51
|
Bagautdinova ZZ, Omelyanchuk N, Tyapkin AV, Kovrizhnykh VV, Lavrekha VV, Zemlyanskaya EV. Salicylic Acid in Root Growth and Development. Int J Mol Sci 2022; 23:ijms23042228. [PMID: 35216343 PMCID: PMC8875895 DOI: 10.3390/ijms23042228] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
In plants, salicylic acid (SA) is a hormone that mediates a plant’s defense against pathogens. SA also takes an active role in a plant’s response to various abiotic stresses, including chilling, drought, salinity, and heavy metals. In addition, in recent years, numerous studies have confirmed the important role of SA in plant morphogenesis. In this review, we summarize data on changes in root morphology following SA treatments under both normal and stress conditions. Finally, we provide evidence for the role of SA in maintaining the balance between stress responses and morphogenesis in plant development, and also for the presence of SA crosstalk with other plant hormones during this process.
Collapse
Affiliation(s)
- Zulfira Z. Bagautdinova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
| | - Nadya Omelyanchuk
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
| | - Aleksandr V. Tyapkin
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vasilina V. Kovrizhnykh
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
| | - Viktoriya V. Lavrekha
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena V. Zemlyanskaya
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (Z.Z.B.); (N.O.); (A.V.T.); (V.V.K.); (V.V.L.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
52
|
Damalas CA, Koutroubas SD. Exogenous application of salicylic acid for regulation of sunflower growth under abiotic stress: a systematic review. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01020-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
53
|
Koramutla MK, Tuan PA, Ayele BT. Salicylic Acid Enhances Adventitious Root and Aerenchyma Formation in Wheat under Waterlogged Conditions. Int J Mol Sci 2022; 23:ijms23031243. [PMID: 35163167 PMCID: PMC8835647 DOI: 10.3390/ijms23031243] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
The present study investigated the role of salicylic acid (SA) in regulating morpho-anatomical adaptive responses of a wheat plant to waterlogging. Our pharmacological study showed that treatment of waterlogged wheat plants with exogenous SA promotes the formation axile roots and surface adventitious roots that originate from basal stem nodes, but inhibits their elongation, leading to the formation of a shallow root system. The treatment also enhanced axile root formation in non-waterlogged plants but with only slight reductions in their length and branch root formation. Exogenous SA enhanced the formation of root aerenchyma, a key anatomical adaptive response of plants to waterlogging. Consistent with these results, waterlogging enhanced SA content in the root via expression of specific isochorismate synthase (ICS; ICS1 and ICS2) and phenylalanine ammonia lyase (PAL; PAL4, PAL5 and PAL6) genes and in the stem nodes via expression of specific PAL (PAL5 and PAL6) genes. Although not to the same level observed in waterlogged plants, exogenous SA also induced aerenchyma formation in non-waterlogged plants. The findings of this study furthermore indicated that inhibition of ethylene synthesis in SA treated non-waterlogged and waterlogged plants does not have any effect on SA-induced emergence of axile and/or surface adventitious roots but represses SA-mediated induction of aerenchyma formation. These results highlight that the role of SA in promoting the development of axile and surface adventitious roots in waterlogged wheat plants is ethylene independent while the induction of aerenchyma formation by SA requires the presence of ethylene.
Collapse
|
54
|
Inada N, Takahashi N, Umeda M. Arabidopsis thaliana subclass I ACTIN DEPOLYMERIZING FACTORs and vegetative ACTIN2/8 are novel regulators of endoreplication. JOURNAL OF PLANT RESEARCH 2021; 134:1291-1300. [PMID: 34282484 DOI: 10.1007/s10265-021-01333-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Endoreplication is a type of cell cycle where genome replication occurs without mitosis. An increase of ploidy level by endoreplication is often associated with cell enlargement and an enhanced plant growth. Here we report Arabidopsis thaliana subclass I ACTIN DEPOLYMERIZING FACTORs (ADFs) and vegetative ACTIN2/8 as novel regulators of endoreplication. A. thaliana has 11 ADF members that are divided into 4 subclasses. Subclass I consists of four members, ADF1, -2, -3, and -4, all of which constitutively express in various tissues. We found that both adf4 knockout mutant and transgenic plants in which expressions of all of four subclass I ADFs are suppressed (ADF1-4Ri) showed an increased leaf area of mature first leaves, which was associated with a significant increase of epidermal pavement cell area. Ploidy analysis revealed that the ploidy level was significantly increased in mature leaves of ADF1-4Ri. The increased ploidy was also observed in roots of adf4 and ADF1-4Ri, as well as in dark-grown hypocotyls of adf4. Furthermore, double mutants of vegetative ACT2 and ACT8 (act2/8) exhibited an increase of leaf area and ploidy level in mature leaves. Therefore, actin-relating pathway could regulate endoreplication. The possible mechanisms that actin and ADFs regulate endoreplication are discussed.
Collapse
Affiliation(s)
- Noriko Inada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| | - Naoki Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
55
|
Ubogoeva EV, Zemlyanskaya EV, Xu J, Mironova V. Mechanisms of stress response in the root stem cell niche. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6746-6754. [PMID: 34111279 PMCID: PMC8513250 DOI: 10.1093/jxb/erab274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/09/2021] [Indexed: 05/25/2023]
Abstract
As plants are sessile organisms unable to escape from environmental hazards, they need to adapt for survival. The stem cell niche in the root apical meristem is particularly sensitive to DNA damage induced by environmental stresses such as chilling, flooding, wounding, UV, and irradiation. DNA damage has been proven to cause stem cell death, with stele stem cells being the most vulnerable. Stress also induces the division of quiescent center cells. Both reactions disturb the structure and activity of the root stem cell niche temporarily; however, this preserves root meristem integrity and function in the long term. Plants have evolved many mechanisms that ensure stem cell niche maintenance, recovery, and acclimation, allowing them to survive in a changing environment. Here, we provide an overview of the cellular and molecular aspects of stress responses in the root stem cell niche.
Collapse
Affiliation(s)
| | - Elena V Zemlyanskaya
- Institute of Cytology and Genetics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Jian Xu
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Victoria Mironova
- Institute of Cytology and Genetics, Novosibirsk, Russia
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
56
|
Mazzoni-Putman SM, Brumos J, Zhao C, Alonso JM, Stepanova AN. Auxin Interactions with Other Hormones in Plant Development. Cold Spring Harb Perspect Biol 2021; 13:a039990. [PMID: 33903155 PMCID: PMC8485746 DOI: 10.1101/cshperspect.a039990] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin is a crucial growth regulator that governs plant development and responses to environmental perturbations. It functions at the heart of many developmental processes, from embryogenesis to organ senescence, and is key to plant interactions with the environment, including responses to biotic and abiotic stimuli. As remarkable as auxin is, it does not act alone, but rather solicits the help of, or is solicited by, other endogenous signals, including the plant hormones abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellic acid, jasmonates, salicylic acid, and strigolactones. The interactions between auxin and other hormones occur at multiple levels: hormones regulate one another's synthesis, transport, and/or response; hormone-specific transcriptional regulators for different pathways physically interact and/or converge on common target genes; etc. However, our understanding of this crosstalk is still fragmentary, with only a few pieces of the gigantic puzzle firmly established. In this review, we provide a glimpse into the complexity of hormone interactions that involve auxin, underscoring how patchy our current understanding is.
Collapse
Affiliation(s)
- Serina M Mazzoni-Putman
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Javier Brumos
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
57
|
Pishchik V, Mirskaya G, Chizhevskaya E, Chebotar V, Chakrabarty D. Nickel stress-tolerance in plant-bacterial associations. PeerJ 2021; 9:e12230. [PMID: 34703670 PMCID: PMC8487243 DOI: 10.7717/peerj.12230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Nickel (Ni) is an essential element for plant growth and is a constituent of several metalloenzymes, such as urease, Ni-Fe hydrogenase, Ni-superoxide dismutase. However, in high concentrations, Ni is toxic and hazardous to plants, humans and animals. High levels of Ni inhibit plant germination, reduce chlorophyll content, and cause osmotic imbalance and oxidative stress. Sustainable plant-bacterial native associations are formed under Ni-stress, such as Ni hyperaccumulator plants and rhizobacteria showed tolerance to high levels of Ni. Both partners (plants and bacteria) are capable to reduce the Ni toxicity and developed different mechanisms and strategies which they manifest in plant-bacterial associations. In addition to physical barriers, such as plants cell walls, thick cuticles and trichomes, which reduce the elevated levels of Ni entrance, plants are mitigating the Ni toxicity using their own antioxidant defense mechanisms including enzymes and other antioxidants. Bacteria in its turn effectively protect plants from Ni stress and can be used in phytoremediation. PGPR (plant growth promotion rhizobacteria) possess various mechanisms of biological protection of plants at both whole population and single cell levels. In this review, we highlighted the current understanding of the bacterial induced protective mechanisms in plant-bacterial associations under Ni stress.
Collapse
Affiliation(s)
- Veronika Pishchik
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Pushkin, Russian Federation
- Agrophysical Scientific Research Institute, Saint-Petersburg, Russian Federation
| | - Galina Mirskaya
- Agrophysical Scientific Research Institute, Saint-Petersburg, Russian Federation
| | - Elena Chizhevskaya
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Pushkin, Russian Federation
| | - Vladimir Chebotar
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Pushkin, Russian Federation
| | | |
Collapse
|
58
|
Bennett M, Cleaves K, Hewezi T. Expression Patterns of DNA Methylation and Demethylation Genes during Plant Development and in Response to Phytohormones. Int J Mol Sci 2021; 22:ijms22189681. [PMID: 34575855 PMCID: PMC8470644 DOI: 10.3390/ijms22189681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023] Open
Abstract
DNA methylation and demethylation precisely and effectively modulate gene expression during plant growth and development and in response to stress. However, expression profiles of genes involved in DNA methylation and demethylation during plant development and their responses to phytohormone treatments remain largely unknown. We characterized the spatiotemporal expression patterns of genes involved in de novo methylation, methyl maintenance, and active demethylation in roots, shoots, and reproductive organs using β-glucuronidase (GUS) reporter lines. Promoters of DNA demethylases were generally more highly active at the mature root tissues, whereas the promoters of genes involved in DNA methylation were more highly active at fast-growing root tissues. The promoter activity also implies that methylation status in shoot apex, leaf primordia, floral organs, and developing embryos is under tight equilibrium through the activity of genes involved in DNA methylation and demethylation. The promoter activity of DNA methylation and demethylation-related genes in response to various phytohormone treatments revealed that phytohormones can alter DNA methylation status in specific and redundant ways. Overall, our results illustrate that DNA methylation and demethylation pathways act synergistically and antagonistically in various tissues and in response to phytohormone treatments and point to the existence of hormone-linked methylome regulation mechanisms that may contribute to tissue differentiation and development.
Collapse
|
59
|
Kong X, Zhang C, Zheng H, Sun M, Zhang F, Zhang M, Cui F, Lv D, Liu L, Guo S, Zhang Y, Yuan X, Zhao S, Tian H, Ding Z. Antagonistic Interaction between Auxin and SA Signaling Pathways Regulates Bacterial Infection through Lateral Root in Arabidopsis. Cell Rep 2021; 32:108060. [PMID: 32846118 DOI: 10.1016/j.celrep.2020.108060] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/24/2020] [Accepted: 07/31/2020] [Indexed: 01/05/2023] Open
Abstract
Pathogen entry into host tissues is a critical and first step in infections. In plants, the lateral roots (LRs) are a potential entry and colonization site for pathogens. Here, using a GFP-labeled pathogenic bacterium Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), we observe that virulent Pto DC3000 invades plants through emerged LRs in Arabidopsis. Pto DC3000 strongly induced LR formation, a process that was dependent on the AUXIN RESPONSE FACTOR7 (ARF7)/ARF19-LATERAL ORGAN BOUNDARIES-DOMAIN (LBD) regulatory module. We show that salicylic acid (SA) represses LR formation, and several mutants defective in SA signaling are also involved in Pto DC3000-induced LR development. Significantly, ARF7, a well-documented positive regulator of LR development, directly represses the transcription of PR1 and PR2 to promote LR development. This study indicates that ARF7-mediated auxin signaling antagonizes with SA signaling to control bacterial infection through the regulation of LR development.
Collapse
Affiliation(s)
- Xiangpei Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China.
| | - Chunlei Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Huihui Zheng
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Min Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Feng Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Mengyue Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Fuhao Cui
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Dongping Lv
- State Key Laboratory of Plant Genomics, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Lijing Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Siyi Guo
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, Shandong, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China.
| |
Collapse
|
60
|
Sharma M, Singh D, Saksena HB, Sharma M, Tiwari A, Awasthi P, Botta HK, Shukla BN, Laxmi A. Understanding the Intricate Web of Phytohormone Signalling in Modulating Root System Architecture. Int J Mol Sci 2021; 22:ijms22115508. [PMID: 34073675 PMCID: PMC8197090 DOI: 10.3390/ijms22115508] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Root system architecture (RSA) is an important developmental and agronomic trait that is regulated by various physical factors such as nutrients, water, microbes, gravity, and soil compaction as well as hormone-mediated pathways. Phytohormones act as internal mediators between soil and RSA to influence various events of root development, starting from organogenesis to the formation of higher order lateral roots (LRs) through diverse mechanisms. Apart from interaction with the external cues, root development also relies on the complex web of interaction among phytohormones to exhibit synergistic or antagonistic effects to improve crop performance. However, there are considerable gaps in understanding the interaction of these hormonal networks during various aspects of root development. In this review, we elucidate the role of different hormones to modulate a common phenotypic output, such as RSA in Arabidopsis and crop plants, and discuss future perspectives to channel vast information on root development to modulate RSA components.
Collapse
|
61
|
Mishra AK, Baek KH. Salicylic Acid Biosynthesis and Metabolism: A Divergent Pathway for Plants and Bacteria. Biomolecules 2021; 11:705. [PMID: 34065121 PMCID: PMC8150894 DOI: 10.3390/biom11050705] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 01/24/2023] Open
Abstract
Salicylic acid (SA) is an active secondary metabolite that occurs in bacteria, fungi, and plants. SA and its derivatives (collectively called salicylates) are synthesized from chorismate (derived from shikimate pathway). SA is considered an important phytohormone that regulates various aspects of plant growth, environmental stress, and defense responses against pathogens. Besides plants, a large number of bacterial species, such as Pseudomonas, Bacillus, Azospirillum, Salmonella, Achromobacter, Vibrio, Yersinia, and Mycobacteria, have been reported to synthesize salicylates through the NRPS/PKS biosynthetic gene clusters. This bacterial salicylate production is often linked to the biosynthesis of small ferric-ion-chelating molecules, salicyl-derived siderophores (known as catecholate) under iron-limited conditions. Although bacteria possess entirely different biosynthetic pathways from plants, they share one common biosynthetic enzyme, isochorismate synthase, which converts chorismate to isochorismate, a common precursor for synthesizing SA. Additionally, SA in plants and bacteria can undergo several modifications to carry out their specific functions. In this review, we will systematically focus on the plant and bacterial salicylate biosynthesis and its metabolism.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| |
Collapse
|
62
|
AtWAKL10, a Cell Wall Associated Receptor-Like Kinase, Negatively Regulates Leaf Senescence in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22094885. [PMID: 34063046 PMCID: PMC8124439 DOI: 10.3390/ijms22094885] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/22/2023] Open
Abstract
Receptor-like kinases (RLKs) constitute a large group of cell surface receptors that play crucial roles in multiple biological processes. However, the function of most RLKs in plants has not been extensively explored, and much less for the class of cell wall associated kinases (WAKs) and WAK-like kinases (WAKLs). In this study, analyses of developmental expression patterns uncovered a putative role of AtWAKL10 in modulating leaf senescence, which was further investigated at physiological and molecular levels. The expression level of AtWAKL10 increased with the developmental progression and was rapidly upregulated in senescing leaf tissues. The promoter of AtWAKL10 contains various defense and hormone responsive elements, and its expression could be significantly induced by exogenous ABA, JA and SA. Moreover, the loss-of-function atwakl10 mutant showed earlier senescence along the course of natural development and accelerated leaf senescence under darkness and hormonal stresses, while plants overexpressing AtWAKL10 showed an opposite trend. Additionally, some defense and senescence related WRKY transcription factors could bind to the promoter of AtWAKL10. In addition, deletion and overexpression of AtWAKL10 caused several specific transcriptional alterations, including genes involved in cell extension, cell wall modification, defense response and senescence related WRKYs, which may be implicated in regulatory mechanisms adopted by AtWAKL10 in controlling leaf senescence. Taken together, these results revealed that AtWAKL10 negatively regulated leaf senescence.
Collapse
|
63
|
Wang R, Zhao H, Guo H, Zong J, Li J, Wang H, Liu J, Wang J. Use of Transcriptomic Analyses to Elucidate the Mechanism Governing Nodal Root Development in Eremochloa ophiuroides (Munro) Hack. FRONTIERS IN PLANT SCIENCE 2021; 12:659830. [PMID: 33968116 PMCID: PMC8102984 DOI: 10.3389/fpls.2021.659830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Centipedegrass [Eremochloa ophiuroides (Munro) Hack.] is a perennial warm-season grass that originated in China, and its speed of nodal rooting is important for lawn establishment. In our study, centipedegrass nodal rooting ability was limited by node aging. Transcriptome sequencing of nodal roots after 0, 2, 4, and 8 days of water culture was performed to investigate the molecular mechanisms of root development. GO enrichment and KEGG pathway analyses of DEGs indicated that plant hormone signal transduction and transcription factors might play important roles in centipedegrass nodal root growth. Among them, E3 ubiquitin-protein ligases participated in multiple hormone signal transduction pathways and interacted with transcription factors. Furthermore, an E3 ubiquitin protein ligase EoSINAT5 overexpressed in rice resulted in longer roots and more numerous root tips, while knockout of LOC_Os07g46560 (the homologous gene of EoSINAT5 in rice) resulted in shorter roots and fewer root tips. These results indicated that EoSINAT5 and its homologous gene are able to promote nodal root development. This research presents the transcriptomic analyses of centipedegrass nodal roots, and may contribute to elucidating the mechanism governing the development of nodal roots and facilitates the use of molecular breeding in improving rooting ability.
Collapse
|
64
|
Alonso-Díaz A, Satbhai SB, de Pedro-Jové R, Berry HM, Göschl C, Argueso CT, Novak O, Busch W, Valls M, Coll NS. A genome-wide association study reveals cytokinin as a major component in the root defense responses against Ralstonia solanacearum. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2727-2740. [PMID: 33475698 PMCID: PMC8006551 DOI: 10.1093/jxb/eraa610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/19/2021] [Indexed: 05/30/2023]
Abstract
Bacterial wilt caused by the soil-borne pathogen Ralstonia solancearum is economically devastating, with no effective methods to fight the disease. This pathogen invades plants through their roots and colonizes their xylem, clogging the vasculature and causing rapid wilting. Key to preventing colonization are the early defense responses triggered in the host's root upon infection, which remain mostly unknown. Here, we have taken advantage of a high-throughput in vitro infection system to screen natural variability associated with the root growth inhibition phenotype caused by R. solanacearum in Arabidopsis during the first hours of infection. To analyze the genetic determinants of this trait, we have performed a genome-wide association study, identifying allelic variation at several loci related to cytokinin metabolism, including genes responsible for biosynthesis and degradation of cytokinin. Further, our data clearly demonstrate that cytokinin signaling is induced early during the infection process and cytokinin contributes to immunity against R. solanacearum. This study highlights a new role for cytokinin in root immunity, paving the way for future research that will help in understanding the mechanisms underpinning root defenses.
Collapse
Affiliation(s)
- Alejandro Alonso-Díaz
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Barcelona, Spain
| | - Santosh B Satbhai
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr-Gasse 3, Vienna 1030, Austria
- Salk Institute For Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Roger de Pedro-Jové
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Barcelona, Spain
| | - Hannah M Berry
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Christian Göschl
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr-Gasse 3, Vienna 1030, Austria
| | - Cristiana T Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| | - Ondrej Novak
- Laboratory of Growth Regulators, Olomouc, The Czech Republic
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr-Gasse 3, Vienna 1030, Austria
- Salk Institute For Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Barcelona, Spain
- Genetics Department, University of Barcelona, Barcelona, Spain
| | - Núria S Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Barcelona, Spain
| |
Collapse
|
65
|
Wang Z, Rong D, Chen D, Xiao Y, Liu R, Wu S, Yamamuro C. Salicylic acid promotes quiescent center cell division through ROS accumulation and down-regulation of PLT1, PLT2, and WOX5. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:583-596. [PMID: 33017089 DOI: 10.1111/jipb.13020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 09/30/2020] [Indexed: 05/13/2023]
Abstract
Salicylic acid (SA) plays a crucial role in plant immunity. However, its function in plant development is poorly understood. The quiescent center (QC), which maintains columella stem cells (CSCs) in the root apical meristem and typically exhibits low levels of cell division, is critical for root growth and development. Here, we show that the Arabidopsis thaliana SA overaccumulation mutant constitutively activated cell death 1 (cad1), which exhibits increased cell division in the QC, is rescued by additional mutations in genes encoding the SA biosynthetic enzyme SALICYLIC ACID INDUCTION DEFFICIENT2 (SID2) or the SA receptor NONEXPRESSER OF PR GENES1 (NPR1), indicating that QC cell division in the cad1 mutant is promoted by the NPR1-dependent SA signaling pathway. The application of exogenous SA also promoted QC cell division in wild-type plants in a dose-dependent manner and largely suppressed the expression of genes involved in QC maintenance, including those encoding the APETALA2 (AP2) transcription factors PLETHORA1 (PLT1) and PLT2, as well as the homeodomain transcription factor WUSCHEL-RELATED HOMEOBOX5 (WOX5). Moreover, we showed that SA promotes reactive oxygen species (ROS) production, which is necessary for the QC cell division phenotype in the cad1 mutant. These results provide insight into the function of SA in QC maintenance.
Collapse
Affiliation(s)
- Zhuqing Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Duoyan Rong
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Hunan Engineering Research Centre of Lily Germplasm Resource in Novation and Deep Processing, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Dixing Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yang Xiao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Renyi Liu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Center for Agroforestry Mega Data Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuang Wu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chizuko Yamamuro
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
66
|
Liu T, Li T, Zhang L, Li H, Liu S, Yang S, An Q, Pan C, Zou N. Exogenous salicylic acid alleviates the accumulation of pesticides and mitigates pesticide-induced oxidative stress in cucumber plants (Cucumis sativus L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111654. [PMID: 33396168 DOI: 10.1016/j.ecoenv.2020.111654] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA) is an important signal molecule, regulating oxidative stress response in plants. In this study, we evaluated the influences of SA (1 mg L-1, 10 mg L-1 and 50 mg L-1) on the accumulation of clothianidin (CLO), dinotefuran (DFN) and difenoconazole (DFZ) (5 mg L-1) and pesticide-induced (CLO-10 mg L-1, DFN-20 mg L-1, and DFZ-10 mg L-1) oxidative stress in cucumber plants. Exogenous SA at 10 mg L-1 significantly reduced the half-lives of three pesticides in nutrient solution and prevented the accumulation of pesticides in roots and leaves. And the role of SA in reducing residues was related to the major accumulation sites of pesticides. By calculating the root concentration factor (RCF) and translocation factor (TF), we found that SA at 10 mg L-1 reduced the ability of roots to absorb pesticides and enhanced the translocation ability from roots to leaves. Roots exposed to high concentrations of three pesticides could reduce biomass, low chlorophyll content, increase the accumulation of reactive oxygen species (ROS) and proline, promote lipid peroxidation, and alter the activities of a range of antioxidant enzymes, respectively. Exogenous SA at low concentrations (1 mg L-1 and 10 mg L-1) significantly mitigated these negative effects. Hence, application of exogenous SA at 10 mg L-1 could effectively alleviate the accumulation of pesticides and induce stress tolerance in cucumber planting systems.
Collapse
Affiliation(s)
- Tingting Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Tongtong Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Lingyan Zhang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Haolin Li
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Shangke Liu
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Song Yang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Quanshun An
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Canping Pan
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Nan Zou
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
67
|
Zluhan-Martínez E, López-Ruíz BA, García-Gómez ML, García-Ponce B, de la Paz Sánchez M, Álvarez-Buylla ER, Garay-Arroyo A. Integrative Roles of Phytohormones on Cell Proliferation, Elongation and Differentiation in the Arabidopsis thaliana Primary Root. FRONTIERS IN PLANT SCIENCE 2021; 12:659155. [PMID: 33981325 PMCID: PMC8107238 DOI: 10.3389/fpls.2021.659155] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/24/2021] [Indexed: 05/17/2023]
Abstract
The growth of multicellular organisms relies on cell proliferation, elongation and differentiation that are tightly regulated throughout development by internal and external stimuli. The plasticity of a growth response largely depends on the capacity of the organism to adjust the ratio between cell proliferation and cell differentiation. The primary root of Arabidopsis thaliana offers many advantages toward understanding growth homeostasis as root cells are continuously produced and move from cell proliferation to elongation and differentiation that are processes spatially separated and could be studied along the longitudinal axis. Hormones fine tune plant growth responses and a huge amount of information has been recently generated on the role of these compounds in Arabidopsis primary root development. In this review, we summarized the participation of nine hormones in the regulation of the different zones and domains of the Arabidopsis primary root. In some cases, we found synergism between hormones that function either positively or negatively in proliferation, elongation or differentiation. Intriguingly, there are other cases where the interaction between hormones exhibits unexpected results. Future analysis on the molecular mechanisms underlying crosstalk hormone action in specific zones and domains will unravel their coordination over PR development.
Collapse
Affiliation(s)
- Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Brenda Anabel López-Ruíz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mónica L. García-Gómez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Adriana Garay-Arroyo,
| |
Collapse
|
68
|
Ke M, Ma Z, Wang D, Sun Y, Wen C, Huang D, Chen Z, Yang L, Tan S, Li R, Friml J, Miao Y, Chen X. Salicylic acid regulates PIN2 auxin transporter hyperclustering and root gravitropic growth via Remorin-dependent lipid nanodomain organisation in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 229:963-978. [PMID: 32901934 PMCID: PMC7821329 DOI: 10.1111/nph.16915] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/23/2020] [Indexed: 05/20/2023]
Abstract
To adapt to the diverse array of biotic and abiotic cues, plants have evolved sophisticated mechanisms to sense changes in environmental conditions and modulate their growth. Growth-promoting hormones and defence signalling fine tune plant development antagonistically. During host-pathogen interactions, this defence-growth trade-off is mediated by the counteractive effects of the defence hormone salicylic acid (SA) and the growth hormone auxin. Here we revealed an underlying mechanism of SA regulating auxin signalling by constraining the plasma membrane dynamics of PIN2 auxin efflux transporter in Arabidopsis thaliana roots. The lateral diffusion of PIN2 proteins is constrained by SA signalling, during which PIN2 proteins are condensed into hyperclusters depending on REM1.2-mediated nanodomain compartmentalisation. Furthermore, membrane nanodomain compartmentalisation by SA or Remorin (REM) assembly significantly suppressed clathrin-mediated endocytosis. Consequently, SA-induced heterogeneous surface condensation disrupted asymmetric auxin distribution and the resultant gravitropic response. Our results demonstrated a defence-growth trade-off mechanism by which SA signalling crosstalked with auxin transport by concentrating membrane-resident PIN2 into heterogeneous compartments.
Collapse
Affiliation(s)
- Meiyu Ke
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhou350002China
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Zhiming Ma
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Deyan Wang
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhou350002China
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Yanbiao Sun
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhou350002China
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Chenjin Wen
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Dingquan Huang
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Zichen Chen
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Liang Yang
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingapore637551Singapore
| | - Shutang Tan
- Institute of Science and Technology Austria (IST Austria)Am Campus 1Klosterneuburg3400Austria
| | - Ruixi Li
- Department of BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria)Am Campus 1Klosterneuburg3400Austria
| | - Yansong Miao
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Xu Chen
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| |
Collapse
|
69
|
Noh SW, Seo RR, Park HJ, Jung HW. Two Arabidopsis Homologs of Human Lysine-Specific Demethylase Function in Epigenetic Regulation of Plant Defense Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:688003. [PMID: 34194459 PMCID: PMC8236864 DOI: 10.3389/fpls.2021.688003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 05/02/2023]
Abstract
Epigenetic marks such as covalent histone modification and DNA methylation are crucial for mitotically and meiotically inherited cellular memory-based plant immunity. However, the roles of individual players in the epigenetic regulation of plant immunity are not fully understood. Here we reveal the functions of two Arabidopsis thaliana homologs of human lysine-specific demethylase1-like1, LDL1 and LDL2, in the maintenance of methyl groups at lysine 4 of histone H3 and in plant immunity to Pseudomonas syringae infection. The growth of virulent P. syringae strains was reduced in ldl1 and ldl2 single mutants compared to wild-type plants. Local and systemic disease resistance responses, which coincided with the rapid, robust transcription of defense-related genes, were more stably expressed in ldl1 ldl2 double mutants than in the single mutants. At the nucleosome level, mono-methylated histone H3K4 accumulated in ldl1 ldl2 plants genome-wide and in the mainly promoter regions of the defense-related genes examined in this study. Furthermore, in silico comparative analysis of RNA-sequencing and chromatin immunoprecipitation data suggested that several WRKY transcription factors, e.g., WRKY22/40/70, might be partly responsible for the enhanced immunity of ldl1 ldl2. These findings suggest that LDL1 and LDL2 control the transcriptional sensitivity of a group of defense-related genes to establish a primed defense response in Arabidopsis.
Collapse
Affiliation(s)
- Seong Woo Noh
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Ri-Ra Seo
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Hee Jin Park
- Institute of Agricultural Life Science, Dong-A University, Busan, South Korea
- *Correspondence: Hee Jin Park,
| | - Ho Won Jung
- Institute of Agricultural Life Science, Dong-A University, Busan, South Korea
- Department of Molecular Genetics, Dong-A University, Busan, South Korea
- Ho Won Jung,
| |
Collapse
|
70
|
Tan S, Di Donato M, Glanc M, Zhang X, Klíma P, Liu J, Bailly A, Ferro N, Petrášek J, Geisler M, Friml J. Non-steroidal Anti-inflammatory Drugs Target TWISTED DWARF1-Regulated Actin Dynamics and Auxin Transport-Mediated Plant Development. Cell Rep 2020; 33:108463. [PMID: 33264621 DOI: 10.1016/j.celrep.2020.108463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/18/2020] [Accepted: 11/10/2020] [Indexed: 12/28/2022] Open
Abstract
The widely used non-steroidal anti-inflammatory drugs (NSAIDs) are derivatives of the phytohormone salicylic acid (SA). SA is well known to regulate plant immunity and development, whereas there have been few reports focusing on the effects of NSAIDs in plants. Our studies here reveal that NSAIDs exhibit largely overlapping physiological activities to SA in the model plant Arabidopsis. NSAID treatments lead to shorter and agravitropic primary roots and inhibited lateral root organogenesis. Notably, in addition to the SA-like action, which in roots involves binding to the protein phosphatase 2A (PP2A), NSAIDs also exhibit PP2A-independent effects. Cell biological and biochemical analyses reveal that many NSAIDs bind directly to and inhibit the chaperone activity of TWISTED DWARF1, thereby regulating actin cytoskeleton dynamics and subsequent endosomal trafficking. Our findings uncover an unexpected bioactivity of human pharmaceuticals in plants and provide insights into the molecular mechanism underlying the cellular action of this class of anti-inflammatory compounds.
Collapse
Affiliation(s)
- Shutang Tan
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Martin Di Donato
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Matouš Glanc
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic
| | - Xixi Zhang
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Petr Klíma
- The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Jie Liu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Noel Ferro
- University of Bonn, Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, 53115 Bonn, Germany
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic; The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Markus Geisler
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
71
|
Li P, Cai Q, Wang H, Li S, Cheng J, Li H, Yu Q, Wu S. Hydrogen peroxide homeostasis provides beneficial micro-environment for SHR-mediated periclinal division in Arabidopsis root. THE NEW PHYTOLOGIST 2020; 228:1926-1938. [PMID: 32706394 DOI: 10.1111/nph.16824] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The precise regulation of asymmetric cell division (ACD) is essential for plant organogenesis. In Arabidopsis roots, SHORT-ROOT (SHR) functions to promote periclinal division in cortex/endodermis initials, which generate the ground tissue patterning. Although multiple downstream transcription factors and interplaying hormone pathways have been reported, the cellular mechanism that affects SHR-mediated periclinal division remains largely unclear. Here, we found that SHR can substantially elevate reactive oxygen species (ROS) levels in Arabidopsis roots by activating respiratory burst oxidase homologs (RBOHs). Among the ROS products, hydrogen peroxide (H2 O2 ) rather than superoxide (O2- ) was shown to play a critical role in SHR-mediated periclinal division. Scavenging H2 O2 could markedly impair the ability of SHR to induce periclinal division. We also show that salicylic acid (SA) can promote H2 O2 production by repressing CAT expression, which greatly increased periclinal division in root endodermis. As a result, middle cortex was more frequently formed in the endodermis of snc1, a mutant with accumulated endogenous SA and H2 O2 . In addition to RBOHs, SHR also activated the SA pathway, which might contribute to the elevated H2 O2 level induced by SHR. Thus, our data suggest a mechanism by which SHR creates the optimal micro-environment for periclinal division by maintaining ROS homeostasis in Arabidopsis roots.
Collapse
Affiliation(s)
- Pengxue Li
- College of Horticulture, College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Cai
- College of Horticulture, College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Wang
- College of Horticulture, College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuang Li
- College of Horticulture, College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jie Cheng
- College of Horticulture, College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haiyang Li
- College of Horticulture, College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiaozhi Yu
- College of Horticulture, College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuang Wu
- College of Horticulture, College of Life Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
72
|
López-Ruiz BA, Zluhan-Martínez E, Sánchez MDLP, Álvarez-Buylla ER, Garay-Arroyo A. Interplay between Hormones and Several Abiotic Stress Conditions on Arabidopsis thaliana Primary Root Development. Cells 2020; 9:E2576. [PMID: 33271980 PMCID: PMC7759812 DOI: 10.3390/cells9122576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023] Open
Abstract
As sessile organisms, plants must adjust their growth to withstand several environmental conditions. The root is a crucial organ for plant survival as it is responsible for water and nutrient acquisition from the soil and has high phenotypic plasticity in response to a lack or excess of them. How plants sense and transduce their external conditions to achieve development, is still a matter of investigation and hormones play fundamental roles. Hormones are small molecules essential for plant growth and their function is modulated in response to stress environmental conditions and internal cues to adjust plant development. This review was motivated by the need to explore how Arabidopsis thaliana primary root differentially sense and transduce external conditions to modify its development and how hormone-mediated pathways contribute to achieve it. To accomplish this, we discuss available data of primary root growth phenotype under several hormone loss or gain of function mutants or exogenous application of compounds that affect hormone concentration in several abiotic stress conditions. This review shows how different hormones could promote or inhibit primary root development in A. thaliana depending on their growth in several environmental conditions. Interestingly, the only hormone that always acts as a promoter of primary root development is gibberellins.
Collapse
Affiliation(s)
- Brenda Anabel López-Ruiz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| |
Collapse
|
73
|
Dong CJ, Liu XY, Xie LL, Wang LL, Shang QM. Salicylic acid regulates adventitious root formation via competitive inhibition of the auxin conjugation enzyme CsGH3.5 in cucumber hypocotyls. PLANTA 2020; 252:75. [PMID: 33026530 DOI: 10.1007/s00425-020-03467-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Exogenous SA treatment at appropriate concentrations promotes adventitious root formation in cucumber hypocotyls, via competitive inhibiting the IAA-Asp synthetase activity of CsGH3.5, and increasing the local free IAA level. Adventitious root formation is critical for the cutting propagation of horticultural plants. Indole-3-acetic acid (IAA) has been shown to play a central role in regulating this process, while for salicylic acid (SA), its exact effects and regulatory mechanism have not been elucidated. In this study, we showed that exogenous SA treatment at the concentrations of both 50 and 100 µM promoted adventitious root formation at the base of the hypocotyl of cucumber seedlings. At these concentrations, SA could induce the expression of CYCLIN and Cyclin-dependent Kinase (CDK) genes during adventitious rooting. IAA was shown to be involved in SA-induced adventitious root formation in cucumber hypocotyls. Exposure to exogenous SA led to a slight increase in the free IAA content, and pre-treatment with the auxin transport inhibitor 1-naphthylphthalamic acid (NPA) almost completely abolished the inducible effects of SA on adventitious root number. SA-induced IAA accumulation was also associated with the enhanced expression of Gretchen Hagen3.5 (CsGH3.5). The in vitro enzymatic assay indicated that CsGH3.5 has both IAA- and SA-amido synthetase activity and prefers aspartate (Asp) as the amino acid conjugate. The Asp concentration dictated the functional activity of CsGH3.5 on IAA. Both affinity and catalytic efficiency (Kcat/Km) increased when the Asp concentration increased from 0.3 to 1 mM. In contrast, CsGH3.5 showed equal catalytic efficiency for SA at low and high Asp concentrations. Furthermore, SA functioned as a competitive inhibitor of the IAA-Asp synthetase activity of CsGH3.5. During adventitious formation, SA application indeed repressed the IAA-Asp levels in the rooting zone. These data show that SA plays an inducible role in adventitious root formation in cucumber through competitive inhibition of the auxin conjugation enzyme CsGH3.5. SA reduces the IAA conjugate levels, thereby increasing the local free IAA level and ultimately enhancing adventitious root formation.
Collapse
Affiliation(s)
- Chun-Juan Dong
- Ministry of Agriculture, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| | - Xin-Yan Liu
- Ministry of Agriculture, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Lu-Lu Xie
- Ministry of Agriculture, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Ling-Ling Wang
- Ministry of Agriculture, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Qing-Mao Shang
- Ministry of Agriculture, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
74
|
Szepesi Á. Halotropism: Phytohormonal Aspects and Potential Applications. FRONTIERS IN PLANT SCIENCE 2020; 11:571025. [PMID: 33042187 PMCID: PMC7527526 DOI: 10.3389/fpls.2020.571025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/02/2020] [Indexed: 05/15/2023]
Abstract
Halotropism is a sodium specific tropic movement of roots in order to obtain the optimal salt concentration for proper growth and development. Numerous results suggest that halotropic events are under the control and regulation of complex plant hormone pathway. This minireview collects some recent evidences about sodium sensing during halotropism and the hormonal regulation of halotropic responses in glycophytes. The precise hormonal mechanisms by which halophytes plant roots perceive salt stress and translate this perception into adaptive, directional growth forward increased salt concentrations are not well understood. This minireview aims to gather recently deciphered information about halotropism focusing potential hormonal aspects both in glycophytes and halophytes. Advances in our understanding of halotropic responses in different plant species could help these plants to be used for sustainable agriculture and other future applications.
Collapse
Affiliation(s)
- Ágnes Szepesi
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
75
|
Wei X, Chen J, Zhang C, Liu H, Zheng X, Mu J. Ericoid mycorrhizal fungus enhances microcutting rooting of Rhododendron fortunei and subsequent growth. HORTICULTURE RESEARCH 2020; 7:140. [PMID: 32922812 PMCID: PMC7459316 DOI: 10.1038/s41438-020-00361-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/18/2020] [Accepted: 07/19/2020] [Indexed: 06/01/2023]
Abstract
Adventitious root (AR) formation is a unique feature of plant reproduction and plays a vital role in crop production as many horticultural and forestry plants are propagated through cuttings. A growing number of reports have shown that microbes, particularly mycorrhizal fungi are able to promote AR formation, but the underlying mechanisms remain largely unclear. This study established an in vitro culture system and investigated AR formation in microcuttings of Rhododendron fortunei Lindl. inoculated with Oidiodendron maius Barron Om19, an ericoid mycorrhizal fungus strain. Hormones and precursors involved in the biosynthesis of indole-3-acetic acid (IAA) in Om19 mycelium were analyzed. Om19 was able to produce a large quantity of tryptophan (Trp) and also indole-3-pyruvate (IPA) and IAA, indicating that IAA biosynthesis in Om19 could be through a Trp-dependent pathway. After inoculation of Om19, ARs were quickly formed in microcuttings. Symbiosis related genes were activated in ARs, and Om19 effectively colonized the roots. YUC3, a key gene in plant biosynthesis of IAA and genes involved in nitrogen (N) uptake and metabolism, phosphorus (P) uptake were highly upregulated. Plants absorbed significantly greater quantity of mineral nutrients, and their growth was substantially enhanced compared to the control plants without Om19 inoculation. A working model for Om19 enhanced AR formation was proposed. The rapid formation of ARs in cuttings could be due in part to the induction of IAA biosynthesized by Om19 and also attributed to Trp catalyzed biosynthesis of IAA in plants. AR formation, in turn, provided Om19 preferred sites for colonization. Our study suggested that in addition to promoting AR formation, Om19 could potentially be used as a new biofertilizer for enhancing production of ericaceous plants, such as blueberry, cranberry, and rhododendron.
Collapse
Affiliation(s)
- Xiangying Wei
- Institute of Oceanography, Minjiang University, 350108 Fuzhou, Fujian Province China
- Department of Environmental Horticulture and Mid-Florida Research and Education Center, University of Florida, IFAS, Apopka, FL 32703 USA
| | - Jianjun Chen
- Department of Environmental Horticulture and Mid-Florida Research and Education Center, University of Florida, IFAS, Apopka, FL 32703 USA
| | - Chunying Zhang
- Shanghai Engineering Research Center of Sustainable Plant Innovation, Shanghai Botanical Garden, 200231 Shanghai, China
| | - Hong Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian Province China
| | - Xiuxia Zheng
- Institute of Oceanography, Minjiang University, 350108 Fuzhou, Fujian Province China
| | - Jingli Mu
- Institute of Oceanography, Minjiang University, 350108 Fuzhou, Fujian Province China
| |
Collapse
|
76
|
Yin R, Liu X, Yu J, Ji Y, Liu J, Cheng L, Zhou J. Up-regulation of autophagy by low concentration of salicylic acid delays methyl jasmonate-induced leaf senescence. Sci Rep 2020; 10:11472. [PMID: 32651431 PMCID: PMC7351724 DOI: 10.1038/s41598-020-68484-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/25/2020] [Indexed: 11/09/2022] Open
Abstract
Crosstalk between salicylic acid (SA) and jasmonic acid (JA) signaling plays an important role in regulation of plant senescence. Our previous work found that SA could delay methyl jasmonate (MeJA)-induced leaf senescence in a concentration-dependent manner. Here, the effect of low concentration of SA (LCSA) application on MeJA-induced leaf senescence was further assessed. High-throughput sequencing (RNA-Seq) results showed that LCSA did not have dominant effects on the genetic regulatory pathways of basal metabolism like nitrogen metabolism, photosynthesis and glycolysis. The ClusterONE was applied to identify discrete gene modules based on protein-protein interaction (PPI) network. Interestingly, an autophagy-related (ATG) module was identified in the differentially expressed genes (DEGs) that exclusively induced by MeJA together with LCSA. RT-qPCR confirmed that the expression of most of the determined ATG genes were upregulated by LCSA. Remarkably, in contrast to wild type (Col-0), LCSA cannot alleviate the leaf yellowing phenotype in autophagy defective mutants (atg5-1 and atg7-2) upon MeJA treatment. Confocal results showed that LCSA increased the number of autophagic bodies accumulated in the vacuole during MeJA-induced leaf senescence. Collectively, our work revealed up-regulation of autophagy by LCSA as a key regulator to alleviate MeJA-induced leaf senescence.
Collapse
Affiliation(s)
- Runzhu Yin
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xueyan Liu
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China
| | - Jingfang Yu
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yingbin Ji
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Jian Liu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lixin Cheng
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medicine College of Jinan University, Shenzhen, 518020, China.
| | - Jun Zhou
- MOE Key Laboratory of Laser Life Science and Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
77
|
Casadesús A, Pérez-Llorca M, Munné-Bosch S, Polo J. An Enzymatically Hydrolyzed Animal Protein-Based Biostimulant (Pepton) Increases Salicylic Acid and Promotes Growth of Tomato Roots Under Temperature and Nutrient Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:953. [PMID: 32714352 PMCID: PMC7342040 DOI: 10.3389/fpls.2020.00953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Biostimulants may be particularly interesting for application in agricultural and horticultural crops since they can exert a growth-promoting effect on roots. This may be important for promoting longitudinal and lateral root growth and therefore increasing belowground vegetative growth, which may in turn lead to improved aboveground vegetative growth and increased yields. Here, we examined the effects and mechanism of action of an enzymatically hydrolyzed animal protein-based biostimulant (Pepton) on the root growth of tomato plants, with an emphasis on its possible role on chorismate-derived hormones (auxin, salicylic acid, and melatonin). Tomato plants growing in hydroponic systems were exposed to either nutrient stress conditions (experiment 1) or suboptimal temperatures (experiment 2) in a greenhouse, and the concentration of auxin, salicylic acid, and melatonin in roots were measured just prior and after the application of the biostimulant. Results showed that the application of Pepton exerted a growth-promoting effect on roots in plants growing under suboptimal conditions, which might be associated with enhanced salicylic acid levels in roots. The extent of effects of this enzymatically hydrolyzed animal protein-based biostimulant might strongly depend on the growth conditions and stage of root system development. It is concluded that an enzymatically hydrolyzed animal protein-based biostimulant (Pepton) may exert a positive effect enhancing primary and lateral root growth of tomato plants growing under suboptimal conditions, by stimulating the biosynthesis of specific hormonal pathways, such as salicylic acid under stress.
Collapse
Affiliation(s)
- Andrea Casadesús
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Marina Pérez-Llorca
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Research Institute of Nutrition and Food Safety (INSA), University of Barcelona, Barcelona, Spain
| | - Javier Polo
- R&D Department, APC Europe S.L., Granollers, Spain
| |
Collapse
|
78
|
Singh D, Debnath P, Sane AP, Sane VA. Expression of the tomato WRKY gene, SlWRKY23, alters root sensitivity to ethylene, auxin and JA and affects aerial architecture in transgenic Arabidopsis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1187-1199. [PMID: 32549682 PMCID: PMC7266899 DOI: 10.1007/s12298-020-00820-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 05/06/2023]
Abstract
WRKY transcription factors (TFs) are a large plant-specific family of TFs that govern development and biotic/abiotic stress responses in plants. We have identified SlWRKY23 as a gene primarily expressed in roots. SlWRKY23 encodes a protein of 320 amino acids that functions as a transcriptional activator. It is transcriptionally up-regulated by ethylene, BAP and salicylic acid treatment but suppressed by IAA. Expression of SlWRKY23 in transgenic Arabidopsis affects sensitivity of roots to ethylene, JA and auxin with transgenic plants showing hypersensitivity to ethylene, JA and auxin-mediated primary root growth inhibition. This hypersensitivity is correlated with higher expression of ERF1 and ARF5 that mediate responses to these hormones. SlWRKY23 expression also affects aerial growth with transgenic plants showing greater number of leaves but smaller rosettes. Flowering time is reduced in transgenic lines and these plants also show a greater number of inflorescence branches, siliques and seeds. The siliques are longer and compactly packed with seeds but seeds are smaller in size. Root biomass shows a 25% decrease in transgenic SlWRKY23 Arabidopsis plants at harvest compared with controls. The studies show that SlWRKY23 regulates plant growth possibly through modulation of genes controlling hormone responses.
Collapse
Affiliation(s)
- Deepika Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Integral University, Kursi Road, Lucknow, 226026 India
| | - Pratima Debnath
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Aniruddha P. Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Vidhu A. Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
79
|
van Butselaar T, Van den Ackerveken G. Salicylic Acid Steers the Growth-Immunity Tradeoff. TRENDS IN PLANT SCIENCE 2020; 25:566-576. [PMID: 32407696 DOI: 10.1016/j.tplants.2020.02.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 05/10/2023]
Abstract
Plants possess an effective immune system to combat most microbial attackers. The activation of immune responses to biotrophic pathogens requires the hormone salicylic acid (SA). Accumulation of SA triggers a plethora of immune responses (like massive transcriptional reprogramming, cell wall strengthening, and production of secondary metabolites and antimicrobial proteins). A tradeoff of strong immune responses is the active suppression of plant growth and development. The tradeoff also works the opposite way, where active growth and developmental processes suppress SA production and immune responses. Here, we review research on the role of SA in the growth-immunity tradeoff and examples of how the tradeoff can be bypassed. This knowledge will be instrumental in resistance breeding of crops with optimal growth and effective immunity.
Collapse
Affiliation(s)
- Tijmen van Butselaar
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands.
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, 3584CH Utrecht, The Netherlands.
| |
Collapse
|
80
|
Waidmann S, Sarkel E, Kleine-Vehn J. Same same, but different: growth responses of primary and lateral roots. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2397-2411. [PMID: 31956903 PMCID: PMC7178446 DOI: 10.1093/jxb/eraa027] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/15/2020] [Indexed: 05/20/2023]
Abstract
The root system architecture describes the shape and spatial arrangement of roots within the soil. Its spatial distribution depends on growth and branching rates as well as directional organ growth. The embryonic primary root gives rise to lateral (secondary) roots, and the ratio of both root types changes over the life span of a plant. Most studies have focused on the growth of primary roots and the development of lateral root primordia. Comparably less is known about the growth regulation of secondary root organs. Here, we review similarities and differences between primary and lateral root organ growth, and emphasize particularly how external stimuli and internal signals differentially integrate root system growth.
Collapse
Affiliation(s)
- Sascha Waidmann
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Elizabeth Sarkel
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
81
|
Mannucci A, Mariotti L, Castagna A, Santin M, Trivellini A, Reyes TH, Mensuali-Sodi A, Ranieri A, Quartacci MF. Hormone profile changes occur in roots and leaves of Micro-Tom tomato plants when exposing the aerial part to low doses of UV-B radiation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:291-301. [PMID: 32000106 DOI: 10.1016/j.plaphy.2020.01.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 05/20/2023]
Abstract
During the last decades, many studies investigated the effects of UV-B on the above-ground organs of plants, directly reached by the radiation but, to the best of our knowledges, the influence of mild UV-B doses on root hormones was not explored. Consequently, this research aimed at understanding whether low, not-stressful doses of UV-B radiation applied above-ground influenced the hormone concentrations in leaves and roots of Micro-Tom tomato (Solanum lycopersicum L.) plants during 11 days of treatment and after 3 days of recovery. In particular, ethylene, abscisic acid, jasmonic acid, salicylic acid and indoleacetic acid were investigated. The unchanged levels of chlorophyll a and b, lutein, total xanthophylls and carotenoids, as well as the similar H2O2 concentration between control and treated groups suggest that the UV-B dose applied was well tolerated by the plants. Leaf ethylene emission decreased after 8 and 11 days of irradiation, while no effect was found in roots. Conversely, indoleacetic acid underwent a significant reduction in both organs, though in the roots the decrease occurred only at the end of the recovery period. Salicylic acid increased transiently in both leaves and roots on day 8. Changes in leaf and root hormone levels induced by UV-B radiation were not accompanied by marked alterations of plant architecture. The results show that irradiation of above-ground organs with low UV-B doses can affect the hormone concentrations also in roots, with likely implications in stress and acclimation responses mediated by these signal molecules.
Collapse
Affiliation(s)
- Alessia Mannucci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, PI, Italy
| | - Lorenzo Mariotti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, PI, Italy
| | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, PI, Italy
| | - Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, PI, Italy
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Pisa, PI, Italy
| | - Thais Huarancca Reyes
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, PI, Italy
| | - Anna Mensuali-Sodi
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Pisa, PI, Italy
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, PI, Italy.
| | - Mike Frank Quartacci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, PI, Italy
| |
Collapse
|
82
|
Koo YM, Heo AY, Choi HW. Salicylic Acid as a Safe Plant Protector and Growth Regulator. THE PLANT PATHOLOGY JOURNAL 2020; 36:1-10. [PMID: 32089657 PMCID: PMC7012573 DOI: 10.5423/ppj.rw.12.2019.0295] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 05/17/2023]
Abstract
Since salicylic acid (SA) was discovered as an elicitor of tobacco plants inducing the resistance against Tobacco mosaic virus (TMV) in 1979, increasing reports suggest that SA indeed is a key plant hormone regulating plant immunity. In addition, recent studies indicate that SA can regulate many different responses, such as tolerance to abiotic stress, plant growth and development, and soil microbiome. In this review, we focused on the recent findings on SA's effects on resistance to biotic stresses in different plant-pathogen systems, tolerance to different abiotic stresses in different plants, plant growth and development, and soil microbiome. This allows us to discuss about the safe and practical use of SA as a plant defense activator and growth regulator. Crosstalk of SA with different plant hormones, such as abscisic acid, ethylene, jasmonic acid, and auxin in different stress and developmental conditions were also discussed.
Collapse
Affiliation(s)
| | | | - Hyong Woo Choi
- Corresponding author: Phone) +82-54-829-5509, FAX) +82-54-820-6320, E-mail)
| |
Collapse
|
83
|
Sharma A, Sidhu GPS, Araniti F, Bali AS, Shahzad B, Tripathi DK, Brestic M, Skalicky M, Landi M. The Role of Salicylic Acid in Plants Exposed to Heavy Metals. Molecules 2020; 25:540. [PMID: 31991931 PMCID: PMC7037467 DOI: 10.3390/molecules25030540,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Salicylic acid (SA) is a very simple phenolic compound (a C7H6O3 compound composed of an aromatic ring, one carboxylic and a hydroxyl group) and this simplicity contrasts with its high versatility and the involvement of SA in several plant processes either in optimal conditions or in plants facing environmental cues, including heavy metal (HM) stress. Nowadays, a huge body of evidence has unveiled that SA plays a pivotal role as plant growth regulator and influences intra- and inter-plant communication attributable to its methyl ester form, methyl salicylate, which is highly volatile. Under stress, including HM stress, SA interacts with other plant hormones (e.g., auxins, abscisic acid, gibberellin) and promotes the stimulation of antioxidant compounds and enzymes thereby alerting HM-treated plants and helping in counteracting HM stress. The present literature survey reviews recent literature concerning the roles of SA in plants suffering from HM stress with the aim of providing a comprehensive picture about SA and HM, in order to orientate the direction of future research on this topic.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: (A.S.); (F.A.); (M.L.)
| | - Gagan Preet Singh Sidhu
- Department of Environment Education, Government College of Commerce and Business Administration, Chandigarh 160047, India;
| | - Fabrizio Araniti
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, RC, Italy
- Correspondence: (A.S.); (F.A.); (M.L.)
| | | | - Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida 201313, India;
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic;
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy
- CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, I-56124 Pisa, Italy
- Correspondence: (A.S.); (F.A.); (M.L.)
| |
Collapse
|
84
|
Sharma A, Sidhu GPS, Araniti F, Bali AS, Shahzad B, Tripathi DK, Brestic M, Skalicky M, Landi M. The Role of Salicylic Acid in Plants Exposed to Heavy Metals. Molecules 2020; 25:E540. [PMID: 31991931 PMCID: PMC7037467 DOI: 10.3390/molecules25030540] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/18/2022] Open
Abstract
Salicylic acid (SA) is a very simple phenolic compound (a C7H6O3 compound composed of an aromatic ring, one carboxylic and a hydroxyl group) and this simplicity contrasts with its high versatility and the involvement of SA in several plant processes either in optimal conditions or in plants facing environmental cues, including heavy metal (HM) stress. Nowadays, a huge body of evidence has unveiled that SA plays a pivotal role as plant growth regulator and influences intra- and inter-plant communication attributable to its methyl ester form, methyl salicylate, which is highly volatile. Under stress, including HM stress, SA interacts with other plant hormones (e.g., auxins, abscisic acid, gibberellin) and promotes the stimulation of antioxidant compounds and enzymes thereby alerting HM-treated plants and helping in counteracting HM stress. The present literature survey reviews recent literature concerning the roles of SA in plants suffering from HM stress with the aim of providing a comprehensive picture about SA and HM, in order to orientate the direction of future research on this topic.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Gagan Preet Singh Sidhu
- Department of Environment Education, Government College of Commerce and Business Administration, Chandigarh 160047, India;
| | - Fabrizio Araniti
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, RC, Italy
| | | | - Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida 201313, India;
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic;
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy
- CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, I-56124 Pisa, Italy
| |
Collapse
|
85
|
Tan S, Abas M, Verstraeten I, Glanc M, Molnár G, Hajný J, Lasák P, Petřík I, Russinova E, Petrášek J, Novák O, Pospíšil J, Friml J. Salicylic Acid Targets Protein Phosphatase 2A to Attenuate Growth in Plants. Curr Biol 2020; 30:381-395.e8. [PMID: 31956021 PMCID: PMC6997888 DOI: 10.1016/j.cub.2019.11.058] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/22/2019] [Accepted: 11/19/2019] [Indexed: 01/04/2023]
Abstract
Plants, like other multicellular organisms, survive through a delicate balance between growth and defense against pathogens. Salicylic acid (SA) is a major defense signal in plants, and the perception mechanism as well as downstream signaling activating the immune response are known. Here, we identify a parallel SA signaling that mediates growth attenuation. SA directly binds to A subunits of protein phosphatase 2A (PP2A), inhibiting activity of this complex. Among PP2A targets, the PIN2 auxin transporter is hyperphosphorylated in response to SA, leading to changed activity of this important growth regulator. Accordingly, auxin transport and auxin-mediated root development, including growth, gravitropic response, and lateral root organogenesis, are inhibited. This study reveals how SA, besides activating immunity, concomitantly attenuates growth through crosstalk with the auxin distribution network. Further analysis of this dual role of SA and characterization of additional SA-regulated PP2A targets will provide further insights into mechanisms maintaining a balance between growth and defense. SA modulates root development independently of NPR1-mediated canonical signaling SA attenuates growth through crosstalk with the auxin transport network SA upregulates the phosphorylation status of PIN auxin efflux carriers through PP2A SA directly targets A subunits of PP2A, inhibiting the activity of the complex
Collapse
Affiliation(s)
- Shutang Tan
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Melinda Abas
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Inge Verstraeten
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Matouš Glanc
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Gergely Molnár
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria; Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Jakub Hajný
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria; Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Faculty of Science, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pavel Lasák
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Faculty of Science, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ivan Petřík
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Faculty of Science, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic; Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Faculty of Science, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jiří Pospíšil
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Faculty of Science, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; Department of Organic Chemistry, Faculty of Science, Palacký University, tř. 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
86
|
Khan A, Kamran M, Imran M, Al-Harrasi A, Al-Rawahi A, Al-Amri I, Lee IJ, Khan AL. Silicon and salicylic acid confer high-pH stress tolerance in tomato seedlings. Sci Rep 2019; 9:19788. [PMID: 31874969 PMCID: PMC6930214 DOI: 10.1038/s41598-019-55651-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022] Open
Abstract
Alkalinity is a known threat to crop plant growth and production, yet the role of exogenous silicon (Si) and salicylic acid (SA) application has been largely unexplored. Here, we sought to understand the beneficial impacts of Si and SA on tomato seedlings during high-pH (9.0) stress. Results showed that Si- and SA-treated plants displayed higher biomass, chlorophyll contents, relative leaf water and better root system than none-treated plants under alkaline conditions. Both Si and SA counteracted the alkaline stress-induced oxidative damage by lowering the accumulation of reactive oxygen species and lipid peroxidation. The major antioxidant defence enzyme activities were largely stimulated by Si and SA, and these treatments caused significantly increased K+ and lowered Na+ concentrations in shoot and root under stress. Moreover, Si and SA treatments modulated endogenous SA levels and dramatically decreased abscisic acid levels in both shoot and root. Additionally, key genes involved in Si uptake, SA biosynthesis, the antioxidant defence system and rhizosphere acidification were up-regulated in Si and SA treatments under alkaline conditions. These results demonstrate that Si and SA play critical roles in improving alkaline stress tolerance in tomato seedlings, by modifying the endogenous Na+ and K+ contents, regulating oxidative damage and key genes and modulating endogenous hormone levels. These findings will help to broaden our understanding regarding the physiological and molecular mechanisms associated with the alkaline soil tolerance in plants.
Collapse
Affiliation(s)
- Adil Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Muhammad Kamran
- Plant Transport and Signalling Lab, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Issa Al-Amri
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| |
Collapse
|
87
|
"Salicylic Acid Mutant Collection" as a Tool to Explore the Role of Salicylic Acid in Regulation of Plant Growth under a Changing Environment. Int J Mol Sci 2019; 20:ijms20246365. [PMID: 31861218 PMCID: PMC6941003 DOI: 10.3390/ijms20246365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/02/2022] Open
Abstract
The phytohormone salicylic acid (SA) has a crucial role in plant physiology. Its role is best described in the context of plant response to pathogen attack. During infection, SA is rapidly accumulated throughout the green tissues and is important for both local and systemic defences. However, some genetic/metabolic variations can also result in SA overaccumulation in plants, even in basal conditions. To date, more than forty Arabidopsis thaliana mutants have been described as having enhanced endogenous SA levels or constitutively activated SA signalling pathways. In this study, we established a collection of mutants containing different SA levels due to diverse genetic modifications and distinct gene functions. We chose prototypic SA-overaccumulators (SA-OAs), such as bon1-1, but also “non-typical” ones such as exo70b1-1; the selection of OA is accompanied by their crosses with SA-deficient lines. Here, we extensively studied the plant development and SA level/signalling under various growth conditions in soil and in vitro, and showed a strong negative correlation between rosette size, SA content and PR1/ICS1 transcript signature. SA-OAs (namely cpr5, acd6, bon1-1, fah1/fah2 and pi4kβ1β2) had bigger rosettes under high light conditions, whereas WT plants did not. Our data provide new insights clarifying a link between SA and plant behaviour under environmental stresses. The presented SA mutant collection is thus a suitable tool to shed light on the mechanisms underlying trade-offs between growth and defence in plants.
Collapse
|
88
|
Qiao Z, Zogli P, Libault M. Plant Hormones Differentially Control the Sub-Cellular Localization of Plasma Membrane Microdomains during the Early Stage of Soybean Nodulation. Genes (Basel) 2019; 10:E1012. [PMID: 31817452 PMCID: PMC6947267 DOI: 10.3390/genes10121012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 01/31/2023] Open
Abstract
Phytohormones regulate the mutualistic symbiotic interaction between legumes and rhizobia, nitrogen-fixing soil bacteria, notably by controlling the formation of the infection thread in the root hair (RH). At the cellular level, the formation of the infection thread is promoted by the translocation of plasma membrane microdomains at the tip of the RH. We hypothesize that phytohormones regulate the translocation of plasma membrane microdomains to regulate infection thread formation. Accordingly, we treated with hormone and hormone inhibitors transgenic soybean roots expressing fusions between the Green Fluorescent Protein (GFP) and GmFWL1 or GmFLOT2/4, two microdomain-associated proteins translocated at the tip of the soybean RH in response to rhizobia. Auxin and cytokinin treatments are sufficient to trigger or inhibit the translocation of GmFWL1 and GmFLOT2/4 to the RH tip independently of the presence of rhizobia, respectively. Unexpectedly, the application of salicylic acid, a phytohormone regulating the plant defense system, also promotes the translocation of GmFWL1 and GmFLOT2/4 to the RH tip regardless of the presence of rhizobia. These results suggest that phytohormones are playing a central role in controlling the early stages of rhizobia infection by regulating the translocation of plasma membrane microdomains. They also support the concept of crosstalk of phytohormones to control nodulation.
Collapse
Affiliation(s)
- Zhenzhen Qiao
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA;
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Prince Zogli
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA;
| | - Marc Libault
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Beadle Center, Lincoln, NE 68503, USA;
| |
Collapse
|
89
|
Diao Y, Zhan J, Zhao Y, Liu L, Liu P, Wei X, Ding Y, Sajjad M, Hu W, Wang P, Ge X. GhTIE1 Regulates Branching Through Modulating the Transcriptional Activity of TCPs in Cotton and Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1348. [PMID: 31719830 PMCID: PMC6827420 DOI: 10.3389/fpls.2019.01348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/27/2019] [Indexed: 05/22/2023]
Abstract
Transcription factors (TFs) and transcriptional regulators are important switches in transcriptional networks. In recent years, the transcriptional regulator TIE1 (TCP interactor containing EAR motif protein 1) was identified as a nuclear transcriptional repressor which regulates leaf development and controls branch development. However, the function and regulatory network of GhTIE1 has not been studied in cotton. Here, we demonstrated that GhTIE1 is functionally conserved in controlling shoot branching in cotton and Arabidopsis. Overexpression of GhTIE1 in Arabidopsis leads to higher bud vigor and more branches, while silencing GhTIE1 in cotton reduced bud activity and increased branching inhibition. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that GhTIE1 directly interacted with subclass II TCPs (GhBRC1, GhBRC2, and GhTCP13) in vivo and in vitro. Overexpression of GhBRC1, GhBRC2, and GhTCP13 in mutant brc1-2 partially rescued the mutant phenotype and decreased the number of branches, showing that these TCPs are functionally redundant in controlling branching. A transient dual-luciferase reporter assay indicated that GhTIE1 repressed the protein activity of GhBRC1 and GhTCP13, and thereby decreased the expression of their target gene GhHB21. Gene expression level analysis in GhTIE1-overexpressed and silenced plants also proved that GhTIE1 regulated shoot branching via repressing the activity of BRC1, HB21, HB40, and HB53. Our data reveals that shoot branching can be controlled via modulation of the activity of the TIE1 and TCP proteins and provides a theoretical basis for cultivating cotton varieties with ideal plant types.
Collapse
Affiliation(s)
- Yangyang Diao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jingjing Zhan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yanyan Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lisen Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Peipei Liu
- State Key Laboratory of Cotton Biology (Hebei Base), College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xi Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yanpeng Ding
- State Key Laboratory of Cotton Biology (Hebei Base), College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Muhammad Sajjad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wei Hu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Peng Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Xiaoyang Ge,
| |
Collapse
|