51
|
Kurzbauer MT, Janisiw MP, Paulin LF, Prusén Mota I, Tomanov K, Krsicka O, von Haeseler A, Schubert V, Schlögelhofer P. ATM controls meiotic DNA double-strand break formation and recombination and affects synaptonemal complex organization in plants. THE PLANT CELL 2021; 33:1633-1656. [PMID: 33659989 PMCID: PMC8254504 DOI: 10.1093/plcell/koab045] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/29/2021] [Indexed: 05/04/2023]
Abstract
Meiosis is a specialized cell division that gives rise to genetically distinct gametic cells. Meiosis relies on the tightly controlled formation of DNA double-strand breaks (DSBs) and their repair via homologous recombination for correct chromosome segregation. Like all forms of DNA damage, meiotic DSBs are potentially harmful and their formation activates an elaborate response to inhibit excessive DNA break formation and ensure successful repair. Previous studies established the protein kinase ATM as a DSB sensor and meiotic regulator in several organisms. Here we show that Arabidopsis ATM acts at multiple steps during DSB formation and processing, as well as crossover (CO) formation and synaptonemal complex (SC) organization, all vital for the successful completion of meiosis. We developed a single-molecule approach to quantify meiotic breaks and determined that ATM is essential to limit the number of meiotic DSBs. Local and genome-wide recombination screens showed that ATM restricts the number of interference-insensitive COs, while super-resolution STED nanoscopy of meiotic chromosomes revealed that the kinase affects chromatin loop size and SC length and width. Our study extends our understanding of how ATM functions during plant meiosis and establishes it as an integral factor of the meiotic program.
Collapse
Affiliation(s)
- Marie-Therese Kurzbauer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Michael Peter Janisiw
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Luis F Paulin
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Ignacio Prusén Mota
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Konstantin Tomanov
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Ondrej Krsicka
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
52
|
Takahashi N, Inagaki S, Nishimura K, Sakakibara H, Antoniadi I, Karady M, Ljung K, Umeda M. Alterations in hormonal signals spatially coordinate distinct responses to DNA double-strand breaks in Arabidopsis roots. SCIENCE ADVANCES 2021; 7:7/25/eabg0993. [PMID: 34134976 PMCID: PMC8208723 DOI: 10.1126/sciadv.abg0993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Plants have a high ability to cope with changing environments and grow continuously throughout life. However, the mechanisms by which plants strike a balance between stress response and organ growth remain elusive. Here, we found that DNA double-strand breaks enhance the accumulation of cytokinin hormones through the DNA damage signaling pathway in the Arabidopsis root tip. Our data showed that activation of cytokinin signaling suppresses the expression of some of the PIN-FORMED genes that encode efflux carriers of another hormone, auxin, thereby decreasing the auxin signals in the root tip and causing cell cycle arrest at G2 phase and stem cell death. Elevated cytokinin signaling also promotes an early transition from cell division to endoreplication in the basal part of the root apex. We propose that plant hormones spatially coordinate differential DNA damage responses, thereby maintaining genome integrity and minimizing cell death to ensure continuous root growth.
Collapse
Affiliation(s)
- Naoki Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Soichi Inagaki
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Kohei Nishimura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Hitoshi Sakakibara
- Plant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science, Suehiro 1-7-22, Tsurumi, Yokohama 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ioanna Antoniadi
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Michal Karady
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
53
|
Ikui AE, Ueki N, Pecani K, Cross FR. Control of pre-replicative complex during the division cycle in Chlamydomonas reinhardtii. PLoS Genet 2021; 17:e1009471. [PMID: 33909603 PMCID: PMC8081180 DOI: 10.1371/journal.pgen.1009471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/07/2021] [Indexed: 12/31/2022] Open
Abstract
DNA replication is fundamental to all living organisms. In yeast and animals, it is triggered by an assembly of pre-replicative complex including ORC, CDC6 and MCMs. Cyclin Dependent Kinase (CDK) regulates both assembly and firing of the pre-replicative complex. We tested temperature-sensitive mutants blocking Chlamydomonas DNA replication. The mutants were partially or completely defective in DNA replication and did not produce mitotic spindles. After a long G1, wild type Chlamydomonas cells enter a division phase when it undergoes multiple rapid synchronous divisions ('multiple fission'). Using tagged transgenic strains, we found that MCM4 and MCM6 were localized to the nucleus throughout the entire multiple fission division cycle, except for transient cytoplasmic localization during each mitosis. Chlamydomonas CDC6 was transiently localized in nucleus in early division cycles. CDC6 protein levels were very low, probably due to proteasomal degradation. CDC6 levels were severely reduced by inactivation of CDKA1 (CDK1 ortholog) but not the plant-specific CDKB1. Proteasome inhibition did not detectably increase CDC6 levels in the cdka1 mutant, suggesting that CDKA1 might upregulate CDC6 at the transcriptional level. All of the DNA replication proteins tested were essentially undetectable until late G1. They accumulated specifically during multiple fission and then were degraded as cells completed their terminal divisions. We speculate that loading of origins with the MCM helicase may not occur until the end of the long G1, unlike in the budding yeast system. We also developed a simple assay for salt-resistant chromatin binding of MCM4, and found that tight MCM4 loading was dependent on ORC1, CDC6 and MCM6, but not on RNR1 or CDKB1. These results provide a microbial framework for approaching replication control in the plant kingdom.
Collapse
Affiliation(s)
- Amy E. Ikui
- Department of Biology, Brooklyn College, The City University of New York, New York City, New York, United States of America
- * E-mail: (AEI); (FRC)
| | - Noriko Ueki
- Department of Biology, Brooklyn College, The City University of New York, New York City, New York, United States of America
| | - Kresti Pecani
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York City, New York, United States of America
| | - Frederick R. Cross
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York City, New York, United States of America
- * E-mail: (AEI); (FRC)
| |
Collapse
|
54
|
Black JA, Crouch K, Lemgruber L, Lapsley C, Dickens N, Tosi LRO, Mottram JC, McCulloch R. Trypanosoma brucei ATR Links DNA Damage Signaling during Antigenic Variation with Regulation of RNA Polymerase I-Transcribed Surface Antigens. Cell Rep 2021; 30:836-851.e5. [PMID: 31968257 PMCID: PMC6988115 DOI: 10.1016/j.celrep.2019.12.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 08/19/2019] [Accepted: 12/13/2019] [Indexed: 11/29/2022] Open
Abstract
Trypanosoma brucei evades mammalian immunity by using recombination to switch its surface-expressed variant surface glycoprotein (VSG), while ensuring that only one of many subtelomeric multigene VSG expression sites are transcribed at a time. DNA repair activities have been implicated in the catalysis of VSG switching by recombination, not transcriptional control. How VSG switching is signaled to guide the appropriate reaction or to integrate switching into parasite growth is unknown. Here, we show that the loss of ATR, a DNA damage-signaling protein kinase, is lethal, causing nuclear genome instability and increased VSG switching through VSG-localized damage. Furthermore, ATR loss leads to the increased transcription of silent VSG expression sites and expression of mixed VSGs on the cell surface, effects that are associated with the altered localization of RNA polymerase I and VEX1. This work shows that ATR acts in antigenic variation both through DNA damage signaling and surface antigen expression control. Loss of the repair protein kinase ATR in Trypanosoma brucei is lethal Loss of T. brucei ATR alters VSG coat expression needed for immune evasion Monoallelic RNA polymerase I VSG expression is undermined by ATR loss ATR loss leads to expression of subtelomeric VSGs, indicative of recombination
Collapse
Affiliation(s)
- Jennifer Ann Black
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK; Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900 SP, Brazil
| | - Kathryn Crouch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Leandro Lemgruber
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Craig Lapsley
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Nicholas Dickens
- Marine Science Lab, FAU Harbor Branch Oceanographic Institute, 5600 US 1 North, Fort Pierce, FL 34946, USA
| | - Luiz R O Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900 SP, Brazil
| | - Jeremy C Mottram
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
55
|
Yadav V, Arif N, Chauhan DK. A comparative study of the effective response of di-potassium phosphate (K 2HPO 4) on physiological, biochemical and anatomical aspects of crops dwelling with zinc oxide nanoparticles toxicity. Toxicol Res (Camb) 2021; 10:214-222. [PMID: 33884172 DOI: 10.1093/toxres/tfab004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 11/14/2022] Open
Abstract
The dipotassium phosphate (K2HPO4) is a source of phosphorus (P), which is an essential micronutrient for plant growth and reproduction and also acts as a stress alleviator against abiotic stresses. Therefore, it could also become a potential mineral to cope up with zinc oxide nanoparticles' (ZnONPs) toxicity in crops. This study primarily includes synthesis, characterization and differential toxic impacts of ZnONPs on two crop plantsThis study includes synthesis, characterization and differential toxic impacts of ZnONPs on two crop plants, i.e. Triticum aestivum and Solanum lycopersicum, as well as assuage the toxic impacts of ZnONPs through nutrient management approach implied via supplementation of P. The growth and physiological changes under toxic doses of ZnONPs and ameliorative potential of P in crop plants were examined by analysing growth, intracellular Zn accumulation, photosynthetic pigment contents, the kinetics of photosystem II (PS II) photochemistry, root cell anatomy and cell viability via histochemical staining 4',6-diamidino-2-phenylindole and propidium iodide. ZnONPs at 500 and 1000 μM concentrations significantly affected the growth, photosynthetic pigment and PS II photochemistry and cell death in both the plants. It also caused deformation in root anatomy of T. aestivum and S. lycopersicum. Whereas supplementation of P caused significant improvement against ZnONPs stress by causing remarkable enhancement in growth, photosynthetic pigments and activity of PS II photochemistry and decreased cell death. Moreover, the study also discloses the tolerant nature of S. lycopersicum comparing with T. aestivum seedlings. Thus, P is comparatively more effective in managing the ZnONPs toxicity in S. lycopersicum than in T. aestivum.
Collapse
Affiliation(s)
- Vaishali Yadav
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Namira Arif
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Devendra Kumar Chauhan
- D. D. Pant Interdisciplinary Research Laboratory, Department of Botany, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
56
|
Wang L, Zhan L, Zhao Y, Huang Y, Wu C, Pan T, Qin Q, Xu Y, Deng Z, Li J, Hu H, Xue S, Yan S. The ATR-WEE1 kinase module inhibits the MAC complex to regulate replication stress response. Nucleic Acids Res 2021; 49:1411-1425. [PMID: 33450002 PMCID: PMC7897505 DOI: 10.1093/nar/gkaa1082] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/20/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
DNA damage response is a fundamental mechanism to maintain genome stability. The ATR-WEE1 kinase module plays a central role in response to replication stress. Although the ATR-WEE1 pathway has been well studied in yeasts and animals, how ATR-WEE1 functions in plants remains unclear. Through a genetic screen for suppressors of the Arabidopsis atr mutant, we found that loss of function of PRL1, a core subunit of the evolutionarily conserved MAC complex involved in alternative splicing, suppresses the hypersensitivity of atr and wee1 to replication stress. Biochemical studies revealed that WEE1 directly interacts with and phosphorylates PRL1 at Serine 145, which promotes PRL1 ubiquitination and subsequent degradation. In line with the genetic and biochemical data, replication stress induces intron retention of cell cycle genes including CYCD1;1 and CYCD3;1, which is abolished in wee1 but restored in wee1 prl1. Remarkably, co-expressing the coding sequences of CYCD1;1 and CYCD3;1 partially restores the root length and HU response in wee1 prl1. These data suggested that the ATR-WEE1 module inhibits the MAC complex to regulate replication stress responses. Our study discovered PRL1 or the MAC complex as a key downstream regulator of the ATR-WEE1 module and revealed a novel cell cycle control mechanism.
Collapse
Affiliation(s)
- Lili Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li Zhan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yan Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yongchi Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chong Wu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ting Pan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qi Qin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yiren Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhiping Deng
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Jing Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Honghong Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shaowu Xue
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shunping Yan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
57
|
Pan T, Qin Q, Nong C, Gao S, Wang L, Cai B, Zhang M, Wu C, Chen H, Li T, Xiong D, Li G, Wang S, Yan S. A novel WEE1 pathway for replication stress responses. NATURE PLANTS 2021; 7:209-218. [PMID: 33574575 DOI: 10.1038/s41477-021-00855-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
DNA replication stress poses a severe threat to genome stability and is a hallmark of cancer as well as a target for cancer therapy. It is well known that the evolutionarily conserved protein kinase WEE1 regulates replication stress responses by directly phosphorylating and inhibiting the major cell cycle driver CDKs in many organisms. Here, we report a novel WEE1 pathway. We found that Arabidopsis WEE1 directly interacts with and phosphorylates the E3 ubiquitin ligase FBL17 that promotes the degradation of CDK inhibitors. The phosphorylated FBL17 is further polyubiquitinated and degraded, thereby leading to the accumulation of CDK inhibitors and the inhibition of CDKs. In strong support for this model, either loss of function of FBL17 or overexpression of CDK inhibitors suppresses the hypersensitivity of the wee1 mutant to replication stress. Intriguingly, human WEE1 also phosphorylates and destabilizes the FBL17 equivalent protein SKP2, indicating that this is a conserved mechanism. This study reveals that the WEE1-FBL17/SKP2-CKIs-CDKs axis is a molecular framework for replication stress responses, which may have clinical implications because the WEE1 inhibitor AZD1775 is currently in phase II clinical trial as an anticancer drug.
Collapse
Affiliation(s)
- Ting Pan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qi Qin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chubing Nong
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shan Gao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lili Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bingcheng Cai
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ming Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chong Wu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hanchen Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tong Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dan Xiong
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guoliang Li
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shui Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shunping Yan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
58
|
The Dark Side of UV-Induced DNA Lesion Repair. Genes (Basel) 2020; 11:genes11121450. [PMID: 33276692 PMCID: PMC7761550 DOI: 10.3390/genes11121450] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
In their life cycle, plants are exposed to various unfavorable environmental factors including ultraviolet (UV) radiation emitted by the Sun. UV-A and UV-B, which are partially absorbed by the ozone layer, reach the surface of the Earth causing harmful effects among the others on plant genetic material. The energy of UV light is sufficient to induce mutations in DNA. Some examples of DNA damage induced by UV are pyrimidine dimers, oxidized nucleotides as well as single and double-strand breaks. When exposed to light, plants can repair major UV-induced DNA lesions, i.e., pyrimidine dimers using photoreactivation. However, this highly efficient light-dependent DNA repair system is ineffective in dim light or at night. Moreover, it is helpless when it comes to the repair of DNA lesions other than pyrimidine dimers. In this review, we have focused on how plants cope with deleterious DNA damage that cannot be repaired by photoreactivation. The current understanding of light-independent mechanisms, classified as dark DNA repair, indispensable for the maintenance of plant genetic material integrity has been presented.
Collapse
|
59
|
Jaskowiak J, Kwasniewska J, Szurman-Zubrzycka M, Rojek-Jelonek M, Larsen PB, Szarejko I. Al-Tolerant Barley Mutant hvatr.g Shows the ATR-Regulated DNA Damage Response to Maleic Acid Hydrazide. Int J Mol Sci 2020; 21:ijms21228500. [PMID: 33198069 PMCID: PMC7697149 DOI: 10.3390/ijms21228500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/23/2020] [Accepted: 11/10/2020] [Indexed: 11/27/2022] Open
Abstract
ATR, a DNA damage signaling kinase, is required for cell cycle checkpoint regulation and detecting DNA damage caused by genotoxic factors including Al3+ ions. We analyzed the function of the HvATR gene in response to chemical clastogen-maleic acid hydrazide (MH). For this purpose, the Al-tolerant barley TILLING mutant hvatr.g was used. We described the effects of MH on the nuclear genome of hvatr.g mutant and its WT parent cv. “Sebastian”, showing that the genotoxic effect measured by TUNEL test and frequency of cells with micronuclei was much stronger in hvatr.g than in WT. MH caused a significant decrease in the mitotic activity of root cells in both genotypes, however this effect was significantly stronger in “Sebastian”. The impact of MH on the roots cell cycle, analyzed using flow cytometry, showed no differences between the mutant and WT.
Collapse
Affiliation(s)
- Joanna Jaskowiak
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland; (J.J.); (M.R.-J.)
| | - Jolanta Kwasniewska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland; (J.J.); (M.R.-J.)
- Correspondence: ; Tel.: +48-32-200-9468
| | - Miriam Szurman-Zubrzycka
- Plant Genetics and Functional Genomics Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland; (M.S.-Z.); (I.S.)
| | - Magdalena Rojek-Jelonek
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland; (J.J.); (M.R.-J.)
| | - Paul B. Larsen
- Department of Biochemistry, University of California, Riverside, CA 92521, USA;
| | - Iwona Szarejko
- Plant Genetics and Functional Genomics Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland; (M.S.-Z.); (I.S.)
| |
Collapse
|
60
|
The Importance of ATM and ATR in Physcomitrella patens DNA Damage Repair, Development, and Gene Targeting. Genes (Basel) 2020; 11:genes11070752. [PMID: 32640722 PMCID: PMC7397299 DOI: 10.3390/genes11070752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Coordinated by ataxia-telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR), two highly conserved kinases, DNA damage repair ensures genome integrity and survival in all organisms. The Arabidopsis thaliana (A. thaliana) orthologues are well characterized and exhibit typical mammalian characteristics. We mutated the Physcomitrellapatens (P. patens) PpATM and PpATR genes by deleting functionally important domains using gene targeting. Both mutants showed growth abnormalities, indicating that these genes, particularly PpATR, are important for normal vegetative development. ATR was also required for repair of both direct and replication-coupled double-strand breaks (DSBs) and dominated the transcriptional response to direct DSBs, whereas ATM was far less important, as shown by assays assessing resistance to DSB induction and SuperSAGE-based transcriptomics focused on DNA damage repair genes. These characteristics differed significantly from the A. thaliana genes but resembled those in yeast (Saccharomyces cerevisiae). PpATR was not important for gene targeting, pointing to differences in the regulation of gene targeting and direct DSB repair. Our analysis suggests that ATM and ATR functions can be substantially diverged between plants. The differences in ATM and ATR reflect the differences in DSB repair pathway choices between A. thaliana and P. patens, suggesting that they represent adaptations to different demands for the maintenance of genome stability.
Collapse
|
61
|
Yao Y, Li X, Chen W, Liu H, Mi L, Ren D, Mo A, Lu P. ATM Promotes RAD51-Mediated Meiotic DSB Repair by Inter-Sister-Chromatid Recombination in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:839. [PMID: 32670319 PMCID: PMC7329986 DOI: 10.3389/fpls.2020.00839] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/26/2020] [Indexed: 05/17/2023]
Abstract
Meiotic recombination ensures accurate homologous chromosome segregation during meiosis and generates novel allelic combinations among gametes. During meiosis, DNA double strand breaks (DSBs) are generated to facilitate recombination. To maintain genome integrity, meiotic DSBs must be repaired using appropriate DNA templates. Although the DNA damage response protein kinase Ataxia-telangiectasia mutated (ATM) has been shown to be involved in meiotic recombination in Arabidopsis, its mechanistic role is still unclear. In this study, we performed cytological analysis in Arabidopsis atm mutant, we show that there are fewer γH2AX foci, but more RAD51 and DMC1 foci on atm meiotic chromosomes. Furthermore, we observed an increase in meiotic Type I crossovers (COs) in atm. Our genetic analysis shows that the meiotic phenotype of atm rad51 double mutants is similar to the rad51 single mutant. Whereas, the atm dmc1 double mutant has a more severe chromosome fragmentation phenotype compared to both single mutants, suggesting that ATM functions in concert with RAD51, but in parallel to DMC1. Lastly, we show that atm asy1 double mutants also have more severe meiotic recombination defects. These data lead us to propose a model wherein ATM promotes RAD51-mediated meiotic DSB repair by inter-sister-chromatid (IS) recombination in Arabidopsis.
Collapse
Affiliation(s)
- Yuan Yao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaojing Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wanli Chen
- School of Life Sciences, Fudan University, Shanghai, China
| | - Hui Liu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Limin Mi
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ding Ren
- School of Life Sciences, Fudan University, Shanghai, China
| | - Aowei Mo
- School of Life Sciences, Fudan University, Shanghai, China
| | - Pingli Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
62
|
Wang H, Cao Q, Zhao Q, Arfan M, Liu W. Mechanisms used by DNA MMR system to cope with Cadmium-induced DNA damage in plants. CHEMOSPHERE 2020; 246:125614. [PMID: 31883478 DOI: 10.1016/j.chemosphere.2019.125614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 05/27/2023]
Abstract
Cadmium (Cd) is found widely in soil and is severely toxic for plants, causing oxidative damage in plant cells because of its heavy metal characteristics. The DNA damage response (DDR) is triggered in plants to cope with the Cd stress. The DNA mismatch repair (MMR) system known for its mismatch repair function determines DDR, as mispairs are easily generated by a translesional synthesis under Cd-induced genomic instability. Cd-induced mismatches are recognized by three heterodimeric complexes including MutSα (MSH2/MSH6), MutSβ (MSH2/MSH3), and MutSγ (MSH2/MSH7). MutLα (MLH1/PMS1), PCNA/RFC, EXO1, DNA polymerase δ and DNA ligase participate in mismatch repair in turn. Meanwhile, ATR is preferentially activated by MSH2 to trigger DDR including the regulation of the cell cycle, endoreduplication, cell death, and recruitment of other DNA repair, which enhances plant tolerance to Cd. However, plants with deficient MutS will bypass MMR-mediated DDR and release the multiple-effect MLH1 from requisition of the MMR system, which leads to weak tolerance to Cd in plants. In this review, we systematically illustrate how the plant DNA MMR system works in a Cd-induced DDR, and how MMR genes regulate plant tolerance to Cd. Additionally, we also reviewed multiple epigenetic regulation systems acting on MMR genes under stress.
Collapse
Affiliation(s)
- Hetong Wang
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang, 110044, PR China.
| | - Qijiang Cao
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang, 110044, PR China.
| | - Qiang Zhao
- Agricultural College, Shenyang Agricultural University, Shenyang, 110866, PR China.
| | - Muhammad Arfan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Wan Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| |
Collapse
|
63
|
Mahapatra K, Roy S. An insight into the mechanism of DNA damage response in plants- role of SUPPRESSOR OF GAMMA RESPONSE 1: An overview. Mutat Res 2020; 819-820:111689. [PMID: 32004947 DOI: 10.1016/j.mrfmmm.2020.111689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/31/2019] [Accepted: 01/23/2020] [Indexed: 02/03/2023]
Abstract
Because of their sessile lifestyle, plants are inescapably exposed to various kinds of environmental stresses throughout their lifetime. Therefore, to regulate their growth and development, plants constantly monitor the environmental signals and respond appropriately. However, these environmental stress factors, along with some endogenous metabolites, generated in response to environmental stress factors often induce various forms of DNA damage in plants and thus promote genome instability. To maintain the genomic integrity, plants have developed an extensive, sophisticated and coordinated cellular signaling mechanism known as DNA damage response or DDR. DDR evokes a signaling process which initiates with the sensing of DNA damage and followed by the subsequent activation of downstream pathways in many directions to repair and eliminate the harmful effects of DNA damages. SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), one of the newly identified components of DDR in plant genome, appears to play central role in this signaling network. SOG1 is a member of NAC [NO APICAL MERISTEM (NAM), ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR (ATAF), CUP-SHAPED COTYLEDON (CUC)] domain family of transcription factors and involved in a diverse array of function in plants, encompassing transcriptional response to DNA damage, cell cycle checkpoint functions, ATAXIA-TELANGIECTASIA-MUTATED (ATM) or ATAXIA TELANGIECTASIA AND RAD3-RELATED (ATR) mediated activation of DNA damage response and repair, functioning in programmed cell death and regulation of induction of endoreduplication. Although most of the functional studies on SOG1 have been reported in Arabidopsis, some recent reports have indicated diverse functions of SOG1 in various other plant species, including Glycine max, Medicago truncatula, Sorghum bicolour, Oryza sativa and Zea mays, respectively. The remarkable functional diversity shown by SOG1 protein indicates its multitasking capacity. In this review, we integrate information mainly related to functional aspects of SOG1 in the context of DDR in plants. Considering the important role of SOG1 in DDR and its functional diversity, in-depth functional study of this crucial regulatory protein can provide further potential information on genome stability maintenance mechanism in plants in the context of changing environmental condition.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, 713 104, West Bengal, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, 713 104, West Bengal, India.
| |
Collapse
|
64
|
Cabral D, Banora MY, Antonino JD, Rodiuc N, Vieira P, Coelho RR, Chevalier C, Eekhout T, Engler G, De Veylder L, Grossi-de-Sa MF, de Almeida Engler J. The plant WEE1 kinase is involved in checkpoint control activation in nematode-induced galls. THE NEW PHYTOLOGIST 2020; 225:430-447. [PMID: 31505035 DOI: 10.1111/nph.16185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Galls induced by plant-parasitic nematodes involve a hyperactivation of the plant mitotic and endocycle machinery for their profit. Dedifferentiation of host root cells includes drastic cellular and molecular readjustments. In such a background, potential DNA damage in the genome of gall cells is evident. We investigated whether DNA damage checkpoint activation followed by DNA repair occurred, or was eventually circumvented, in nematode-induced galls. Galls display transcriptional activation of the DNA damage checkpoint kinase WEE1, correlated with its protein localization in the nuclei. The promoter of the stress marker gene SMR7 was evaluated under the WEE1-knockout background. Drugs inducing DNA damage and a marker for DNA repair, PARP1, were used to understand the mechanisms for coping with DNA damage in galls. Our functional study revealed that gall cells lacking WEE1 conceivably entered mitosis prematurely, disturbing the cell cycle despite the loss of genome integrity. The disrupted nuclei phenotype in giant cells hinted at the accumulation of mitotic defects. In addition, WEE1-knockout in Arabidopsis and downregulation in tomato repressed infection and reproduction of root-knot nematodes. Together with data on DNA-damaging drugs, we suggest a conserved function for WEE1 in controlling G1/S cell cycle arrest in response to a replication defect in galls.
Collapse
Affiliation(s)
- Danila Cabral
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Mohamed Youssef Banora
- Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, PO Box 68, Hadayek Shoubra, 11241, Cairo, Egypt
- Department of Biology, Faculty of Science and Art-Khulais, University of Jeddah, Saudi Arabia
| | - José Dijair Antonino
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB, Av. W5 Norte Final, Brasília, DF, 70770-900, Brazil
- Departamento de Agronomia/Entomologia, Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros S/N, Dois Irmãos,, Recife, PE, 521171-900, Brazil
| | - Natalia Rodiuc
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB, Av. W5 Norte Final, Brasília, DF, 70770-900, Brazil
| | - Paulo Vieira
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Roberta R Coelho
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB, Av. W5 Norte Final, Brasília, DF, 70770-900, Brazil
| | - Christian Chevalier
- UMR1332 BFP, INRA, University of Bordeaux, 33882, Villenave d'Ornon Cedex, France
| | - Thomas Eekhout
- Department of Plant Biotechnology and Genetics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Gilbert Engler
- INRA, Université Côte d'Azur, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Lieven De Veylder
- Department of Plant Biotechnology and Genetics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Maria Fatima Grossi-de-Sa
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, PqEB, Av. W5 Norte Final, Brasília, DF, 70770-900, Brazil
| | | |
Collapse
|
65
|
Takahashi S, Kojo KH, Hasezawa S. Quantification of Ultraviolet-B Stress-Induced Changes in Nuclear and Cellular Sizes of Tobacco Bright Yellow-2 Cells. CYTOLOGIA 2019. [DOI: 10.1508/cytologia.84.347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Shinya Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba
- Graduate School of Frontier Sciences, University of Tokyo
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies
| | - Kei H. Kojo
- Research and Development Division, LPIXEL Inc
| | | |
Collapse
|
66
|
Jung IJ, Ahn JW, Jung S, Hwang JE, Hong MJ, Choi HI, Kim JB. Overexpression of rice jacalin-related mannose-binding lectin (OsJAC1) enhances resistance to ionizing radiation in Arabidopsis. BMC PLANT BIOLOGY 2019; 19:561. [PMID: 31852472 PMCID: PMC6921557 DOI: 10.1186/s12870-019-2056-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/26/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Jacalin-related lectins in plants are important in defense signaling and regulate growth, development, and response to abiotic stress. We characterized the function of a rice mannose-binding jacalin-related lectin (OsJAC1) in the response to DNA damage from gamma radiation. RESULTS Time- and dose-dependent changes of OsJAC1 expression in rice were detected in response to gamma radiation. To identify OsJAC1 function, OsJAC1-overexpressing transgenic Arabidopsis plants were generated. Interestingly, OsJAC1 overexpression conferred hyper-resistance to gamma radiation in these plants. Using comparative transcriptome analysis, genes related to pathogen defense were identified among 22 differentially expressed genes in OsJAC1-overexpressing Arabidopsis lines following gamma irradiation. Furthermore, expression profiles of genes associated with the plant response to DNA damage were determined in these transgenic lines, revealing expression changes of important DNA damage checkpoint and perception regulatory components, namely MCMs, RPA, ATM, and MRE11. CONCLUSIONS OsJAC1 overexpression may confer hyper-resistance to gamma radiation via activation of DNA damage perception and DNA damage checkpoints in Arabidopsis, implicating OsJAC1 as a key player in DNA damage response in plants. This study is the first report of a role for mannose-binding jacalin-related lectin in DNA damage.
Collapse
Affiliation(s)
- In Jung Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212 Republic of Korea
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212 Republic of Korea
| | - Sera Jung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212 Republic of Korea
| | - Jung Eun Hwang
- Division of Ecological Conservation, Bureau of Ecological Research, National Institute of Ecology, Seocheon, 33657 Republic of Korea
| | - Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212 Republic of Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212 Republic of Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 56212 Republic of Korea
| |
Collapse
|
67
|
Waterworth WM, Wilson M, Wang D, Nuhse T, Warward S, Selley J, West CE. Phosphoproteomic analysis reveals plant DNA damage signalling pathways with a functional role for histone H2AX phosphorylation in plant growth under genotoxic stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1007-1021. [PMID: 31410901 PMCID: PMC6900162 DOI: 10.1111/tpj.14495] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 05/23/2023]
Abstract
DNA damage responses are crucial for plant growth under genotoxic stress. Accumulating evidence indicates that DNA damage responses differ between plant cell types. Here, quantitative shotgun phosphoproteomics provided high-throughput analysis of the DNA damage response network in callus cells. MS analysis revealed a wide network of highly dynamic changes in the phosphoprotein profile of genotoxin-treated cells, largely mediated by the ATAXIA TELANGIECTASIA MUTATED (ATM) protein kinase, representing candidate factors that modulate plant growth, development and DNA repair. A C-terminal dual serine target motif unique to H2AX in the plant lineage showed 171-fold phosphorylation that was absent in atm mutant lines. The physiological significance of post-translational DNA damage signalling to plant growth and survival was demonstrated using reverse genetics and complementation studies of h2ax mutants, establishing the functional role of ATM-mediated histone modification in plant growth under genotoxic stress. Our findings demonstrate the complexity and functional significance of post-translational DNA damage signalling responses in plants and establish the requirement of H2AX phosphorylation for plant survival under genotoxic stress.
Collapse
Affiliation(s)
| | - Michael Wilson
- Centre for Plant SciencesUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Dapeng Wang
- Leeds OmicsUniversity of LeedsLeedsLS2 9JTUK
| | - Thomas Nuhse
- Faculty of Life SciencesUniversity of ManchesterOxford RoadManchesterM13 9PTUK
| | - Stacey Warward
- Faculty of Life SciencesUniversity of ManchesterOxford RoadManchesterM13 9PTUK
| | - Julian Selley
- Faculty of Life SciencesUniversity of ManchesterOxford RoadManchesterM13 9PTUK
| | | |
Collapse
|
68
|
Durut N, Mittelsten Scheid O. The Role of Noncoding RNAs in Double-Strand Break Repair. FRONTIERS IN PLANT SCIENCE 2019; 10:1155. [PMID: 31611891 PMCID: PMC6776598 DOI: 10.3389/fpls.2019.01155] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Genome stability is constantly threatened by DNA lesions generated by different environmental factors as well as endogenous processes. If not properly and timely repaired, damaged DNA can lead to mutations or chromosomal rearrangements, well-known reasons for genetic diseases or cancer in mammals, or growth abnormalities and/or sterility in plants. To prevent deleterious consequences of DNA damage, a sophisticated system termed DNA damage response (DDR) detects DNA lesions and initiates DNA repair processes. In addition to many well-studied canonical proteins involved in this process, noncoding RNA (ncRNA) molecules have recently been discovered as important regulators of the DDR pathway, extending the broad functional repertoire of ncRNAs to the maintenance of genome stability. These ncRNAs are mainly connected with double-strand breaks (DSBs), the most dangerous type of DNA lesions. The possibility to intentionally generate site-specific DSBs in the genome with endonucleases constitutes a powerful tool to study, in vivo, how DSBs are processed and how ncRNAs participate in this crucial event. In this review, we will summarize studies reporting the different roles of ncRNAs in DSB repair and discuss how genome editing approaches, especially CRISPR/Cas systems, can assist DNA repair studies. We will summarize knowledge concerning the functional significance of ncRNAs in DNA repair and their contribution to genome stability and integrity, with a focus on plants.
Collapse
|
69
|
Chen P, Sjogren CA, Larsen PB, Schnittger A. A multi-level response to DNA damage induced by aluminium. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:479-491. [PMID: 30657222 PMCID: PMC6850279 DOI: 10.1111/tpj.14231] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/03/2018] [Accepted: 12/18/2018] [Indexed: 05/17/2023]
Abstract
Aluminium (Al) ions are one of the primary growth-limiting factors for plants on acid soils, globally restricting agriculture. Despite its impact, little is known about Al action in planta. Earlier work has indicated that, among other effects, Al induces DNA damage. However, the loss of major DNA damage response regulators, such SOG1, partially suppressed the growth reduction in plants seen on Al-containing media. This raised the question whether Al actually causes DNA damage and, if so, how. Here, we provide cytological and genetic data corroborating that exposure to Al leads to DNA double-strand breaks. We find that the Al-induced damage specifically involves homology-dependent (HR) recombination repair. Using an Al toxicity assay that delivers higher Al concentrations than used in previous tests, we find that sog1 mutants become highly sensitive to Al. This indicates a multi-level response to Al-induced DNA damage in plants.
Collapse
Affiliation(s)
- Poyu Chen
- Department of Developmental BiologyUniversity of HamburgHamburg22609Germany
| | | | - Paul B. Larsen
- Department of BiochemistryUniversity of CaliforniaRiversideCA92521USA
| | - Arp Schnittger
- Department of Developmental BiologyUniversity of HamburgHamburg22609Germany
| |
Collapse
|
70
|
Takahashi N, Ogita N, Takahashi T, Taniguchi S, Tanaka M, Seki M, Umeda M. A regulatory module controlling stress-induced cell cycle arrest in Arabidopsis. eLife 2019; 8:43944. [PMID: 30944065 PMCID: PMC6449083 DOI: 10.7554/elife.43944] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/10/2019] [Indexed: 11/13/2022] Open
Abstract
Cell cycle arrest is an active response to stresses that enables organisms to survive under fluctuating environmental conditions. While signalling pathways that inhibit cell cycle progression have been elucidated, the putative core module orchestrating cell cycle arrest in response to various stresses is still elusive. Here we report that in Arabidopsis, the NAC-type transcription factors ANAC044 and ANAC085 are required for DNA damage-induced G2 arrest. Under genotoxic stress conditions, ANAC044 and ANAC085 enhance protein accumulation of the R1R2R3-type Myb transcription factor (Rep-MYB), which represses G2/M-specific genes. ANAC044/ANAC085-dependent accumulation of Rep-MYB and cell cycle arrest are also observed in the response to heat stress that causes G2 arrest, but not to osmotic stress that retards G1 progression. These results suggest that plants deploy the ANAC044/ANAC085-mediated signalling module as a hub which perceives distinct stress signals and leads to G2 arrest. During environmental stresses, such as high light or a drought, plants do not have the opportunity to up and leave. Instead, they need to buy time and energy by pausing their growth, which means stopping their cells from dividing. In this case, the cell cycle, a series of stages during which a cell prepares itself for division, must be halted. If the genetic information in cells is damaged, often under the influence of the environment, plants stop their cell cycle in the step just before division. However, it is still unclear how this process takes place, and which proteins participate in it. Researchers also do not know whether environmental stresses can directly trigger this mechanism. To investigate, Takahashi et al. conducted a series of genetic experiments on a common plant known as Arabidopsis thaliana, and they identified two proteins, ANAC044 and ANAC085, which could stop the cell cycle when the genetic information is damaged. In particular, ANAC044 and ANAC085 worked by stabilizing other proteins that turn off certain genes that the cell needed to divide. Additional experiments showed that other types of stresses, such as heat, halted the cell cycle using the ANAC044 and ANAC085 pathway. This suggests that this mechanism may be a central ‘hub’ that responds to various stress signals from the environment to prevent cells from dividing. In the field, environmental stresses stop plants from growing, which reduces crop yields; ultimately, manipulating ANAC044 or ANAC085 might help to boost plant productivity even when external conditions fluctuate.
Collapse
Affiliation(s)
- Naoki Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Nobuo Ogita
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Tomonobu Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Shoji Taniguchi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan.,RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Motoaki Seki
- RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
71
|
Ni S, Li Z, Ying J, Zhang J, Chen H. Decreased Spikelets 4 Encoding a Novel Tetratricopeptide Repeat Domain-Containing Protein Is Involved in DNA Repair and Spikelet Number Determination in Rice. Genes (Basel) 2019; 10:genes10030214. [PMID: 30871267 PMCID: PMC6471630 DOI: 10.3390/genes10030214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Spikelet number per panicle is a determinative factor of rice yield. DNA repair epigenetically alters the DNA accessibility, which can eventually regulate the transcription of the target genes. However, what and how DNA repair genes are related to rice spikelet development remains unknown. Here, we report the map-based cloning of a novel spikelet number gene DES4 encoding a tetratricopeptide domain-containing protein. DES4 is a close ortholog of Arabidopsis BRU1, which is functionally related to axillary meristem development. A single base pair deletion in the last exon of DES4 caused a premature stop of the resulting protein. The des4 mutant exhibited dwarf, reduced tiller, and spikelet numbers phenotypes, as well as hypersensitivity to genotoxic stresses, suggesting its essential role in DNA repair. DES4 is predominantly expressed in young panicles and axillary meristems, and DES4 protein is localized in nucleus. A set of DNA repair genes such as cyclins, KUs (KD subunits) and recombinases were differentially regulated in des4. Meanwhile, rice spikelet number genes LAX1, LAX2, and MOC1 were significantly down-regulated in des4. In morphology, des4 showed more severe reduction of spikelet numbers than lax1, lax2, and moc1, suggesting that DES4 may work upstream of the three genes.
Collapse
Affiliation(s)
- Shen Ni
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Zongzhu Li
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20037, USA.
| | - Jiancheng Ying
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Hongqi Chen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
72
|
Cui L, Zhou F, Chen C, Wang CC. Overexpression of CCDC69 activates p14 ARF/MDM2/p53 pathway and confers cisplatin sensitivity. J Ovarian Res 2019; 12:4. [PMID: 30651135 PMCID: PMC6334460 DOI: 10.1186/s13048-019-0479-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 01/03/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES The aim of the study is to explore the relationship between CCDC69 expression and resistance of ovarian cancer cells to cisplatin and reveal the underlying mechanism. METHODS One hundred thirty five ovarian cancer patients with intact chemo-response information from The Cancer Genome Atlas (TCGA) database were included and analyzed. Stable CCDC69 overexpressing 293 and ovarian cancer A2780 cell lines were established and subjected to examine cell apoptosis and cell cycle distribution using CCK-8 assay and flow cytometry. Cell cycle and apoptosis pathway were evaluated by immunoblots. Stability of p14ARF/MDM2/p53 pathway related proteins were determined by half-life analysis and ubiquitination experiments. RESULTS We found that CCDC69 expression was significantly higher in chemo-sensitive groups compared with chemo-resistant groups from TCGA database. High CCDC69 expression was associated longer survival. CCDC69 overexpressing 293 and A2780 cells with wildtype p53 and contributes to cisplatin sensitivity following treatment with cisplatin. We further found over-expression of CCDC69 activated p14ARF/MDM2/p53 pathway. Importantly, we also demonstrated that CCDC69 expression extended p53 and p14ARF protein half-life and shortened MDM2 protein half-life. Ubiquitination assay revealing a decrease in p14 ubiquitination in CCDC69 over-expression cells comparing to cells expressing empty vector. CONCLUSIONS It is tempting to conclude that targeting CCDC69 may play a role in cisplatin resistance.
Collapse
Affiliation(s)
- Long Cui
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children Hospital, Guangzhou, 511400, Guangdong, China. .,Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - Fang Zhou
- School of Nursing, The First Affiliated Hospital, Xuzhou Medical University, Xuzhou, China
| | - Cui Chen
- Intensive Care Unit, The First Affiliated Hospital, Xuzhou Medical University, Xuzhou, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Reproduction and Development Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Shatin, China
| |
Collapse
|
73
|
Cimini S, Gualtieri C, Macovei A, Balestrazzi A, De Gara L, Locato V. Redox Balance-DDR-miRNA Triangle: Relevance in Genome Stability and Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:989. [PMID: 31428113 PMCID: PMC6688120 DOI: 10.3389/fpls.2019.00989] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/15/2019] [Indexed: 05/05/2023]
Abstract
Plants are continuously faced with complex environmental conditions which can affect the oxidative metabolism and photosynthetic efficiency, thus leading to the over-production of reactive oxygen species (ROS). Over a certain threshold, ROS can damage DNA. DNA damage, unless repaired, can affect genome stability, thus interfering with cell survival and severely reducing crop productivity. A complex network of pathways involved in DNA damage response (DDR) needs to be activated in order to maintain genome integrity. The expression of specific genes belonging to these pathways can be used as indicators of oxidative DNA damage and effective DNA repair in plants subjected to stress conditions. Managing ROS levels by modulating their production and scavenging systems shifts the role of these compounds from toxic molecules to key messengers involved in plant tolerance acquisition. Oxidative and anti-oxidative signals normally move among the different cell compartments, including the nucleus, cytosol, and organelles. Nuclei are dynamically equipped with different redox systems, such as glutathione (GSH), thiol reductases, and redox regulated transcription factors (TFs). The nuclear redox network participates in the regulation of the DNA metabolism, in terms of transcriptional events, replication, and repair mechanisms. This mainly occurs through redox-dependent regulatory mechanisms comprising redox buffering and post-translational modifications, such as the thiol-disulphide switch, glutathionylation, and S-nitrosylation. The regulatory role of microRNAs (miRNAs) is also emerging for the maintenance of genome stability and the modulation of antioxidative machinery under adverse environmental conditions. In fact, redox systems and DDR pathways can be controlled at a post-transcriptional level by miRNAs. This review reports on the interconnections between the DDR pathways and redox balancing systems. It presents a new dynamic picture by taking into account the shared regulatory mechanism mediated by miRNAs in plant defense responses to stress.
Collapse
Affiliation(s)
- Sara Cimini
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
| | - Carla Gualtieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Laura De Gara
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vittoria Locato
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
- *Correspondence: Vittoria Locato,
| |
Collapse
|
74
|
Roy Chowdhury M, Basak J. Tiny Yet Indispensable Plant MicroRNAs Are Worth to Explore as Key Components for Combating Genotoxic Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:1197. [PMID: 31636646 PMCID: PMC6788304 DOI: 10.3389/fpls.2019.01197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 05/03/2023]
Abstract
Plants being sessile are always exposed to various stresses including biotic and abiotic stresses. Some of these stresses are genotoxic to cells causing DNA damage by forming lesions which include altered bases, cross-links, and breaking of DNA strands, which in turn hamper the genomic integrity. In order to survive through all these adverse conditions, plants have evolved different DNA repair mechanisms. As seen from the mammalian system and different human diseases, various microRNAs (miRNAs) can target the 3'-untranslated region of mRNAs that code for the proteins involved in DNA repair pathways. Since miRNAs play an important role in plant cells by regulating various metabolic pathways, it can also be possible that miRNAs play an important role in DNA repair pathways too. However, till date, only a handful of plant miRNAs have been identified to play important role in combating genotoxic stresses in plants. Limitation of information regarding involvement of miRNAs in DNA repair as well as in ROS scavenging prompted us to gather information about plant miRNAs specific for these tasks. This mini-review aims to present pertinent literature dealing with different genotoxic stresses that cause genome instability as well as plant specific responses to survive the damage. This is intertwined with the involvement of miRNAs in genotoxic stress in plants, challenges of applying miRNAs as a tool to combat DNA damage along with ways to overcome these challenges, and finally, the future prospective of these understudied aspects.
Collapse
Affiliation(s)
- Moumita Roy Chowdhury
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jolly Basak
- Laboratory of Plant Stress Biology, Department of Biotechnology, Visva-Bharati, University Santiniketan, India
- *Correspondence: Jolly Basak,
| |
Collapse
|
75
|
Nisa MU, Huang Y, Benhamed M, Raynaud C. The Plant DNA Damage Response: Signaling Pathways Leading to Growth Inhibition and Putative Role in Response to Stress Conditions. FRONTIERS IN PLANT SCIENCE 2019; 10:653. [PMID: 31164899 PMCID: PMC6534066 DOI: 10.3389/fpls.2019.00653] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/30/2019] [Indexed: 05/02/2023]
Abstract
Maintenance of genome integrity is a key issue for all living organisms. Cells are constantly exposed to DNA damage due to replication or transcription, cellular metabolic activities leading to the production of Reactive Oxygen Species (ROS) or even exposure to DNA damaging agents such as UV light. However, genomes remain extremely stable, thanks to the permanent repair of DNA lesions. One key mechanism contributing to genome stability is the DNA Damage Response (DDR) that activates DNA repair pathways, and in the case of proliferating cells, stops cell division until DNA repair is complete. The signaling mechanisms of the DDR are quite well conserved between organisms including in plants where they have been investigated into detail over the past 20 years. In this review we summarize the acquired knowledge and recent advances regarding the DDR control of cell cycle progression. Studying the plant DDR is particularly interesting because of their mode of development and lifestyle. Indeed, plants develop largely post-embryonically, and form new organs through the activity of meristems in which cells retain the ability to proliferate. In addition, they are sessile organisms that are permanently exposed to adverse conditions that could potentially induce DNA damage in all cell types including meristems. In the second part of the review we discuss the recent findings connecting the plant DDR to responses to biotic and abiotic stresses.
Collapse
|
76
|
Kim JH, Ryu TH, Lee SS, Lee S, Chung BY. Ionizing radiation manifesting DNA damage response in plants: An overview of DNA damage signaling and repair mechanisms in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 278:44-53. [PMID: 30471728 DOI: 10.1016/j.plantsci.2018.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/30/2018] [Accepted: 10/16/2018] [Indexed: 05/23/2023]
Abstract
Plants orchestrate various DNA damage responses (DDRs) to overcome the deleterious impacts of genotoxic agents on genetic materials. Ionizing radiation (IR) is widely used as a potent genotoxic agent in plant DDR research as well as plant breeding and quarantine services for commercial uses. This review aimed to highlight the recent advances in cellular and phenotypic DDRs, especially those induced by IR. Various physicochemical genotoxic agents damage DNA directly or indirectly by inhibiting DNA replication. Among them, IR-induced DDRs are considerably more complicated. Many aspects of such DDRs and their initial transcriptomes are closely related to oxidative stress response. Although many key components of DDR signaling have been characterized in plants, DDRs in plant cells are not understood in detail to allow comparison with those in yeast and mammalian cells. Recent studies have revealed plant DDR signaling pathways including the key regulator SOG1. The SOG1 and its upstream key components ATM and ATR could be functionally characterized by analyzing their knockout DDR phenotypes after exposure to IR. Considering the potent genotoxicity of IR and its various DDR phenotypes, IR-induced DDR studies should help to establish an integrated model for plant DDR signaling pathways by revealing the unknown key components of various DDRs in plants.
Collapse
Affiliation(s)
- Jin-Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea; Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Tae Ho Ryu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Seung Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea; Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Sungbeom Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea; Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Byung Yeoup Chung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| |
Collapse
|
77
|
Hirakawa T, Matsunaga S. Characterization of DNA Repair Foci in Root Cells of Arabidopsis in Response to DNA Damage. FRONTIERS IN PLANT SCIENCE 2019; 10:990. [PMID: 31417598 PMCID: PMC6682680 DOI: 10.3389/fpls.2019.00990] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/15/2019] [Indexed: 05/20/2023]
Abstract
As a sessile organism, plants are constantly challenged by diverse environmental stresses that threaten genome integrity by way of induction of DNA damage. In plants, each tissue is composed of differentiated cell types, and the response to DNA damage differs among each cell type. However, limited information is available on the subnuclear dynamics of different cell types in response to DNA damage in plants. A chromatin remodeling factor RAD54, which plays an important role in the exchange reaction and alteration of chromatin structure during homologous recombination, specifically accumulates at damaged sites, forming DNA repair foci (termed RAD54 foci) in nuclei after γ-irradiation. In this study, we performed a time-course analysis of the appearance of RAD54 foci in root cells of Arabidopsis after γ-irradiation to characterize the subnuclear dynamics in each cell type. A short time after γ-irradiation, no significant difference in detection frequency of RAD54 foci was observed among epidermal, cortical, and endodermal cells in the meristematic zone of roots. Interestingly, cells showing RAD54 foci persisted in roots at long time after γ-irradiation, and RAD54 foci in these cells localized to nuclear periphery with high frequency. These observations suggest that the nuclear envelope plays a role in the maintenance of genome stability in response to DNA damage in Arabidopsis roots.
Collapse
|
78
|
Szurman-Zubrzycka M, Nawrot M, Jelonek J, Dziekanowski M, Kwasniewska J, Szarejko I. ATR, a DNA Damage Signaling Kinase, Is Involved in Aluminum Response in Barley. FRONTIERS IN PLANT SCIENCE 2019; 10:1299. [PMID: 31695712 PMCID: PMC6817586 DOI: 10.3389/fpls.2019.01299] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/18/2019] [Indexed: 05/10/2023]
Abstract
Ataxia Telangiectasia and Rad-3-related protein (ATR) is a DNA damage signaling kinase required for the monitoring of DNA integrity. Together with ATM and SOG1, it is a key player in the transcriptional regulation of DNA damage response (DDR) genes in plants. In this study, we describe the role of ATR in the DDR pathway in barley and the function of the HvATR gene in response to DNA damages induced by aluminum toxicity. Aluminum is the third most abundant element in the Earth's crust. It becomes highly phytotoxic in acidic soils, which comprise more than 50% of arable lands worldwide. At low pH, Al is known to be a genotoxic agent causing DNA damage and cell cycle arrest. We present barley mutants, hvatr.g and hvatr.i, developed by TILLING strategy. The hvatr.g mutant carries a G6054A missense mutation in the ATR gene, leading to the substitution of a highly conserved amino acid in the protein (G1015S). The hvatr.g mutant showed the impaired DDR pathway. It accumulated DNA damages in the nuclei of root meristem cells when grown in control conditions. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) analysis revealed that 60% of mutant nuclei possessed DNA nicks and breaks, whereas in the wild type only 2% of the nuclei were TUNEL-positive. The high frequency of DNA damages did not lead to the inhibition of the cell cycle progression, but the mutant showed an increased number of cells in the G2/M phase. In response to treatments with different Al doses, hvatr.g showed a high level of tolerance. The retention of root growth, which is the most evident symptom of Al toxicity, was not observed in the mutant, as it was in its parent variety. Furthermore, Al treatment increased the level of DNA damages, but did not affect the mitotic activity and the cell cycle profile in the hvatr.g mutant. A similar phenotype was observed for the hvatr.i mutant, carrying another missense mutation leading to G903E substitution in the HvATR protein. Our results demonstrate that the impaired mechanism of DNA damage response may lead to aluminum tolerance. They shed a new light on the role of the ATR-dependent DDR pathway in an agronomically important species.
Collapse
Affiliation(s)
- Miriam Szurman-Zubrzycka
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Malgorzata Nawrot
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Janusz Jelonek
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Mariusz Dziekanowski
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Jolanta Kwasniewska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
- *Correspondence: Iwona Szarejko,
| |
Collapse
|
79
|
Fraikin GY, Belenikina NS, Rubin AB. Damaging and Defense Processes Induced in Plant Cells by UVB Radiation. BIOL BULL+ 2018. [DOI: 10.1134/s1062359018060031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
80
|
Fraikin GY. Signaling Mechanisms Regulating Diverse Plant Cell Responses to UVB Radiation. BIOCHEMISTRY (MOSCOW) 2018; 83:787-794. [PMID: 30200863 DOI: 10.1134/s0006297918070027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UVB radiation (290-320 nm) causes diverse effects in plant cells that vary with the fluence rate of exposure. High fluence rates of UVB radiation cause damage to DNA and formation of reactive oxygen species in mitochondria and chloroplasts, which lead to oxidation of membrane proteins and lipids and inhibition of cellular functions. In response to oxidative stress, mitochondrial transmembrane potential dissipates, resulting in cytochrome c release and activation of metacaspases. This leads to the apoptosis-like cell death. The signaling mechanism based on UVB DNA damage includes checkpoint activation, cell-cycle arrest, and finally programmed cell death with characteristic DNA fragmentation and morphological hallmarks typical of apoptotic cells. Recently, it was shown that among the components of this signaling mechanism the transcriptional factor SOG1 (suppressor of gamma response 1) plays a key role in regulation of programmed cell death in plants. In contrast to its damaging effects, UVB radiation at low fluence rates can act as a regulatory signal that is specifically perceived by plants to promote acclimation and survival in sunlight. The protective action of UVB is based on expression of various genes, including those encoding flavonoid synthesis enzymes that provide a UVB-absorbing sunscreen in epidermal tissues and DNA photorepair enzymes. These processes are mediated by the UVB photoreceptor UVR8, which has been recently characterized at the molecular level. Now progress is made in uncovering the UVR8-mediated signaling pathway mechanism in the context of UVB photon perception and revealing the biochemical components of the early stages of light signal transduction. In this review, attention is focused on the achievements in studying these UVB-induced signaling processes.
Collapse
Affiliation(s)
- G Ya Fraikin
- Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
81
|
Abstract
Nonsense-mediated mRNA decay is a eukaryotic pathway that degrades transcripts with premature termination codons (PTCs). In most eukaryotes, thousands of transcripts are degraded by NMD, including many important regulators of developmental and stress response pathways. Transcripts can be targeted to NMD by the presence of an upstream ORF or by introduction of a PTC through alternative splicing. Many factors involved in the recognition of PTCs and the destruction of NMD targets have been characterized. While some are highly conserved, others have been repeatedly lost in eukaryotic lineages. Here, I detail the factors involved in NMD, our current understanding of their interactions and how they have evolved. I outline a classification system to describe NMD pathways based on the presence/absence of key NMD factors. These types of NMD pathways exist in multiple different lineages, indicating the plasticity of the NMD pathway through recurrent losses of NMD factors during eukaryotic evolution. By classifying the NMD pathways in this way, gaps in our understanding are revealed, even within well studied organisms. Finally, I discuss the likely driving force behind the origins of the NMD pathway before the appearance of the last eukaryotic common ancestor: transposable element expansion and the consequential origin of introns.
Collapse
Affiliation(s)
- James P B Lloyd
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Australia
| |
Collapse
|
82
|
Abstract
Nonsense-mediated mRNA decay is a eukaryotic pathway that degrades transcripts with premature termination codons (PTCs). In most eukaryotes, thousands of transcripts are degraded by NMD, including many important regulators of developmental and stress response pathways. Transcripts can be targeted to NMD by the presence of an upstream ORF or by introduction of a PTC through alternative splicing. Many factors involved in the recognition of PTCs and the destruction of NMD targets have been characterized. While some are highly conserved, others have been repeatedly lost in eukaryotic lineages. Here, I detail the factors involved in NMD, our current understanding of their interactions and how they have evolved. I outline a classification system to describe NMD pathways based on the presence/absence of key NMD factors. These types of NMD pathways exist in multiple different lineages, indicating the plasticity of the NMD pathway through recurrent losses of NMD factors during eukaryotic evolution. By classifying the NMD pathways in this way, gaps in our understanding are revealed, even within well studied organisms. Finally, I discuss the likely driving force behind the origins of the NMD pathway before the appearance of the last eukaryotic common ancestor: transposable element expansion and the consequential origin of introns.
Collapse
Affiliation(s)
- James P B Lloyd
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Australia
| |
Collapse
|
83
|
Yoshiyama KO, Kimura S. Ser-Gln sites of SOG1 are rapidly hyperphosphorylated in response to DNA double-strand breaks. PLANT SIGNALING & BEHAVIOR 2018; 13:e1477904. [PMID: 29939818 PMCID: PMC6110366 DOI: 10.1080/15592324.2018.1477904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
UNLABELLED The DNA damage response system (DDR) is crucial in addressing DNA double-strand breaks (DSBs), which pose a severe threat to genomic integrity. The SOG1 transcription factor is a master regulator of the Arabidopsis thaliana DDR. We previously showed that hyperphosphorylation of five Ser-Gln sites of SOG1 is the molecular switch to activate the DDR. In this study, we determined that SOG1 is hyperphosphorylated within 20 minutes following DSB-inducing treatment, followed by activation of several SOG1 target genes. Using SOG1 phosphorylation mutants, we demonstrated that although the hyperphosphorylation sites remain unchanged over time, the amount of hyperphosphorylation gradually increases. These observations suggest that rapid SOG1 hyperphosphorylation is limited by the amount of active kinases. ABBREVIATIONS SOG1, suppressor of gamma response; ATM, Ataxia telangiectasia mutated; ATR, ATM and Rad3-related.
Collapse
Affiliation(s)
- K. O. Yoshiyama
- Department of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto, Japan
- Department of Molecular and Chemical Life Sciences, Tohoku University, Sendai, Japan
| | - S. Kimura
- Department of Bioresource and Environmental Sciences, Kyoto Sangyo University, Kyoto, Japan
- Center for Ecological Evolutionary Developmental Biology, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
84
|
Kurzbauer MT, Pradillo M, Kerzendorfer C, Sims J, Ladurner R, Oliver C, Janisiw MP, Mosiolek M, Schweizer D, Copenhaver GP, Schlögelhofer P. Arabidopsis thaliana FANCD2 Promotes Meiotic Crossover Formation. THE PLANT CELL 2018; 30:415-428. [PMID: 29352063 PMCID: PMC5868695 DOI: 10.1105/tpc.17.00745] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/06/2017] [Accepted: 01/17/2018] [Indexed: 05/18/2023]
Abstract
Fanconi anemia (FA) is a human autosomal recessive disorder characterized by chromosomal instability, developmental pathologies, predisposition to cancer, and reduced fertility. So far, 19 genes have been implicated in FA, most of them involved in DNA repair. Some are conserved across higher eukaryotes, including plants. The Arabidopsis thaliana genome encodes a homolog of the Fanconi anemia D2 gene (FANCD2) whose function in DNA repair is not yet fully understood. Here, we provide evidence that AtFANCD2 is required for meiotic homologous recombination. Meiosis is a specialized cell division that ensures reduction of genomic content by half and DNA exchange between homologous chromosomes via crossovers (COs) prior to gamete formation. In plants, a mutation in AtFANCD2 results in a 14% reduction of CO numbers. Genetic analysis demonstrated that AtFANCD2 acts in parallel to both MUTS HOMOLOG4 (AtMSH4), known for its role in promoting interfering COs and MMS AND UV SENSITIVE81 (AtMUS81), known for its role in the formation of noninterfering COs. AtFANCD2 promotes noninterfering COs in a MUS81-independent manner and is therefore part of an uncharted meiotic CO-promoting mechanism, in addition to those described previously.
Collapse
Affiliation(s)
- Marie-Therese Kurzbauer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Mónica Pradillo
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Claudia Kerzendorfer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Jason Sims
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Rene Ladurner
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Cecilia Oliver
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Michael Peter Janisiw
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Magdalena Mosiolek
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Dieter Schweizer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| |
Collapse
|
85
|
Gao X, Wang W, Yang H, Wu L, He Z, Zhou S, Zhao H, Fu Z, Zhou F, Zhou Y. UBE2D3 gene overexpression increases radiosensitivity of EC109 esophageal cancer cells in vitro and in vivo. Oncotarget 2018; 7:32543-53. [PMID: 27105523 PMCID: PMC5078032 DOI: 10.18632/oncotarget.8869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/31/2016] [Indexed: 12/17/2022] Open
Abstract
Ubiquitin-conjugating enzyme E2D3 (UBE2D3), a key component in ubiquitin (Ub) proteasome system, plays a crucial role in tumorigenesis. We previously found that it is bound to hTERT, and UBE2D3 could attenuate radiosensitivity of human breast cancer cells. Here we investigated a contributing role of UBE2D3 in radiosensitivity of esophageal squamous carcinoma. We demonstrated that the overexpression of UBE2D3 in esophageal squamous carcinoma cells (EC109) resulted in prolonged G1 phase and shortened G2/M phase after irradiation. UBE2D3 overexpression also decreased length of telomere and activity of telomerase. In addition, the overexpression of UBE2D3 increased mRNA expression but decreased protein levels of hTERT in both vitro and vivo systems. Compared with untreated cells, the treatment of UBE2D3 overexpressing cells with the specific proteasome inhibitor (MG132) could up-regulate hTERT. MG132 treatment of UBE2D3 overexpressed cells caused a clear and dramatic increase in the amount of ubiquitinated hTERT species. These findings indicate that UBE2D3 enhances radiosensitivity of EC109 cells by degradating hTERT through the ubiquitin proteolysis pathway.
Collapse
Affiliation(s)
- Xiaojia Gao
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenbo Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Yang
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lin Wu
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhongshi He
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuliang Zhou
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Zhao
- Hubei Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenming Fu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
86
|
Zedek F, Bureš P. Holocentric chromosomes: from tolerance to fragmentation to colonization of the land. ANNALS OF BOTANY 2018; 121:9-16. [PMID: 29069342 PMCID: PMC5786251 DOI: 10.1093/aob/mcx118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/24/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND The dispersed occurrence of holocentric chromosomes across eukaryotes implies they are adaptive, but the conditions under which they confer an advantage over monocentric chromosomes remain unclear. Due to their extended kinetochore and the attachment of spindle microtubules along their entire length, holocentric chromosomes tolerate fragmentation; hence, they may be advantageous in times of exposure to factors that cause chromosomal fragmentation (clastogens). SCOPE It is shown that holocentric organisms may, indeed, thrive better than monocentric organisms under clastogenic conditions and that such conditions of various duration and intensity have occurred many times throughout the history of Earth's biota. One of the most important clastogenic events in eukaryotic history, in which holocentric chromosomes may have played the key role, was the colonization of land by plants and animals half a billion years ago. In addition to arguments supporting the anticlastogenic hypothesis of holocentric chromosomes and a discussion of its evolutionary consequences, experiments and analyses are proposed to explore this hypothesis in more depth. CONCLUSIONS It is argued that the tolerance to clastogens explains the origin of holocentric lineages and may also have far-reaching consequences for eukaryotic evolution in general as exemplified by the potential role of holocentric chromosomes in terrestrialization.
Collapse
Affiliation(s)
- František Zedek
- Department of Botany and Zoology, Masaryk University, Kotlarska, Brno, Czech Republic
- For correspondence. E-mail
| | - Petr Bureš
- Department of Botany and Zoology, Masaryk University, Kotlarska, Brno, Czech Republic
| |
Collapse
|
87
|
Zhang Y, Guo J, Chen M, Li L, Wang L, Huang CF. The Cell Cycle Checkpoint Regulator ATR Is Required for Internal Aluminum Toxicity-Mediated Root Growth Inhibition in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:118. [PMID: 29491872 PMCID: PMC5817422 DOI: 10.3389/fpls.2018.00118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/22/2018] [Indexed: 05/17/2023]
Abstract
Aluminum (Al) can target multiple sites of root cells for toxicity, including the cell wall, the plasma membrane and symplastic components. Previous work revealed that the cell cycle checkpoint regulator (ATR) Ataxia Telangiectasia-mutated and Rad3-related is required for Al toxicity-induced root growth inhibition in als3 and that the symplastic component DNA is an important target site of Al for the toxicity. However, whether monitoring DNA integrity through ATR-regulated pathway is required for Al-induced root growth inhibition in other Al-sensitive mutants remains unknown. In this study, we demonstrated that the atr mutation could also rescue the Al hypersensitivity and Al-induced cell cycle arrest in star1, which supports the hypothesis that ALS3 and STAR1 function together to be involved in the detoxification of Al in Arabidopsis. However, mutation of ATR could not rescue the Al-sensitive phenotype of almt1 or stop1, both of which are defective in external detoxification mechanisms of Al. We further showed that the Al hypersensitivity and Al-induced quiescent center (QC) differentiation in als1 could also be rescued by the atr mutation. Therefore, our results suggest that ATR-regulated pathway is involved in the modulation of internal Al toxicity-mediated root growth inhibition in Arabidopsis.
Collapse
Affiliation(s)
- Yang Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinliang Guo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mo Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lun Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lihua Wang
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Chao-Feng Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Chao-Feng Huang,
| |
Collapse
|
88
|
de Simone A, Hubbard R, de la Torre NV, Velappan Y, Wilson M, Considine MJ, Soppe WJJ, Foyer CH. Redox Changes During the Cell Cycle in the Embryonic Root Meristem of Arabidopsis thaliana. Antioxid Redox Signal 2017; 27:1505-1519. [PMID: 28457165 PMCID: PMC5678362 DOI: 10.1089/ars.2016.6959] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS The aim of this study was to characterize redox changes in the nuclei and cytosol occurring during the mitotic cell cycle in the embryonic roots of germinating Arabidopsis seedlings, and to determine how redox cycling was modified in mutants with a decreased capacity for ascorbate synthesis. RESULTS Using an in vivo reduction-oxidation (redox) reporter (roGFP2), we show that transient oxidation of the cytosol and the nuclei occurred at G1 in the synchronized dividing cells of the Arabidopsis root apical meristem, with reduction at G2 and mitosis. This redox cycle was absent from low ascorbate mutants in which nuclei were significantly more oxidized than controls. The cell cycle-dependent increase in nuclear size was impaired in the ascorbate-deficient mutants, which had fewer cells per unit area in the root proliferation zone. The transcript profile of the dry seeds and size of the imbibed seeds was strongly influenced by low ascorbate but germination, dormancy release and seed aging characteristics were unaffected. INNOVATION These data demonstrate the presence of a redox cycle within the plant cell cycle and that the redox state of the nuclei is an important factor in cell cycle progression. CONCLUSIONS Controlled oxidation is a key feature of the early stages of the plant cell cycle. However, sustained mild oxidation restricts nuclear functions and impairs progression through the cell cycle leading to fewer cells in the root apical meristem. Antioxid. Redox Signal. 27, 1505-1519.
Collapse
Affiliation(s)
- Ambra de Simone
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom
| | - Rachel Hubbard
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom
| | - Natanael Viñegra de la Torre
- 2 Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research , Cologne, Germany
| | - Yazhini Velappan
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom .,3 School of Agriculture and Environment, The University of Western Australia , Perth, Australia
| | - Michael Wilson
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom
| | - Michael J Considine
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom .,3 School of Agriculture and Environment, The University of Western Australia , Perth, Australia .,4 School of Molecular Sciences, The University of Western Australia , Perth, Australia .,5 The UWA Institute of Agriculture, The University of Western Australia , Perth, Australia .,6 The Department of Agriculture and Food Western Australia, South Perth, Australia
| | - Wim J J Soppe
- 2 Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research , Cologne, Germany .,7 Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn , Bonn, Germany
| | - Christine H Foyer
- 1 Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds , Leeds, United Kingdom .,4 School of Molecular Sciences, The University of Western Australia , Perth, Australia
| |
Collapse
|
89
|
Yoshiyama KO, Kaminoyama K, Sakamoto T, Kimura S. Increased Phosphorylation of Ser-Gln Sites on SUPPRESSOR OF GAMMA RESPONSE1 Strengthens the DNA Damage Response in Arabidopsis thaliana. THE PLANT CELL 2017; 29:3255-3268. [PMID: 29208704 PMCID: PMC5757268 DOI: 10.1105/tpc.17.00267] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/11/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana transcription factor SUPPRESSOR OF GAMMA RESPONSE1 (SOG1) regulates hundreds of genes in response to DNA damage, and this results in the activation of cell cycle arrest, DNA repair, endoreduplication, and programmed cell death. However, it is not clear how this single transcription factor regulates each of these pathways. We previously reported that phosphorylation of five Ser-Gln (SQ) motifs in the C-terminal region of SOG1 are required to activate downstream pathways. In this study, we introduced Ser-to-Ala (AQ) substitutions in these five SQ motifs to progressively eliminate them and then we examined the effects on DNA damage responses. We found that all SQs are required for the full activation of SOG1 and that the expression level of most downstream genes changed incrementally depending on the number of phosphorylated SQ sites. Genes involved in DNA repair and cell cycle progression underwent stepwise activation and inhibition respectively as the number of phosphorylated SQ sites increased. Also, inhibition of DNA synthesis, programmed cell death, and cell differentiation were incrementally induced as the number of phosphorylated SQ sites increased. These results show that the extent of SQ phosphorylation in SOG1 regulates gene expression levels and determines the strength of DNA damage responses.
Collapse
Affiliation(s)
| | - Kaori Kaminoyama
- Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita Ku, Kyoto 603-8555, Japan
| | - Tomoaki Sakamoto
- Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita Ku, Kyoto 603-8555, Japan
| | - Seisuke Kimura
- Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita Ku, Kyoto 603-8555, Japan
| |
Collapse
|
90
|
Causier B, Li Z, De Smet R, Lloyd JPB, Van de Peer Y, Davies B. Conservation of Nonsense-Mediated mRNA Decay Complex Components Throughout Eukaryotic Evolution. Sci Rep 2017; 7:16692. [PMID: 29192227 PMCID: PMC5709506 DOI: 10.1038/s41598-017-16942-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/13/2017] [Indexed: 11/15/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is an essential eukaryotic process regulating transcript quality and abundance, and is involved in diverse processes including brain development and plant defenses. Although some of the NMD machinery is conserved between kingdoms, little is known about its evolution. Phosphorylation of the core NMD component UPF1 is critical for NMD and is regulated in mammals by the SURF complex (UPF1, SMG1 kinase, SMG8, SMG9 and eukaryotic release factors). However, since SMG1 is reportedly missing from the genomes of fungi and the plant Arabidopsis thaliana, it remains unclear how UPF1 is activated outside the metazoa. We used comparative genomics to determine the conservation of the NMD pathway across eukaryotic evolution. We show that SURF components are present in all major eukaryotic lineages, including fungi, suggesting that in addition to UPF1 and SMG1, SMG8 and SMG9 also existed in the last eukaryotic common ancestor, 1.8 billion years ago. However, despite the ancient origins of the SURF complex, we also found that SURF factors have been independently lost across the Eukarya, pointing to genetic buffering within the essential NMD pathway. We infer an ancient role for SURF in regulating UPF1, and the intriguing possibility of undiscovered NMD regulatory pathways.
Collapse
Affiliation(s)
- Barry Causier
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium
| | - Riet De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium
| | - James P B Lloyd
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium.,Department of Genetics, Genomics Research Institute, University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Brendan Davies
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
91
|
Gorelova V, De Lepeleire J, Van Daele J, Pluim D, Meï C, Cuypers A, Leroux O, Rébeillé F, Schellens JHM, Blancquaert D, Stove CP, Van Der Straeten D. Dihydrofolate Reductase/Thymidylate Synthase Fine-Tunes the Folate Status and Controls Redox Homeostasis in Plants. THE PLANT CELL 2017; 29:2831-2853. [PMID: 28939595 PMCID: PMC5728131 DOI: 10.1105/tpc.17.00433] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/10/2017] [Accepted: 09/18/2017] [Indexed: 05/08/2023]
Abstract
Folates (B9 vitamins) are essential cofactors in one-carbon metabolism. Since C1 transfer reactions are involved in synthesis of nucleic acids, proteins, lipids, and other biomolecules, as well as in epigenetic control, folates are vital for all living organisms. This work presents a complete study of a plant DHFR-TS (dihydrofolate reductase-thymidylate synthase) gene family that implements the penultimate step in folate biosynthesis. We demonstrate that one of the DHFR-TS isoforms (DHFR-TS3) operates as an inhibitor of its two homologs, thus regulating DHFR and TS activities and, as a consequence, folate abundance. In addition, a novel function of folate metabolism in plants is proposed, i.e., maintenance of the redox balance by contributing to NADPH production through the reaction catalyzed by methylenetetrahydrofolate dehydrogenase, thus allowing plants to cope with oxidative stress.
Collapse
Affiliation(s)
- Vera Gorelova
- Department of Biology, Laboratory of Functional Plant Biology, Ghent University, 9000 Gent, Belgium
| | - Jolien De Lepeleire
- Department of Biology, Laboratory of Functional Plant Biology, Ghent University, 9000 Gent, Belgium
| | | | - Dick Pluim
- Laboratory of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Coline Meï
- Laboratoire de Physiologie Cellulaire Vegetale, UMR168 CNRS-CEA-INRA-Universite Joseph Fourier Grenoble I, Bioscience and Biotechnologies Institute of Grenoble, CEA-Grenoble, 38054 Grenoble Cedex 9, France
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Olivier Leroux
- Department of Biology, Ghent University, 9000 Gent, Belgium
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Vegetale, UMR168 CNRS-CEA-INRA-Universite Joseph Fourier Grenoble I, Bioscience and Biotechnologies Institute of Grenoble, CEA-Grenoble, 38054 Grenoble Cedex 9, France
| | - Jan H M Schellens
- Laboratory of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Dieter Blancquaert
- Department of Biology, Laboratory of Functional Plant Biology, Ghent University, 9000 Gent, Belgium
| | | | | |
Collapse
|
92
|
Dotto M, Casati P. Developmental reprogramming by UV-B radiation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:96-101. [PMID: 28969807 DOI: 10.1016/j.plantsci.2017.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 09/01/2017] [Indexed: 05/08/2023]
Abstract
Plants are extremely plastic organisms with the ability to adapt and respond to the changing environmental conditions surrounding them. Sunlight is one of the main resources for plants, both as a primary energy source for photosynthesis and as a stimulus that regulates different aspects of their growth and development. UV-B comprises wavelengths that correspond to a high energy region of the solar spectrum capable of reaching the biosphere, influencing plant growth. It is currently believed that plants are able to acclimate when growing under the influence of this radiation and perceive it as a signal, without stress signs. Nonetheless, many UV-B induced changes are elicited after DNA damage occurs as a consequence of exposure. In this review we focus on the influence of UV-B on leaf, flower and root development and emphasize the limited understanding of the molecular mechanisms for most of this developmental processes affected by UV-B documented over the years of research in this area.
Collapse
Affiliation(s)
- Marcela Dotto
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, 3080, Esperanza, Santa Fe, Argentina.
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, 2000, Rosario, Santa Fe, Argentina.
| |
Collapse
|
93
|
Arabidopsis R1R2R3-Myb proteins are essential for inhibiting cell division in response to DNA damage. Nat Commun 2017; 8:635. [PMID: 28935922 PMCID: PMC5608833 DOI: 10.1038/s41467-017-00676-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/19/2017] [Indexed: 12/04/2022] Open
Abstract
Inhibition of cell division is an active response to DNA damage that enables cells to maintain genome integrity. However, how DNA damage arrests the plant cell cycle is largely unknown. Here, we show that the repressor-type R1R2R3-Myb transcription factors (Rep-MYBs), which suppress G2/M-specific genes, are required to inhibit cell division in response to DNA damage. Knockout mutants are resistant to agents that cause DNA double-strand breaks and replication stress. Cyclin-dependent kinases (CDKs) can phosphorylate Rep-MYBs in vitro and are involved in their proteasomal degradation. DNA damage reduces CDK activities and causes accumulation of Rep-MYBs and cytological changes consistent with cell cycle arrest. Our results suggest that CDK suppressors such as CDK inhibitors are not sufficient to arrest the cell cycle in response to DNA damage but that Rep-MYB-dependent repression of G2/M-specific genes is crucial, indicating an essential function for Rep-MYBs in the DNA damage response. Inhibition of cell division maintains genome integrity in response to DNA damage. Here Chen et al. propose that DNA damage causes cell cycle arrest in the Arabidopsis root via Rep-MYB transcription factor-mediated repression of G2/M-specific gene expression in response to reduced cyclin-dependent kinase activity.
Collapse
|
94
|
Sjogren CA, Larsen PB. SUV2, which encodes an ATR-related cell cycle checkpoint and putative plant ATRIP, is required for aluminium-dependent root growth inhibition in Arabidopsis. PLANT, CELL & ENVIRONMENT 2017; 40:1849-1860. [PMID: 28556304 DOI: 10.1111/pce.12992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/10/2017] [Accepted: 05/05/2017] [Indexed: 05/25/2023]
Abstract
A suppressor mutagenesis screen was conducted in order to identify second site mutations that could reverse the extreme hypersensitivity to aluminium (Al) seen for the Arabidopsis mutant, als3-1. From this screen, it was found that a loss-of-function mutation in the previously described SUV2 (SENSITIVE TO UV 2), which encodes a putative plant ATRIP homologue that is a component of the ATR-dependent cell checkpoint response, reversed the als3-1 phenotype. This included prevention of hallmarks associated with als3-1 including Al-dependent terminal differentiation of the root tip and transition to endoreduplication. From this analysis, SUV2 was determined to be required for halting cell cycle progression and triggering loss of the quiescent centre (QC) following exposure to Al. In conjunction with this, SUV2 was found to have a similar role as ATR, ALT2 and SOG1 in Al-dependent stoppage of root growth, all of which are required for promotion of expression of a suite of genes that likely are part of an Al-dependent DNA damage transcriptional response. This work argues that these Al response factors work together to detect Al-dependent damage and subsequently activate a DNA damage response pathway that halts the cell cycle and subsequently promotes QC differentiation and entrance into endocycling.
Collapse
Affiliation(s)
- Caroline A Sjogren
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| | - Paul B Larsen
- Department of Biochemistry, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
95
|
Klemm T, Mannuß A, Kobbe D, Knoll A, Trapp O, Dorn A, Puchta H. The DNA translocase RAD5A acts independently of the other main DNA repair pathways, and requires both its ATPase and RING domain for activity in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:725-740. [PMID: 28509359 DOI: 10.1111/tpj.13602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/27/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
Multiple pathways exist to repair DNA damage induced by methylating and crosslinking agents in Arabidopsis thaliana. The SWI2/SNF2 translocase RAD5A, the functional homolog of budding yeast Rad5 that is required for the error-free branch of post-replicative repair, plays a surprisingly prominent role in the repair of both kinds of lesions in Arabidopsis. Here we show that both the ATPase domain and the ubiquitination function of the RING domain of the Arabidopsis protein are essential for the cellular response to different forms of DNA damage. To define the exact role of RAD5A within the complex network of DNA repair pathways, we crossed the rad5a mutant line with mutants of different known repair factors of Arabidopsis. We had previously shown that RAD5A acts independently of two main pathways of replication-associated DNA repair defined by the helicase RECQ4A and the endonuclease MUS81. The enhanced sensitivity of all double mutants tested in this study indicates that the repair of damaged DNA by RAD5A also occurs independently of nucleotide excision repair (AtRAD1), single-strand break repair (AtPARP1), as well as microhomology-mediated double-strand break repair (AtTEB). Moreover, RAD5A can partially complement for a deficient AtATM-mediated DNA damage response in plants, as the double mutant shows phenotypic growth defects.
Collapse
Affiliation(s)
- Tobias Klemm
- Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| | | | - Daniela Kobbe
- Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Alexander Knoll
- Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| | | | - Annika Dorn
- Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131, Karlsruhe, Germany
| |
Collapse
|
96
|
Hong JH, Savina M, Du J, Devendran A, Kannivadi Ramakanth K, Tian X, Sim WS, Mironova VV, Xu J. A Sacrifice-for-Survival Mechanism Protects Root Stem Cell Niche from Chilling Stress. Cell 2017. [PMID: 28648662 DOI: 10.1016/j.cell.2017.06.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Temperature has a profound influence on plant and animal development, but its effects on stem cell behavior and activity remain poorly understood. Here, we characterize the responses of the Arabidopsis root to chilling (low but above-freezing) temperature. Chilling stress at 4°C leads to DNA damage predominantly in root stem cells and their early descendants. However, only newly generated/differentiating columella stem cell daughters (CSCDs) preferentially die in a programmed manner. Inhibition of the DNA damage response in these CSCDs prevents their death but makes the stem cell niche more vulnerable to chilling stress. Mathematical modeling and experimental validation indicate that CSCD death results in the re-establishment of the auxin maximum in the quiescent center (QC) and the maintenance of functional stem cell niche activity under chilling stress. This mechanism improves the root's ability to withstand the accompanying environmental stresses and to resume growth when optimal temperatures are restored.
Collapse
Affiliation(s)
- Jing Han Hong
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Maria Savina
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; Novosibirsk State University, LCT&EB, Novosibirsk 630090, Russia
| | - Jing Du
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Ajay Devendran
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Karthikbabu Kannivadi Ramakanth
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Xin Tian
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Wei Shi Sim
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Victoria V Mironova
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; Novosibirsk State University, LCT&EB, Novosibirsk 630090, Russia
| | - Jian Xu
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
97
|
Biedermann S, Harashima H, Chen P, Heese M, Bouyer D, Sofroni K, Schnittger A. The retinoblastoma homolog RBR1 mediates localization of the repair protein RAD51 to DNA lesions in Arabidopsis. EMBO J 2017; 36:1279-1297. [PMID: 28320735 PMCID: PMC5412766 DOI: 10.15252/embj.201694571] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
The retinoblastoma protein (Rb), which typically functions as a transcriptional repressor of E2F‐regulated genes, represents a major control hub of the cell cycle. Here, we show that loss of the Arabidopsis Rb homolog RETINOBLASTOMA‐RELATED 1 (RBR1) leads to cell death, especially upon exposure to genotoxic drugs such as the environmental toxin aluminum. While cell death can be suppressed by reduced cell‐proliferation rates, rbr1 mutant cells exhibit elevated levels of DNA lesions, indicating a direct role of RBR1 in the DNA‐damage response (DDR). Consistent with its role as a transcriptional repressor, we find that RBR1 directly binds to and represses key DDR genes such as RADIATION SENSITIVE 51 (RAD51), leaving it unclear why rbr1 mutants are hypersensitive to DNA damage. However, we find that RBR1 is also required for RAD51 localization to DNA lesions. We further show that RBR1 is itself targeted to DNA break sites in a CDKB1 activity‐dependent manner and partially co‐localizes with RAD51 at damage sites. Taken together, these results implicate RBR1 in the assembly of DNA‐bound repair complexes, in addition to its canonical function as a transcriptional regulator.
Collapse
Affiliation(s)
- Sascha Biedermann
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France.,Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany
| | | | - Poyu Chen
- Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany
| | - Maren Heese
- Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany
| | - Daniel Bouyer
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197-INSERM U 1024, Paris, France
| | - Kostika Sofroni
- Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany
| | - Arp Schnittger
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France .,Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany
| |
Collapse
|
98
|
Large-scale heterochromatin remodeling linked to overreplication-associated DNA damage. Proc Natl Acad Sci U S A 2016; 114:406-411. [PMID: 28028228 DOI: 10.1073/pnas.1619774114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previously, we have shown that loss of the histone 3 lysine 27 (H3K27) monomethyltransferases ARABIDOPSIS TRITHORAX-RELATED 5 (ATXR5) and ATXR6 (ATXR6) results in the overreplication of heterochromatin. Here we show that the overreplication results in DNA damage and extensive chromocenter remodeling into unique structures we have named "overreplication-associated centers" (RACs). RACs have a highly ordered structure with an outer layer of condensed heterochromatin, an inner layer enriched in the histone variant H2AX, and a low-density core containing foci of phosphorylated H2AX (a marker of double-strand breaks) and the DNA-repair enzyme RAD51. atxr5,6 mutants are strongly affected by mutations in DNA repair, such as ATM and ATR. Because of its dense packaging and repetitive DNA sequence, heterochromatin is a challenging environment in which to repair DNA damage. Previous work in animals has shown that heterochromatic breaks are translocated out of the heterochromatic domain for repair. Our results show that atxr5,6 mutants use a variation on this strategy for repairing heterochromatic DNA damage. Rather than being moved to adjacent euchromatic regions, as in animals, heterochromatin undergoes large-scale remodeling to create a compartment with low chromatin density.
Collapse
|
99
|
Boubriak I, Akimkina T, Polischuk V, Dmitriev A, McCready S, Grodzinsky D. Long term effects of Chernobyl contamination on DNA repair function and plant resistance to different biotic and abiotic stress factors. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716060049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
100
|
Heyman J, Cools T, Canher B, Shavialenka S, Traas J, Vercauteren I, Van den Daele H, Persiau G, De Jaeger G, Sugimoto K, De Veylder L. The heterodimeric transcription factor complex ERF115-PAT1 grants regeneration competence. NATURE PLANTS 2016; 2:16165. [PMID: 27797356 DOI: 10.1038/nplants.2016.165] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/28/2016] [Indexed: 05/17/2023]
Abstract
Regeneration of a tissue damaged by injury represents a physiological response for organ recovery1-3. Although this regeneration process is conserved across multicellular taxa, plants appear to display extremely high regenerative capacities, a feature widely used in tissue culture for clonal propagation and grafting4,5. Regenerated cells arise predominantly from pre-existing populations of division-competent cells6,7; however, the mechanisms by which these cells are triggered to divide in response to injury remain largely elusive8. Here, we demonstrate that the heterodimeric transcription factor complex ETHYLENE RESPONSE FACTOR115 (ERF115)-PHYTOCHROME A SIGNAL TRANSDUCTION1 (PAT1) sustains meristem function by promoting cell renewal after stem cell loss. High-resolution time-lapse imaging revealed that cell death promotes ERF115 activity in cells that are in direct contact with damaged cells, triggering divisions that replenish the collapsed stem cells. Correspondingly, the ERF115-PAT1 complex plays an important role in full stem cell niche recovery upon root tip excision, whereas its ectopic expression triggers neoplastic growth, correlated with activation of the putative target gene WOUND INDUCED DEDIFFERENTIATION1 (WIND1)9. We conclude that the ERF115-PAT1 complex accounts for the high regenerative potential of plants, granting them the ability to efficiently replace damaged cells with new ones.
Collapse
Affiliation(s)
- Jefri Heyman
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Toon Cools
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Balkan Canher
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Sviatlana Shavialenka
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Jan Traas
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Ilse Vercauteren
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Hilde Van den Daele
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Geert Persiau
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Keiko Sugimoto
- RIKEN Centre for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| |
Collapse
|