51
|
Moreira-Hernández JI, Muchhala N. Importance of Pollinator-Mediated Interspecific Pollen Transfer for Angiosperm Evolution. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024804] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding how pollen moves between species is critical to understanding speciation, diversification, and evolution of flowering plants. For co-flowering species that share pollinators, competition through interspecific pollen transfer (IPT) can profoundly impact floral evolution, decreasing female fitness via heterospecific pollen deposition on stigmas and male fitness via pollen misplacement during visits to heterospecific flowers. The pollination literature demonstrates that such reproductive interference frequently selects for reproductive character displacement in floral traits linked to pollinator attraction, pollen placement, and mating systems and has also revealed that IPT between given pairs of species is typically asymmetric. More recent work is starting to elucidate its importance to the speciation process, clarifying the link between IPT and current and historical patterns of hybridization, the evolution of phenotypic novelty through adaptive introgression, and the rise of reproductive isolation. Our review aims to stimulate further research on IPT as a ubiquitous mechanism that plays a central role in angiosperm diversification.
Collapse
Affiliation(s)
- Juan Isaac Moreira-Hernández
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri–St. Louis, St. Louis, Missouri 63121, USA;,
| | - Nathan Muchhala
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri–St. Louis, St. Louis, Missouri 63121, USA;,
| |
Collapse
|
52
|
Chen LY, VanBuren R, Paris M, Zhou H, Zhang X, Wai CM, Yan H, Chen S, Alonge M, Ramakrishnan S, Liao Z, Liu J, Lin J, Yue J, Fatima M, Lin Z, Zhang J, Huang L, Wang H, Hwa TY, Kao SM, Choi JY, Sharma A, Song J, Wang L, Yim WC, Cushman JC, Paull RE, Matsumoto T, Qin Y, Wu Q, Wang J, Yu Q, Wu J, Zhang S, Boches P, Tung CW, Wang ML, Coppens d'Eeckenbrugge G, Sanewski GM, Purugganan MD, Schatz MC, Bennetzen JL, Lexer C, Ming R. The bracteatus pineapple genome and domestication of clonally propagated crops. Nat Genet 2019; 51:1549-1558. [PMID: 31570895 DOI: 10.1038/s41588-019-0506-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/28/2019] [Indexed: 11/09/2022]
Abstract
Domestication of clonally propagated crops such as pineapple from South America was hypothesized to be a 'one-step operation'. We sequenced the genome of Ananas comosus var. bracteatus CB5 and assembled 513 Mb into 25 chromosomes with 29,412 genes. Comparison of the genomes of CB5, F153 and MD2 elucidated the genomic basis of fiber production, color formation, sugar accumulation and fruit maturation. We also resequenced 89 Ananas genomes. Cultivars 'Smooth Cayenne' and 'Queen' exhibited ancient and recent admixture, while 'Singapore Spanish' supported a one-step operation of domestication. We identified 25 selective sweeps, including a strong sweep containing a pair of tandemly duplicated bromelain inhibitors. Four candidate genes for self-incompatibility were linked in F153, but were not functional in self-compatible CB5. Our findings support the coexistence of sexual recombination and a one-step operation in the domestication of clonally propagated crops. This work guides the exploration of sexual and asexual domestication trajectories in other clonally propagated crops.
Collapse
Affiliation(s)
- Li-Yu Chen
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Robert VanBuren
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Margot Paris
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Hongye Zhou
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Xingtan Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ching Man Wai
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hansong Yan
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuai Chen
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Michael Alonge
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | | | - Zhenyang Liao
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juan Liu
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jishan Lin
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingjing Yue
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mahpara Fatima
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhicong Lin
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jisen Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lixian Huang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hao Wang
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Teh-Yang Hwa
- Department of Agronomy, National Taiwan University, Taipei, ROC
| | - Shu-Min Kao
- Department of Agronomy, National Taiwan University, Taipei, ROC
| | - Jae Young Choi
- Department of Biology, Center for Genomics and Systems Biology, New York University, NY, New York, USA
| | - Anupma Sharma
- Texas A&M AgriLife Research, Texas A&M University System, Dallas, TX, USA
| | - Jian Song
- Department of Agronomy, University of Florida, Gainesville, FL, USA
| | - Lulu Wang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Won C Yim
- Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV, USA
| | - Robert E Paull
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Tracie Matsumoto
- USDA-ARS, Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Yuan Qin
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingsong Wu
- South Subtropical Crops Research Institute, CATAS, Zhanjiang, China
| | - Jianping Wang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Agronomy, University of Florida, Gainesville, FL, USA
| | - Qingyi Yu
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China.,Texas A&M AgriLife Research, Texas A&M University System, Dallas, TX, USA
| | - Jun Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Peter Boches
- USDA-ARS, Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Chih-Wei Tung
- Department of Agronomy, National Taiwan University, Taipei, ROC
| | - Ming-Li Wang
- Hawaii Agriculture Research Center, Kunia, HI, USA
| | - Geo Coppens d'Eeckenbrugge
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAP, Montpellier, France.,AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Garth M Sanewski
- Queensland Department of Agriculture and Fisheries, Nambour, Queensland, Australia
| | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, NY, New York, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | | | - Christian Lexer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China. .,Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
53
|
Lopes AL, Moreira D, Ferreira MJ, Pereira AM, Coimbra S. Insights into secrets along the pollen tube pathway in need to be discovered. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2979-2992. [PMID: 30820535 DOI: 10.1093/jxb/erz087] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
The process of plant fertilization provides an outstanding example of refined control of gene expression. During this elegant process, subtle communication occurs between neighboring cells, based on chemical signals, that induces cellular mechanisms of patterning and growth. Having faced an immediate issue of self-incompatibility responses, the pathway to fertilization starts once the stigmatic cells recognize a compatible pollen grain, and it continues with numerous players interacting to affect pollen tube growth and the puzzling process of navigation along the transmitting tract. The pollen tube goes through a guidance process that begins with a preovular stage (i.e. prior to the influence of the target ovule), with interactions with factors from the transmitting tissue. In the subsequent ovular-guidance stage a specific relationship develops between the pollen tube and its target ovule. This stage is divided into the funicular and micropylar guidance steps, with numerous receptors working in signalling cascades. Finally, just after the pollen tube has passed beyond the synergids, fusion of the gametes occurs and the developing seed-the ultimate aim of the process-will start to mature. In this paper, we review the existing knowledge of the crucial biological processes involved in pollen-pistil interactions that give rise to the new seed.
Collapse
Affiliation(s)
- Ana Lúcia Lopes
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Biosystems and Integrative Sciences Institute - BioISI, Porto, Portugal
- Sustainable Agrifood Production Research Centre - GreenUPorto, Vairão, Portugal
| | - Diana Moreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Maria João Ferreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Ana Marta Pereira
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Milano, Italy
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Sustainable Agrifood Production Research Centre - GreenUPorto, Vairão, Portugal
| |
Collapse
|
54
|
Chen S, Jia J, Cheng L, Zhao P, Qi D, Yang W, Liu H, Dong X, Li X, Liu G. Transcriptomic Analysis Reveals a Comprehensive Calcium- and Phytohormone-Dominated Signaling Response in Leymus chinensis Self-Incompatibility. Int J Mol Sci 2019; 20:E2356. [PMID: 31085987 PMCID: PMC6539167 DOI: 10.3390/ijms20092356] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 12/31/2022] Open
Abstract
Sheepgrass (Leymus chinensis (Trin.) Tzvel.) is an economically and ecologically important forage in the grass family. Self-incompatibility (SI) limits its seed production due to the low seed-setting rate after self-pollination. However, investigations into the molecular mechanisms of sheepgrass SI are lacking. Therefore, microscopic observation of pollen germination and pollen tube growth, as well as transcriptomic analyses of pistils after self- and cross-pollination, were performed. The results indicated that pollen tube growth was rapidly inhibited from 10 to 30 min after self-pollination and subsequently stopped but preceded normally after cross-pollination. Time course comparative transcriptomics revealed different transcriptome dynamics between self- and cross-pollination. A pool of SI-related signaling genes and pathways was generated, including genes related to calcium (Ca2+) signaling, protein phosphorylation, plant hormone, reactive oxygen species (ROS), nitric oxide (NO), cytoskeleton, and programmed cell death (PCD). A putative SI response molecular model in sheepgrass was presented. The model shows that SI may trigger a comprehensive calcium- and phytohormone-dominated signaling cascade and activate PCD, which may explain the rapid inhibition of self-pollen tube growth as observed by cytological analyses. These results provided new insight into the molecular mechanisms of sheepgrass (grass family) SI.
Collapse
Affiliation(s)
- Shuangyan Chen
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| | - Junting Jia
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Liqin Cheng
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| | - Pincang Zhao
- College of management science and engineering, Hebei University of Economics and Business, Shijiazhuang 050061, China.
| | - Dongmei Qi
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| | - Weiguang Yang
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| | - Hui Liu
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| | - Xiaobing Dong
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| | - Xiaoxia Li
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| | - Gongshe Liu
- Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
55
|
Roda F, Hopkins R. Correlated evolution of self and interspecific incompatibility across the range of a Texas wildflower. THE NEW PHYTOLOGIST 2019; 221:553-564. [PMID: 29992588 DOI: 10.1111/nph.15340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Selection to prevent interspecific mating can cause an increase or a decrease in self-pollination in sympatric populations. Characterizing the geographical variation in self and interspecific incompatibilities within a species can reveal if and how the evolution of self and interspecific mate choice are linked. We used controlled pollinations to characterize the variation in self and interspecific incompatibility across 29 populations of Phlox drummondii. We evaluated seed set from these pollinations and described the developmental timing of variation in pollen-pistil compatibility. There is extensive quantitative variation in self-incompatibility and interspecific-incompatibility with its close congener P. cuspidata. Phlox drummondii populations that co-occur and hybridize with P. cuspidata have significantly higher interspecific incompatibility and self-incompatibility than geographically isolated P. drummondii populations. The strength of self and interspecific incompatibility is significantly correlated among individuals and the strength of both incompatibilities is explained by the success of pollen adhesion to the stigma. The correlated strength of self and interspecific incompatibility across the range of P. drummondii and the concurrent developmental timing of the pollen-pistil interaction, suggests these incompatibilities have an overlapping molecular mechanism. The geographical distribution of variation in incompatibilities indicates that this mechanistic link between incompatibilities may affect the evolution of mate choice in plants.
Collapse
Affiliation(s)
- Federico Roda
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA
- The Arnold Arboretum, Harvard University, 1300 Centre St, Boston, MA, 02131, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA, 02138, USA
- The Arnold Arboretum, Harvard University, 1300 Centre St, Boston, MA, 02131, USA
| |
Collapse
|
56
|
Identification of Self-Incompatibility Alleles by Specific PCR Analysis and S-RNase Sequencing in Apricot. Int J Mol Sci 2018; 19:ijms19113612. [PMID: 30445779 PMCID: PMC6274852 DOI: 10.3390/ijms19113612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Self-incompatibility (SI) is one of the most efficient mechanisms to promote out-crossing in plants. However, SI could be a problem for fruit production. An example is apricot (Prunus armeniaca), in which, as in other species of the Rosaceae, SI is determined by an S-RNase-based-Gametophytic Self-Incompatibility (GSI) system. Incompatibility relationships between cultivars can be established by an S-allele genotyping PCR strategy. Until recently, most of the traditional European apricot cultivars were self-compatible but several breeding programs have introduced an increasing number of new cultivars whose pollination requirements are unknown. To fill this gap, we have identified the S-allele of 44 apricot genotypes, of which 43 are reported here for the first time. The identification of Sc in 15 genotypes suggests that those cultivars are self-compatible. In five genotypes, self-(in)compatibility was established by the observation of pollen tube growth in self-pollinated flowers, since PCR analysis could not allowed distinguishing between the Sc and S8 alleles. Self-incompatible genotypes were assigned to their corresponding self-incompatibility groups. The knowledge of incompatibility relationships between apricot cultivars can be a highly valuable tool for the development of future breeding programs by selecting the appropriate parents and for efficient orchard design by planting self-compatible and inter-compatible cultivars.
Collapse
|
57
|
Zheng YY, Lin XJ, Liang HM, Wang FF, Chen LY. The Long Journey of Pollen Tube in the Pistil. Int J Mol Sci 2018; 19:E3529. [PMID: 30423936 PMCID: PMC6275014 DOI: 10.3390/ijms19113529] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022] Open
Abstract
In non-cleistogamous plants, the male gametophyte, the pollen grain is immotile and exploits various agents, such as pollinators, wind, and even water, to arrive to a receptive stigma. The complex process of pollination involves a tubular structure, i.e., the pollen tube, which delivers the two sperm cells to the female gametophyte to enable double fertilization. The pollen tube has to penetrate the stigma, grow in the style tissues, pass through the septum, grow along the funiculus, and navigate to the micropyle of the ovule. It is a long journey for the pollen tube and its two sperm cells before they meet the female gametophyte, and it requires very accurate regulation to perform successful fertilization. In this review, we update the knowledge of molecular dialogues of pollen-pistil interaction, especially the progress of pollen tube activation and guidance, and give perspectives for future research.
Collapse
Affiliation(s)
- Yang-Yang Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center for Genomics and Biotechnology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xian-Ju Lin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center for Genomics and Biotechnology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hui-Min Liang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center for Genomics and Biotechnology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Fang-Fei Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Li-Yu Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center for Genomics and Biotechnology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
58
|
Rosbakh S, Pacini E, Nepi M, Poschlod P. An Unexplored Side of Regeneration Niche: Seed Quantity and Quality Are Determined by the Effect of Temperature on Pollen Performance. FRONTIERS IN PLANT SCIENCE 2018; 9:1036. [PMID: 30073009 PMCID: PMC6058057 DOI: 10.3389/fpls.2018.01036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/26/2018] [Indexed: 05/21/2023]
Abstract
In 1977, Peter Grubb introduced the regeneration niche concept, which assumes that a plant species cannot persist if the environmental conditions are only suitable for adult plant growth and survival, but not for seed production, dispersal, germination, and seedling establishment. During the last decade, this concept has received considerable research attention as it helps to better understand community assembly, population dynamics, and plant responses to environmental changes. Yet, in its present form, it focuses too much on the post-fertilization stages of plant sexual reproduction, neglecting the fact that the environment can operate as a constraint at many points in the chain of processes necessary for successful regeneration. In this review, we draw the attention of the plant ecology research community to the pre-fertilization stages of plant sexual reproduction, an almost ignored but important aspect of the regeneration niche, and their potential consequences for successful seed production. Particularly, we focus on how temperature affects pollen performance and determines plant reproduction success by playing an important role in the temporal and spatial variations in seed quality and quantity. We also review the pollen adaptations to temperature stresses at different levels of plant organization and discuss the plasticity of the performance of pollen under changing temperature conditions. The reviewed literature demonstrates that pre-fertilization stages of seed production, particularly the extreme sensitivity of male gametophyte performance to temperature, are the key determinants of a species' regeneration niche. Thus, we suggest that previous views stating that the regeneration niche begins with the production of seeds should be modified to include the preceding stages. Lastly, we identify several gaps in pollen-related studies revealing a framework of opportunities for future research, particularly how these findings could be used in the field of plant biology and ecology.
Collapse
Affiliation(s)
- Sergey Rosbakh
- Chair of Ecology and Conservation Biology, University of Regensburg, Regensburg, Germany
| | - Ettore Pacini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Massimo Nepi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Peter Poschlod
- Chair of Ecology and Conservation Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
59
|
Li L, Liu B, Deng X, Zhao H, Li H, Xing S, Fetzer DD, Li M, Nasrallah ME, Nasrallah JB, Liu P. Evolution of interspecies unilateral incompatibility in the relatives of Arabidopsis thaliana. Mol Ecol 2018; 27:2742-2753. [PMID: 29717521 DOI: 10.1111/mec.14707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/07/2018] [Accepted: 04/11/2018] [Indexed: 11/26/2022]
Abstract
The evolutionary concurrence of intraspecies self-incompatibility (SI) and explosive angiosperm radiation in the Cretaceous have led to the hypothesis that SI was one of the predominant drivers of rapid speciation in angiosperms. Interspecies unilateral incompatibility (UI) usually occurs when pollen from a self-compatible (SC) species is rejected by the pistils of a SI species, while the reciprocal pollination is compatible (UC). Although this SI × SC type UI is most prevalent and viewed as a prezygotic isolation barrier to promote incipient speciation of angiosperms, comparative evidence to support such a role is lacking. We show that SI × SI type UI in SI species pairs is also common in the well-characterized accessions representing the four major lineages of the Arabidopsis genus and is developmentally regulated. This allowed us to reveal a strong correlation between UI strength and species divergence in these representative accessions. In addition, analyses of a SC accession and the pseudo-self-compatible (psc) spontaneous mutant of Arabidopsis lyrata indicate that UI shares, at least, common pollen rejection pathway with SI. Furthermore, genetic and genomic analyses of SI × SI type UI in A. lyrata × A. arenosa species pair showed that two major-effect quantitative trait loci are the stigma and pollen-side determinant of UI, respectively, which could be involved in heterospecies pollen discrimination. By revealing a close link between UI and SI pathway, particularly between UI and species divergence in these representative accessions, our findings establish a connection between SI and speciation. Thus, the pre-existence of SI system would have facilitated the evolution of UI and accordingly promote speciation.
Collapse
Affiliation(s)
- Ling Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Bo Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Xiaomei Deng
- Beijing Engineering and Technological Research Center of Plant Tissue Culture, Beijing, China
| | - Hainan Zhao
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Hongyan Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Shilai Xing
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Della D Fetzer
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Mengya Li
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Mikhail E Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York
| | - June B Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York
| | - Pei Liu
- Department of Ecology, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
60
|
Qin X, Li W, Liu Y, Tan M, Ganal M, Chetelat RT. A farnesyl pyrophosphate synthase gene expressed in pollen functions in S-RNase-independent unilateral incompatibility. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:417-430. [PMID: 29206320 DOI: 10.1111/tpj.13796] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 05/25/2023]
Abstract
Multiple independent and overlapping pollen rejection pathways contribute to unilateral interspecific incompatibility (UI). In crosses between tomato species, pollen rejection usually occurs when the female parent is self-incompatible (SI) and the male parent self-compatible (SC) (the 'SI × SC rule'). Additional, as yet unknown, UI mechanisms are independent of self-incompatibility and contribute to UI between SC species or populations. We identified a major quantitative trait locus on chromosome 10 (ui10.1) which affects pollen-side UI responses in crosses between cultivated tomato, Solanum lycopersicum, and Solanum pennelliiLA0716, both of which are SC and lack S-RNase, the pistil determinant of S-specificity in Solanaceae. Here we show that ui10.1 is a farnesyl pyrophosphate synthase gene (FPS2) expressed in pollen. Expression is about 18-fold higher in pollen of S. pennellii than in S. lycopersicum. Pollen with the hypomorphic S. lycopersicum allele is selectively eliminated on pistils of the F1 hybrid, leading to transmission ratio distortion in the F2 progeny. CRISPR/Cas9-generated knockout mutants (fps2) in S. pennelliiLA0716 are self-sterile due to pollen rejection, but mutant pollen is fully functional on pistils of S. lycopersicum. F2 progeny of S. lycopersicum × S. pennellii (fps2) show reversed transmission ratio distortion due to selective elimination of pollen bearing the knockout allele. Overexpression of FPS2 in S. lycopersicum pollen rescues the pollen elimination phenotype. FPS2-based pollen selectivity does not involve S-RNase and has not been previously linked to UI. Our results point to an entirely new mechanism of interspecific pollen rejection in plants.
Collapse
Affiliation(s)
- Xiaoqiong Qin
- Department of Plant Sciences (ms #3), One Shields Ave., University of California, Davis, CA, 95616, USA
| | - Wentao Li
- Department of Plant Sciences (ms #3), One Shields Ave., University of California, Davis, CA, 95616, USA
| | - Yang Liu
- Department of Plant Sciences (ms #3), One Shields Ave., University of California, Davis, CA, 95616, USA
| | - Meilian Tan
- Department of Plant Sciences (ms #3), One Shields Ave., University of California, Davis, CA, 95616, USA
| | - Martin Ganal
- Trait Genetics GmbH, Am Schwabeplan 1B, 06466, Gatersleben, Germany
| | - Roger T Chetelat
- Department of Plant Sciences (ms #3), One Shields Ave., University of California, Davis, CA, 95616, USA
| |
Collapse
|
61
|
McCormick S. Unilateral incompatibility is linked to reduced pollen expression of a farnesyl pyrophosphate synthase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:415-416. [PMID: 29352523 DOI: 10.1111/tpj.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
62
|
Broz AK, Guerrero RF, Randle AM, Baek YS, Hahn MW, Bedinger PA. Transcriptomic analysis links gene expression to unilateral pollen-pistil reproductive barriers. BMC PLANT BIOLOGY 2017; 17:81. [PMID: 28438120 PMCID: PMC5402651 DOI: 10.1186/s12870-017-1032-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Unilateral incompatibility (UI) is an asymmetric reproductive barrier that unidirectionally prevents gene flow between species and/or populations. UI is characterized by a compatible interaction between partners in one direction, but in the reciprocal cross fertilization fails, generally due to pollen tube rejection by the pistil. Although UI has long been observed in crosses between different species, the underlying molecular mechanisms are only beginning to be characterized. The wild tomato relative Solanum habrochaites provides a unique study system to investigate the molecular basis of this reproductive barrier, as populations within the species exhibit both interspecific and interpopulation UI. Here we utilized a transcriptomic approach to identify genes in both pollen and pistil tissues that may be key players in UI. RESULTS We confirmed UI at the pollen-pistil level between a self-incompatible population and a self-compatible population of S. habrochaites. A comparison of gene expression between pollinated styles exhibiting the incompatibility response and unpollinated controls revealed only a small number of differentially expressed transcripts. Many more differences in transcript profiles were identified between UI-competent versus UI-compromised reproductive tissues. A number of intriguing candidate genes were highly differentially expressed, including a putative pollen arabinogalactan protein, a stylar Kunitz family protease inhibitor, and a stylar peptide hormone Rapid ALkalinization Factor. Our data also provide transcriptomic evidence that fundamental processes including reactive oxygen species (ROS) signaling are likely key in UI pollen-pistil interactions between both populations and species. CONCLUSIONS Gene expression analysis of reproductive tissues allowed us to better understand the molecular basis of interpopulation incompatibility at the level of pollen-pistil interactions. Our transcriptomic analysis highlighted specific genes, including those in ROS signaling pathways that warrant further study in investigations of UI. To our knowledge, this is the first report to identify candidate genes involved in unilateral barriers between populations within a species.
Collapse
Affiliation(s)
- Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| | | | - April M. Randle
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
- Department of Environmental Science, University of San Francisco, San Francisco, CA 94117 USA
| | - You Soon Baek
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| | - Matthew W. Hahn
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405 USA
| | - Patricia A. Bedinger
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878 USA
| |
Collapse
|
63
|
Amasino RM, Cheung AY, Dresselhaus T, Kuhlemeier C. Focus on Flowering and Reproduction. PLANT PHYSIOLOGY 2017; 173:1-4. [PMID: 28049854 PMCID: PMC5210767 DOI: 10.1104/pp.16.01867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Richard M Amasino
- Guest Editor
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Alice Y Cheung
- Associate Editor
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Thomas Dresselhaus
- Guest Editor
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Cris Kuhlemeier
- Monitoring Editor
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| |
Collapse
|