51
|
Lin A, Ma J, Xu F, Xu W, Jiang H, Zhang H, Qu C, Wei L, Li J. Differences in Alternative Splicing between Yellow and Black-Seeded Rapeseed. PLANTS (BASEL, SWITZERLAND) 2020; 9:E977. [PMID: 32752101 PMCID: PMC7465011 DOI: 10.3390/plants9080977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022]
Abstract
Yellow seed coat color is a desirable characteristic in rapeseed (Brassica napus), as it is associated with higher oil content and higher quality of meal. Alternative splicing (AS) is a vital post-transcriptional regulatory process contributing to plant cell differentiation and organ development. To identify novel transcripts and differences at the isoform level that are associated with seed color in B. napus, we compared 31 RNA-seq libraries of yellow- and black-seeded B. napus at five different developmental stages. AS events in the different samples were highly similar, and intron retention accounted for a large proportion of the observed AS pattern. AS mainly occurred in the early and middle stage of seed development. Weighted gene co-expression network analysis (WGCNA) identified 23 co-expression modules composed of differentially spliced genes, and we picked out two of the modules whose functions were highly associated with seed color. In the two modules, we found candidate DAS (differentially alternative splicing) genes related to the flavonoid pathway, such as TT8 (BnaC09g24870D), TT5 (BnaA09g34840D and BnaC08g26020D), TT12 (BnaC06g17050D and BnaA07g18120D), AHA10 (BnaA08g23220D and BnaC08g17280D), CHI (BnaC09g50050D), BAN (BnaA03g60670D) and DFR (BnaC09g17150D). Gene BnaC03g23650D, encoding RNA-binding family protein, was also identified. The splicing of the candidate genes identified in this study might be used to develop stable, yellow-seeded B. napus. This study provides insight into the formation of seed coat color in B. napus.
Collapse
Affiliation(s)
- Ai Lin
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (A.L.); (J.M.); (F.X.); (W.X.); (H.J); (H.Z.); (C.Q.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jinqi Ma
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (A.L.); (J.M.); (F.X.); (W.X.); (H.J); (H.Z.); (C.Q.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Fei Xu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (A.L.); (J.M.); (F.X.); (W.X.); (H.J); (H.Z.); (C.Q.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wen Xu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (A.L.); (J.M.); (F.X.); (W.X.); (H.J); (H.Z.); (C.Q.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Huanhuan Jiang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (A.L.); (J.M.); (F.X.); (W.X.); (H.J); (H.Z.); (C.Q.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Haoran Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (A.L.); (J.M.); (F.X.); (W.X.); (H.J); (H.Z.); (C.Q.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Cunmin Qu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (A.L.); (J.M.); (F.X.); (W.X.); (H.J); (H.Z.); (C.Q.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Lijuan Wei
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (A.L.); (J.M.); (F.X.); (W.X.); (H.J); (H.Z.); (C.Q.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jiana Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (A.L.); (J.M.); (F.X.); (W.X.); (H.J); (H.Z.); (C.Q.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
52
|
Han X, Zhang L, Zhao L, Xue P, Qi T, Zhang C, Yuan H, Zhou L, Wang D, Qiu J, Shen QH. SnRK1 Phosphorylates and Destabilizes WRKY3 to Enhance Barley Immunity to Powdery Mildew. PLANT COMMUNICATIONS 2020; 1:100083. [PMID: 33367247 PMCID: PMC7747994 DOI: 10.1016/j.xplc.2020.100083] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 05/19/2023]
Abstract
Plants recognize pathogens and activate immune responses, which usually involve massive transcriptional reprogramming. The evolutionarily conserved kinase, Sucrose non-fermenting-related kinase 1 (SnRK1), functions as a metabolic regulator that is essential for plant growth and stress responses. Here, we identify barley SnRK1 and a WRKY3 transcription factor by screening a cDNA library. SnRK1 interacts with WRKY3 in yeast, as confirmed by pull-down and luciferase complementation assays. Förster resonance energy transfer combined with noninvasive fluorescence lifetime imaging analysis indicates that the interaction occurs in the barley nucleus. Transient expression and virus-induced gene silencing analyses indicate that WRKY3 acts as a repressor of disease resistance to the Bgh fungus. Barley plants overexpressing WRKY3 have enhanced fungal microcolony formation and sporulation. Phosphorylation assays show that SnRK1 phosphorylates WRKY3 mainly at Ser83 and Ser112 to destabilize the repressor, and WRKY3 non-phosphorylation-null mutants at these two sites are more stable than the wild-type protein. SnRK1-overexpressing barley plants display enhanced disease resistance to Bgh. Transient expression of SnRK1 reduces fungal haustorium formation in barley cells, which probably requires SnRK1 nuclear localization and kinase activity. Together, these findings suggest that SnRK1 is directly involved in plant immunity through phosphorylation and destabilization of the WRKY3 repressor, revealing a new regulatory mechanism of immune derepression in plants.
Collapse
Affiliation(s)
- Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Lifang Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengya Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Qi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Chunlei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbo Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixun Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Daowen Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Jinlong Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author
| |
Collapse
|
53
|
Differential Alternative Splicing Genes and Isoform Regulation Networks of Rapeseed ( Brassica napus L.) Infected with Sclerotinia sclerotiorum. Genes (Basel) 2020; 11:genes11070784. [PMID: 32668742 PMCID: PMC7397149 DOI: 10.3390/genes11070784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 11/17/2022] Open
Abstract
Alternative splicing (AS) is a post-transcriptional level of gene expression regulation that increases transcriptome and proteome diversity. How the AS landscape of rapeseed (Brassica napus L.) changes in response to the fungal pathogen Sclerotinia sclerotiorum is unknown. Here, we analyzed 18 RNA-seq libraries of mock-inoculated and S. sclerotiorum-inoculated susceptible and tolerant B. napus plants. We found that infection increased AS, with intron retention being the main AS event. To determine the key genes functioning in the AS response, we performed a differential AS (DAS) analysis. We identified 79 DAS genes, including those encoding splicing factors, defense response proteins, crucial transcription factors and enzymes. We generated coexpression networks based on the splicing isoforms, rather than the genes, to explore the genes’ diverse functions. Using this weighted gene coexpression network analysis alongside a gene ontology enrichment analysis, we identified 11 modules putatively involved in the pathogen defense response. Within these regulatory modules, six DAS genes (ascorbate peroxidase 1, ser/arg-rich protein 34a, unknown function 1138, nitrilase 2, v-atpase f, and amino acid transporter 1) were considered to encode key isoforms involved in the defense response. This study provides insight into the post-transcriptional response of B. napus to S. sclerotiorum infection.
Collapse
|
54
|
Kaur A, Neelam K, Kaur K, Kitazumi A, de Los Reyes BG, Singh K. Novel allelic variation in the Phospholipase D alpha1 gene (OsPLDα1) of wild Oryza species implies to its low expression in rice bran. Sci Rep 2020; 10:6571. [PMID: 32313086 PMCID: PMC7170842 DOI: 10.1038/s41598-020-62649-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/16/2020] [Indexed: 11/25/2022] Open
Abstract
Rice bran, a by-product after milling, is a rich source of phytonutrients like oryzanols, tocopherols, tocotrienols, phytosterols, and dietary fibers. Moreover, exceptional properties of the rice bran oil make it unparalleled to other vegetable oils. However, a lipolytic enzyme Phospholipase D alpha1 (OsPLDα1) causes rancidity and ‘stale flavor’ in the oil, and thus limits the rice bran usage for human consumption. To improve the rice bran quality, sequence based allele mining at OsPLDα1 locus (3.6 Kb) was performed across 48 accessions representing 11 wild Oryza species, 8 accessions of African cultivated rice, and 7 Oryza sativa cultivars. From comparative sequence analysis, 216 SNPs and 30 InDels were detected at the OsPLDα1 locus. Phylogenetic analysis revealed 20 OsPLDα1 cDNA variants which further translated into 12 protein variants. The O. officinalis protein variant, when compared to Nipponbare, showed maximum variability comprising 22 amino acid substitutions and absence of two peptides and two β-sheets. Further, expression profiling indicated significant differences in transcript abundance within as well as between the OsPLDα1 variants. Also, a new OsPLDα1 transcript variant having third exon missing in it, Os01t0172400-06, has been revealed. An O. officinalis accession (IRGC101152) had lowest gene expression which suggests the presence of novel allele, named as OsPLDα1-1a (GenBank accession no. MF966931). The identified novel allele could be further deployed in the breeding programs to overcome rice bran rancidity in elite cultivars.
Collapse
Affiliation(s)
- Amandeep Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India.,School of Biology and Ecology, University of Maine, Orono, Maine, United States of America
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Karminderbir Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Ai Kitazumi
- School of Biology and Ecology, University of Maine, Orono, Maine, United States of America.,Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, United States of America
| | - Benildo G de Los Reyes
- School of Biology and Ecology, University of Maine, Orono, Maine, United States of America.,Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, United States of America
| | - Kuldeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India. .,ICAR- National Bureau of Plant Genetic Resources, New Delhi, India.
| |
Collapse
|
55
|
Role of MPK4 in pathogen-associated molecular pattern-triggered alternative splicing in Arabidopsis. PLoS Pathog 2020; 16:e1008401. [PMID: 32302366 PMCID: PMC7164602 DOI: 10.1371/journal.ppat.1008401] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/11/2020] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing (AS) of pre-mRNAs in plants is an important mechanism of gene regulation in environmental stress tolerance but plant signals involved are essentially unknown. Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) is mediated by mitogen-activated protein kinases and the majority of PTI defense genes are regulated by MPK3, MPK4 and MPK6. These responses have been mainly analyzed at the transcriptional level, however many splicing factors are direct targets of MAPKs. Here, we studied alternative splicing induced by the PAMP flagellin in Arabidopsis. We identified 506 PAMP-induced differentially alternatively spliced (DAS) genes. Importantly, of the 506 PAMP-induced DAS genes, only 89 overlap with the set of 1950 PAMP-induced differentially expressed genes (DEG), indicating that transcriptome analysis does not identify most DAS events. Global DAS analysis of mpk3, mpk4, and mpk6 mutants in the absence of PAMP treatment showed no major splicing changes. However, in contrast to MPK3 and MPK6, MPK4 was found to be a key regulator of PAMP-induced DAS events as the AS of a number of splicing factors and immunity-related protein kinases is affected, such as the calcium-dependent protein kinase CPK28, the cysteine-rich receptor like kinases CRK13 and CRK29 or the FLS2 co-receptor SERK4/BKK1. Although MPK4 is guarded by SUMM2 and consequently, the mpk4 dwarf and DEG phenotypes are suppressed in mpk4 summ2 mutants, MPK4-dependent DAS is not suppressed by SUMM2, supporting the notion that PAMP-triggered MPK4 activation mediates regulation of alternative splicing. Alternative splicing (AS) of pre-mRNAs in plants is an important mechanism of gene regulation in environmental stress tolerance but plant signals involved are essentially unknown. Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) is mediated by mitogen-activated protein kinases and the majority of PTI defense genes are regulated by MPK3, MPK4 and MPK6. These responses have been mainly analyzed at the transcriptional level, however many splicing factors are direct targets of MAPKs. Here, we studied PAMP-induced alternative splicing in Arabidopsis and identified several hundred differentially alternatively spliced (DAS) genes. Importantly, of these PAMP-induced DAS genes, only 18% overlap with the set of PAMP-induced differentially expressed genes (DEG), indicating that transcriptome analysis does not identify most DAS events. Global DAS analysis of MAPK mutants identified MPK4 as a key regulator of PAMP-induced DAS events. Although MPK4 is guarded by SUMM2 and consequently, the mpk4 dwarf and DEG phenotypes are suppressed in mpk4 summ2 mutants, MPK4-dependent DAS is not suppressed by SUMM2, showing that PAMP-triggered MPK4 activation mediates regulation of alternative splicing.
Collapse
|
56
|
Li Y, Mi X, Zhao S, Zhu J, Guo R, Xia X, Liu L, Liu S, Wei C. Comprehensive profiling of alternative splicing landscape during cold acclimation in tea plant. BMC Genomics 2020; 21:65. [PMID: 31959105 PMCID: PMC6971990 DOI: 10.1186/s12864-020-6491-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/13/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Alternative splicing (AS) may generate multiple mRNA splicing isoforms from a single mRNA precursor using different splicing sites, leading to enhanced diversity of transcripts and proteins. AS has been implicated in cold acclimation by affecting gene expression in various ways, yet little information is known about how AS influences cold responses in tea plant (Camellia sinensis). RESULTS In this study, the AS transcriptional landscape was characterized in the tea plant genome using high-throughput RNA-seq during cold acclimation. We found that more than 41% (14,103) of genes underwent AS events. We summarize the possible existence of 11 types of AS events, including the four common types of intron retention (IR), exon skipping (ES), alternative 5' splice site (A5SS), and alternative 3' splice site (A3SS); of these, IR was the major type in all samples. The number of AS events increased rapidly during cold treatment, but decreased significantly following de-acclimation (DA). It is notable that the number of differential AS genes gradually increased during cold acclimation, and these genes were enriched in pathways relating to oxidoreductase activity and sugar metabolism during acclimation and de-acclimation. Remarkably, the AS isoforms of bHLH transcription factors showed higher expression levels than their full-length ones during cold acclimation. Interestingly, the expression pattern of some AS transcripts of raffinose and sucrose synthase genes were significantly correlated with sugar contents. CONCLUSION Our findings demonstrated that changes in AS numbers and transcript expression may contribute to rapid changes in gene expression and metabolite profile during cold acclimation, suggesting that AS events play an important regulatory role in response to cold acclimation in tea plant.
Collapse
Affiliation(s)
- Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Xiaozeng Mi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Shiqi Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Rui Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Xiaobo Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Lu Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China.
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, West 130 Changjiang Road, Hefei, Anhui, 230036, People's Republic of China.
| |
Collapse
|
57
|
Teng K, Teng W, Wen H, Yue Y, Guo W, Wu J, Fan X. PacBio single-molecule long-read sequencing shed new light on the complexity of the Carex breviculmis transcriptome. BMC Genomics 2019; 20:789. [PMID: 31664898 PMCID: PMC6821003 DOI: 10.1186/s12864-019-6163-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 10/09/2019] [Indexed: 12/19/2022] Open
Abstract
Background Carex L., a grass genus commonly known as sedges, is distributed worldwide and contributes constructively to turf management, forage production, and ecological conservation. The development of next-generation sequencing (NGS) technologies has considerably improved our understanding of transcriptome complexity of Carex L. and provided a valuable genetic reference. However, the current transcriptome is not satisfactory mainly because of the enormous difficulty in obtaining full-length transcripts. Results In this study, we employed PacBio single-molecule long-read sequencing (SMRT) technology for whole-transcriptome profiling in Carex breviculmis. We generated 60,353 high-confidence non-redundant transcripts with an average length of 2302-bp. A total of 3588 alternative splicing events, and 1273 long non-coding RNAs were identified. Furthermore, 40,347 complete coding sequences were predicted, providing an informative reference transcriptome. In addition, the transcriptional regulation mechanism of C. breviculmis in response to shade stress was further explored by mapping the NGS data to the reference transcriptome constructed by SMRT sequencing. Conclusions This study provided a full-length reference transcriptome of C. breviculmis using the SMRT sequencing method for the first time. The transcriptome atlas obtained will not only facilitate future functional genomics studies but also pave the way for further selective and genic engineering breeding projects for C. breviculmis.
Collapse
Affiliation(s)
- Ke Teng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Wenjun Teng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Haifeng Wen
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Yuesen Yue
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Weier Guo
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Juying Wu
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| | - Xifeng Fan
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| |
Collapse
|
58
|
Jimmy JL, Babu S. Variations in the Structure and Evolution of Rice WRKY Genes in Indica and Japonica Genotypes and their Co-expression Network in Mediating Disease Resistance. Evol Bioinform Online 2019; 15:1176934319857720. [PMID: 31236008 PMCID: PMC6572876 DOI: 10.1177/1176934319857720] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 11/26/2022] Open
Abstract
WRKY transcription factor (TF) family regulates many functions in plant growth and development and also during biotic and abiotic stress. In this study, 101 WRKY TF gene models in indica and japonica rice were used to conduct evolutionary analysis, gene structure analysis, and motif composition. Co-expression analysis was carried out first by selecting the differentially expressing genes that showed a significant change in response to the pathogens from Rice Oligonucleotide Array Database (ROAD). About 82 genes showed responses to infection by Magnaporthe oryzae or Xanthomonas oryzae pv. oryzae. Co-expression gene network was constructed using direct neighborhood and context associated inbuilt mode in RiceNetv2 tool. Only 41 genes showed interaction with 2299 non-WRKY genes. Variations exist in the structure and evolution of WRKY genes among indica and japonica genotypes which have important implications in their differential roles including disease resistance. WRKY genes mediate a complex networking and co-express along with other WRKY and non-WRKY genes to mediate resistance against fungal and bacterial pathogens in rice.
Collapse
Affiliation(s)
- John Lilly Jimmy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Subramanian Babu
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
59
|
Kuang X, Sun S, Wei J, Li Y, Sun C. Iso-Seq analysis of the Taxus cuspidata transcriptome reveals the complexity of Taxol biosynthesis. BMC PLANT BIOLOGY 2019; 19:210. [PMID: 31113367 PMCID: PMC6530051 DOI: 10.1186/s12870-019-1809-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/29/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Taxus cuspidata is well known worldwide for its ability to produce Taxol, one of the top-selling natural anticancer drugs. However, current Taxol production cannot match the increasing needs of the market, and novel strategies should be considered to increase the supply of Taxol. Since the biosynthetic mechanism of Taxol remains largely unknown, elucidating this pathway in detail will be very helpful in exploring alternative methods for Taxol production. RESULTS Here, we sequenced Taxus cuspidata transcriptomes with next-generation sequencing (NGS) and third-generation sequencing (TGS) platforms. After correction with Illumina reads and removal of redundant reads, more than 180,000 nonredundant transcripts were generated from the raw Iso-Seq data. Using Cogent software and an alignment-based method, we identified a total of 139 cytochrome P450s (CYP450s), 31 BAHD acyltransferases (ACTs) and 1940 transcription factors (TFs). Based on phylogenetic and coexpression analysis, we identified 9 CYP450s and 7 BAHD ACTs as potential lead candidates for Taxol biosynthesis and 6 TFs that are possibly involved in the regulation of this process. Using coexpression analysis of genes known to be involved in Taxol biosynthesis, we elucidated the stem biosynthetic pathway. In addition, we analyzed the expression patterns of 12 characterized genes in the Taxol pathway and speculated that the isoprene precursors for Taxol biosynthesis were mainly synthesized via the MEP pathway. In addition, we found and confirmed that the alternative splicing patterns of some genes varied in different tissues, which may be an important tissue-specific method of posttranscriptional regulation. CONCLUSIONS A strategy was developed to generate corrected full-length or nearly full-length transcripts without assembly to ensure sequence accuracy, thus greatly improving the reliability of coexpression and phylogenetic analysis and greatly facilitating gene cloning and characterization. This strategy was successfully utilized to elucidate the Taxol biosynthetic pathway, which will greatly contribute to the goals of improving the Taxol content in Taxus spp. using molecular breeding or plant management strategies and synthesizing Taxol in microorganisms using synthetic biological technology.
Collapse
Affiliation(s)
- Xuejun Kuang
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing, 100193 China
| | - Sijie Sun
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing, 100193 China
| | - Jianhe Wei
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing, 100193 China
| | - Ying Li
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing, 100193 China
| | - Chao Sun
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences, No. 151, Malianwa North Road, Haidian District, Beijing, 100193 China
| |
Collapse
|
60
|
Chen MX, Wijethunge BDIK, Zhou SM, Yang JF, Dai L, Wang SS, Chen C, Fu LJ, Zhang J, Hao GF, Yang GF. Chemical Modulation of Alternative Splicing for Molecular-Target Identification by Potential Genetic Control in Agrochemical Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5072-5084. [PMID: 30986354 DOI: 10.1021/acs.jafc.9b02086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Alternative splicing (AS), the process of removing introns from pre-mRNA and the rearrangement of exons to produce several types of mature transcripts, is a remarkable step preceding protein synthesis. In particular, it has now been conclusively shown that up to ∼95% of genes are alternatively spliced to generate a complex and diverse proteome in eukaryotic organisms. Consequently, AS is one of the determinants of the functional repertoire of cells. Many studies have revealed that AS in plants can be regulated by cell type, developmental stage, environmental stress, and the circadian clock. Moreover, increasing amounts of evidence reveal that chemical compounds can affect various steps during splicing to induce major effects on plant physiology. Hence, the chemical modulation of AS can serve as a good strategy for molecular-target identification in attempts to potentially control plant genetics. However, the kind of mechanisms involved in the chemical modulation of AS that can be used in agrochemical research remain largely unknown. This review introduces recent studies describing the specific roles AS plays in plant adaptation to environmental stressors and in the regulation of development. We also discuss recent advances in small molecules that induce alterations of AS and the possibility of using this strategy in agrochemical-target identification, giving a new direction for potential genetic control in agrochemical research.
Collapse
Affiliation(s)
- Mo-Xian Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals , Guizhou University , Guiyang 550025 , PR China
- Division of Gastroenterology , Shenzhen Children's Hospital , Shenzhen 518038 , PR China
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055 , PR China
- School of Life Sciences and Shenzhen Research Institute , The Chinese University of Hong Kong , Shenzhen 518063 , PR China
| | - Boyagane D I K Wijethunge
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Shao-Ming Zhou
- Division of Gastroenterology , Shenzhen Children's Hospital , Shenzhen 518038 , PR China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Lei Dai
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055 , PR China
| | - Shan-Shan Wang
- School of Life Sciences and Shenzhen Research Institute , The Chinese University of Hong Kong , Shenzhen 518063 , PR China
| | - Chen Chen
- Department of Infectious Disease, Nanjing Second Hospital , Nanjing University of Chinese Medicine , Nanjing 210003 , PR China
| | - Li-Jun Fu
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants , Putian University , Putian , Fujian 351100 , PR China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University and State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong , PR China
| | - Ge-Fei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals , Guizhou University , Guiyang 550025 , PR China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| |
Collapse
|
61
|
Xu Y, Zeng A, Song L, Li J, Yan J. Comparative transcriptomics analysis uncovers alternative splicing events and molecular markers in cabbage (Brassica oleracea L.). PLANTA 2019; 249:1599-1615. [PMID: 30771045 DOI: 10.1007/s00425-019-03108-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/07/2019] [Indexed: 05/20/2023]
Abstract
Alternative splicing (AS) events were identified and verified in cabbage by comparative transcriptome analysis. The corresponding markers were developed and the germplasm resources were identified. Alternative splicing (AS) is a central regulatory mechanism that greatly contributes to plant gene expression and transcriptome diversity. A large body of evidence has shown that AS complexity is relevant for plant development, evolution, complexity, and adaptation. Both insertion/deletion (InDel) and single nucleotide polymorphism (SNP) are typically co-dominant inheritance markers and have abundant polymorphisms. These have been widely used for marker-assisted selection, genetic mapping, and germplasm identification in plants. However, little is known about the molecular mechanisms underlying AS events and the development of markers including SNP and InDel from the cabbage transcriptome. In this study, three cabbage transcriptome datasets were collected and aligned to the cabbage reference genome to analyze AS events and marker development. 31,524 AS events were identified from three cabbage genotypes, accounting for 20.8% of the total cabbage genes. Alternative 3' splice site donor (A3SS) was the most frequent type of the four main AS events in cabbage. 70,475 InDels and 706,269 SNPs were identified with average frequencies of 1 InDel/6.9 kb and 1 SNP/0.7 kb, respectively. 71,942 potential SSRs were identified in 53,129 assembled unigenes with a density of 1 SSR/6.8 kb. The ratio of SNPs with synonymous/non-synonymous mutations was 1:0.65. 142 InDels and 36 SNPs were randomly selected and validated via Sanger sequencing and polymorphism was found among 66.2% of the InDels and 78.6% of the SNPs. Furthermore, 35 informative InDel markers were successfully used for genetic diversity analysis on 36 cabbage accessions. These results facilitate understanding of the molecular regulation mechanism underlying AS events in cabbage. They also provide molecular marker resource data for genetic mapping construction and germplasm identification, and facilitate the genetic improvement of cabbage via breeding.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Aisong Zeng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| | - Lixiao Song
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Jiaqing Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Jiyong Yan
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| |
Collapse
|
62
|
Brassica napus Infected with Leptosphaeria maculans. Genes (Basel) 2019; 10:genes10040296. [PMID: 30979089 PMCID: PMC6523698 DOI: 10.3390/genes10040296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 01/07/2023] Open
Abstract
Alternative splicing (AS) is a post-transcriptional regulatory process that enhances transcriptome diversity, thereby affecting plant growth, development, and stress responses. To identify the new transcripts and changes in the isoform-level AS landscape of rapeseed (Brassica napus) infected with the fungal pathogen Leptosphaeria maculans, we compared eight RNA-seq libraries prepared from mock-inoculated and inoculated B. napus cotyledons and stems. The AS events that occurred in stems were almost the same as those in cotyledons, with intron retention representing the most common AS pattern. We identified 1892 differentially spliced genes between inoculated and uninoculated plants. We performed a weighted gene co-expression network analysis (WGCNA) to identify eight co-expression modules and their Hub genes, which are the genes most connected with other genes within each module. There are nine Hub genes, encoding nine transcription factors, which represent key regulators of each module, including members of the NAC, WRKY, TRAF, AP2/ERF-ERF, C2H2, C2C2-GATA, HMG, bHLH, and C2C2-CO-like families. Finally, 52 and 117 alternatively spliced genes in cotyledons and stems were also differentially expressed between mock-infected and infected materials, such as HMG and C2C2-Dof; which have dual regulatory mechanisms in response to L. maculans. The splicing of the candidate genes identified in this study could be exploited to improve resistance to L. maculans.
Collapse
|
63
|
Minio A, Massonnet M, Figueroa-Balderas R, Vondras AM, Blanco-Ulate B, Cantu D. Iso-Seq Allows Genome-Independent Transcriptome Profiling of Grape Berry Development. G3 (BETHESDA, MD.) 2019; 9:755-767. [PMID: 30642874 PMCID: PMC6404599 DOI: 10.1534/g3.118.201008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/09/2019] [Indexed: 01/13/2023]
Abstract
Transcriptomics has been widely applied to study grape berry development. With few exceptions, transcriptomic studies in grape are performed using the available genome sequence, PN40024, as reference. However, differences in gene content among grape accessions, which contribute to phenotypic differences among cultivars, suggest that a single reference genome does not represent the species' entire gene space. Though whole genome assembly and annotation can reveal the relatively unique or "private" gene space of any particular cultivar, transcriptome reconstruction is a more rapid, less costly, and less computationally intensive strategy to accomplish the same goal. In this study, we used single molecule-real time sequencing (SMRT) to sequence full-length cDNA (Iso-Seq) and reconstruct the transcriptome of Cabernet Sauvignon berries during berry ripening. In addition, short reads from ripening berries were used to error-correct low-expression isoforms and to profile isoform expression. By comparing the annotated gene space of Cabernet Sauvignon to other grape cultivars, we demonstrate that the transcriptome reference built with Iso-Seq data represents most of the expressed genes in the grape berries and includes 1,501 cultivar-specific genes. Iso-Seq produced transcriptome profiles similar to those obtained after mapping on a complete genome reference. Together, these results justify the application of Iso-Seq to identify cultivar-specific genes and build a comprehensive reference for transcriptional profiling that circumvents the necessity of a genome reference with its associated costs and computational weight.
Collapse
Affiliation(s)
- Andrea Minio
- Department of Viticulture and Enology, University of California Davis, Davis, CA
| | - Mélanie Massonnet
- Department of Viticulture and Enology, University of California Davis, Davis, CA
| | | | - Amanda M Vondras
- Department of Viticulture and Enology, University of California Davis, Davis, CA
| | | | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, CA
| |
Collapse
|
64
|
Jia N, Liu J, Tan P, Sun Y, Lv Y, Liu J, Sun J, Huang Y, Lu J, Jin N, Li M, Md Sharif Uddin Imam K, Xin F, Fan B. Citrus sinensis MYB Transcription Factor CsMYB85 Induce Fruit Juice Sac Lignification Through Interaction With Other CsMYB Transcription Factors. FRONTIERS IN PLANT SCIENCE 2019; 10:213. [PMID: 30873196 PMCID: PMC6401657 DOI: 10.3389/fpls.2019.00213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/07/2019] [Indexed: 05/06/2023]
Abstract
Varieties of Citrus are commercially important fruits that are cultivated worldwide and are valued for being highly nutritious and having an appealing flavor. Lignification of citrus fruit juice sacs is a serious physiological disorder that occurs during postharvest storage, for which the underlying transcriptional regulatory mechanisms remain unclear. In this study, we identified and isolated a candidate MYB transcription factor, CsMYB85, that is involved in the regulation of lignin biosynthesis in Citrus sinensis, which has homologs in Arabidopsis and other plants. We found that during juice sac lignification, CsMYB85 expression levels increase significantly, and therefore, suspected that this gene may control lignin biosynthesis during the lignification process. Our results indicated that CsMYB85 binds the CsMYB330 promoter, regulates its expression, and interacts with CsMYB308 in transgenic yeast and tobacco. A transient expression assay indicated that Cs4CL1 expression levels and lignin content significantly increased in fruit juice sacs overexpressing CsMYB85. At4CL1 expression levels and lignin content were also significantly increased in Arabidopsis overexpressing CsMYB85. We accordingly present convincing evidence for the participation of the CsMYB85 transcription factor in fruit juice sac lignification, and thereby provide new insights into the transcriptional regulation of this process in citrus fruits.
Collapse
Affiliation(s)
- Ning Jia
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiqin Liu
- Qinhuangdao Customs, Hebei Qinhuangdao, Qinhuangdao, China
| | - Penghui Tan
- Turfgrass Research Institute, Beijing Forestry University, Beijing, China
| | - Yufeng Sun
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yuemeng Lv
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiameng Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jing Sun
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yatao Huang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jia Lu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Nuo Jin
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Minmin Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Khandaker Md Sharif Uddin Imam
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment on Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
65
|
Chinnapandi B, Bucki P, Fitoussi N, Kolomiets M, Borrego E, Braun Miyara S. Tomato SlWRKY3 acts as a positive regulator for resistance against the root-knot nematode Meloidogyne javanica by activating lipids and hormone-mediated defense-signaling pathways. PLANT SIGNALING & BEHAVIOR 2019; 14:1601951. [PMID: 31010365 PMCID: PMC6546140 DOI: 10.1080/15592324.2019.1601951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Diseases caused by plant-parasitic nematodes in vegetables, among them Meloidogyne spp. root-knot nematodes (RKNs), lead to extensive yield decline. A molecular understanding of the mechanisms underlying plants' innate resistance may enable developing safe alternatives to harmful chemical nematicides in controlling RKNs. A tight relationship has been revealed between the WRKY transcription factors and RKN parasitism on tomato roots. We investigated the function role of tomato SlWRK3 and SlWRKY35 in regulating nematode disease development. Using promoter-GUS reporter gene fusions, we show that both SlWRKY3 and SlWRKY35 are induced within 5 days of infection and through feeding-site development and gall maturation, with a much stronger response of the former vs. the latter to nematode infection. Histological analysis of nematode-feeding sites indicated a high expression of SlWRKY3 in developing and mature feeding cells and associated vasculature cells, whereas SlWRKY35 expression was only observed in mature feeding sites. Both SlWRKY3 and SlWRKY35 promoters were induced by the defense phytohormones salicylic acid and indole-3-butyric acid, with no response to either jasmonic acid or methyl jasmonate. SlWRKY3 overexpression resulted in lower infection of the RKN Meloidogyne javanica, whereas knocking down SlWRKY3 resulted in increased infection. Phytohormone and oxylipin profiles determined by LC-MS/MS showed that the enhanced resistance in the former is coupled with an increased accumulation of defense molecules from the shikimate and oxylipin pathways. Our results pinpoint SlWRKY3 as a positive regulator of induced resistance in response to nematode invasion and infection, mostly during the early stages of nematode infection.
Collapse
Affiliation(s)
- Bharathiraja Chinnapandi
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, Israel
| | - Patricia Bucki
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, Israel
| | - Nathalia Fitoussi
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, Israel
- Department of Plant Pathology and Microbiology, the Faculty of Agriculture, Food & Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Michael Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, TX, USA
| | - Eli Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, TX, USA
| | - Sigal Braun Miyara
- Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, Israel
- CONTACT Sigal Braun Miyara Department of Entomology, Nematology and Chemistry units, Agricultural Research Organization (ARO), the Volcani Center, Bet Dagan, Israel
| |
Collapse
|
66
|
Zhang HX, Ali M, Feng XH, Jin JH, Huang LJ, Khan A, Lv JG, Gao SY, Luo DX, Gong ZH. A Novel Transcription Factor CaSBP12 Gene Negatively Regulates the Defense Response against Phytophthora capsici in Pepper ( Capsicum annuum L.). Int J Mol Sci 2018; 20:E48. [PMID: 30583543 PMCID: PMC6337521 DOI: 10.3390/ijms20010048] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/16/2018] [Accepted: 12/20/2018] [Indexed: 01/24/2023] Open
Abstract
SBP-box (Squamosa-promoter binding protein) genes are a type of plant-specific transcription factor and play important roles in plant growth, signal transduction and stress response. However, little is known about the SBP-box genes in pepper (CaSBP), especially in the process of Phytophthora capsici infection. In this study, a novel gene (CaSBP12) was selected from the CaSBP gene family, which was isolated from the pepper genome database in our previous study. The CaSBP12 gene was located in the nucleus of the cell and its silencing in the pepper plant enhanced the defense response against Phytophthora capsici infection. After inoculation with Phytophthora capsici, the root activity of the CaSBP12-silenced plants is compared to control plants, while malondialdehyde (MDA) content is compared viceversa. Additionally, the expression of defense related genes (CaPO1, CaSAR8.2, CaBPR1, and CaDEF1) in the silenced plants were induced to different degrees and the peak of CaSAR8.2 and CaBPR1 were higher than that of CaDEF1. The CaSBP12 over-expressed Nicotiana benthamiana plants were more susceptible to Phytophthora capsici infection with higher EC (electrical conductivity) and MDA contents as compared to the wild-type. The relative expression of defense related genes (NbDEF, NbNPR1, NbPR1a, and NbPR1b) in transgenic and wild-type Nicotiana benthamiana plants were induced, especially the NbPR1a and NbPR1b. In conclusion, these results indicate that CaSBP12 gene negative regulates the defense response against Phytophthora capsici infection which suggests their potentially significant role in plant defense. To our knowledge, this is the first report on CaSBP gene which negative regulate defense response.
Collapse
Affiliation(s)
- Huai-Xia Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Xiao-Hui Feng
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Jing-Hao Jin
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Liu-Jun Huang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Abid Khan
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Jing-Gang Lv
- Tianjin Vegetable Research Center, Tianjin 300192, China.
| | - Su-Yan Gao
- Tianjin Vegetable Research Center, Tianjin 300192, China.
| | - De-Xu Luo
- Xuhuai Region Huaiyin Institute of Agricultural Sciences, Jiangsu 223001, China.
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
67
|
Yuenyong W, Chinpongpanich A, Comai L, Chadchawan S, Buaboocha T. Downstream components of the calmodulin signaling pathway in the rice salt stress response revealed by transcriptome profiling and target identification. BMC PLANT BIOLOGY 2018; 18:335. [PMID: 30518322 PMCID: PMC6282272 DOI: 10.1186/s12870-018-1538-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/20/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Calmodulin (CaM) is an important calcium sensor protein that transduces Ca2+ signals in plant stress signaling pathways. A previous study has revealed that transgenic rice over-expressing the calmodulin gene OsCam1-1 (LOC_Os03g20370) is more tolerant to salt stress than wild type. To elucidate the role of OsCam1-1 in the salt stress response mechanism, downstream components of the OsCam1-1-mediated response were identified and investigated by transcriptome profiling and target identification. RESULTS Transcriptome profiling of transgenic 'Khao Dawk Mali 105' rice over-expressing OsCam1-1 and wild type rice showed that overexpression of OsCam1-1 widely affected the expression of genes involved in several cellular processes under salt stress, including signaling, hormone-mediated regulation, transcription, lipid metabolism, carbohydrate metabolism, secondary metabolism, photosynthesis, glycolysis, tricarboxylic acid (TCA) cycle and glyoxylate cycle. Under salt stress, the photosynthesis rate in the transgenic rice was slightly lower than in wild type, while sucrose and starch contents were higher, suggesting that energy and carbon metabolism were affected by OsCam1-1 overexpression. Additionally, four known and six novel CaM-interacting proteins were identified by cDNA expression library screening with the recombinant OsCaM1. GO terms enriched in their associated proteins that matched those of the differentially expressed genes affected by OsCam1-1 overexpression revealed various downstream cellular processes that could potentially be regulated by OsCaM1 through their actions. CONCLUSIONS The diverse cellular processes affected by OsCam1-1 overexpression and possessed by the identified CaM1-interacting proteins corroborate the notion that CaM signal transduction pathways compose a complex network of downstream components involved in several cellular processes. These findings suggest that under salt stress, CaM activity elevates metabolic enzymes involved in central energy pathways, which promote or at least maintain the production of energy under the limitation of photosynthesis.
Collapse
Affiliation(s)
- Worawat Yuenyong
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Aumnart Chinpongpanich
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 795616 USA
| | - Supachitra Chadchawan
- Center of Excellent in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Teerapong Buaboocha
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellent in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
68
|
Chen X, Chen H, Yuan JS, Köllner TG, Chen Y, Guo Y, Zhuang X, Chen X, Zhang Y, Fu J, Nebenführ A, Guo Z, Chen F. The rice terpene synthase gene OsTPS19 functions as an (S)-limonene synthase in planta, and its overexpression leads to enhanced resistance to the blast fungus Magnaporthe oryzae. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1778-1787. [PMID: 29509987 PMCID: PMC6131416 DOI: 10.1111/pbi.12914] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/11/2018] [Accepted: 02/24/2018] [Indexed: 05/07/2023]
Abstract
Rice blast disease, caused by the fungus Magnaporthe oryzae, is the most devastating disease of rice. In our ongoing characterization of the defence mechanisms of rice plants against M. oryzae, a terpene synthase gene OsTPS19 was identified as a candidate defence gene. Here, we report the functional characterization of OsTPS19, which is up-regulated by M. oryzae infection. Overexpression of OsTPS19 in rice plants enhanced resistance against M. oryzae, while OsTPS19 RNAi lines were more susceptible to the pathogen. Metabolic analysis revealed that the production of a monoterpene (S)-limonene was increased and decreased in OsTPS19 overexpression and RNAi lines, respectively, suggesting that OsTPS19 functions as a limonene synthase in planta. This notion was further supported by in vitro enzyme assays with recombinant OsTPS19, in which OsTPS19 had both sesquiterpene activity and monoterpene synthase activity, with limonene as a major product. Furthermore, in a subcellular localization experiment, OsTPS19 was localized in plastids. OsTPS19 has a highly homologous paralog, OsTPS20, which likely resulted from a recent gene duplication event. We found that the variation in OsTPS19 and OsTPS20 enzyme activities was determined by a single amino acid in the active site cavity. The expression of OsTPS20 was not affected by M. oryzae infection. This indicates functional divergence of OsTPS19 and OsTPS20. Lastly, (S)-limonene inhibited the germination of M. oryzae spores in vitro. OsTPS19 was determined to function as an (S)-limonene synthase in rice and plays a role in defence against M. oryzae, at least partly, by inhibiting spore germination.
Collapse
Affiliation(s)
- Xujun Chen
- Key Laboratory of Plant PathologyDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Hao Chen
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Joshua S. Yuan
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTXUSA
| | | | - Yuying Chen
- Key Laboratory of Plant PathologyDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Yufen Guo
- Key Laboratory of Plant PathologyDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Xiaofeng Zhuang
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Xinlu Chen
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Yong‐jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Jianyu Fu
- Tea Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular BiologyUniversity of TennesseeKnoxvilleTNUSA
| | - Zejian Guo
- Key Laboratory of Plant PathologyDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Feng Chen
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
69
|
Teng K, Tan P, Guo W, Yue Y, Fan X, Wu J. Heterologous Expression of a Novel Zoysia japonica C 2H 2 Zinc Finger Gene, ZjZFN1, Improved Salt Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:1159. [PMID: 30154810 PMCID: PMC6102363 DOI: 10.3389/fpls.2018.01159] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/23/2018] [Indexed: 05/02/2023]
Abstract
Growing evidence indicates that some grass species are more tolerant to various abiotic and biotic stresses than many crops. Zinc finger proteins play important roles in plant abiotic and biotic stresses. Although genes coding for these proteins have been cloned and identified in various plants, their function and underlying transcriptional mechanisms in the halophyte Zoysia japonica are barely known. In the present study, ZjZFN1 was isolated from Z. japonica using RACE method. Quantitative real time PCR results revealed that the expression of ZjZFN1 was much higher in leaf than in root and stem tissues, and induced by salt, cold or ABA treatment. The subcellular localization assay demonstrated that ZjZFN1 was localized to the nucleus. Expression of the ZjZFN1 in Arabidopsis thaliana improved seed germination and enhanced plant adaption to salinity stress with improved percentage of green cotyledons and growth status under salinity stress. Physiological and transcriptional analyses suggested that ZjZFN1 might, at least in part, influence reactive oxygen species accumulation and regulate the transcription of salinity responsive genes. Furthermore, RNA-sequencing analysis of ZjZFN1-overexpressing plants revealed that ZjZFN1 may serve as a transcriptional activator in the regulation of stress responsive pathways, including phenylalanine metabolism, α-linolenic acid metabolism and phenylpropanoid biosynthesis pathways. Taken together, these results provide evidence that ZjZFN1 is a potential key player in plants' tolerance to salt stress, and it could be a valuable gene in Z. japonica breeding projects.
Collapse
Affiliation(s)
- Ke Teng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Penghui Tan
- Turfgrass Research Institute, Beijing Forestry University, Beijing, China
| | - Weier Guo
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Yuesen Yue
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xifeng Fan
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Juying Wu
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
70
|
Meng Q, Gupta R, Kwon SJ, Wang Y, Agrawal GK, Rakwal R, Park SR, Kim ST. Transcriptomic Analysis of Oryza sativa Leaves Reveals Key Changes in Response to Magnaporthe oryzae MSP1. THE PLANT PATHOLOGY JOURNAL 2018; 34:257-268. [PMID: 30140180 PMCID: PMC6097817 DOI: 10.5423/ppj.oa.01.2018.0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/04/2018] [Accepted: 05/14/2018] [Indexed: 05/30/2023]
Abstract
Rice blast disease, caused by Magnaporthe oryzae, results in an extensive loss of rice productivity. Previously, we identified a novel M. oryzae secreted protein, termed MSP1 which causes cell death and pathogen-associated molecular pattern (PAMP)-triggered immune (PTI) responses in rice. Here, we report the transcriptome profile of MSP1-induced response in rice, which led to the identification of 21,619 genes, among which 4,386 showed significant changes (P < 0.05 and fold change > 2 or < 1/2) in response to exogenous MSP1 treatment. Functional annotation of differentially regulated genes showed that the suppressed genes were deeply associated with photosynthesis, secondary metabolism, lipid synthesis, and protein synthesis, while the induced genes were involved in lipid degradation, protein degradation, and signaling. Moreover, expression of genes encoding receptor-like kinases, MAPKs, WRKYs, hormone signaling proteins and pathogenesis-related (PR) proteins were also induced by MSP1. Mapping these differentially expressed genes onto various pathways revealed critical information about the MSP1-triggered responses, providing new insights into the molecular mechanism and components of MSP1-triggered PTI responses in rice.
Collapse
Affiliation(s)
- Qingfeng Meng
- Department of Plant Bioscience, Life and Energy Convergence Research Institute, Pusan National University, Miryang 46241,
Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Life and Energy Convergence Research Institute, Pusan National University, Miryang 46241,
Korea
| | - Soon Jae Kwon
- Department of Plant Bioscience, Life and Energy Convergence Research Institute, Pusan National University, Miryang 46241,
Korea
| | - Yiming Wang
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne,
Germany
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu,
Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu,
Nepal
- GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj,
Nepal
- Faculty of Health and Sport Sciences and Tsukuba International Academy for Sport Studies (TIAS), University of Tsukuba, Ibaraki 305-8577,
Japan
- Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo 142-8501,
Japan
| | - Sang-Ryeol Park
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874,
Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Energy Convergence Research Institute, Pusan National University, Miryang 46241,
Korea
| |
Collapse
|
71
|
Yamamoto T, Yoshida Y, Nakajima K, Tominaga M, Gyohda A, Suzuki H, Okamoto T, Nishimura T, Yokotani N, Minami E, Nishizawa Y, Miyamoto K, Yamane H, Okada K, Koshiba T. Expression of RSOsPR10 in rice roots is antagonistically regulated by jasmonate/ethylene and salicylic acid via the activator OsERF87 and the repressor OsWRKY76, respectively. PLANT DIRECT 2018; 2:e00049. [PMID: 31245715 PMCID: PMC6508531 DOI: 10.1002/pld3.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/29/2018] [Accepted: 02/28/2018] [Indexed: 05/08/2023]
Abstract
Plant roots play important roles in absorbing water and nutrients, and in tolerance against environmental stresses. Previously, we identified a rice root-specific pathogenesis-related protein (RSOsPR10) induced by drought, salt, and wounding. RSOsPR10 expression is strongly induced by jasmonate (JA)/ethylene (ET), but suppressed by salicylic acid (SA). Here, we analyzed the promoter activity of RSOsPR10. Analyses of transgenic rice lines harboring different-length promoter::β-glucuronidase (GUS) constructs showed that the 3-kb promoter region is indispensable for JA/ET induction, SA repression, and root-specific expression. In the JA-treated 3K-promoter::GUS line, GUS activity was mainly observed at lateral root primordia. Transient expression in roots using a dual luciferase (LUC) assay with different-length promoter::LUC constructs demonstrated that the novel transcription factor OsERF87 induced 3K-promoter::LUC expression through binding to GCC-cis elements. In contrast, the SA-inducible OsWRKY76 transcription factor strongly repressed the JA-inducible and OsERF87-dependent expression of RSOsPR10. RSOsPR10 was expressed at lower levels in OsWRKY76-overexpressing rice, but at higher levels in OsWRKY76-knockout rice, compared with wild type. These results show that two transcription factors, OsERF87 and OsWRKY76, antagonistically regulate RSOsPR10 expression through binding to the same promoter. This mechanism represents a fine-tuning system to sense the balance between JA/ET and SA signaling in plants under environmental stress.
Collapse
Affiliation(s)
- Takahiro Yamamoto
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Yuri Yoshida
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
- Biotechnology Research CenterThe University of TokyoBunkyo‐kuTokyoJapan
| | - Kazunari Nakajima
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Makiko Tominaga
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Atsuko Gyohda
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Hiromi Suzuki
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Takashi Okamoto
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| | - Takeshi Nishimura
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaIbarakiJapan
- Bioagric SciNagoya UniversityNagoyaAichiJapan
| | - Naoki Yokotani
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaIbarakiJapan
- Kazusa DNA Research InstituteKisarazuChibaJapan
| | - Eiichi Minami
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaIbarakiJapan
| | - Yoko Nishizawa
- Institute of Agrobiological SciencesNational Agriculture and Food Research OrganizationTsukubaIbarakiJapan
| | - Koji Miyamoto
- Biotechnology Research CenterThe University of TokyoBunkyo‐kuTokyoJapan
- Department of BiosciencesTeikyo UniversityUtsunomiyaTochigiJapan
| | - Hisakazu Yamane
- Biotechnology Research CenterThe University of TokyoBunkyo‐kuTokyoJapan
- Department of BiosciencesTeikyo UniversityUtsunomiyaTochigiJapan
| | - Kazunori Okada
- Biotechnology Research CenterThe University of TokyoBunkyo‐kuTokyoJapan
| | - Tomokazu Koshiba
- Department of Biological SciencesTokyo Metropolitan UniversityHachioji‐shiTokyoJapan
| |
Collapse
|
72
|
Wan Y, Mao M, Wan D, Yang Q, Yang F, Li G, Wang R. Identification of the WRKY gene family and functional analysis of two genes in Caragana intermedia. BMC PLANT BIOLOGY 2018; 18:31. [PMID: 29426284 PMCID: PMC5807834 DOI: 10.1186/s12870-018-1235-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/14/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND WRKY transcription factors, one of the largest families of transcriptional regulators in plants, play important roles in plant development and various stress responses. The WRKYs of Caragana intermedia are still not well characterized, although many WRKYs have been identified in various plant species. RESULTS We identified 53 CiWRKY genes from C. intermedia transcriptome data, 28 of which exhibited complete open reading frames (ORFs). These CiWRKYs were divided into three groups via phylogenetic analysis according to their WRKY domains and zinc finger motifs. Conserved domain analysis showed that the CiWRKY proteins contain a highly conserved WRKYGQK motif and two variant motifs (WRKYGKK and WKKYEEK). The subcellular localization of CiWRKY26 and CiWRKY28-1 indicated that these two proteins localized exclusively to nuclei, supporting their role as transcription factors. The expression patterns of the 28 CiWRKYs with complete ORFs were examined through quantitative real-time PCR (qRT-PCR) in various tissues and under different abiotic stresses (drought, cold, salt, high-pH and abscisic acid (ABA)). The results showed that each CiWRKY responded to at least one stress treatment. Furthermore, overexpression of CiWRKY75-1 and CiWRKY40-4 in Arabidopsis thaliana suppressed the drought stress tolerance of the plants and delayed leaf senescence, respectively. CONCLUSIONS Fifty-three CiWRKY genes from the C. intermedia transcriptome were identified and divided into three groups via phylogenetic analysis. The expression patterns of the 28 CiWRKYs under different abiotic stresses suggested that each CiWRKY responded to at least one stress treatment. Overexpression of CiWRKY75-1 and CiWRKY40-4 suppressed the drought stress tolerance of Arabidopsis and delayed leaf senescence, respectively. These results provide a basis for the molecular mechanism through which CiWRKYs mediate stress tolerance.
Collapse
Affiliation(s)
- Yongqing Wan
- College of Life Sciences, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Mingzhu Mao
- College of Life Sciences, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Dongli Wan
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Grassland Ecology and Restoration, Ministry of Agriculture, Hohhot, China
| | - Qi Yang
- College of Life Sciences, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Feiyun Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Guojing Li
- College of Life Sciences, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruigang Wang
- College of Life Sciences, Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
73
|
Gu L, Li L, Wei H, Wang H, Su J, Guo Y, Yu S. Identification of the group IIa WRKY subfamily and the functional analysis of GhWRKY17 in upland cotton (Gossypium hirsutum L.). PLoS One 2018; 13:e0191681. [PMID: 29370286 PMCID: PMC5784973 DOI: 10.1371/journal.pone.0191681] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 01/09/2018] [Indexed: 01/01/2023] Open
Abstract
WRKY transcription factors play important roles in plant defense, stress response, leaf senescence, and plant growth and development. Previous studies have revealed the important roles of the group IIa GhWRKY genes in cotton. To comprehensively analyze the group IIa GhWRKY genes in upland cotton, we identified 15 candidate group IIa GhWRKY genes in the Gossypium hirsutum genome. The phylogenetic tree, intron-exon structure, motif prediction and Ka/Ks analyses indicated that most group IIa GhWRKY genes shared high similarity and conservation and underwent purifying selection during evolution. In addition, we detected the expression patterns of several group IIa GhWRKY genes in individual tissues as well as during leaf senescence using public RNA sequencing data and real-time quantitative PCR. To better understand the functions of group IIa GhWRKYs in cotton, GhWRKY17 (KF669857) was isolated from upland cotton, and its sequence alignment, promoter cis-acting elements and subcellular localization were characterized. Moreover, the over-expression of GhWRKY17 in Arabidopsis up-regulated the senescence-associated genes AtWRKY53, AtSAG12 and AtSAG13, enhancing the plant’s susceptibility to leaf senescence. These findings lay the foundation for further analysis and study of the functions of WRKY genes in cotton.
Collapse
Affiliation(s)
- Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Libei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Junji Su
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Yaning Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
- College of Agronomy, Northwest A&F University, Yangling, Shanxi, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
- * E-mail:
| |
Collapse
|
74
|
Zhang T, Huang L, Wang Y, Wang W, Zhao X, Zhang S, Zhang J, Hu F, Fu B, Li Z. Differential transcriptome profiling of chilling stress response between shoots and rhizomes of Oryza longistaminata using RNA sequencing. PLoS One 2017; 12:e0188625. [PMID: 29190752 PMCID: PMC5708648 DOI: 10.1371/journal.pone.0188625] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/11/2017] [Indexed: 11/18/2022] Open
Abstract
Rice (Oryza sativa) is very sensitive to chilling stress at seedling and reproductive stages, whereas wild rice, O. longistaminata, tolerates non-freezing cold temperatures and has overwintering ability. Elucidating the molecular mechanisms of chilling tolerance (CT) in O. longistaminata should thus provide a basis for rice CT improvement through molecular breeding. In this study, high-throughput RNA sequencing was performed to profile global transcriptome alterations and crucial genes involved in response to long-term low temperature in O. longistaminata shoots and rhizomes subjected to 7 days of chilling stress. A total of 605 and 403 genes were respectively identified as up- and down-regulated in O. longistaminata under 7 days of chilling stress, with 354 and 371 differentially expressed genes (DEGs) found exclusively in shoots and rhizomes, respectively. GO enrichment and KEGG pathway analyses revealed that multiple transcriptional regulatory pathways were enriched in commonly induced genes in both tissues; in contrast, only the photosynthesis pathway was prevalent in genes uniquely induced in shoots, whereas several key metabolic pathways and the programmed cell death process were enriched in genes induced only in rhizomes. Further analysis of these tissue-specific DEGs showed that the CBF/DREB1 regulon and other transcription factors (TFs), including AP2/EREBPs, MYBs, and WRKYs, were synergistically involved in transcriptional regulation of chilling stress response in shoots. Different sets of TFs, such as OsERF922, OsNAC9, OsWRKY25, and WRKY74, and eight genes encoding antioxidant enzymes were exclusively activated in rhizomes under long-term low-temperature treatment. Furthermore, several cis-regulatory elements, including the ICE1-binding site, the GATA element for phytochrome regulation, and the W-box for WRKY binding, were highly abundant in both tissues, confirming the involvement of multiple regulatory genes and complex networks in the transcriptional regulation of CT in O. longistaminata. Finally, most chilling-induced genes with alternative splicing exclusive to shoots were associated with photosynthesis and regulation of gene expression, while those enriched in rhizomes were primarily related to stress signal transduction; this indicates that tissue-specific transcriptional and post-transcriptional regulation mechanisms synergistically contribute to O. longistaminata long-term CT. Our findings provide an overview of the complex regulatory networks of CT in O. longistaminata.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liyu Huang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Agriculture, Yunnan University, Yunnan, China
- Research Center for Perennial Rice Engineering and Technology, Yunnan University, Yunnan, China
| | - Yinxiao Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shilai Zhang
- School of Agriculture, Yunnan University, Yunnan, China
- Research Center for Perennial Rice Engineering and Technology, Yunnan University, Yunnan, China
| | - Jing Zhang
- School of Agriculture, Yunnan University, Yunnan, China
- Research Center for Perennial Rice Engineering and Technology, Yunnan University, Yunnan, China
| | - Fengyi Hu
- School of Agriculture, Yunnan University, Yunnan, China
- Research Center for Perennial Rice Engineering and Technology, Yunnan University, Yunnan, China
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Institute for Innovative Breeding, Chinese Academy of Agricultural Sciences, Shenzhen, China
- * E-mail:
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Institute for Innovative Breeding, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
75
|
Wang J, Tao F, Tian W, Guo Z, Chen X, Xu X, Shang H, Hu X. The wheat WRKY transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici. PLoS One 2017; 12:e0181963. [PMID: 28742872 PMCID: PMC5526533 DOI: 10.1371/journal.pone.0181963] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 07/10/2017] [Indexed: 12/17/2022] Open
Abstract
WRKY transcription factors (TFs) play crucial roles in plant resistance responses to pathogens. Wheat stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a destructive disease of wheat (Triticum aestivum) worldwide. In this study, the two WRKY genes TaWRKY49 and TaWRKY62 were originally identified in association with high-temperature seedling-plant resistance to Pst (HTSP) resistance in wheat cultivar Xiaoyan 6 by RNA-seq. Interestingly, the expression levels of TaWRKY49 and TaWRKY62 were down- and up-regulated, respectively, during HTSP resistance in response to Pst. Silencing of TaWRKY49 enhanced whereas silencing TaWRKY62 reduced HTSP resistance. The enhanced resistance observed on leaves following the silencing of TaWRKY49 was coupled with increased expression of salicylic acid (SA)- and jasmonic acid (JA)-responsive genes TaPR1.1 and TaAOS, as well as reactive oxygen species (ROS)-associated genes TaCAT and TaPOD; whereas the ethylene (ET)-responsive gene TaPIE1 was suppressed. The decreased resistance observed on leaves following TaWRKY62 silencing was associated with increased expression of TaPR1.1 and TaPOD, and suppression of TaAOS and TaPIE1. Furthermore, SA, ET, MeJA (methyl jasmonate), hydrogen peroxide (H2O2) and abscisic acid (ABA) treatments increased TaWRKY62 expression. On the other hand, MeJA did not affect the expression of TaWRKY49, and H2O2 reduced TaWRKY49 expression. In conclusion, TaWRKY49 negatively regulates while TaWRKY62 positively regulates wheat HTSP resistance to Pst by differential regulation of SA-, JA-, ET and ROS-mediated signaling.
Collapse
Affiliation(s)
- Junjuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Fei Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Wei Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhongfeng Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianming Chen
- Agricultural Research Service, Department of Agriculture and Department of Plant Pathology, Washington State University, Pullman, Washington, United States of America
| | - Xiangming Xu
- NIAB East Malling Research, East Malling, Kent, United Kingdom
| | - Hongsheng Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
76
|
Metabolic and transcriptional alternations for defense by interfering OsWRKY62 and OsWRKY76 transcriptions in rice. Sci Rep 2017; 7:2474. [PMID: 28559550 PMCID: PMC5449406 DOI: 10.1038/s41598-017-02643-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/18/2017] [Indexed: 01/10/2023] Open
Abstract
Metabolomic and transcriptomic approaches were used to dissect the enhanced disease resistance in the plants harbouring a RNA interfering construct of OsWRKY62 and OsWRKY76 (dsOW62/76) genes. The primary metabolic pathways were activated in dsOW62/76 compared with wild-type (ZH17) plants, revealed by increased accumulation of amino acids and constituents of citric acid cycle etc. Contents of phenolic acids derived from phenylpropanoid pathway were elevated in dsOW62/76 plants. Importantly, phenolamides, conjugates of the phenolic acids with amines, were detected in large number and mostly at higher levels in dsOW62/76 compared with ZH17 plants; however, the free pools of flavonoids were mostly decreased in dsOW62/76. Salicylic acid (SA) and jasmonic acid (JA)/JA-Ile contents were increased in dsOW62/76 and knockout lines of individual OsWRKY62 and OsWRKY76 genes. Transcription of isochorismate synthase (OsICS1) gene was suppressed in dsOW62/76 and in MeJA-treated rice plants, whereas the transcription level of cinnamoyl-CoA hydratase-dehydrogenase (OsCHD) gene for β-oxidation in peroxisome was increased. The calli with OsCHD mutation showed markedly decreased SA accumulation. These results indicate that OsWRKY62 and OsWRKY76 function as negative regulators of biosynthetic defense-related metabolites and provide evidence for an important role of phenylpropanoid pathway in SA production in rice.
Collapse
|
77
|
Xu L, Zhao H, Ruan W, Deng M, Wang F, Peng J, Luo J, Chen Z, Yi K. ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice. THE PLANT CELL 2017; 29:560-574. [PMID: 28298519 PMCID: PMC5385951 DOI: 10.1105/tpc.16.00665] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/28/2017] [Accepted: 03/10/2017] [Indexed: 05/18/2023]
Abstract
Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice (Oryza sativa) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 (AIM1), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in β-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1, likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1 These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes.
Collapse
Affiliation(s)
- Lei Xu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Hongyu Zhao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Wenyuan Ruan
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Minjuan Deng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fang Wang
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinrong Peng
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Luo
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhixiang Chen
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizers, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
78
|
Bi C, Xu Y, Ye Q, Yin T, Ye N. Genome-wide identification and characterization of WRKY gene family in Salix suchowensis. PeerJ 2016; 4:e2437. [PMID: 27651997 PMCID: PMC5018666 DOI: 10.7717/peerj.2437] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/13/2016] [Indexed: 11/20/2022] Open
Abstract
WRKY proteins are the zinc finger transcription factors that were first identified in plants. They can specifically interact with the W-box, which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to this study, a plenty of WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing of Salix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I–III), with five subgroups (IIa–IIe) in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon–intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events (SDs) played a more prominent role in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the expansion and evolution of this gene family in flowering plants.
Collapse
Affiliation(s)
- Changwei Bi
- College of Information Science and Technology, Nanjing Forestry University , Nanjing, Jiangsu , China
| | - Yiqing Xu
- College of Information Science and Technology, Nanjing Forestry University , Nanjing, Jiangsu , China
| | - Qiaolin Ye
- College of Information Science and Technology, Nanjing Forestry University , Nanjing, Jiangsu , China
| | - Tongming Yin
- College of Forest Resources and Environment, Nanjing Forestry University , Nanjing, Jiangsu , China
| | - Ning Ye
- College of Information Science and Technology, Nanjing Forestry University , Nanjing, Jiangsu , China
| |
Collapse
|