51
|
Kasai M, Matsumura H, Yoshida K, Terauchi R, Taneda A, Kanazawa A. Deep sequencing uncovers commonality in small RNA profiles between transgene-induced and naturally occurring RNA silencing of chalcone synthase-A gene in petunia. BMC Genomics 2013; 14:63. [PMID: 23360437 PMCID: PMC3608071 DOI: 10.1186/1471-2164-14-63] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/22/2013] [Indexed: 11/12/2022] Open
Abstract
Background Introduction of a transgene that transcribes RNA homologous to an endogenous gene in the plant genome can induce silencing of both genes, a phenomenon termed cosuppression. Cosuppression was first discovered in transgenic petunia plants transformed with the CHS-A gene encoding chalcone synthase, in which nonpigmented sectors in flowers or completely white flowers are produced. Some of the flower-color patterns observed in transgenic petunias having CHS-A cosuppression resemble those in existing nontransgenic varieties. Although the mechanism by which white sectors are generated in nontransgenic petunia is known to be due to RNA silencing of the CHS-A gene as in cosuppression, whether the same trigger(s) and/or pattern of RNA degradation are involved in these phenomena has not been known. Here, we addressed this question using deep-sequencing and bioinformatic analyses of small RNAs. Results We analyzed short interfering RNAs (siRNAs) produced in nonpigmented sectors of petal tissues in transgenic petunia plants that have CHS-A cosuppression and a nontransgenic petunia variety Red Star, that has naturally occurring CHS-A RNA silencing. In both silencing systems, 21-nt and 22-nt siRNAs were the most and the second-most abundant size classes, respectively. CHS-A siRNA production was confined to exon 2, indicating that RNA degradation through the RNA silencing pathway occurred in this exon. Common siRNAs were detected in cosuppression and naturally occurring RNA silencing, and their ranks based on the number of siRNAs in these plants were correlated with each other. Noticeably, highly abundant siRNAs were common in these systems. Phased siRNAs were detected in multiple phases at multiple sites, and some of the ends of the regions that produced phased siRNAs were conserved. Conclusions The features of siRNA production found to be common to cosuppression and naturally occurring silencing of the CHS-A gene indicate mechanistic similarities between these silencing systems especially in the biosynthetic processes of siRNAs including cleavage of CHS-A transcripts and subsequent production of secondary siRNAs in exon 2. The data also suggest that these events occurred at multiple sites, which can be a feature of these silencing phenomena.
Collapse
Affiliation(s)
- Megumi Kasai
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | | | | | | | | | | |
Collapse
|
52
|
Uchiyama T, Hiura S, Ebinuma I, Senda M, Mikami T, Martin C, Kishima Y. A pair of transposons coordinately suppresses gene expression, independent of pathways mediated by siRNA in Antirrhinum. THE NEW PHYTOLOGIST 2013; 197:431-440. [PMID: 23190182 DOI: 10.1111/nph.12041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/07/2012] [Indexed: 05/22/2023]
Abstract
Our knowledge is limited regarding mechanisms by which transposable elements control host gene expression. Two Antirrhinum lines, HAM2 and HAM5, show different petal colors, pale-red and white, respectively, although these lines contain the same insertion of transposon Tam3 in the promoter region of the nivea (niv) locus encoding chalcone synthase. Among 1000 progeny from HAM5 grown under the preferred conditions for the Tam3 transposition, a few showed an intermediate petal color between HAM2 and HAM5. Transposon tagging using these progeny identified a causative insertion of Tam3 for the HAM5 type (white) petal color, which was found 1.6 kb downstream of the niv gene. Insertion of Tam3 at the position 1.6 kb downstream of niv alone showed nearly wildtype petal pigmentation, and the niv expression reduced by only 50%. Severe suppression of niv observed in HAM5 required interaction of two Tam3 copies on either side of the niv coding sequence. DNA methylation and small interfering RNAs (siRNAs) were not associated with the suppression of niv expression in HAM5. Insertion of a pair of transposons in close proximity can interfere with the expression of gene located between the two copies, and also provide evidence that this interference is not directly associated with pathways mediated by siRNAs.
Collapse
Affiliation(s)
- Takako Uchiyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Satoshi Hiura
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Izuru Ebinuma
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Mineo Senda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Tetsuo Mikami
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Cathie Martin
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - Yuji Kishima
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
53
|
Wang MB, Masuta C, Smith NA, Shimura H. RNA silencing and plant viral diseases. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1275-85. [PMID: 22670757 DOI: 10.1094/mpmi-04-12-0093-cr] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
RNA silencing plays a critical role in plant resistance against viruses, with multiple silencing factors participating in antiviral defense. Both RNA and DNA viruses are targeted by the small RNA-directed RNA degradation pathway, with DNA viruses being also targeted by RNA-directed DNA methylation. To evade RNA silencing, plant viruses have evolved a variety of counter-defense mechanisms such as expressing RNA-silencing suppressors or adopting silencing-resistant RNA structures. This constant defense-counter defense arms race is likely to have played a major role in defining viral host specificity and in shaping viral and possibly host genomes. Recent studies have provided evidence that RNA silencing also plays a direct role in viral disease induction in plants, with viral RNA-silencing suppressors and viral siRNAs as potentially the dominant players in viral pathogenicity. However, questions remain as to whether RNA silencing is the principal mediator of viral pathogenicity or if other RNA-silencing-independent mechanisms also account for viral disease induction. RNA silencing has been exploited as a powerful tool for engineering virus resistance in plants as well as in animals. Further understanding of the role of RNA silencing in plant-virus interactions and viral symptom induction is likely to result in novel anti-viral strategies in both plants and animals.
Collapse
Affiliation(s)
- Ming-Bo Wang
- CSIRO Division of Plant Industry, Canberra, Australia.
| | | | | | | |
Collapse
|
54
|
Liu Y, Zhai H, Zhao K, Wu B, Wang X. Two suppressors of RNA silencing encoded by cereal-infecting members of the family Luteoviridae. J Gen Virol 2012; 93:1825-1830. [PMID: 22592264 DOI: 10.1099/vir.0.042135-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Several members of the family Luteoviridae are important pathogens of cultivated plant species of the family Gramineae. In this study, we explored RNA-silencing suppressors (RSSs) encoded by two cereal-infecting luteoviruses: barley yellow dwarf virus and wheat yellow dwarf virus (BYDV and WYDV, respectively). The P0 protein of WYDV-GPV (P0(GPV)) and the P6 protein of BYDV-GAV (P6(GAV)) displayed RSS activities when expressed in agro-infiltrated leaves of Nicotiana benthamiana, by their local ability to inhibit post-transcriptional gene silencing of GFP. Analysis of GFP, mRNA and GFP-specific small interfering RNA indicated that both P0(GPV) and P6(GAV) are suppressors of silencing that can restrain not only local but also systemic gene silencing. This is the first report of RSS activity of the P6 protein in a member of the genus Luteovirus.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China
| | - Hao Zhai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China
| | - Kun Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China
| | - Beilei Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China
| |
Collapse
|
55
|
Song J, Guo Y, Yu LJ, Qiu LJ. [Progress in genes related to seed-coat color in soybean]. YI CHUAN = HEREDITAS 2012; 34:687-94. [PMID: 22698739 DOI: 10.3724/sp.j.1005.2012.00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Seed-coat color has changed from black to yellow during natural and artificial selection of cultivated soybean from wild soybean, and it is also an important morphological marker. Therefore, discovering genes related to the soybean seed-coat color will play a very important role in breeding and evolutionary study. Different seed-coat colors caused by deposition of various anthocyanin pigments. Although pigmentation has been well dissected at molecular level in several plant species, the genes controlling natural variation of seed-coat color in soybean remain to be unknown. Genes related to seed-coat color in soybean were discussed in this paper, including 5 genetic loci (I, T, W1, R and O). Locus I is located in a region that riches in chalcone synthase (CHS) genes on chromosome 8. Gene CHS is a multi-gene family with highly conserved sequences in soybean. Locus T located on chromosome 6 has been cloned and verified, which encodes a flavon-oid-3'-hydroxylase. Mutant of F3'H can not interact with the heme-binding domain due to lack of conservative domain GGEK caused by a nucleotide deletion in the coding region of F3'H. Locus R is located between A668-1 and K387-1 on chromosome 9 (linkage group K). This locus may encode a R2R3 MYB transcription factor or a UDP flavonoid 3-O glyco-syltransferase. Locus O is located between Satt207 and Satt493 on chromosome 8 (linkage group A2) and its molecular characteristics has not been characterized. Locus W1 may be a homology of F3'5'H gene.
Collapse
Affiliation(s)
- Jian Song
- College of Biological Science and Technology, Harbin Normal University, Harbin 150025, China.
| | | | | | | |
Collapse
|
56
|
Kasai M, Kanazawa A. RNA silencing as a tool to uncover gene function and engineer novel traits in soybean. BREEDING SCIENCE 2012; 61:468-79. [PMID: 23136487 PMCID: PMC3406797 DOI: 10.1270/jsbbs.61.468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 09/14/2011] [Indexed: 05/10/2023]
Abstract
RNA silencing refers collectively to diverse RNA-mediated pathways of nucleotide-sequence-specific inhibition of gene expression. It has been used to analyze gene function and engineer novel traits in various organisms. Here, we review the application of RNA silencing in soybean. To produce soybean lines, in which a particular gene is stably silenced, researchers have frequently used a transgene that transcribes inverted repeats of a target gene segment. Suppression of gene expression in developing soybean embryos has been one of the main focuses of metabolic engineering using transgene-induced silencing. Plants that have enhanced resistance against diseases caused by viruses or cyst nematode have also been produced. Meanwhile, Agrobacterium rhizogenes-mediated transformation has been used to induce RNA silencing in roots, which enabled analysis of the roles of gene products in nodulation or disease resistance. RNA silencing has also been induced using viral vectors, which is particularly useful for gene function analysis. So far, three viral vectors for virus-induced gene silencing have been developed for soybean. One of the features of the soybean genome is the presence of a large number of duplicated genes. Potential use of RNA silencing technology in combination with forward genetic approaches for analyzing duplicated genes is discussed.
Collapse
Affiliation(s)
- Megumi Kasai
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
57
|
Senda M, Kurauchi T, Kasai A, Ohnishi S. Suppressive mechanism of seed coat pigmentation in yellow soybean. BREEDING SCIENCE 2012; 61:523-30. [PMID: 23136491 PMCID: PMC3406792 DOI: 10.1270/jsbbs.61.523] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/08/2011] [Indexed: 05/14/2023]
Abstract
In soybean seeds, numerous variations in colors and pigmentation patterns exist, most of which are observed in the seed coat. Patterns of seed coat pigmentation are determined by four alleles (I, i(i), i(k) and i) of the classically defined I locus, which controls the spatial distribution of anthocyanins and proanthocyanidins in the seed coat. Most commercial soybean cultivars produce yellow seeds with yellow cotyledons and nonpigmented seed coats, which are important traits of high-quality seeds. Plants carrying the I or i(i) allele show complete inhibition of pigmentation in the seed coat or pigmentation only in the hilum, respectively, resulting in a yellow seed phenotype. Classical genetic analyses of the I locus were performed in the 1920s and 1930s but, until recently, the molecular mechanism by which the I locus regulated seed coat pigmentation remained unclear. In this review, we provide an overview of the molecular suppressive mechanism of seed coat pigmentation in yellow soybean, with the main focus on the effect of the I allele. In addition, we discuss seed coat pigmentation phenomena in yellow soybean and their relationship to inhibition of I allele action.
Collapse
Affiliation(s)
- Mineo Senda
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori 036-8561, Japan
- Corresponding author (e-mail: )
| | - Tasuku Kurauchi
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori 036-8561, Japan
| | - Atsushi Kasai
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo, Hirosaki, Aomori 036-8561, Japan
| | - Shizen Ohnishi
- Hokkaido Research Organization Central Agricultural Experiment Station, Higashi 6 Kita 15, Naganuma, Yubari, Hokkaido 069-1395, Japan
| |
Collapse
|
58
|
Gillman JD, Tetlow A, Lee JD, Shannon JG, Bilyeu K. Loss-of-function mutations affecting a specific Glycine max R2R3 MYB transcription factor result in brown hilum and brown seed coats. BMC PLANT BIOLOGY 2011; 11:155. [PMID: 22070454 PMCID: PMC3229458 DOI: 10.1186/1471-2229-11-155] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 11/09/2011] [Indexed: 05/17/2023]
Abstract
BACKGROUND Although modern soybean cultivars feature yellow seed coats, with the only color variation found at the hila, the ancestral condition is black seed coats. Both seed coat and hila coloration are due to the presence of phenylpropanoid pathway derivatives, principally anthocyanins. The genetics of soybean seed coat and hilum coloration were first investigated during the resurgence of genetics during the 1920s, following the rediscovery of Mendel's work. Despite the inclusion of this phenotypic marker into the extensive genetic maps developed for soybean over the last twenty years, the genetic basis behind the phenomenon of brown seed coats (the R locus) has remained undetermined until now. RESULTS In order to identify the gene responsible for the r gene effect (brown hilum or seed coat color), we utilized bulk segregant analysis and identified recombinant lines derived from a population segregating for two phenotypically distinct alleles of the R locus. Fine mapping was accelerated through use of a novel, bioinformatically determined set of Simple Sequence Repeat (SSR) markers which allowed us to delimit the genomic region containing the r gene to less than 200 kbp, despite the use of a mapping population of only 100 F6 lines. Candidate gene analysis identified a loss of function mutation affecting a seed coat-specific expressed R2R3 MYB transcription factor gene (Glyma09g36990) as a strong candidate for the brown hilum phenotype. We observed a near perfect correlation between the mRNA expression levels of the functional R gene candidate and an UDP-glucose:flavonoid 3-O-glucosyltransferase (UF3GT) gene, which is responsible for the final step in anthocyanin biosynthesis. In contrast, when a null allele of Glyma09g36990 is expressed no upregulation of the UF3GT gene was found. CONCLUSIONS We discovered an allelic series of four loss of function mutations affecting our R locus gene candidate. The presence of any one of these mutations was perfectly correlated with the brown seed coat/hilum phenotype in a broadly distributed survey of soybean cultivars, barring the presence of the epistatic dominant I allele or gray pubescence, both of which can mask the effect of the r allele, resulting in yellow or buff hila. These findings strongly suggest that loss of function for one particular seed coat-expressed R2R3 MYB gene is responsible for the brown seed coat/hilum phenotype in soybean.
Collapse
Affiliation(s)
- Jason D Gillman
- USDA-ARS, Plant Genetics Research Unit, 110 Waters Hall, Columbia, MO 65211, USA
| | - Ashley Tetlow
- University of Missouri, Division of Plant Sciences, 110 Waters Hall, Columbia, MO 65211, USA
| | - Jeong-Deong Lee
- Division of Plant Biosciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - J Grover Shannon
- University of Missouri, Division of Plant Sciences, University of Missouri-Delta Research Center, Portageville, MO 63873, USA
| | - Kristin Bilyeu
- USDA-ARS, Plant Genetics Research Unit, 110 Waters Hall, Columbia, MO 65211, USA
| |
Collapse
|
59
|
Bai S, Kasai A, Yamada K, Li T, Harada T. A mobile signal transported over a long distance induces systemic transcriptional gene silencing in a grafted partner. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4561-70. [PMID: 21652532 PMCID: PMC3170550 DOI: 10.1093/jxb/err163] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/24/2011] [Accepted: 04/26/2011] [Indexed: 05/18/2023]
Abstract
Transcriptional gene silencing (TGS) can be induced by promoter-targeted small interfering RNA (siRNA). Long-distance transmission of TGS by viral infection in plants has been reported. However, systemic TGS has not been observed in the case of using an inverted repeat transgene as the silencing trigger. Here it is reported that a mobile signal, presumably the siRNA, produced from a hairpin structure transgene controlled by a companion cell-specific promoter can also induce transmissible TGS in both a modified agroinfiltration and a grafting system. Although the transmissible TGS occurred only in cells located in the vicinity of a leaf vein in the scion, very strong silencing was observed in the root system, especially the lateral roots, including the root apical meristem. The transmissible TGS was maintained through tissue culture and subsequently inherited by the progeny. The results suggest the potential application of mobile promoter-targeting siRNA in horticulture for improvement of plant cultivars by grafting.
Collapse
Affiliation(s)
- Songling Bai
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
| | - Atsushi Kasai
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Kaori Yamada
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Tianzhong Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Takeo Harada
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
- The United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
| |
Collapse
|
60
|
Kurauchi T, Kasai A, Tougou M, Senda M. Endogenous RNA interference of chalcone synthase genes in soybean: formation of double-stranded RNA of GmIRCHS transcripts and structure of the 5' and 3' ends of short interfering RNAs. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1264-70. [PMID: 21295373 DOI: 10.1016/j.jplph.2011.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 01/06/2011] [Accepted: 01/06/2011] [Indexed: 05/15/2023]
Abstract
In yellow soybean, seed coat pigmentation is inhibited via endogenous RNA interference (RNAi) of the chalcone synthase (CHS) genes. Genetic studies have shown that a single dominant gene, named the I gene, inhibits pigmentation over the entire seed coat in soybean. We previously isolated a candidate for the I gene from the yellow soybean genome with the I/I genotype, and designated it GmIRCHS. A structural feature of GmIRCHS is a perfect inverted repeat of the pseudoCHS gene lacking 5'-coding region. This suggests that the double-stranded RNA (dsRNA) structure of the pseudoCHS gene may be formed in the GmIRCHS transcript. RNAi is triggered by the dsRNA for a target gene, so the GmIRCHS transcript is likely to be a trigger for RNAi of CHS genes. In this study, we identified a 1087-bp dsRNA, including pseudoCHS region ranging from most of exon 2 to 3'-UTR, in the GmIRCHS transcript. Interestingly, this dsRNA was detected not only in the seed coat but also in the cotyledon and leaf tissues. Previously, CHS RNAi has been shown to be restricted to the seed coat, and we reported that endogenous short interfering RNAs of CHS genes (CHS siRNAs) are detected only in the seed coat and not in the cotyledon and leaf tissues. Taken together with these previous reports, our result suggests that seed-coat specificity of CHS RNAi may be determined in the amplification step of CHS siRNAs rather than dsRNA formation in the GmIRCHS transcript. Our studies further revealed that CHS siRNAs are modified at the 3' ends and bear 5' monophosphorylated ends, suggesting that CHS siRNA duplexes are generated by Dicer-like enzyme from CHS dsRNA and subsequently modified at the 3' ends for stabilizing CHS siRNAs.
Collapse
Affiliation(s)
- Tasuku Kurauchi
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | | | | | | |
Collapse
|
61
|
Domier LL, Hobbs HA, McCoppin NK, Bowen CR, Steinlage TA, Chang S, Wang Y, Hartman GL. Multiple loci condition seed transmission of soybean mosaic virus (SMV) and SMV-induced seed coat mottling in soybean. PHYTOPATHOLOGY 2011; 101:750-6. [PMID: 21561316 DOI: 10.1094/phyto-09-10-0239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Infection of soybean plants with Soybean mosaic virus (SMV), which is transmitted by aphids and through seed, can cause significant reductions in seed production and quality. Because seedborne infections are the primary sources of inoculum for SMV infections in North America, host-plant resistance to seed transmission can limit the pool of plants that can serve as sources of inoculum. To examine the inheritance of SMV seed transmission in soybean, crosses were made between plant introductions (PIs) with high (PI88799), moderate (PI60279), and low (PI548391) rates of transmission of SMV through seed. In four F(2) populations, SMV seed transmission segregated as if conditioned by two or more genes. Consequently, a recombinant inbred line population was derived from a cross between PIs 88799 and 548391 and evaluated for segregation of SMV seed transmission, seed coat mottling, and simple sequence repeat markers. Chromosomal regions on linkage groups C1 and C2 were significantly associated with both transmission of isolate SMV 413 through seed and SMV-induced seed coat mottling, and explained ≈42.8 and 46.4% of the variability in these two traits, respectively. Chromosomal regions associated with seed transmission and seed coat mottling contained homologues of Arabidopsis genes DCL3 and RDR6, which encode enzymes involved in RNA-mediated transcriptional and posttranscriptional gene silencing.
Collapse
Affiliation(s)
- Leslie L Domier
- United States Department of Agriculture-Agricultural Research Service and Department of Crop Sciences, University of Illinois, Urbana 61801.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Shimura H, Pantaleo V, Ishihara T, Myojo N, Inaba JI, Sueda K, Burgyán J, Masuta C. A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog 2011; 7:e1002021. [PMID: 21573143 PMCID: PMC3088725 DOI: 10.1371/journal.ppat.1002021] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 02/23/2011] [Indexed: 12/25/2022] Open
Abstract
Symptoms on virus-infected plants are often very specific to the given virus. The molecular mechanisms involved in viral symptom induction have been extensively studied, but are still poorly understood. Cucumber mosaic virus (CMV) Y satellite RNA (Y-sat) is a non-coding subviral RNA and modifies the typical symptom induced by CMV in specific hosts; Y-sat causes a bright yellow mosaic on its natural host Nicotiana tabacum. The Y-sat-induced yellow mosaic failed to develop in the infected Arabidopsis and tomato plants suggesting a very specific interaction between Y-sat and its host. In this study, we revealed that Y-sat produces specific short interfering RNAs (siRNAs), which interfere with a host gene, thus inducing the specific symptom. We found that the mRNA of tobacco magnesium protoporphyrin chelatase subunit I (ChlI, the key gene involved in chlorophyll synthesis) had a 22-nt sequence that was complementary to the Y-sat sequence, including four G-U pairs, and that the Y-sat-derived siRNAs in the virus-infected plant downregulate the mRNA of ChlI by targeting the complementary sequence. ChlI mRNA was also downregulated in the transgenic lines that express Y-sat inverted repeats. Strikingly, modifying the Y-sat sequence in order to restore the 22-nt complementarity to Arabidopsis and tomato ChlI mRNA resulted in yellowing symptoms in Y-sat-infected Arabidopsis and tomato, respectively. In 5'-RACE experiments, the ChlI transcript was cleaved at the expected middle position of the 22-nt complementary sequence. In GFP sensor experiments using agroinfiltration, we further demonstrated that Y-sat specifically targeted the sensor mRNA containing the 22-nt complementary sequence of ChlI. Our findings provide direct evidence that the identified siRNAs derived from viral satellite RNA directly modulate the viral disease symptom by RNA silencing-based regulation of a host gene.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/virology
- Base Sequence
- Capsicum/genetics
- Capsicum/virology
- Chlorophyll/biosynthesis
- Chlorophyll/genetics
- Cucumber Mosaic Virus Satellite/genetics
- Cucumber Mosaic Virus Satellite/metabolism
- Cucumovirus/metabolism
- Cucumovirus/pathogenicity
- Down-Regulation
- Gene Expression Regulation, Plant
- Genes, Plant
- Host-Pathogen Interactions
- Lyases/genetics
- Lyases/metabolism
- Solanum lycopersicum/genetics
- Solanum lycopersicum/virology
- Molecular Sequence Data
- Phenotype
- Plant Diseases/genetics
- Plant Diseases/virology
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/virology
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Nicotiana/enzymology
- Nicotiana/genetics
- Nicotiana/virology
Collapse
Affiliation(s)
- Hanako Shimura
- Research Faculty of Agriculture, Hokkaido
University, Kita-ku, Sapporo, Japan
| | | | - Takeaki Ishihara
- Research Faculty of Agriculture, Hokkaido
University, Kita-ku, Sapporo, Japan
| | - Nobutoshi Myojo
- Research Faculty of Agriculture, Hokkaido
University, Kita-ku, Sapporo, Japan
| | - Jun-ichi Inaba
- Research Faculty of Agriculture, Hokkaido
University, Kita-ku, Sapporo, Japan
| | - Kae Sueda
- Research Faculty of Agriculture, Hokkaido
University, Kita-ku, Sapporo, Japan
| | | | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido
University, Kita-ku, Sapporo, Japan
| |
Collapse
|
63
|
Ohnishi S, Funatsuki H, Kasai A, Kurauchi T, Yamaguchi N, Takeuchi T, Yamazaki H, Kurosaki H, Shirai S, Miyoshi T, Horita H, Senda M. Variation of GmIRCHS (Glycine max inverted-repeat CHS pseudogene) is related to tolerance of low temperature-induced seed coat discoloration in yellow soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:633-42. [PMID: 20981401 DOI: 10.1007/s00122-010-1475-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 10/11/2010] [Indexed: 05/08/2023]
Abstract
In yellow soybean, seed coat pigmentation is inhibited by post-transcriptional gene silencing (PTGS) of chalcone synthase (CHS) genes. A CHS cluster named GmIRCHS (Glycine max inverted-repeat CHS pseudogene) is suggested to cause PTGS in yellow-hilum cultivars. Cold-induced seed coat discoloration (CD), a commercially serious deterioration of seed appearance, is caused by an inhibition of this PTGS upon exposure to low temperatures. In the highly CD-tolerant cultivar Toyoharuka, the GmIRCHS structure differs from that of other cultivars. The aim of this study was to determine whether the variation of GmIRCHS structure among cultivars is related to variations in CD tolerance. Using two sets of recombinant inbred lines between Toyoharuka and CD-susceptible cultivars, we compared the GmIRCHS genotype and CD tolerance phenotype during low temperature treatment. The GmIRCHS genotype was related to the phenotype of CD tolerance. A QTL analysis around GmIRCHS showed that GmIRCHS itself or a region located very close to it was responsible for CD tolerance. The variation in GmIRCHS can serve as a useful DNA marker for marker-assisted selection for breeding CD tolerance. In addition, QTL analysis of the whole genome revealed a minor QTL that also affected CD tolerance.
Collapse
Affiliation(s)
- Shizen Ohnishi
- Hokkaido Research Organization Tokachi Agricultural Experiment Station, Shinsei, Memuro, Kasai-gun, Hokkaido, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Yang K, Jeong N, Moon JK, Lee YH, Lee SH, Kim HM, Hwang CH, Back K, Palmer RG, Jeong SC. Genetic analysis of genes controlling natural variation of seed coat and flower colors in soybean. J Hered 2010; 101:757-68. [PMID: 20584753 DOI: 10.1093/jhered/esq078] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Soybean exhibits natural variation in flower and seed coat colors via the deposition of various anthocyanin pigments in the respective tissues. Although pigmentation in seeds or flowers has been well dissected at molecular level in several plant species, the genes controlling natural variation in anthocyanin traits in the soybean are not completely understood. To evaluate the genetic correlation between genetic loci and genes, 8 enzyme-encoding gene families and a transcription factor were localized in a soybean genome-wide genetic map. Among the seed coat color-controlling loci, the genetic location of the gene encoding for W1 was substantiated in the context of the current soybean molecular genetic map and O was postulated to correspond to anthocyanidin reductase. Among the genetic loci that regulate flower pigmentation, the genetic locations of the genes encoding for W1, W4, and Wp were identified, W3 was mapped on soybean linkage group B2 (chromosome 14), and W2 was postulated to correspond to an MYB transcription factor. Correlation studies between the developed markers and 3 color-controlling loci provided important empirical data that should prove useful in the design of marker-assisted breeding schemes as well as future association studies involving soybean.
Collapse
Affiliation(s)
- Kiwoung Yang
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, Chungbuk 363-883, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Gutha LR, Casassa LF, Harbertson JF, Naidu RA. Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves. BMC PLANT BIOLOGY 2010; 10:187. [PMID: 20731850 PMCID: PMC2956537 DOI: 10.1186/1471-2229-10-187] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 08/23/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Symptoms of grapevine leafroll disease (GLRD) in red-fruited wine grape (Vitis vinifera L.) cultivars consist of green veins and red and reddish-purple discoloration of inter-veinal areas of leaves. The reddish-purple color of symptomatic leaves may be due to the accumulation of anthocyanins and could reflect an up-regulation of genes involved in their biosynthesis. RESULTS We examined six putative constitutively expressed genes, Ubiquitin, Actin, GAPDH, EF1-a, SAND and NAD5, for their potential as references for normalization of gene expression in reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). Using the geNorm program, a combination of two genes (Actin and NAD5) was identified as the stable set of reference genes for normalization of gene expression data obtained from grapevine leaves. By using gene-specific RT-qPCR in combination with a reliable normalization factor, we compared relative expression of the flavonoid biosynthetic pathway genes between leaves infected with Grapevine leafroll-associated virus 3 (GLRaV-3) and exhibiting GLRD symptoms and virus-free green leaves obtained from a red-fruited wine grape cultivar (cv. Merlot). The expression levels of these different genes ranged from two- to fifty-fold increase in virus-infected leaves. Among them, CHS3, F3'5'H, F3H1, LDOX, LAR1 and MybA1 showed greater than 10-fold increase suggesting that they were expressed at significantly higher levels in virus-infected symptomatic leaves. HPLC profiling of anthocyanins extracted from leaves indicated the presence of cyanidin-3-glucoside and malvidin-3-glucoside only in virus-infected symptomatic leaves. The results also showed 24% higher levels of flavonols in virus-infected symptomatic leaves than in virus-free green leaves, with quercetin followed by myricetin being the predominant compounds. Proanthocyanidins, estimated as total tannins by protein precipitation method, were 36% higher in virus-infected symptomatic leaves when compared to virus-free green leaves. CONCLUSIONS The results, the first example to our knowledge, showed that modulation of the flavonoid biosynthetic pathway occurred in GLRaV-3-infected leaves of a red-fruited wine grape cultivar (cv. Merlot) leading to de novo synthesis of two classes of anthocyanins. These anthocyanins have contributed to the expression of reddish-purple color of virus-infected grapevine leaves exhibiting GLRD symptoms.
Collapse
Affiliation(s)
- Linga R Gutha
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | - Luis F Casassa
- School of Food Science, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | - James F Harbertson
- School of Food Science, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| | - Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| |
Collapse
|
66
|
Asaoka R, Shimura H, Arai M, Masuta C. A progeny virus from a cucumovirus pseudorecombinant evolved to gain the ability to accumulate Its RNA-silencing suppressor leading to systemic infection in tobacco. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:332-9. [PMID: 20121454 DOI: 10.1094/mpmi-23-3-0332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Two isolates of Tomato aspermy virus (TAV), V-TAV and C-TAV, can systemically infect Nicotiana benthamiana but only C-TAV can move systemically in N. tabacum. Any pseudorecombinants between the two strains could not move systemically in tobacco as efficiently as C-TAV. However, a pseudorecombinant consisting of RNAs 1 and 3 of V-TAV and RNA 2 of C-TAV (V1C2V3), which cannot infect tobacco systemically, generated progeny with a mutation in V1 and a recombination in C2 (V1(m)C2(r)V3), enabling the virus to move systemically. To avoid further mutation and recombination in the virus, we used Cucumber mosaic virus RNA3 (Y3) for subsequent experiments. Northern blot analyses showed that RNA4A, which encodes the 2b protein (2b), and RNA5 abundantly accumulated in V1(m)C2(r)Y3-infected tobacco. V1(m)C2(r)Y3 actually caused higher accumulation of 2b than did V1C2Y3 in Western blots, and overexpression of 2b by the PVX vector enabled V1C2Y3 to move systemically in tobacco, suggesting that 2b accumulation promotes viral systemic movement. Because RNA-silencing suppressor (RSS) activity of 2b was thought to be involved in systemic movement, we compared the RSS activity of 2b for the two TAV isolates; C-TAV 2b had stronger activity than did V-TAV 2b in tobacco in a transient protoplast assay. Our data also demonstrated that 2b and RNA5 play an important role in the evolution of members of genus Cucumovirus by generating mutant/recombinant viruses and viral systemic movement over RNA silencing.
Collapse
Affiliation(s)
- Ryota Asaoka
- Laboratory Of Cell Biology And Manipulation, Graduate School Of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
67
|
|
68
|
Tuteja JH, Zabala G, Varala K, Hudson M, Vodkin LO. Endogenous, tissue-specific short interfering RNAs silence the chalcone synthase gene family in glycine max seed coats. THE PLANT CELL 2009; 21:3063-77. [PMID: 19820189 PMCID: PMC2782299 DOI: 10.1105/tpc.109.069856] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/03/2009] [Accepted: 09/16/2009] [Indexed: 05/18/2023]
Abstract
Two dominant alleles of the I locus in Glycine max silence nine chalcone synthase (CHS) genes to inhibit function of the flavonoid pathway in the seed coat. We describe here the intricacies of this naturally occurring silencing mechanism based on results from small RNA gel blots and high-throughput sequencing of small RNA populations. The two dominant alleles of the I locus encompass a 27-kb region containing two perfectly repeated and inverted clusters of three chalcone synthase genes (CHS1, CHS3, and CHS4). This structure silences the expression of all CHS genes, including CHS7 and CHS8, located on other chromosomes. The CHS short interfering RNAs (siRNAs) sequenced support a mechanism by which RNAs transcribed from the CHS inverted repeat form aberrant double-stranded RNAs that become substrates for dicer-like ribonuclease. The resulting primary siRNAs become guides that target the mRNAs of the nonlinked, highly expressed CHS7 and CHS8 genes, followed by subsequent amplification of CHS7 and CHS8 secondary siRNAs by RNA-dependent RNA polymerase. Most remarkably, this silencing mechanism occurs only in one tissue, the seed coat, as shown by the lack of CHS siRNAs in cotyledons and vegetative tissues. Thus, production of the trigger double-stranded RNA that initiates the process occurs in a specific tissue and represents an example of naturally occurring inhibition of a metabolic pathway by siRNAs in one tissue while allowing expression of the pathway and synthesis of valuable secondary metabolites in all other organs/tissues of the plant.
Collapse
Affiliation(s)
| | | | | | | | - Lila O. Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801S
| |
Collapse
|
69
|
Kasai A, Ohnishi S, Yamazaki H, Funatsuki H, Kurauchi T, Matsumoto T, Yumoto S, Senda M. Molecular mechanism of seed coat discoloration induced by low temperature in yellow soybean. PLANT & CELL PHYSIOLOGY 2009; 50:1090-8. [PMID: 19395413 DOI: 10.1093/pcp/pcp061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Seed coat pigmentation is inhibited in yellow soybean. The I gene inhibits pigmentation over the entire seed coat. In yellow soybean, seed coat discoloration occurs when plants are exposed to low temperatures after the onset of flowering, a phenomenon named 'cold-induced discoloration (CD)'. Inhibition of seed coat pigmentation results from post-transcriptional gene silencing (PTGS) of the chalcone synthase (CHS) genes. PTGS is a sequence-specific RNA degradation mechanism in plants and occurs via short interfering RNAs (siRNAs). Similar post-transcriptional suppression is called RNAi (RNA interference) in animals. Recently, we identified a candidate of the I gene designated GmIRCHS. In this study, to elucidate the molecular mechanism of CD, CHS mRNA and siRNA levels in the seed coat were compared between CD-sensitive and CD-tolerant cultivars (Toyomusume and Toyoharuka, respectively). In Toyomusume, the CHS siRNA level was reduced markedly by low temperature treatment, and subsequently the CHS mRNA level increased rapidly after treatment. In contrast, low temperature treatment did not result in severe reduction of the CHS siRNA level in Toyoharuka, and the CHS mRNA level did not increase after the treatment. These results suggest that the rapid increase in CHS mRNA level after low temperature treatment may lead to enhanced pigmentation in some of the seed coat cells and finally in seed coat discoloration. Interestingly, we found a Toyoharuka-specific difference in the GmIRCHS region, which may be involved in CD tolerance.
Collapse
Affiliation(s)
- Atsushi Kasai
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Nagamatsu A, Masuta C, Matsuura H, Kitamura K, Abe J, Kanazawa A. Down-regulation of flavonoid 3'-hydroxylase gene expression by virus-induced gene silencing in soybean reveals the presence of a threshold mRNA level associated with pigmentation in pubescence. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:32-9. [PMID: 18423787 DOI: 10.1016/j.jplph.2008.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/04/2008] [Accepted: 02/04/2008] [Indexed: 05/25/2023]
Abstract
Changes in flavonoid content are often manifested as altered pigmentation in plant tissues. Two loci have been identified as controlling pigmentation in soybean pubescence. Of these, the T locus appears to encode flavonoid 3'-hydroxylase (F3'H) protein: the T and t alleles are associated with tawny and gray colors, respectively, in pubescence. We previously down-regulated F3'H gene expression by virus-induced gene silencing (VIGS) in soybean. Despite this successful VIGS, the tawny pubescence pigmentation proved to be unchanged in greenhouse-grown plants. We hypothesized that the reduced mRNA level of the F3'H gene resulting from VIGS remained high enough to induce pigmentation. To verify this hypothesis, in the present study, we performed F3'H VIGS on plants grown under controlled conditions, in which the steady-state mRNA level of the F3'H gene was reduced to approximately 5% of that of greenhouse-grown plants. This VIGS treatment resulted in the loss of tawny pigmentation in pubescence, suggesting that the sf3'h1 gene is involved in the control of pigmentation in pubescence. We detected a marked decrease in target mRNA, an accumulation of short interfering RNAs (siRNAs), and a decrease in quercetin content relative to kaempferol in leaf tissues, indicating that sequence-specific mRNA degradation of the F3'H gene was induced. These results suggest that leaf tissues have a threshold mRNA level of the F3'H gene, which is associated with the occurrence of tawny pigmentation in pubescence. The estimated threshold mRNA level for pigmentation in pubescence was approximately 3% of the steady-state mRNA level of the F3'H gene in greenhouse-grown plants.
Collapse
Affiliation(s)
- Atsushi Nagamatsu
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
71
|
Lacombe S, Souyris I, Bervillé AJ. An insertion of oleate desaturase homologous sequence silences via siRNA the functional gene leading to high oleic acid content in sunflower seed oil. Mol Genet Genomics 2008; 281:43-54. [PMID: 18956214 DOI: 10.1007/s00438-008-0391-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 10/10/2008] [Indexed: 11/29/2022]
Abstract
Classical sunflower varieties display a high linoleic acid content in their seeds [low oleic (LO) varieties] whereas genotypes carrying the Pervenets mutation display an increased oleic acid content of above 83% [high oleic (HO) varieties]. Despite the advantage in health terms of oleic acid, the nature of the mutation was still unknown. Previous work reported that HO genotypes carried a specific oleate desaturase (OD) allele. This enzyme catalyses the desaturation of oleic acid into linoleic acid. The present work demonstrates that this allele is organised in two parts: the first section present in both HO and LO genotypes carries a normal OD gene, the second section is specific to HO genotypes and carries OD duplications. The study of mRNA accumulation in LO and HO seeds revealed that the mutation is dominant and induces an OD mRNA down-regulation. Furthermore, OD small interfering RNA, characteristic of gene silencing, accumulated specifically in HO seeds. Considered together, these observations show that the mutation is associated with OD duplications leading to gene silencing of the OD gene and consequently, to oleic acid accumulation. This finding allowed the development of molecular markers characterising the mutation that can be used in breeding programmes to facilitate the selection of HO genotypes.
Collapse
Affiliation(s)
- Séverine Lacombe
- Monsanto SAS, Croix de Pardies, BP 21, 40305, Peyrehorade Cedex, France
| | | | | |
Collapse
|
72
|
Nagamatsu A, Masuta C, Senda M, Matsuura H, Kasai A, Hong JS, Kitamura K, Abe J, Kanazawa A. Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:778-90. [PMID: 17764520 DOI: 10.1111/j.1467-7652.2007.00288.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Virus-induced gene silencing (VIGS) is a powerful tool for functional analysis of genes in plants. A wide-host-range VIGS vector, which was developed based on the Cucumber mosaic virus (CMV), was tested for its ability to silence endogenous genes involved in flavonoid biosynthesis in soybean. Symptomless infection was established using a pseudorecombinant virus, which enabled detection of specific changes in metabolite content by VIGS. It has been demonstrated that the yellow seed coat phenotype of various cultivated soybean lines that lack anthocyanin pigmentation is induced by natural degradation of chalcone synthase (CHS) mRNA. When soybean plants with brown seed coats were infected with a virus that contains the CHS gene sequence, the colour of the seed coats changed to yellow, which indicates that the naturally occurring RNA silencing is reproduced by VIGS. In addition, CHS VIGS consequently led to a decrease in isoflavone content in seeds. VIGS was also tested on the putative flavonoid 3'-hydroxylase (F3'H) gene in the pathway. This experiment resulted in a decrease in the content of quercetin relative to kaempferol in the upper leaves after viral infection, which suggests that the putative gene actually encodes the F3'H protein. In both experiments, a marked decrease in the target mRNA and accumulation of short interfering RNAs were detected, indicating that sequence-specific mRNA degradation was induced. The present report is a successful demonstration of the application of VIGS for genes involved in flavonoid biosynthesis in plants; the CMV-based VIGS system provides an efficient tool for functional analysis of soybean genes.
Collapse
Affiliation(s)
- Atsushi Nagamatsu
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Yi H, Richards EJ. A cluster of disease resistance genes in Arabidopsis is coordinately regulated by transcriptional activation and RNA silencing. THE PLANT CELL 2007; 19:2929-39. [PMID: 17890374 PMCID: PMC2048694 DOI: 10.1105/tpc.107.051821] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 08/14/2007] [Accepted: 09/04/2007] [Indexed: 05/17/2023]
Abstract
The RPP5 (for recognition of Peronospora parasitica 5) locus in the Arabidopsis thaliana Columbia strain contains a cluster of paralogous disease Resistance (R) genes that play important roles in innate immunity. Among the R genes in this locus, RPP4 confers resistance to two races of the fungal pathogen Hyaloperonospora parasitica, while activation of SNC1 (for suppressor of npr1-1, constitutive 1) results in the resistance to another race of H. parasitica and to pathovars of the bacterial pathogen Pseudomonas syringae through the accumulation of salicylic acid (SA). Here, we demonstrate that other Columbia RPP5 locus R genes can be induced by transgenic overexpression of SNC1, which itself is regulated by a positive amplification loop involving SA accumulation. We also show that small RNA species that can target RPP5 locus R genes are produced in wild-type plants and that these R genes can be cosuppressed in transgenic plants overexpressing SNC1. Steady state expression levels of SNC1 increase in some mutants (dcl4-4, ago1-36, and upf1-5) defective in RNA silencing as well as in transgenic plants expressing the P1/Helper Component-Protease viral suppressor of RNA silencing. However, steady state levels of small RNA species do not change in mutants that upregulate SNC1. These data indicate many Columbia RPP5 locus R genes can be coordinately regulated both positively and negatively and suggest that the RPP5 locus is poised to respond to pathogens that disturb RNA silencing.
Collapse
Affiliation(s)
- Hankuil Yi
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | | |
Collapse
|
74
|
Goto K, Kobori T, Kosaka Y, Natsuaki T, Masuta C. Characterization of silencing suppressor 2b of cucumber mosaic virus based on examination of its small RNA-binding abilities. PLANT & CELL PHYSIOLOGY 2007; 48:1050-60. [PMID: 17567638 DOI: 10.1093/pcp/pcm074] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Double-stranded (ds) RNAs and imperfect hairpin RNAs of endogenous genes trigger post-transcriptional gene silencing (PTGS) and are cleaved by a Dicer-like nuclease into small interfering RNAs (siRNAs) and microRNs (miRNAs), respectively. Such small RNAs (siRNAs and miRNAs) then guide an RNA-induced silencing complex (RISC) for sequence-specific RNA degradation. While PTGS serves as an antiviral defense in plants, many plant viruses encode suppressors as a counter defense. Here we demonstrate that the PTGS suppressor (2b) of a severe strain (CM95R) of cucumber mosaic virus (CMV) can bind to in vitro synthesized siRNAs and even to long dsRNAs to a lesser extent. However, the 2b suppressor weakly bound to a miRNA (miR171) duplex in contrast to another small RNA-binding suppressor, p19 of tombusvirus that can effectively bind miRNAs. Because the 2b suppressor of an attenuated strain of CMV (CM95), which differs in a single amino acid from the 2b of CM95R, could barely bind siRNAs, we hypothesized that the weak suppressor activity of the attenuated strain resulted from a loss of the siRNA-binding property of 2b via a single amino acid change. Here we consider that 2b interferes with the PTGS pathway by directly binding siRNAs (or long dsRNA).
Collapse
Affiliation(s)
- Kazunori Goto
- Cell Biology and Manipulation Laboratory, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | | | | | | | | |
Collapse
|
75
|
Kasai A, Kasai K, Yumoto S, Senda M. Structural features of GmIRCHS, candidate of the I gene inhibiting seed coat pigmentation in soybean: implications for inducing endogenous RNA silencing of chalcone synthase genes. PLANT MOLECULAR BIOLOGY 2007; 64:467-79. [PMID: 17497082 DOI: 10.1007/s11103-007-9169-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 03/28/2007] [Indexed: 05/15/2023]
Abstract
Most commercial soybean varieties have yellow seeds due to loss of pigmentation in the seed coat. The I gene inhibits pigmentation over the entire seed coat, resulting in a uniform yellow color of mature harvested seeds. We previously demonstrated that the inhibition of seed coat pigmentation by the I gene results from post-transcriptional gene silencing (PTGS) of chalcone synthase (CHS) genes. Little is known about the structure of the I gene and the mechanism by which it induces PTGS of CHS genes. Here, we report a candidate of the I gene, GmIRCHS, which consists of a 5'-portion of a DnaJ-like gene containing a promoter region and a perfect inverted repeat (IR) of 1.1-kb truncated CHS3 sequences (5'-DeltaCHS3 and 3'-DeltaCHS3). RT-PCRs and RNase protection assay indicated the existence of the read-through product from 5'-DeltaCHS3 to 3'-DeltaCHS3 and the dsRNA region of DeltaCHS3, suggesting that dsRNA of DeltaCHS3 could be transcribed from GmIRCHS and could induce PTGS of CHS genes. Moreover, the IR structure of DeltaCHS3 in GmIRCHS was lost in the soybean mutants in which I was changed to i, supporting the conclusion that GmIRCHS is the I gene.
Collapse
Affiliation(s)
- Atsushi Kasai
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori, 036-8561, Japan
| | | | | | | |
Collapse
|
76
|
Domier LL, Steinlage TA, Hobbs HA, Wang Y, Herrera-Rodriguez G, Haudenshield JS, McCoppin NK, Hartman GL. Similarities in Seed and Aphid Transmission Among Soybean mosaic virus Isolates. PLANT DISEASE 2007; 91:546-550. [PMID: 30780699 DOI: 10.1094/pdis-91-5-0546] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Soybean mosaic virus (SMV) is an aphid- and seed-transmitted virus that infects soybean (Glycine max) plants and causes significant yield losses. Seed-borne infections are the primary sources of inoculum for SMV infections. The strain specificity of SMV transmission through seed and SMV-induced seed-coat mottling were investigated in field experiments. Six soybean plant introductions (PIs) were inoculated with eight SMV strains and isolates. Transmission of SMV through seed ranged from 0 to 43%, and isolate-by-soybean line interactions occurred in both transmission rates and percentages of mottled seeds. For example, SMV 746 was transmitted through 43% of seed in PI 229324, but was not transmitted through seed of PIs 68522, 68671, or 86449. In contrast, SMV 413 was transmitted through seed from all PIs. SMVs that were transmitted poorly by the Asian soybean aphid, Aphis glycines, also were transmitted poorly through seed. No predicted amino acid sequences within the helper-component protease or coat protein coding regions differentiated the two groups of SMV strains. The loss of aphid and seed transmissibility by repeated mechanical transmission suggests that constant selection pressure is needed to maintain the regions of the SMV genome controlling the two phenotypes from genetic drift and loss of function.
Collapse
Affiliation(s)
- Leslie L Domier
- Department of Crop Sciences, University of Illinois, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801
| | - Todd A Steinlage
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, IPN, Unidad Sinaloa, Guasave, Sinaloa, Mexico
| | - Houston A Hobbs
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, IPN, Unidad Sinaloa, Guasave, Sinaloa, Mexico
| | - Yi Wang
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, IPN, Unidad Sinaloa, Guasave, Sinaloa, Mexico
| | - Gabriel Herrera-Rodriguez
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, IPN, Unidad Sinaloa, Guasave, Sinaloa, Mexico
| | - James S Haudenshield
- Department of Crop Sciences, University of Illinois, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801
| | - Nancy K McCoppin
- Department of Crop Sciences, University of Illinois, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801
| | - Glen L Hartman
- Department of Crop Sciences, University of Illinois, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801
| |
Collapse
|
77
|
Lim HS, Ko TS, Hobbs HA, Lambert KN, Yu JM, McCoppin NK, Korban SS, Hartman GL, Domier LL. Soybean mosaic virus Helper Component-Protease Alters Leaf Morphology and Reduces Seed Production in Transgenic Soybean Plants. PHYTOPATHOLOGY 2007; 97:366-372. [PMID: 18943658 DOI: 10.1094/phyto-97-3-0366] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Transgenic soybean (Glycine max) plants expressing Soybean mosaic virus (SMV) helper component-protease (HC-Pro) showed altered vegetative and reproductive phenotypes and responses to SMV infection. When inoculated with SMV, transgenic plants expressing the lowest level of HC-Pro mRNA and those transformed with the vector alone initially showed mild SMV symptoms. Plants that accumulated the highest level of SMV HC-Pro mRNA showed very severe SMV symptoms initially, but after 2 weeks symptoms disappeared, and SMV titers were greatly reduced. Analysis of SMV RNA abundance over time with region-specific probes showed that the HC-Pro region of the SMV genome was degraded before the coat protein region. Transgenic soybean plants that expressed SMV HC-Pro showed dose-dependent alterations in unifoliate leaf morphologies and seed production where plants expressing the highest levels of HC-Pro had the most deformed leaves and the lowest seed production. Accumulation of microRNAs (miRNAs) and mRNAs putatively targeted by miRNAs was analyzed in leaves and flowers of healthy, HC-Pro-transgenic, and SMV-infected plants. Neither expression of SMV HC-Pro nor SMV infection produced greater than twofold changes in accumulation of six miRNAs. In contrast, SMV infection was associated with twofold or greater increases in the accumulation of four of seven miRNA-targeted mRNAs tested.
Collapse
|
78
|
Matsuo K, Hong JS, Tabayashi N, Ito A, Masuta C, Matsumura T. Development of Cucumber mosaic virus as a vector modifiable for different host species to produce therapeutic proteins. PLANTA 2007; 225:277-86. [PMID: 16821041 DOI: 10.1007/s00425-006-0346-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 06/09/2006] [Indexed: 05/10/2023]
Abstract
We have developed Cucumber mosaic virus (CMV) as a plant virus vector especially for production of pharmaceutical proteins. The CMV vector is a vector modifiable for different host plants and does not require further engineering steps. CMV contains three genomic RNA molecules (RNAs 1-3) necessary for infectivity. With this system, instead of creating different vector constructs for each plant we use, we take advantage of the formation of pseudrecombinants between two CMV isolates by simply reassembling a vector construct (RNA 2 base) and an RNA molecule containing the host determinant (mostly RNA 3). In this study, the gene for acidic fibroblast growth factor (aFGF), one of the human cytokines, was cloned under the control of the subgenomic promoter for RNA 4A of the CMV-based vector, C2-H1. Infected Nicotiana benthamiana plants produced aFGF at levels up to 5-8% of the total soluble protein. The tobacco-produced aFGF was purified, and its biological activity was confirmed. Using this system, which provides a versatile and viable strategy for the production of therapeutic proteins in plants, we also demonstrated a high level of aFGF in Glycine max (soybean) and Arabidopsis thaliana.
Collapse
Affiliation(s)
- Kouki Matsuo
- National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
79
|
Lunkenbein S, Coiner H, de Vos CHR, Schaart JG, Boone MJ, Krens FA, Schwab W, Salentijn EMJ. Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry (Fragaria x ananassa). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:2145-53. [PMID: 16536589 DOI: 10.1021/jf052574z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
An octaploid (Fragaria x ananassa cv. Calypso) genotype of strawberry was transformed with an antisense chalcone synthase (CHS) gene construct using a ripening related CHS cDNA from Fragaria x ananassa cv. Elsanta under the control of the constitutive CaMV 35S promoter via Agrobacterium tumefaciens. Out of 25 transgenic lines, nine lines showed a reduction in CHS mRNA accumulation of more than 50% as compared to the untransformed cv. Calypso control. The antisense CHS construct was found to be integrated into the genome, with a copy number ranging from one to four. The pigmentation of the fruit was only affected when less than 5% of the control CHS expression level was detected. A stable antisense phenotype over a period of 4 years was obtained in the primary transgenic lines at a rate of 1:20. As a consequence of the reduced activity of CHS, the levels of anthocyanins, flavonols, and proanthocyanidins were downregulated and precursors of the flavonoid pathway were shunted to the phenylpropanoid pathway leading to highly increased levels of cinnamoyl glucose (520% of control), caffeoyl glucose (816% of control), and feruloyl glucose (1092% of control) as well as p-coumaryl alcohol (363% of control) and p-coumaryl-1-acetate (1079% of control), which occur only as trace components in untransformed control fruits. These results demonstrate that the introduction of an antisense CHS construct in strawberry results in an unpredictable biochemical phenotype, thereby confirming that CHS function is an important regulatory point of substrate flow between the flavonoid and the phenylpropanoid pathways.
Collapse
Affiliation(s)
- Stefan Lunkenbein
- Biomolecular Food Technology, Technical University München, Lise-Meitner-Strasse 34, 85354 Freising, Germany
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Koseki M, Goto K, Masuta C, Kanazawa A. The Star-type Color Pattern in Petunia hybrida ‘Red Star’ Flowers is Induced by Sequence-Specific Degradation of Chalcone Synthase RNA. ACTA ACUST UNITED AC 2005; 46:1879-83. [PMID: 16143597 DOI: 10.1093/pcp/pci192] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Petunia hybrida 'Red Star' is a variety whose flowers exhibit a star-type red and white bicolor pattern. We analyzed the mRNA levels of six genes involved in anthocyanin biosynthesis. Only the level of chalcone synthase (CHS) mRNA was depressed in the unpigmented flower sectors. Both transcriptional activity and the accumulation of short interfering RNA of CHS in the unpigmented sectors were detected. Viral infection blocked the generation of CHS-silenced sectors. These results indicate that sequence-specific degradation of CHS RNA is the primary cause of the formation of white sectors in 'Red Star' flowers.
Collapse
Affiliation(s)
- Maiko Koseki
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | | | | | | |
Collapse
|
81
|
Lim HS, Ko TS, Lambert KN, Kim HG, Korban SS, Hartman GL, Domier LL. Soybean mosaic virus helper component-protease enhances somatic embryo production and stabilizes transgene expression in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:1014-21. [PMID: 16316753 DOI: 10.1016/j.plaphy.2005.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/10/2005] [Accepted: 08/29/2005] [Indexed: 05/05/2023]
Abstract
Soybean mosaic virus (SMV) helper component protease (HC-Pro), a suppressor of post-transcriptional gene silencing, was evaluated for its ability to enhance production of soybean hygromycin-resistant somatic embryos (HR-SEs), and stabilize transgene expression. Immature soybean cotyledonary explants were co-cultured with Agrobacterium tumefaciens strain KYRT1 harboring either pCAMBIA1302, carrying a hygromycin phosphotransferase gene (hpt) and a gene encoding green fluorescent protein; pCAMBIA1305.1, carrying hpt and beta-glucuronidase (uidA) genes; pG2-HC-Pro, a derivative of pCAMBIA1305.1 containing SMV G2 HC-Pro; or pG5-HC-Pro, a derivative of pCAMBIA1305.1 containing SMV G5 HC-Pro, but lacking uidA. Significantly (rho<0.02) higher numbers of HR-SEs were obtained from explants transformed with Agrobacterium harboring either pG2-HC-Pro or pG5-HC-Pro than with either of the vector controls (pCAMBIA1302 or pCAMBIA1305.1). Beta-glucuronidase (GUS) expression was significantly (rho<0.003) higher in 50-day-old transgenic plants expressing GUS along with SMV-HC-Pro and in SMV-infected GUS transgenic plants than in transgenic plants expressing GUS alone. Together, these data suggest that SMV-HC-Pro enhanced recovery of HR-SEs by suppressing silencing of the hygromycin phosphotransferase gene.
Collapse
Affiliation(s)
- Hyoun-Sub Lim
- Department of Crop Sciences University of Illinois, 1102 Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Zabala G, Vodkin LO. The wp mutation of Glycine max carries a gene-fragment-rich transposon of the CACTA superfamily. THE PLANT CELL 2005; 17:2619-32. [PMID: 16141454 PMCID: PMC1242261 DOI: 10.1105/tpc.105.033506] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 07/27/2005] [Accepted: 08/18/2005] [Indexed: 05/04/2023]
Abstract
We used soybean (Glycine max) cDNA microarrays to identify candidate genes for a stable mutation at the Wp locus in soybean, which changed a purple-flowered phenotype to pink, and found that flavanone 3-hydroxylase cDNAs were overexpressed in purple flower buds relative to the pink. Restriction fragment length polymorphism analysis and RNA gel blots of purple and pink flower isolines, as well as the presence of a 5.7-kb transposon insertion in the wp mutant allele, have unequivocally shown that flavanone 3-hydroxylase gene 1 is the Wp locus. Moreover, the 5.7-kb insertion in wp represents a novel transposable element (termed Tgm-Express1) with inverted repeats closely related to those of other Tgms (transposable-like elements, G. max) but distinct in several characteristics, including the lack of subterminal inverted repeats. More significantly, Tgm-Express1 contains four truncated cellular genes from the soybean genome, resembling the Pack-MULEs (Mutator-like transposable elements) found in maize (Zea mays), rice (Oryza sativa), and Arabidopsis thaliana and the Helitrons of maize. The presence of the Tgm-Express1 element causing the wp mutation, as well as a second Tgm-Express2 element elsewhere in the soybean genome, extends the ability to acquire and transport host DNA segments to the CACTA family of elements, which includes both Tgm and the prototypical maize Spm/En.
Collapse
Affiliation(s)
- Gracia Zabala
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
83
|
Cao X, Zhou P, Zhang X, Zhu S, Zhong X, Xiao Q, Ding B, Li Y. Identification of an RNA silencing suppressor from a plant double-stranded RNA virus. J Virol 2005; 79:13018-27. [PMID: 16189004 PMCID: PMC1235839 DOI: 10.1128/jvi.79.20.13018-13027.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 07/26/2005] [Indexed: 01/05/2023] Open
Abstract
RNA silencing is a mechanism which higher plants and animals have evolved to defend against viral infection in addition to regulation of gene expression for growth and development. As a counterdefense, many plant and some animal viruses studied to date encode RNA silencing suppressors (RSS) that interfere with various steps of the silencing pathway. In this study, we report the first identification of an RSS from a plant double-stranded RNA (dsRNA) virus. Pns10, encoded by S10 of Rice dwarf phytoreovirus (RDV), exhibited RSS activity in coinfiltration assays with the reporter green fluorescent protein (GFP) in transgenic Nicotiana benthamiana line 16c carrying GFP. The other gene segments of the RDV genome did not have such a function. Pns10 suppressed local and systemic silencing induced by sense RNA but did not interfere with local and systemic silencing induced by dsRNA. Expression of Pns10 also increased the expression of beta-glucuronidase in transient assays and enhanced Potato virus X pathogenicity in N. benthamiana. Collectively, our results establish Pns10 as an RSS encoded by a plant dsRNA virus and further suggest that Pns10 targets an upstream step of dsRNA formation in the RNA silencing pathway.
Collapse
Affiliation(s)
- Xuesong Cao
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Yamaguchi N, Seshimo Y, Yoshimoto E, Ahn HI, Ryu KH, Choi JK, Masuta C. Genetic mapping of the compatibility between a lily isolate of Cucumber mosaic virus and a satellite RNA. J Gen Virol 2005; 86:2359-2369. [PMID: 16033984 DOI: 10.1099/vir.0.81059-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Five isolates of Cucumber mosaic virus (CMV) from Lilium sp. (lily), which were isolated from specimens in Japan, Korea and Taiwan, were unable to support satellite RNA (satRNA) accumulation. In order to map the CMV sequences that are involved in satRNA support, HL-CMV (Japanese lily isolate), Y-CMV (ordinary strain) and Y-satellite RNA (Y-sat) were used as the source material. The pseudorecombinants between Y-CMV and HL-CMV revealed that RNA1 was essential for satRNA replication in lily. The results of chimeric constructs and various mutations showed that two amino acid residues (at positions 876 and 891) in the 1a protein were the determinants for the inability of HL-CMV to support a satRNA. Specifically, Thr at position 876 had a more pronounced effect than Met at position 891. Specific changes in RNA sequence were also detected in the 3' terminus of Y-sat and these particular alterations allowed it to be supported by HL-CMV. It is believed that, through evolution, the adaptation of CMV to lily resulted in the introduction of amino acid changes in the 1a protein, changes that coincidentally affected the ability of lily CMV to support satRNAs.
Collapse
Affiliation(s)
- Naoya Yamaguchi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yuko Seshimo
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Eri Yoshimoto
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Hong Il Ahn
- Graduate School of Biotechnology, Korea University, Seoul 139-774, Korea
| | - Ki Hyun Ryu
- Plant Virus GenBank, Division of Environmental and Life Sciences, Seoul Women's University, Seoul, 139-774, Korea
| | - Jang Kyung Choi
- Division of Biological Environment, Kangwon National University, Chunchon 200-701, Korea
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
85
|
Della Vedova CB, Lorbiecke R, Kirsch H, Schulte MB, Scheets K, Borchert LM, Scheffler BE, Wienand U, Cone KC, Birchler JA. The dominant inhibitory chalcone synthase allele C2-Idf (inhibitor diffuse) from Zea mays (L.) acts via an endogenous RNA silencing mechanism. Genetics 2005; 170:1989-2002. [PMID: 15956664 PMCID: PMC1449766 DOI: 10.1534/genetics.105.043406] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 05/09/2005] [Indexed: 11/18/2022] Open
Abstract
The flavonoid pigment pathway in plants has been used as a model system for studying gene regulatory mechanisms. C2-Idf is a stable dominant mutation of the chalcone synthase gene, c2, which encodes the first dedicated enzyme in this biosynthetic pathway of maize. Homozygous C2-Idf plants show no pigmentation. This allele also inhibits expression of functional C2 alleles in heterozygotes, producing a less pigmented condition instead of the normal deeply pigmented phenotype. To explore the nature of this effect, the C2-Idf allele was cloned. The gene structure of the C2-Idf haplotype differs substantially from that of the normal c2 gene in that three copies are present. Two of these are located in close proximity to each other in a head-to-head orientation and the third is closely linked. Previous experiments showed that the lower level of pigmentation in heterozygotes is correlated with reduced enzyme activity and low steady-state mRNA levels. We found that c2 transcription occurs in nuclei of C2-Idf/C2 heterozygotes, but mRNA does not accumulate, suggesting that the inhibition is mediated by RNA silencing. Infection of C2-Idf/C2 heterozygotes with viruses that carry suppressors of RNA silencing relieved the phenotypic inhibition, restoring pigment production and mRNA levels. Finally, we detected small interfering RNAs (siRNAs) in plants carrying C2-Idf, but not in plants homozygous for the wild-type C2 allele. Together, our results indicate that the inhibitory effect of C2-Idf occurs through RNA silencing.
Collapse
MESH Headings
- Acyltransferases/genetics
- Alleles
- Cell Nucleus/genetics
- Cloning, Molecular
- DNA Methylation
- DNA, Plant/analysis
- Gene Dosage
- Genes, Dominant
- Genes, Plant
- Genome, Plant
- Haplotypes
- Heterozygote
- Homozygote
- Molecular Sequence Data
- Mutation
- Promoter Regions, Genetic
- RNA Interference
- RNA, Messenger/metabolism
- RNA, Small Interfering/analysis
- Sequence Analysis, DNA
- Transcription, Genetic
- Zea mays/genetics
Collapse
|
86
|
Kobayashi S, Noro Y, Nagano H, Yoshida KT, Takano-Shimizu T, Kishima Y, Sano Y. Evidence for an evolutionary force that prevents epigenetic silencing between tail-to-tail rice genes with a short spacer. Gene 2005; 346:231-40. [PMID: 15716045 DOI: 10.1016/j.gene.2004.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 10/22/2004] [Accepted: 11/17/2004] [Indexed: 10/25/2022]
Abstract
During the course of evolution, the genome should have toned down various types of genomic noise, such as those that cause the unstable expression or gene silencing observed in transgenic organisms. We found a rice genomic segment where two genes, encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPs) and ribosomal protein small subunit 20 (rps20), are located in a tail-to-tail orientation and separated by only 300 bp of spacer. It is possible that this kind of structure would give rise to unstable expression due to antisense RNA derived from the neighboring gene. We examined this possibility using Northern blot, reverse transcription-polymerase chain reaction (RT-PCR), and 3' RACE analyses, but obtained no evidence for instability or antisense RNAs of these housekeeping genes. Comparison of the sequences in the corresponding regions among related rice species revealed a lower level of genetic divergence of both the 3'-untranslated region (3'-UTRs) than of the other noncoding regions; in particular both of the boundaries between the 3'-UTRs and the spacer were markedly conserved. The conservation of both the terminal regions is most likely the result of purifying selection, implying a functional role for the strict termination of the transcription of these genes to prevent gene-silencing-related events.
Collapse
Affiliation(s)
- So Kobayashi
- Laboratory of Plant Breeding, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
In eukaryotes, small RNA molecules engage in sequence-specific interactions to inhibit gene expression by RNA silencing. This process fulfils fundamental regulatory roles, as well as antiviral functions, through the activities of microRNAs and small interfering RNAs. As a counter-defence mechanism, viruses have evolved various anti-silencing strategies that are being progressively unravelled. These studies have not only highlighted our basic understanding of host-parasite interactions, but also provide key insights into the diversity, regulation and evolution of RNA-silencing pathways.
Collapse
Affiliation(s)
- Olivier Voinnet
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 Rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| |
Collapse
|
88
|
Clough SJ, Tuteja JH, Li M, Marek LF, Shoemaker RC, Vodkin LO. Features of a 103-kb gene-rich region in soybean include an inverted perfect repeat cluster of CHS genes comprising the I locus. Genome 2004; 47:819-31. [PMID: 15499396 DOI: 10.1139/g04-049] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The I locus in soybean (Glycine max) corresponds to a region of chalcone synthase (CHS) gene duplications affecting seed pigmentation. We sequenced and annotated BAC clone 104J7, which harbors a dominant i(i) allele from Glycine max 'Williams 82', to gain insight into the genetic structure of this multigenic region in addition to examining its flanking regions. The 103-kb BAC encompasses a gene-rich region with 11 putatively expressed genes. In addition to six copies of CHS, these genes include: a geranylgeranyltransferase type II beta subunit (E.C.2.5.1.60), a beta-galactosidase, a putative spermine and (or) spermidine synthase (E.C.2.5.1.16), and an unknown expressed gene. Strikingly, sequencing data revealed that the 10.91-kb CHS1, CHS3, CHS4 cluster is present as a perfect inverted repeat separated by 5.87 kb. Contiguous arrangement of CHS paralogs could lead to folding into multiple secondary structures, hypothesized to induce deletions that have previously been shown to effect CHS expression. BAC104J7 also contains several gene fragments representing a cation/hydrogen exchanger, a 40S ribosomal protein, a CBL-interacting protein kinase, and the amino terminus of a subtilisin. Chimeric ESTs were identified that may represent read-through transcription from a flanking truncated gene into a CHS cluster, generating aberrant CHS RNA molecules that could play a role in CHS gene silencing.
Collapse
Affiliation(s)
- Steven J Clough
- USDA-ARS and the Department of Crop Science, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
89
|
Tuteja JH, Clough SJ, Chan WC, Vodkin LO. Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. THE PLANT CELL 2004; 16:819-35. [PMID: 15064367 PMCID: PMC412859 DOI: 10.1105/tpc.021352] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 02/10/2004] [Indexed: 05/18/2023]
Abstract
Chalcone synthase, a key regulatory enzyme in the flavonoid pathway, constitutes an eight-member gene family in Glycine max (soybean). Three of the chalcone synthase (CHS) gene family members are arranged as inverted repeats in a 10-kb region, corresponding to the I locus (inhibitor). Spontaneous mutations of a dominant allele (I or i(i)) to a recessive allele (i) have been shown to delete promoter sequences, paradoxically increasing total CHS transcript levels and resulting in black seed coats. However, it is not known which of the gene family members contribute toward pigmentation and how this locus affects CHS expression in other tissues. We investigated the unusual nature of the I locus using four pairs of isogenic lines differing with respect to alleles of the I locus. RNA gel blots using a generic open reading frame CHS probe detected similar CHS transcript levels in stems, roots, leaves, young pods, and cotyledons of the yellow and black isolines but not in the seed coats, which is consistent with the dominant I and i(i) alleles mediating CHS gene silencing in a tissue-specific manner. Using real-time RT-PCR, a variable pattern of expression of CHS genes in different tissues was demonstrated. However, increase in pigmentation in the black seed coats was associated with release of the silencing effect specifically on CHS7/CHS8, which occurred at all stages of seed coat development. These expression changes were linked to structural changes taking place at the I locus, shown to encompass a much wider region of at least 27 kb, comprising two identical 10.91-kb stretches of CHS gene duplications. The suppressive effect of this 27-kb I locus in a specific tissue of the G. max plant represents a unique endogenous gene silencing mechanism.
Collapse
Affiliation(s)
- Jigyasa H Tuteja
- Program in Physiological and Molecular Plant Biology, University of Illinois, Urbana 61801, USA
| | | | | | | |
Collapse
|