC5580777 DOI: 10.1104/pp.17.00832] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/18/2017] [Indexed: 05/22/2023]
Abstract
Legume mutants have shown the requirement for receptor-mediated cytokinin signaling in symbiotic nodule organogenesis. While the receptors are central regulators, cytokinin also is accumulated during early phases of symbiotic interaction, but the pathways involved have not yet been fully resolved. To identify the source, timing, and effect of this accumulation, we followed transcript levels of the cytokinin biosynthetic pathway genes in a sliding developmental zone of Lotus japonicus roots. LjIpt2 and LjLog4 were identified as the major contributors to the first cytokinin burst. The genetic dependence and Nod factor responsiveness of these genes confirm that cytokinin biosynthesis is a key target of the common symbiosis pathway. The accumulation of LjIpt2 and LjLog4 transcripts occurs independent of the LjLhk1 receptor during nodulation. Together with the rapid repression of both genes by cytokinin, this indicates that LjIpt2 and LjLog4 contribute to, rather than respond to, the initial cytokinin buildup. Analysis of the cytokinin response using the synthetic cytokinin sensor, TCSn, showed that this response occurs in cortical cells before spreading to the epidermis in L. japonicus While mutant analysis identified redundancy in several biosynthesis families, we found that mutation of LjIpt4 limits nodule numbers. Overexpression of LjIpt3 or LjLog4 alone was insufficient to produce the robust formation of spontaneous nodules. In contrast, overexpressing a complete cytokinin biosynthesis pathway leads to large, often fused spontaneous nodules. These results show the importance of cytokinin biosynthesis in initiating and balancing the requirement for cortical cell activation without uncontrolled cell proliferation.
Collapse
Affiliation(s)
- Dugald Reid
- Centre for Carbohydrate Recognition and Signaling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| | - Marcin Nadzieja
- Centre for Carbohydrate Recognition and Signaling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Czech Academy of Sciences, CZ-78371 Olomouc, Czech Republic
| | - Anne B Heckmann
- Centre for Carbohydrate Recognition and Signaling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| | - Niels Sandal
- Centre for Carbohydrate Recognition and Signaling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signaling, Department of Molecular Biology and Genetics, Aarhus University, Aarhus C 8000, Denmark
| |
Collapse
|
70
|
Differential regulation of the Epr3 receptor coordinates membrane-restricted rhizobial colonization of root nodule primordia. Nat Commun 2017; 8:14534. [PMID: 28230048 PMCID: PMC5331223 DOI: 10.1038/ncomms14534] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 01/09/2017] [Indexed: 11/08/2022] Open
Abstract
In Lotus japonicus, a LysM receptor kinase, EPR3, distinguishes compatible and incompatible rhizobial exopolysaccharides at the epidermis. However, the role of this recognition system in bacterial colonization of the root interior is unknown. Here we show that EPR3 advances the intracellular infection mechanism that mediates infection thread invasion of the root cortex and nodule primordia. At the cellular level, Epr3 expression delineates progression of infection threads into nodule primordia and cortical infection thread formation is impaired in epr3 mutants. Genetic dissection of this developmental coordination showed that Epr3 is integrated into the symbiosis signal transduction pathways. Further analysis showed differential expression of Epr3 in the epidermis and cortical primordia and identified key transcription factors controlling this tissue specificity. These results suggest that exopolysaccharide recognition is reiterated during the progressing infection and that EPR3 perception of compatible exopolysaccharide promotes an intracellular cortical infection mechanism maintaining bacteria enclosed in plant membranes.
Collapse
|
71
|
Peng Z, Liu F, Wang L, Zhou H, Paudel D, Tan L, Maku J, Gallo M, Wang J. Transcriptome profiles reveal gene regulation of peanut (Arachis hypogaea L.) nodulation. Sci Rep 2017; 7:40066. [PMID: 28059169 PMCID: PMC5216375 DOI: 10.1038/srep40066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/30/2016] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanisms of symbiosis in cultivated peanut with a ‘crack entry’ infection process are largely understudied. In this study, we investigated the root transcriptional profiles of two pairs of non-nodulating (nod−) and nodulating (nod+) sister inbred peanut lines, E4/E5 and E7/E6, and their nod+ parents, F487A and PI262090 during rhizobial infection and nodule initiation by using RNA-seq technology. A total of 143, 101, 123, 215, 182, and 289 differentially expressed genes (DEGs) were identified in nod− E4, E7 and nod+ E5, E6, F487A, and PI262090 after inoculation with Bradyrhizobium sp. Different deficiencies at upstream of symbiotic signaling pathway were revealed in the two nod− genotypes. DEGs specific in nod+ genotypes included orthologs to some known symbiotic signaling pathway genes, such as NFR5, NSP2, NIN, ERN1, and many other novel and/or functionally unknown genes. Gene ontology (GO) enrichment analysis of nod+ specific DEGs revealed 54 significantly enriched GO terms, including oxidation-reduction process, metabolic process, and catalytic activity. Genes related with plant defense systems, hormone biosynthesis and response were particularly enriched. To our knowledge, this is the first report revealing symbiosis-related genes in a genome-wide manner in peanut representative of the ‘crack entry’ species.
Collapse
Affiliation(s)
- Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA
| | - Fengxia Liu
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA.,State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), China Agricultural University, Beijing 100193, China
| | - Liping Wang
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA
| | - Hai Zhou
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dev Paudel
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA
| | - Lubin Tan
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA.,State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), China Agricultural University, Beijing 100193, China
| | - James Maku
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA
| | | | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA.,Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
72
|
Herrbach V, Chirinos X, Rengel D, Agbevenou K, Vincent R, Pateyron S, Huguet S, Balzergue S, Pasha A, Provart N, Gough C, Bensmihen S. Nod factors potentiate auxin signaling for transcriptional regulation and lateral root formation in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:569-583. [PMID: 28073951 PMCID: PMC6055581 DOI: 10.1093/jxb/erw474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/24/2016] [Indexed: 05/29/2023]
Abstract
Nodulation (Nod) factors (NFs) are symbiotic molecules produced by rhizobia that are essential for establishment of the rhizobium-legume endosymbiosis. Purified NFs can stimulate lateral root formation (LRF) in Medicago truncatula, but little is known about the molecular mechanisms involved. Using a combination of reporter constructs, pharmacological and genetic approaches, we show that NFs act on early steps of LRF in M. truncatula, independently of the ethylene signaling pathway and of the cytokinin receptor MtCRE1, but in interaction with auxin. We conducted a whole-genome transcriptomic study upon NF and/or auxin treatments, using a lateral root inducible system adapted for M. truncatula. This revealed a large overlap between NF and auxin signaling and, more interestingly, synergistic interactions between these molecules. Three groups showing interaction effects were defined: group 1 contained more than 1500 genes responding specifically to the combinatorial treatment of NFs and auxin; group 2 comprised auxin-regulated genes whose expression was enhanced or antagonized by NFs; and in group 3 the expression of NF regulated genes was antagonized by auxin. Groups 1 and 2 were enriched in signaling and metabolic functions, which highlights important crosstalk between NF and auxin signaling for both developmental and symbiotic processes.
Collapse
Affiliation(s)
| | - Ximena Chirinos
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - David Rengel
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | | - Rémy Vincent
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Stéphanie Pateyron
- POPS (transcriptOmic Platform of IPS2) Platform, Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Stéphanie Huguet
- POPS (transcriptOmic Platform of IPS2) Platform, Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Sandrine Balzergue
- POPS (transcriptOmic Platform of IPS2) Platform, Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Orsay, France
| | - Asher Pasha
- Department of Cell & Systems Biology/ Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Nicholas Provart
- Department of Cell & Systems Biology/ Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Clare Gough
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Sandra Bensmihen
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
73
|
Mun T, Małolepszy A, Sandal N, Stougaard J, Andersen SU. User Guide for the LORE1 Insertion Mutant Resource. Methods Mol Biol 2017; 1610:13-23. [PMID: 28439854 DOI: 10.1007/978-1-4939-7003-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lotus japonicus is a model legume used in the study of plant-microbe interactions, especially in the field of biological nitrogen fixation due to its ability to enter into a symbiotic relationship with a soil bacterium, Mesorhizobium loti. The LORE1 mutant population is a valuable resource for reverse genetics in L. japonicus due to its non-transgenic nature, high tagging efficiency, and low copy count. Here, we outline a workflow for identifying, ordering, and establishing homozygous LORE1 mutant lines for a gene of interest, LjFls2, including protocols for growth and genotyping of a segregating LORE1 population.
Collapse
Affiliation(s)
- Terry Mun
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Anna Małolepszy
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
74
|
Mun T, Bachmann A, Gupta V, Stougaard J, Andersen SU. Lotus Base: An integrated information portal for the model legume Lotus japonicus. Sci Rep 2016; 6:39447. [PMID: 28008948 PMCID: PMC5180183 DOI: 10.1038/srep39447] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/22/2016] [Indexed: 12/04/2022] Open
Abstract
Lotus japonicus is a well-characterized model legume widely used in the study of plant-microbe interactions. However, datasets from various Lotus studies are poorly integrated and lack interoperability. We recognize the need for a comprehensive repository that allows comprehensive and dynamic exploration of Lotus genomic and transcriptomic data. Equally important are user-friendly in-browser tools designed for data visualization and interpretation. Here, we present Lotus Base, which opens to the research community a large, established LORE1 insertion mutant population containing an excess of 120,000 lines, and serves the end-user tightly integrated data from Lotus, such as the reference genome, annotated proteins, and expression profiling data. We report the integration of expression data from the L. japonicus gene expression atlas project, and the development of tools to cluster and export such data, allowing users to construct, visualize, and annotate co-expression gene networks. Lotus Base takes advantage of modern advances in browser technology to deliver powerful data interpretation for biologists. Its modular construction and publicly available application programming interface enable developers to tap into the wealth of integrated Lotus data. Lotus Base is freely accessible at: https://lotus.au.dk.
Collapse
Affiliation(s)
- Terry Mun
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| | - Asger Bachmann
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
- Bioinformatics Research Centre, Aarhus University, C. F. Møllers Allé 8, DK-8000 Aarhus C, Denmark
| | - Vikas Gupta
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
- Bioinformatics Research Centre, Aarhus University, C. F. Møllers Allé 8, DK-8000 Aarhus C, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| |
Collapse
|
75
|
Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc Natl Acad Sci U S A 2016; 113:E7996-E8005. [PMID: 27864511 DOI: 10.1073/pnas.1616564113] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lotus japonicus has been used for decades as a model legume to study the establishment of binary symbiotic relationships with nitrogen-fixing rhizobia that trigger root nodule organogenesis for bacterial accommodation. Using community profiling of 16S rRNA gene amplicons, we reveal that in Lotus, distinctive nodule- and root-inhabiting communities are established by parallel, rather than consecutive, selection of bacteria from the rhizosphere and root compartments. Comparative analyses of wild-type (WT) and symbiotic mutants in Nod factor receptor5 (nfr5), Nodule inception (nin) and Lotus histidine kinase1 (lhk1) genes identified a previously unsuspected role of the nodulation pathway in the establishment of different bacterial assemblages in the root and rhizosphere. We found that the loss of nitrogen-fixing symbiosis dramatically alters community structure in the latter two compartments, affecting at least 14 bacterial orders. The differential plant growth phenotypes seen between WT and the symbiotic mutants in nonsupplemented soil were retained under nitrogen-supplemented conditions that blocked the formation of functional nodules in WT, whereas the symbiosis-impaired mutants maintain an altered community structure in the nitrogen-supplemented soil. This finding provides strong evidence that the root-associated community shift in the symbiotic mutants is a direct consequence of the disabled symbiosis pathway rather than an indirect effect resulting from abolished symbiotic nitrogen fixation. Our findings imply a role of the legume host in selecting a broad taxonomic range of root-associated bacteria that, in addition to rhizobia, likely contribute to plant growth and ecological performance.
Collapse
|
76
|
Małolepszy A, Mun T, Sandal N, Gupta V, Dubin M, Urbański D, Shah N, Bachmann A, Fukai E, Hirakawa H, Tabata S, Nadzieja M, Markmann K, Su J, Umehara Y, Soyano T, Miyahara A, Sato S, Hayashi M, Stougaard J, Andersen SU. The LORE1 insertion mutant resource. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:306-317. [PMID: 27322352 DOI: 10.1111/tpj.13243] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 05/08/2023]
Abstract
Long terminal repeat (LTR) retrotransposons are closely related to retroviruses, and their activities shape eukaryotic genomes. Here, we present a complete Lotus japonicus insertion mutant collection generated by identification of 640 653 new insertion events following de novo activation of the LTR element Lotus retrotransposon 1 (LORE1) (http://lotus.au.dk). Insertion preferences are critical for effective gene targeting, and we exploit our large dataset to analyse LTR element characteristics in this context. We infer the mechanism that generates the consensus palindromes typical of retroviral and LTR retrotransposon insertion sites, identify a short relaxed insertion site motif, and demonstrate selective integration into CHG-hypomethylated genes. These characteristics result in a steep increase in deleterious mutation rate following activation, and allow LORE1 active gene targeting to approach saturation within a population of 134 682 L. japonicus lines. We suggest that saturation mutagenesis using endogenous LTR retrotransposons with germinal activity can be used as a general and cost-efficient strategy for generation of non-transgenic mutant collections for unrestricted use in plant research.
Collapse
Affiliation(s)
- Anna Małolepszy
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Terry Mun
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Niels Sandal
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Vikas Gupta
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Manu Dubin
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Dorian Urbański
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Niraj Shah
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Asger Bachmann
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Eigo Fukai
- Division of Plant Sciences, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannon-dai, Tsukuba, 305-8602, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Marcin Nadzieja
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Katharina Markmann
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Junyi Su
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Yosuke Umehara
- Division of Plant Sciences, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannon-dai, Tsukuba, 305-8602, Japan
| | - Takashi Soyano
- Division of Plant Sciences, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannon-dai, Tsukuba, 305-8602, Japan
| | - Akira Miyahara
- Division of Plant Sciences, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannon-dai, Tsukuba, 305-8602, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Makoto Hayashi
- Division of Plant Sciences, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannon-dai, Tsukuba, 305-8602, Japan
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| | - Stig U Andersen
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000, Aarhus C, Denmark
| |
Collapse
|
77
|
Boivin S, Fonouni-Farde C, Frugier F. How Auxin and Cytokinin Phytohormones Modulate Root Microbe Interactions. FRONTIERS IN PLANT SCIENCE 2016; 7:1240. [PMID: 27588025 PMCID: PMC4988986 DOI: 10.3389/fpls.2016.01240] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 05/08/2023]
Abstract
A large range of microorganisms can associate with plants, resulting in neutral, friendly or hostile interactions. The ability of plants to recognize compatible and incompatible microorganisms and to limit or promote their colonization is therefore crucial for their survival. Elaborated communication networks determine the degree of association between the host plant and the invading microorganism. Central to these regulations of plant microbe interactions, phytohormones modulate microorganism plant associations and coordinate cellular and metabolic responses associated to the progression of microorganisms across different plant tissues. We review here hormonal regulations, focusing on auxin and cytokinin phytohormones, involved in the interactions between plant roots and soil microorganisms, including bacterial and fungi associations, either beneficial (symbiotic) or detrimental (pathogenic). The aim is to highlight similarities and differences in cytokinin/auxin functions amongst various compatible versus incompatible associations.
Collapse
Affiliation(s)
| | | | - Florian Frugier
- Institute of Plant Sciences – Paris Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université Paris Diderot, Université d’Evry, Université Paris-SaclayGif-sur-Yvette, France
| |
Collapse
|
78
|
Jardinaud MF, Boivin S, Rodde N, Catrice O, Kisiala A, Lepage A, Moreau S, Roux B, Cottret L, Sallet E, Brault M, Emery RJN, Gouzy J, Frugier F, Gamas P. A Laser Dissection-RNAseq Analysis Highlights the Activation of Cytokinin Pathways by Nod Factors in the Medicago truncatula Root Epidermis. PLANT PHYSIOLOGY 2016; 171:2256-76. [PMID: 27217496 PMCID: PMC4936592 DOI: 10.1104/pp.16.00711] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/18/2016] [Indexed: 05/19/2023]
Abstract
Nod factors (NFs) are lipochitooligosaccharidic signal molecules produced by rhizobia, which play a key role in the rhizobium-legume symbiotic interaction. In this study, we analyzed the gene expression reprogramming induced by purified NF (4 and 24 h of treatment) in the root epidermis of the model legume Medicago truncatula Tissue-specific transcriptome analysis was achieved by laser-capture microdissection coupled to high-depth RNA sequencing. The expression of 17,191 genes was detected in the epidermis, among which 1,070 were found to be regulated by NF addition, including previously characterized NF-induced marker genes. Many genes exhibited strong levels of transcriptional activation, sometimes only transiently at 4 h, indicating highly dynamic regulation. Expression reprogramming affected a variety of cellular processes, including perception, signaling, regulation of gene expression, as well as cell wall, cytoskeleton, transport, metabolism, and defense, with numerous NF-induced genes never identified before. Strikingly, early epidermal activation of cytokinin (CK) pathways was indicated, based on the induction of CK metabolic and signaling genes, including the CRE1 receptor essential to promote nodulation. These transcriptional activations were independently validated using promoter:β-glucuronidase fusions with the MtCRE1 CK receptor gene and a CK response reporter (TWO COMPONENT SIGNALING SENSOR NEW). A CK pretreatment reduced the NF induction of the EARLY NODULIN11 (ENOD11) symbiotic marker, while a CK-degrading enzyme (CYTOKININ OXIDASE/DEHYDROGENASE3) ectopically expressed in the root epidermis led to increased NF induction of ENOD11 and nodulation. Therefore, CK may play both positive and negative roles in M. truncatula nodulation.
Collapse
Affiliation(s)
- Marie-Françoise Jardinaud
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Stéphane Boivin
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Nathalie Rodde
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Olivier Catrice
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Anna Kisiala
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Agnes Lepage
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Sandra Moreau
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Brice Roux
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Ludovic Cottret
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Erika Sallet
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Mathias Brault
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - R J Neil Emery
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Jérôme Gouzy
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Florian Frugier
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Pascal Gamas
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| |
Collapse
|
79
|
Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S. Jasmonates: Multifunctional Roles in Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:813. [PMID: 27379115 PMCID: PMC4908892 DOI: 10.3389/fpls.2016.00813] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/25/2016] [Indexed: 05/18/2023]
Abstract
Jasmonates (JAs) [Jasmonic acid (JA) and methyl jasmonates (MeJAs)] are known to take part in various physiological processes. Exogenous application of JAs so far tested on different plants under abiotic stresses particularly salinity, drought, and temperature (low/high) conditions have proved effective in improving plant stress tolerance. However, its extent of effectiveness entirely depends on the type of plant species tested or its concentration. The effects of introgression or silencing of different JA- and Me-JA-related genes have been summarized in this review, which have shown a substantial role in improving crop yield and quality in different plants under stress or non-stress conditions. Regulation of JAs synthesis is impaired in stressed as well as unstressed plant cells/tissues, which is believed to be associated with a variety of metabolic events including signal transduction. Although, mitogen activated protein kinases (MAPKs) are important components of JA signaling and biosynthesis pathways, nitric oxide, ROS, calcium, ABA, ethylene, and salicylic acid are also important mediators of plant growth and development during JA signal transduction and synthesis. The exploration of other signaling molecules can be beneficial to examine the details of underlying molecular mechanisms of JA signal transduction. Much work is to be done in near future to find the proper answers of the questions like action of JA related metabolites, and identification of universal JA receptors etc. Complete signaling pathways involving MAPKs, CDPK, TGA, SIPK, WIPK, and WRKY transcription factors are yet to be investigated to understand the complete mechanism of action of JAs.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, S.P. CollegeSrinagar, India
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Saiema Rasool
- Forest Biotech Lab, Department of Forest Management, Faculty of Forestry, Universiti Putra MalaysiaSelangor, Malaysia
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and TechnologyIslamabad, Pakistan
| | - Subzar A. Sheikh
- Department of Botany, Govt. Degree College (Boys), AnantnagAnantnag, India
| | - Nudrat A. Akram
- Department of Botany, GC University FaisalabadFaisalabad, Pakistan
| | - Muhammad Ashraf
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
- Pakistan Science FoundationIslamabad, Pakistan
| | - A. M. Kazi
- Department of Botany, University of SargodhaSargodha, Pakistan
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|