51
|
Sun H, Yu J, Zhang F, Kang J, Li M, Wang Z, Liu W, Zhang J, Yang Q, Long R. iTRAQ-based comparative proteomic analysis of differences in the protein profiles of stems and leaves from two alfalfa genotypes. BMC PLANT BIOLOGY 2020; 20:447. [PMID: 32993512 PMCID: PMC7525974 DOI: 10.1186/s12870-020-02671-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/23/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND To explore the molecular regulatory mechanisms of early stem and leaf development, proteomic analysis was performed on leaves and stems of F genotype alfalfa, with thin stems and small leaves, and M genotype alfalfa, with thick stems and large leaves. RESULTS Based on fold-change thresholds of > 1.20 or < 0.83 (p < 0.05), a large number of proteins were identified as being differentially enriched between the M and F genotypes: 249 downregulated and 139 upregulated in stems and 164 downregulated and 134 upregulated in leaves. The differentially enriched proteins in stems were mainly involved in amino acid biosynthesis, phenylpropanoid biosynthesis, carbon fixation, and phenylalanine metabolism. The differentially enriched proteins in leaves were mainly involved in porphyrin and chlorophyll metabolism, phenylpropanoid biosynthesis, starch and sucrose metabolism, and carbon fixation in photosynthetic organisms. Six differentially enriched proteins were mapped onto the porphyrin and chlorophyll metabolism pathway in leaves of the M genotype, including five upregulated proteins involved in chlorophyll biosynthesis and one downregulated protein involved in chlorophyll degradation. Eleven differentially enriched proteins were mapped onto the phenylpropanoid pathway in stems of the M genotype, including two upregulated proteins and nine downregulated proteins. CONCLUSION Enhanced chlorophyll synthesis and decreased lignin synthesis provided a reasonable explanation for the larger leaves and lower levels of stem lignification in M genotype alfalfa. This proteomic study aimed to classify the functions of differentially enriched proteins and to provide information on the molecular regulatory networks involved in stem and leaf development.
Collapse
Affiliation(s)
- Hao Sun
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs/ Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Jie Yu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fan Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhen Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenwen Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiaju Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
52
|
Li Z, Kim JH, Kim J, Lyu JI, Zhang Y, Guo H, Nam HG, Woo HR. ATM suppresses leaf senescence triggered by DNA double-strand break through epigenetic control of senescence-associated genes in Arabidopsis. THE NEW PHYTOLOGIST 2020; 227:473-484. [PMID: 32163596 DOI: 10.1111/nph.16535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
All living organisms are unavoidably exposed to various endogenous and environmental stresses that trigger potentially fatal DNA damage, including double-strand breaks (DSBs). Although a growing body of evidence indicates that DNA damage is one of the prime drivers of aging in animals, little is known regarding the importance of DNA damage and its repair on lifespan control in plants. We found that the level of DSBs increases but DNA repair efficiency decreases as Arabidopsis leaves age. Generation of DSBs by inducible expression of I-PpoI leads to premature senescence phenotypes. We examined the senescence phenotypes in the loss-of-function mutants for 13 key components of the DNA repair pathway and found that deficiency in ATAXIA TELANGIECTASIA MUTATED (ATM), the chief transducer of the DSB signal, results in premature senescence in Arabidopsis. ATM represses DSB-induced expression of senescence-associated genes, including the genes encoding the WRKY and NAC transcription factors, central components of the leaf senescence process, via modulation of histone lysine methylation. Our work highlights the significance of ATM in the control of leaf senescence and has significant implications for the conservation of aging mechanisms in animals and plants.
Collapse
Affiliation(s)
- Zhonghai Li
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Korea
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Jin Hee Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Jeongsik Kim
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Korea
- Faculty of Science Education, Jeju National University, Jeju, 63243, Korea
| | - Jae Il Lyu
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Korea
| | - Yi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Hongwei Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, 42988, Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| |
Collapse
|
53
|
The Regulation of CIN-like TCP Transcription Factors. Int J Mol Sci 2020; 21:ijms21124498. [PMID: 32599902 PMCID: PMC7349945 DOI: 10.3390/ijms21124498] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 01/07/2023] Open
Abstract
TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR 1 and 2 (TCP) family proteins are the plant-specific transcription factors extensively participating in diverse developmental processes by integrating external cues with internal signals. The roles of CINCINNATA (CIN)-like TCPs are conserved in control of the morphology and size of leaves, petal development, trichome formation and plant flowering. The tight regulation of CIN-like TCP activity at transcriptional and post-transcriptional levels are central for plant developmental plasticity in response to the ever-changing environmental conditions. In this review, we summarize recent progresses with regard to the function and regulation of CIN-like TCPs. CIN-like TCPs are regulated by abiotic and biotic cues including light, temperature and pathogens. They are also finely controlled by microRNA319 (miRNA319), chromatin remodeling complexes and auxin homeostasis. The protein degradation plays critical roles in tightly controlling the activity of CIN-like TCPs as well.
Collapse
|
54
|
Kalve S, Sizani BL, Markakis MN, Helsmoortel C, Vandeweyer G, Laukens K, Sommen M, Naulaerts S, Vissenberg K, Prinsen E, Beemster GTS. Osmotic stress inhibits leaf growth of Arabidopsis thaliana by enhancing ARF-mediated auxin responses. THE NEW PHYTOLOGIST 2020; 226:1766-1780. [PMID: 32077108 DOI: 10.1111/nph.16490] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/11/2020] [Indexed: 05/18/2023]
Abstract
We investigated the interaction between osmotic stress and auxin signaling in leaf growth regulation. Therefore, we grew Arabidopsis thaliana seedlings on agar media supplemented with mannitol to impose osmotic stress and 1-naphthaleneacetic acid (NAA), a synthetic auxin. We performed kinematic analysis and flow-cytometry to quantify the effects on cell division and expansion in the first leaf pair, determined the effects on auxin homeostasis and response (DR5::β-glucuronidase), performed a next-generation sequencing transcriptome analysis and investigated the response of auxin-related mutants. Mannitol inhibited cell division and expansion. NAA increased the effect of mannitol on cell division, but ameliorated its effect on expansion. In proliferating cells, NAA and mannitol increased free IAA concentrations at the cost of conjugated IAA and stimulated DR5 promotor activity. Transcriptome analysis shows a large overlap between NAA and osmotic stress-induced changes, including upregulation of auxin synthesis, conjugation, transport and TRANSPORT INHIBITOR RESPONSE1 (TIR1) and AUXIN RESPONSE FACTOR (ARF) response genes, but downregulation of Aux/IAA response inhibitors. Consistently, arf7/19 double mutant lack the growth response to auxin and show a significantly reduced sensitivity to osmotic stress. Our results show that osmotic stress inhibits cell division during leaf growth of A. thaliana at least partly by inducing the auxin transcriptional response.
Collapse
Affiliation(s)
- Shweta Kalve
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | | | | | | | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Center Antwerp (Biomina), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Biomedical Informatics Research Center Antwerp (Biomina), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Manou Sommen
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Stefan Naulaerts
- Biomedical Informatics Research Center Antwerp (Biomina), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Kris Vissenberg
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Els Prinsen
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
55
|
Role of Arabidopsis INDOLE-3-ACETIC ACID CARBOXYL METHYLTRANSFERASE 1 in auxin metabolism. Biochem Biophys Res Commun 2020; 527:1033-1038. [PMID: 32444138 DOI: 10.1016/j.bbrc.2020.05.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022]
Abstract
The phytohormone auxin regulates a wide range of developmental processes in plants. Indole-3-acetic acid (IAA) is the main auxin that moves in a polar manner and forms concentration gradients, whereas phenylacetic acid (PAA), another natural auxin, does not exhibit polar movement. Although these auxins occur widely in plants, the differences between IAA and PAA metabolism remain largely unknown. In this study, we investigated the role of Arabidopsis IAA CARBOXYL METHYLTRANSFERASE 1 (IAMT1) in IAA and PAA metabolism. IAMT1 proteins expressed in Escherichia coli could convert both IAA and PAA to their respective methyl esters. Overexpression of IAMT1 caused severe auxin-deficient phenotypes and reduced the levels of IAA, but not PAA, in the root tips of Arabidopsis, suggesting that IAMT1 exclusively metabolizes IAA in vivo. We generated iamt1 null mutants via CRISPR/Cas9-mediated genome editing and found that the single knockout mutants had normal auxin levels and did not exhibit visibly altered phenotypes. These results suggest that other proteins, namely the IAMT1 homologs in the SABATH family of carboxyl methyltransferases, may also regulate IAA levels in Arabidopsis.
Collapse
|
56
|
He J, He X, Chang P, Jiang H, Gong D, Sun Q. Genome-wide identification and characterization of TCP family genes in Brassica juncea var. tumida. PeerJ 2020; 8:e9130. [PMID: 32461831 PMCID: PMC7231505 DOI: 10.7717/peerj.9130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/14/2020] [Indexed: 01/28/2023] Open
Abstract
Background Teosinte branched1/Cycloidea/proliferating cell factors (TCPs) are plant-specific transcription factors widely involved in leaf development, flowering, shoot branching, the circadian rhythm, hormone signaling, and stress responses. However, the TCP function in Brassica juncea var. tumida, the tumorous stem mustard, has not yet been reported. This study identified and characterized the entire TCP family members in B. juncea var. tumida. Methods We identified 62 BjTCP genes from the B. juncea var. tumida genome and analyzed their phylogenetic relationship, gene structure, protein motifs, chromosome location, and expression profile in different tissues. Results Of the 62 BjTCP genes we identified in B. juncea var. tumida, containing 34 class I and 28 class II subfamily members, 61 were distributed on 18 chromosomes. Gene structure and conserved motif analysis showed that the same clade genes displayed a similar exon/intron gene structure and conserved motifs. Cis-acting element results showed that the same clade genes also had a similar cis-acting element; however, subtle differences implied a different regulatory pathway. The BjTCP18s members were low-expressed in Dayejie strains and the unswelling stage of Yonganxiaoye strains. Treatment with gibberellin (GA) and salicylic acid (SA) showed that GA and SA affect the expression levels of multiple TCP genes. Conclusion We performed the first genome-wide analysis of the TCP gene family of B. juncea var. tumida. Our results have provided valuable information for understanding the classification and functions of TCP genes in B. juncea var. tumida.
Collapse
Affiliation(s)
- Jing He
- Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
| | - Xiaohong He
- Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
| | - Pingan Chang
- Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
| | - Huaizhong Jiang
- Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
| | - Daping Gong
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Quan Sun
- Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
| |
Collapse
|
57
|
Hernandez-Escribano L, Visser EA, Iturritxa E, Raposo R, Naidoo S. The transcriptome of Pinus pinaster under Fusarium circinatum challenge. BMC Genomics 2020; 21:28. [PMID: 31914917 PMCID: PMC6950806 DOI: 10.1186/s12864-019-6444-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/30/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Fusarium circinatum, the causal agent of pitch canker disease, poses a serious threat to several Pinus species affecting plantations and nurseries. Although Pinus pinaster has shown moderate resistance to F. circinatum, the molecular mechanisms of defense in this host are still unknown. Phytohormones produced by the plant and by the pathogen are known to play a crucial role in determining the outcome of plant-pathogen interactions. Therefore, the aim of this study was to determine the role of phytohormones in F. circinatum virulence, that compromise host resistance. RESULTS A high quality P. pinaster de novo transcriptome assembly was generated, represented by 24,375 sequences from which 17,593 were full length genes, and utilized to determine the expression profiles of both organisms during the infection process at 3, 5 and 10 days post-inoculation using a dual RNA-sequencing approach. The moderate resistance shown by Pinus pinaster at the early time points may be explained by the expression profiles pertaining to early recognition of the pathogen, the induction of pathogenesis-related proteins and the activation of complex phytohormone signaling pathways that involves crosstalk between salicylic acid, jasmonic acid, ethylene and possibly auxins. Moreover, the expression of F. circinatum genes related to hormone biosynthesis suggests manipulation of the host phytohormone balance to its own benefit. CONCLUSIONS We hypothesize three key steps of host manipulation: perturbing ethylene homeostasis by fungal expression of genes related to ethylene biosynthesis, blocking jasmonic acid signaling by coronatine insensitive 1 (COI1) suppression, and preventing salicylic acid biosynthesis from the chorismate pathway by the synthesis of isochorismatase family hydrolase (ICSH) genes. These results warrant further testing in F. circinatum mutants to confirm the mechanism behind perturbing host phytohormone homeostasis.
Collapse
Affiliation(s)
- Laura Hernandez-Escribano
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal (INIA-CIFOR), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Erik A Visser
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | - Eugenia Iturritxa
- NEIKER, Granja Modelo de Arkaute, Apdo 46, 01080, Vitoria-Gasteiz, Spain
| | - Rosa Raposo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal (INIA-CIFOR), Madrid, Spain
- Instituto de Gestión Forestal Sostenible (iuFOR), Universidad de Valladolid/INIA, Valladolid, Spain
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
58
|
Xu J, Li Q, Li Y, Yang L, Zhang Y, Cai Y. Effect of Exogenous Gibberellin, Paclobutrazol, Abscisic Acid, and Ethrel Application on Bulblet Development in Lycoris radiata. FRONTIERS IN PLANT SCIENCE 2020; 11:615547. [PMID: 33552107 PMCID: PMC7855306 DOI: 10.3389/fpls.2020.615547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/23/2020] [Indexed: 05/16/2023]
Abstract
Lycoris species have great ornamental and medicinal values; however, their low regeneration efficiency significantly restricts their commercial production. Exogenous hormone application is an effective way to promote bulblet development, but their effect on Lycoris radiata has not been verified to date. In the present study, we examined the effect of different exogenous hormones on bulblet development in L. radiata, and found that gibberellic acid (GA) significantly inhibited, whereas paclobutrazol (PBZ), abscisic acid (ABA), and ethrel promoted bulblet development, especially PBZ, a GA biosynthesis inhibitor. Furthermore, GA reduced endogenous cytokinin (CK) content, as well as the activities of carbohydrate metabolism enzymes, including sucrose synthase (SUS) and glucose-1-phosphate adenylyltransferase (AGPase), by downregulating the expression levels of LrSUS1, LrSUS2, and genes encoding AGPase large and small subunits. This resulted in the decrease in carbohydrate accumulation in the bulblets, thus hindering their development. PBZ had the opposite effect to GA on carbohydrate metabolism; it decreased endogenous GA15 and GA24, thereby promoting bulblet development. ABA promoted endogenous auxin content and the activities of starch synthesis enzymes, especially soluble starch synthase (SSS) and granule-bound SS (GBSS), through the up-regulation of the expression levels of LrSS1, LrSS2, and LrGBSS1 genes, which could also result in the accumulation of carbohydrates in the bulblets and promote their development. In addition, ethrel application partly promoted bulblet development by promoting endogenous CK content. Although the accumulation of carbohydrates and the activity of starch enzymes were increased by ethrel treatment, we hypothesized that the effect of ethrel on regulating carbohydrate metabolism may be indirect. Our results could provide a basis for improving the propagation efficiency of L. radiata for production, as well as propose some directions for future research.
Collapse
Affiliation(s)
- Junxu Xu
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qingzhu Li
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ye Li
- Agricultural Technology Extension Service Station of Langxia Town, Shanghai, China
| | - Liuyan Yang
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yongchun Zhang
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Yongchun Zhang,
| | - Youming Cai
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Youming Cai,
| |
Collapse
|
59
|
Zia SF, Berkowitz O, Bedon F, Whelan J, Franks AE, Plummer KM. Direct comparison of Arabidopsis gene expression reveals different responses to melatonin versus auxin. BMC PLANT BIOLOGY 2019; 19:567. [PMID: 31856719 PMCID: PMC6921455 DOI: 10.1186/s12870-019-2158-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/25/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Melatonin (N-acetyl-5-methoxytryptamine) in plants, regulates shoot and root growth and alleviates environmental stresses. Melatonin and the phyto-hormone auxin are tryptophan-derived compounds. However, it largely remains controversial as to whether melatonin and auxin act through similar or overlapping signalling and regulatory pathways. RESULTS Here, we have used a promoter-activation study to demonstrate that, unlike auxin (1-naphthalene acetic acid, NAA), melatonin neither induces Direct repeat 5 DR5 expression in Arabidopsis thaliana roots under normal growth conditions nor suppresses the induction of Alternative oxidase 1a AOX1a in leaves upon Antimycin A treatment, both of which are the hallmarks of auxin action. Additionally, comparative global transcriptome analysis conducted on Arabidopsis treated with melatonin or NAA revealed differences in the number and types of differentially expressed genes. Auxin (4.5 μM) altered the expression of a diverse and large number of genes whereas melatonin at 5 μM had no significant effect but melatonin at 100 μM had a modest effect on transcriptome compared to solvent-treated control. Interestingly, the prominent category of genes differentially expressed upon exposure to melatonin trended towards biotic stress defence pathways while downregulation of key genes related to photosynthesis was observed. CONCLUSION Together these findings indicate that though they are both indolic compounds, melatonin and auxin act through different pathways to alter gene expression in Arabidopsis thaliana. Furthermore, it appears that effects of melatonin enable Arabidopsis thaliana to prioritize biotic stress defence signalling rather than growth. These findings clear the current confusion in the literature regarding the relationship of melatonin and auxin and also have greater implications of utilizing melatonin for improved plant protection.
Collapse
Affiliation(s)
- Sajal F Zia
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC, 3086, Australia
- ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Frank Bedon
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC, 3086, Australia
- ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, 3086, Australia
- Centre for Future Landscapes, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Kim M Plummer
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
60
|
Liu Q, Chen TT, Xiao DW, Zhao SM, Lin JS, Wang T, Li YJ, Hou BK. OsIAGT1 Is a Glucosyltransferase Gene Involved in the Glucose Conjugation of Auxins in Rice. RICE (NEW YORK, N.Y.) 2019; 12:92. [PMID: 31853664 PMCID: PMC6920275 DOI: 10.1186/s12284-019-0357-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/09/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND In cereal crop rice, auxin is known as an important class of plant hormone that regulates a plethora of plant growth and development. Glycosylation of auxin is known to be one of the important mechanisms mediating auxin homeostasis. However, the relevant auxin glucosyltransferase (GT) in rice still remains largely unknown. RESULTS In this study, using known auxin glucosyltransferases from other species as queries, twelve putative auxin UDP-glycosyltransferase (UGT) genes were cloned from rice and the one showing highest sequence similarity, named as OsIAGT1, was expressed as recombinant protein. In vitro enzymatic analysis showed that recombinant OsIAGT1 was capable of catalyzing glucosylation of IAA, IBA and other auxin analogs, and that OsIAGT1 is quite tolerant to a broad range of reaction conditions with peak activity at 30 °С and pH 8.0. OsIAGT1 showed favorite activity towards native auxins over artificially synthesized ones. Further study indicated that expression of OsIAGT1 can be upregulated by auxin in rice, and with OsIAGT1 overexpressing lines we confirmed that OsIAGT1 is indeed able to glucosylate IAA in vivo. Consistently, ectopic expression of OsIAGT1 leads to declined endogenous IAA content, as well as upregulated auxin synthesis genes and reduced expression of auxin-responsive genes, which likely leads to the reduced plant stature and root length in OsIAGT1 overexpression lines. CONCLUSION Our result indicated that OsIAGT1 plays an important role in mediating auxin homeostasis by catalyzing auxin glucosylation, and by which OsIAGT1 regulates growth and development in rice.
Collapse
Affiliation(s)
- Qian Liu
- The Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education of China, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ting-Ting Chen
- The Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education of China, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Dong-Wang Xiao
- The Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education of China, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shu-Man Zhao
- The Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education of China, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ji-Shan Lin
- The Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education of China, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Present Address: Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ting Wang
- The Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education of China, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yan-Jie Li
- The Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education of China, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bing-Kai Hou
- The Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education of China, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
61
|
Chen MS, Zhao ML, Wang GJ, He HY, Bai X, Pan BZ, Fu QT, Tao YB, Tang MY, Martínez-Herrera J, Xu ZF. Transcriptome analysis of two inflorescence branching mutants reveals cytokinin is an important regulator in controlling inflorescence architecture in the woody plant Jatropha curcas. BMC PLANT BIOLOGY 2019; 19:468. [PMID: 31684864 PMCID: PMC6830001 DOI: 10.1186/s12870-019-2069-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/09/2019] [Indexed: 06/08/2023]
Abstract
BACKGROUND In higher plants, inflorescence architecture is an important agronomic trait directly determining seed yield. However, little information is available on the regulatory mechanism of inflorescence development in perennial woody plants. Based on two inflorescence branching mutants, we investigated the transcriptome differences in inflorescence buds between two mutants and wild-type (WT) plants by RNA-Seq to identify the genes and regulatory networks controlling inflorescence architecture in Jatropha curcas L., a perennial woody plant belonging to Euphorbiaceae. RESULTS Two inflorescence branching mutants were identified in germplasm collection of Jatropha. The duo xiao hua (dxh) mutant has a seven-order branch inflorescence, and the gynoecy (g) mutant has a three-order branch inflorescence, while WT Jatropha has predominantly four-order branch inflorescence, occasionally the three- or five-order branch inflorescences in fields. Using weighted gene correlation network analysis (WGCNA), we identified several hub genes involved in the cytokinin metabolic pathway from modules highly associated with inflorescence phenotypes. Among them, Jatropha ADENOSINE KINASE 2 (JcADK2), ADENINE PHOSPHORIBOSYL TRANSFERASE 1 (JcAPT1), CYTOKININ OXIDASE 3 (JcCKX3), ISOPENTENYLTRANSFERASE 5 (JcIPT5), LONELY GUY 3 (JcLOG3) and JcLOG5 may participate in cytokinin metabolic pathway in Jatropha. Consistently, exogenous application of cytokinin (6-benzyladenine, 6-BA) on inflorescence buds induced high-branch inflorescence phenotype in both low-branch inflorescence mutant (g) and WT plants. These results suggested that cytokinin is an important regulator in controlling inflorescence branching in Jatropha. In addition, comparative transcriptome analysis showed that Arabidopsis homologous genes Jatropha AGAMOUS-LIKE 6 (JcAGL6), JcAGL24, FRUITFUL (JcFUL), LEAFY (JcLFY), SEPALLATAs (JcSEPs), TERMINAL FLOWER 1 (JcTFL1), and WUSCHEL-RELATED HOMEOBOX 3 (JcWOX3), were differentially expressed in inflorescence buds between dxh and g mutants and WT plants, indicating that they may participate in inflorescence development in Jatropha. The expression of JcTFL1 was downregulated, while the expression of JcLFY and JcAP1 were upregulated in inflorescences in low-branch g mutant. CONCLUSIONS Cytokinin is an important regulator in controlling inflorescence branching in Jatropha. The regulation of inflorescence architecture by the genes involved in floral development, including TFL1, LFY and AP1, may be conservative in Jatropha and Arabidopsis. Our results provide helpful information for elucidating the regulatory mechanism of inflorescence architecture in Jatropha.
Collapse
Affiliation(s)
- Mao-Sheng Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
| | - Mei-Li Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Gui-Juan Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
| | - Hui-Ying He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
| | - Xue Bai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Bang-Zhen Pan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
| | - Qian-Tang Fu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
| | - Yan-Bin Tao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
| | - Ming-Yong Tang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
| | - Jorge Martínez-Herrera
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Huimanguillo, Huimanguillo, Tabasco Mexico
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303 Yunnan China
| |
Collapse
|
62
|
IBR5 Regulates Leaf Serrations Development via Modulation of the Expression of PIN1. Int J Mol Sci 2019; 20:ijms20184429. [PMID: 31505781 PMCID: PMC6770195 DOI: 10.3390/ijms20184429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/20/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022] Open
Abstract
Biodiversity in plant shape is mainly attributable to the diversity of leaf shape, which is largely determined by the transient morphogenetic activity of the leaf margin that creates leaf serrations. However, the precise mechanism underlying the establishment of this morphogenetic capacity remains poorly understood. We report here that INDOLE-3-BUTYRIC ACID RESPONSE 5 (IBR5), a dual-specificity phosphatase, is a key component of leaf-serration regulatory machinery. Loss-of-function mutants of IBR5 exhibited pronounced serrations due to increased cell area. IBR5 was localized in the nucleus of leaf epidermis and petiole cells. Introducing a C129S mutation within the highly conserved VxVHCx2GxSRSx5AYLM motif of IBR5 rendered it unable to rescue the leaf-serration defects of the ibr5-3 mutant. In addition, auxin reporters revealed that the distribution of auxin maxima was expanded ectopically in ibr5-3. Furthermore, we found that the distribution of PIN1 on the plasma membrane of the epidermal and cells around the leaf vein was compromised in ibr5-3. We concluded that IBR5 is essential for the establishment of PIN-FORMED 1 (PIN1)-directed auxin maxima at the tips of leaf serration, which is vital for the elaborated regulation during its formation.
Collapse
|
63
|
Casanova-Sáez R, Voß U. Auxin Metabolism Controls Developmental Decisions in Land Plants. TRENDS IN PLANT SCIENCE 2019; 24:741-754. [PMID: 31230894 DOI: 10.1016/j.tplants.2019.05.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 05/03/2023]
Abstract
Unlike animals, whose body plans are set during embryo development, plants maintain the ability to initiate new organs throughout their life cycle. Auxin is a key regulator of almost all aspects of plant development, including morphogenesis and adaptive responses. Cellular auxin concentrations influence whether a cell will divide, grow, or differentiate, thereby contributing to organ formation, growth, and ultimately plant shape. Auxin gradients are established and maintained by a tightly regulated interplay between metabolism, signalling, and transport. Auxin is synthesised, stored, and inactivated by a multitude of parallel pathways that are all tightly regulated. Here we summarise the remarkable progress that has been achieved in identifying some key components of these pathways and the genetic complexity underlying their precise regulation.
Collapse
Affiliation(s)
- Rubén Casanova-Sáez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
| | - Ute Voß
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
64
|
Zhang C, Chen X, Crandall-Stotler B, Qian P, Köllner TG, Guo H, Chen F. Biosynthesis of methyl (E)-cinnamate in the liverwort Conocephalum salebrosum and evolution of cinnamic acid methyltransferase. PHYTOCHEMISTRY 2019; 164:50-59. [PMID: 31078779 DOI: 10.1016/j.phytochem.2019.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 05/13/2023]
Abstract
Methyl (E)-cinnamate is a specialized metabolite that occurs in a variety of land plants. In flowering plants, it is synthesized by cinnamic acid methyltransferase (CAMT) that belongs to the SABATH family. While rarely reported in bryophytes, methyl (E)-cinnamate is produced by some liverworts of the Conocephalum conicum complex, including C. salebrosum. In axenically grown thalli of C. salebrosum, methyl (E)-cinnamate was detected as the dominant compound. To characterize its biosynthesis, six full-length SABATH genes, which were designated CsSABATH1-6, were cloned from C. salebrosum. These six genes showed different levels of expression in the thalli of C. salebrosum. Next, CsSABATH1-6 were expressed in Escherichia coli to produce recombinant proteins, which were tested for methyltransferase activity with cinnamic acid and a few related compounds as substrates. Among the six SABATH proteins, CsSABATH6 exhibited the highest level of activity with cinnamic acid. It was renamed CsCAMT. The apparent Km value of CsCAMT using (E)-cinnamic acid as substrate was determined to be 50.5 μM. In contrast, CsSABATH4 was demonstrated to function as salicylic acid methyltransferase and was renamed CsSAMT. Interestingly, the CsCAMT gene from a sabinene-dominant chemotype of C. salebrosum is identical to that of the methyl (E)-cinnamate-dominant chemotype. Structure models for CsCAMT, CsSAMT and one flowering plant CAMT (ObCCMT1) in complex with (E)-cinnamic acid and salicylic acid were built, which provided structural explanations to substrate specificity of these three enzymes. In phylogenetic analysis, CsCAMT and ObCCMT1 were in different clades, implying that methyl (E)-cinnamate biosynthesis in bryophytes and flowering plants originated through convergent evolution.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Ping Qian
- Shandong Agricultural University, Chemistry and Material Science Faculty, Tai'an 271018, Shandong, China
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Hong Guo
- Department of Biochemical, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
65
|
Wang B, Li M, Yuan Y, Liu S. Genome-Wide Comprehensive Analysis of the SABATH Gene Family in Arabidopsis and Rice. Evol Bioinform Online 2019; 15:1176934319860864. [PMID: 31320793 PMCID: PMC6610438 DOI: 10.1177/1176934319860864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 01/09/2023] Open
Abstract
Low molecular weight metabolites are important plant hormones and signaling molecules, and play an important part among the processes of plant development. Their activities may also be affected by the chemical modifications of methylation performed by SABATH. In this study, a total of 24 and 21 SABATH genes in Arabidopsis and rice, respectively, were identified and taken a comprehensive study. Phylogenetic analysis showed that AtSABATH and OsSABATH genes could be classified into 4 major groups and 6 subgroups. Gene expansion analysis showed that the main expansion mechanism of SABATH gene family in Arabidopsis and rice was tandem duplication and segmental duplication. The ratios of nonsynonymous (Ka) and synonymous (Ks) substitution rates of 12 pairs paralogous of AtSABATH and OsSABATH genes indicated that the SABATH gene family in Arabidopsis and rice had gone through purifying selection. Positive selection analysis with site models and branch-site models revealed that AtSABATH and OsSABATH genes had undergone selective pressure for adaptive evolution. Motif analysis showed that certain motifs only existed in specific subgroups or species, which indicated that the SABATH proteins of Arabidopsis and rice appear divergence in different species and subgroups. Functional divergence analysis also suggested that the AtSABATH and OsSABATH subgroup genes had functional differences, and the positive selection sites which contributed to functional divergence among subgroups were detected. These results provide insights into functional conservation and diversification of SABATH gene family, and are useful information for further elucidating SABATH gene family functions.
Collapse
Affiliation(s)
- Bin Wang
- College of Chemistry, Biology and
Materials Science, East China University of Technology, Nanchang, P.R. China
- National Engineering Laboratory for
Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of
the Ministry of Education for Medicinal Resources and Natural Pharmaceutical
Chemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, P.R.
China
| | - Min Li
- College of Chemistry, Biology and
Materials Science, East China University of Technology, Nanchang, P.R. China
| | - Yijun Yuan
- College of Chemistry, Biology and
Materials Science, East China University of Technology, Nanchang, P.R. China
| | - Shaofang Liu
- College of Chemistry, Biology and
Materials Science, East China University of Technology, Nanchang, P.R. China
| |
Collapse
|
66
|
Li J, Zhang X, Lu Y, Feng D, Gu A, Wang S, Wu F, Su X, Chen X, Li X, Liu M, Fan S, Feng D, Luo S, Xuan S, Wang Y, Shen S, Zhao J. Characterization of Non-heading Mutation in Heading Chinese Cabbage ( Brassica rapa L. ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2019; 10:112. [PMID: 30809236 PMCID: PMC6379458 DOI: 10.3389/fpls.2019.00112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/23/2019] [Indexed: 05/26/2023]
Abstract
Heading is a key agronomic trait of Chinese cabbage. A non-heading mutant with flat growth of heading leaves (fg-1) was isolated from an EMS-induced mutant population of the heading Chinese cabbage inbred line A03. In fg-1 mutant plants, the heading leaves are flat similar to rosette leaves. The epidermal cells on the adaxial surface of these leaves are significantly smaller, while those on the abaxial surface are much larger than in A03 plants. The segregation of the heading phenotype in the F2 and BC1 population suggests that the mutant trait is controlled by a pair of recessive alleles. Phytohormone analysis at the early heading stage showed significant decreases in IAA, ABA, JA and SA, with increases in methyl IAA and trans-Zeatin levels, suggesting they may coordinate leaf adaxial-abaxial polarity, development and morphology in fg-1. RNA-sequencing analysis at the early heading stage showed a decrease in expression levels of several auxin transport (BrAUX1, BrLAXs, and BrPINs) and responsive genes. Transcript levels of important ABA responsive genes, including BrABF3, were up-regulated in mid-leaf sections suggesting that both auxin and ABA signaling pathways play important roles in regulating leaf heading. In addition, a significant reduction in BrIAMT1 transcripts in fg-1 might contribute to leaf epinastic growth. The expression profiles of 19 genes with known roles in leaf polarity were significantly different in fg-1 leaves compared to wild type, suggesting that these genes might also regulate leaf heading in Chinese cabbage. In conclusion, leaf heading in Chinese cabbage is controlled through a complex network of hormone signaling and abaxial-adaxial patterning pathways. These findings increase our understanding of the molecular basis of head formation in Chinese cabbage.
Collapse
Affiliation(s)
- Jingrui Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xiaomeng Zhang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yin Lu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Dongxiao Feng
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Aixia Gu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shan Wang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Fang Wu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xiangjie Su
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xueping Chen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xing Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Mengyang Liu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuangxi Fan
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Daling Feng
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuangxia Luo
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxin Xuan
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yanhua Wang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxing Shen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jianjun Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
67
|
Aliaga-Franco N, Zhang C, Presa S, Srivastava AK, Granell A, Alabadí D, Sadanandom A, Blázquez MA, Minguet EG. Identification of Transgene-Free CRISPR-Edited Plants of Rice, Tomato, and Arabidopsis by Monitoring DsRED Fluorescence in Dry Seeds. FRONTIERS IN PLANT SCIENCE 2019; 10:1150. [PMID: 31620160 PMCID: PMC6759815 DOI: 10.3389/fpls.2019.01150] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/23/2019] [Indexed: 05/18/2023]
Abstract
Efficient elimination of the editing machinery remains a challenge in plant biotechnology after genome editing to minimize the probability of off-target mutations, but it is also important to deliver end users with edited plants free of foreign DNA. Using the modular cloning system Golden Braid, we have included a fluorescence-dependent transgene monitoring module to the genome-editing tool box. We have tested this approach in Solanum lycopersicum, Oryza sativa, and Arabidopsis thaliana. We demonstrate that DsRED fluorescence visualization works efficiently in dry seeds as marker for the detection of the transgene in the three species allowing an efficient method for selecting transgene-free dry seeds. In the first generation of DsRED-free CRISPR/Cas9 null segregants, we detected gene editing of selected targets including homozygous mutants for the plant species tested. We demonstrate that this strategy allows rapid selection of transgene-free homozygous edited crop plants in a single generation after in vitro transformation.
Collapse
Affiliation(s)
- Norma Aliaga-Franco
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de Valencia, Valencia, Spain
| | - Cunjin Zhang
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Silvia Presa
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de Valencia, Valencia, Spain
| | | | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de Valencia, Valencia, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de Valencia, Valencia, Spain
| | - Ari Sadanandom
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Miguel A. Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de Valencia, Valencia, Spain
| | - Eugenio G. Minguet
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de Valencia, Valencia, Spain
- *Correspondence: Eugenio G. Minguet,
| |
Collapse
|
68
|
Moon SJ, Park HJ, Kim TH, Kang JW, Lee JY, Cho JH, Lee JH, Park DS, Byun MO, Kim BG, Shin D. OsTGA2 confers disease resistance to rice against leaf blight by regulating expression levels of disease related genes via interaction with NH1. PLoS One 2018; 13:e0206910. [PMID: 30444888 PMCID: PMC6239283 DOI: 10.1371/journal.pone.0206910] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/22/2018] [Indexed: 11/21/2022] Open
Abstract
How plants defend themselves from microbial infection is one of the most critical issues for sustainable crop production. Some TGA transcription factors belonging to bZIP superfamily can regulate disease resistance through NPR1-mediated immunity mechanisms in Arabidopsis. Here, we examined biological roles of OsTGA2 (grouped into the same subclade as Arabidopsis TGAs) in bacterial leaf blight resistance. Transcriptional level of OsTGA2 was accumulated after treatment with salicylic acid, methyl jasmonate, and Xathomonas oryzae pv. Oryzae (Xoo), a bacterium causing serious blight of rice. OsTGA2 formed homo- and hetero-dimer with OsTGA3 and OsTGA5 and interacted with rice NPR1 homologs 1 (NH1) in rice. Results of quadruple 9-mer protein-binding microarray analysis indicated that OsTGA2 could bind to TGACGT DNA sequence. Overexpression of OsTGA2 increased resistance of rice to bacterial leaf blight, although overexpression of OsTGA3 resulted in disease symptoms similar to wild type plant upon Xoo infection. Overexpression of OsTGA2 enhanced the expression of defense related genes containing TGA binding cis-element in the promoter such as AP2/EREBP 129, ERD1, and HOP1. These results suggest that OsTGA2 can directly regulate the expression of defense related genes and increase the resistance of rice against bacterial leaf blight disease.
Collapse
Affiliation(s)
- Seok-Jun Moon
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Republic of Korea
| | - Hee Jin Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
- Institute of Glocal Disease Control, Konkuk University, Seoul, Republic of Korea
| | - Tae-Heon Kim
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Ju-Won Kang
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Ji-Yoon Lee
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Jun-Hyun Cho
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Jong-Hee Lee
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Dong-Soo Park
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
| | - Myung-Ok Byun
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Republic of Korea
| | - Beom-Gi Kim
- Gene Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, Republic of Korea
| | - Dongjin Shin
- Paddy Crop Research Division, National Institute of Crop Science, RDA, Miryang, Republic of Korea
- * E-mail:
| |
Collapse
|
69
|
Skalický V, Kubeš M, Napier R, Novák O. Auxins and Cytokinins-The Role of Subcellular Organization on Homeostasis. Int J Mol Sci 2018; 19:E3115. [PMID: 30314316 PMCID: PMC6213326 DOI: 10.3390/ijms19103115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
Plant hormones are master regulators of plant growth and development. Better knowledge of their spatial signaling and homeostasis (transport and metabolism) on the lowest structural levels (cellular and subcellular) is therefore crucial to a better understanding of developmental processes in plants. Recent progress in phytohormone analysis at the cellular and subcellular levels has greatly improved the effectiveness of isolation protocols and the sensitivity of analytical methods. This review is mainly focused on homeostasis of two plant hormone groups, auxins and cytokinins. It will summarize and discuss their tissue- and cell-type specific distributions at the cellular and subcellular levels.
Collapse
Affiliation(s)
- Vladimír Skalický
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| | - Martin Kubeš
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| |
Collapse
|
70
|
Shi H, Zhang S, Lin D, Wei Y, Yan Y, Liu G, Reiter RJ, Chan Z. Zinc finger of Arabidopsis thaliana 6 is involved in melatonin-mediated auxin signaling through interacting INDETERMINATE DOMAIN15 and INDOLE-3-ACETIC ACID 17. J Pineal Res 2018; 65:e12494. [PMID: 29607541 DOI: 10.1111/jpi.12494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 03/23/2018] [Indexed: 12/23/2022]
Abstract
Although accumulating evidence demonstrates the cross talk between melatonin and auxin as derivatives of tryptophan, the underlying signaling events remain unclear. In this study, we found that melatonin and auxin mediated the transcriptional levels of zinc finger of Arabidopsis thaliana (ZAT6) in a mutually antagonistic manner. ZAT6 negatively modulated the endogenous auxin level, and ZAT6 knockdown plants were less sensitive to melatonin-regulated auxin biosynthesis, indicating its involvement in melatonin-mediated auxin accumulation. Additionally, the identification of INDETERMINATE DOMAIN15 (IDD15) and INDOLE-3-ACETIC ACID 17 (IAA17) in Arabidopsis that interacted with ZAT6 in vivo provided new insight of ZAT6-mediated auxin signaling. Further investigation showed that ZAT6 repressed the transcription activation of IDD15 on the YUC2 promoter, while ZAT6 inhibited the interaction of TRANSPORT INHIBITOR RESPONSE 1 (TIR1) and IAA17 through competitively binding to IAA17. Thus, both auxin synthesis and the auxin response were negatively modulated by ZAT6. Taken together, ZAT6 is involved in melatonin-mediated auxin signaling through forming an interacting complex of auxin signaling pathway in Arabidopsis.
Collapse
Affiliation(s)
- Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Shengmin Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Daozhe Lin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
71
|
Yuan R, Lan J, Fang Y, Yu H, Zhang J, Huang J, Qin G. The Arabidopsis USL1 controls multiple aspects of development by affecting late endosome morphology. THE NEW PHYTOLOGIST 2018; 219:1388-1405. [PMID: 29897620 PMCID: PMC6099276 DOI: 10.1111/nph.15249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/21/2018] [Indexed: 05/07/2023]
Abstract
The polar transport of auxin controls many aspects of plant development. However, the molecular mechanisms underlying auxin tranport regulation remain to be further elucidated. We identified a mutant named as usl1 (unflattened and small leaves) in a genetic screen in Arabidopsis thaliana. The usl1 displayed multiple aspects of developmental defects in leaves, embryogenesis, cotyledons, silique phyllotaxy and lateral roots in addition to abnormal leaves. USL1 encodes a protein orthologous to the yeast vacuolar protein sorting (Vps) 38p and human UV RADIATION RESISTANCE-ASSOCIATED GENE (UVRAG). Cell biology, Co-IP/MS and yeast two-hybrid were used to identify the function of USL1. USL1 colocalizes at the subcellular level with VPS29, a key factor of the retromer complex that controls auxin transport. The morphology of the VPS29-associated late endosomes (LE) is altered from small dots in the wild-type to aberrant enlarged circles in the usl1 mutants. The usl1 mutant synergistically interacts with vps29. We also found that USL1 forms a complex with AtVPS30 and AtVPS34. We propose that USL1 controls multiple aspects of plant development by affecting late endosome morphology and by regulating the PIN1 polarity. Our findings provide a new layer of the understanding on the mechanisms of plant development regulation.
Collapse
Affiliation(s)
- Rongrong Yuan
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
- The Peking‐Tsinghua Center for Life SciencesAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| | - Jingqiu Lan
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Yuxing Fang
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Jinzhe Zhang
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Jiaying Huang
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life SciencesSchool of Advanced Agricultural SciencesPeking UniversityBeijing100871China
| |
Collapse
|
72
|
Abstract
Asymmetric auxin distribution is instrumental for the differential growth that causes organ bending on tropic stimuli and curvatures during plant development. Local differences in auxin concentrations are achieved mainly by polarized cellular distribution of PIN auxin transporters, but whether other mechanisms involving auxin homeostasis are also relevant for the formation of auxin gradients is not clear. Here we show that auxin methylation is required for asymmetric auxin distribution across the hypocotyl, particularly during its response to gravity. We found that loss-of-function mutants in Arabidopsis IAA CARBOXYL METHYLTRANSFERASE1 (IAMT1) prematurely unfold the apical hook, and that their hypocotyls are impaired in gravitropic reorientation. This defect is linked to an auxin-dependent increase in PIN gene expression, leading to an increased polar auxin transport and lack of asymmetric distribution of PIN3 in the iamt1 mutant. Gravitropic reorientation in the iamt1 mutant could be restored with either endodermis-specific expression of IAMT1 or partial inhibition of polar auxin transport, which also results in normal PIN gene expression levels. We propose that IAA methylation is necessary in gravity-sensing cells to restrict polar auxin transport within the range of auxin levels that allow for differential responses.
Collapse
|
73
|
Han W, Han D, He Z, Hu H, Wu Q, Zhang J, Jiang J, Qin G, Cui Y, Lai J, Yang C. The SWI/SNF subunit SWI3B regulates IAMT1 expression via chromatin remodeling in Arabidopsis leaf development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 271:127-132. [PMID: 29650150 DOI: 10.1016/j.plantsci.2018.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/03/2018] [Accepted: 03/21/2018] [Indexed: 05/26/2023]
Abstract
The SWI/SNF complex is crucial to chromatin remodeling in various biological processes in different species, but the distinct functions of its components in plant development remain unclear. Here we uncovered the role of SWI3B, a subunit of the Arabidopsis thaliana SWI/SNF complex, via RNA interference. Knockdown of SWI3B resulted in an upward-curling leaf phenotype. Further investigation showed that the RNA level of IAA carboxyl methyltransferase 1 (IAMT1), encoding an enzyme involved in auxin metabolism, was dramatically elevated in the knockdown (SWI3B-RNAi) plants. In addition, activation of IAMT1 produced a leaf-curling phenotype similar to that of the SWI3B-RNAi lines. Database analysis suggested that the last intron of IAMT contains a site of polymerase V (Pol V) stabilized nucleosome, which may be associated with SWI3B. Data from a micrococcal nuclease (MNase) digestion assay showed that nucleosome occupancy around this site was downregulated in the leaves of SWI3B-RNAi plants. In addition, knockdown of IAMT1 in the SWI3B-RNAi background repressed the abnormal leaf development. Thus, SWI3B-mediated chromatin remodeling is critical in regulating the expression of IAMT1 in leaf development.
Collapse
Affiliation(s)
- Wenxing Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Zhipeng He
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Huan Hu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Qian Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Juanjuan Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jieming Jiang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, Western University, London, Ontario, Canada
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
74
|
Chaiprasongsuk M, Zhang C, Qian P, Chen X, Li G, Trigiano RN, Guo H, Chen F. Biochemical characterization in Norway spruce (Picea abies) of SABATH methyltransferases that methylate phytohormones. PHYTOCHEMISTRY 2018; 149:146-154. [PMID: 29501924 DOI: 10.1016/j.phytochem.2018.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 05/23/2023]
Abstract
Indole-3-acetic acid (IAA), gibberellins (GAs), salicylic acid (SA) and jasmonic acid (JA) exist in methyl ester forms in plants in addition to their free acid forms. The enzymes that catalyze methylation of these carboxylic acid phytohormones belong to a same protein family, the SABATH methyltransferases. While the genes encoding these enzymes have been isolated from a small number of flowering plants, little is known about their occurrence and evolution in non-flowering plants. Here, we report the systematic characterization of the SABATH family from Norway spruce (Picea abies), a gymnosperm. The Norway spruce genome contains ten SABATH genes (PaSABATH1-10). Full-length cDNA for each of the ten PaSABATH genes was cloned and expressed in Escherichia coli. Recombinant PaSABATHs were tested for activity with IAA, GA, SA, and JA. Among the ten PaSABATHs, five had activity with one or more of the four substrates. PaSABATH1 and PaSABATH2 had the highest activities with IAA and SA, respectively. PaSABATH4, PaSABATH5 and PaSABATH10 all had JA as a preferred substrate but with notable differences in biochemical properties. The structural basis of PaSABATHs in discriminating various phytohormone substrates was inferred based on structural models of the enzyme-substrate complexes. The phylogeny of PaSABATHs with selected SABATHs from other plants implies that the enzymes methylating IAA are conserved in seed plants whereas the enzymes methylating JA and SA have independent evolution in gymnosperms and angiosperms.
Collapse
Affiliation(s)
- Minta Chaiprasongsuk
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; Department of Botany, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Chi Zhang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Ping Qian
- Shandong Agricultural University, Chemistry and Material Science Faculty, Tai'an, 271018 Shandong, China
| | - Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Guanglin Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Robert N Trigiano
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Hong Guo
- Department of Biochemical, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA; UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
75
|
Sánchez-García AB, Ibáñez S, Cano A, Acosta M, Pérez-Pérez JM. A comprehensive phylogeny of auxin homeostasis genes involved in adventitious root formation in carnation stem cuttings. PLoS One 2018; 13:e0196663. [PMID: 29709027 PMCID: PMC5927418 DOI: 10.1371/journal.pone.0196663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/17/2018] [Indexed: 11/23/2022] Open
Abstract
Understanding the functional basis of auxin homeostasis requires knowledge about auxin biosynthesis, auxin transport and auxin catabolism genes, which is not always directly available despite the recent whole-genome sequencing of many plant species. Through sequence homology searches and phylogenetic analyses on a selection of 11 plant species with high-quality genome annotation, we identified the putative gene homologs involved in auxin biosynthesis, auxin catabolism and auxin transport pathways in carnation (Dianthus caryophyllus L.). To deepen our knowledge of the regulatory events underlying auxin-mediated adventitious root formation in carnation stem cuttings, we used RNA-sequencing data to confirm the expression profiles of some auxin homeostasis genes during the rooting of two carnation cultivars with different rooting behaviors. We also confirmed the presence of several auxin-related metabolites in the stem cutting tissues. Our findings offer a comprehensive overview of auxin homeostasis genes in carnation and provide a solid foundation for further experiments investigating the role of auxin homeostasis in the regulation of adventitious root formation in carnation.
Collapse
Affiliation(s)
| | - Sergio Ibáñez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - Antonio Cano
- Departamento de Biología Vegetal (Fisiología Vegetal), Universidad de Murcia, Murcia, Spain
| | - Manuel Acosta
- Departamento de Biología Vegetal (Fisiología Vegetal), Universidad de Murcia, Murcia, Spain
| | | |
Collapse
|
76
|
Liu Y, Xu C, Tang X, Pei S, Jin D, Guo M, Yang M, Zhang Y. Genomic methylation and transcriptomic profiling provides insights into heading depression in inbred Brassica rapa L. ssp. pekinensis. Gene 2018; 665:119-126. [PMID: 29705127 DOI: 10.1016/j.gene.2018.04.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 11/26/2022]
Abstract
Inbreeding depression is the reduction in fitness observed in inbred populations. In plants, it leads to disease, weaker resistance to adverse environmental conditions, inhibition of growth, and decrease of yield. To elucidate molecular mechanisms behind inbreeding depression, we compared global DNA methylation and transcriptome profiles of a normal and a highly inbred heading degenerated variety of the Chinese cabbage (Brassica rapa L. ssp. pekinensis). DNA methylation was reduced in inbred plants, suggesting a change in the epigenetic landscape. Transcriptome analysis by RNA-Seq revealed that genes in auxin-response and synthesis pathways were differentially expressed in the inbreeding depression lines. Interestingly, methylation levels of some of those genes were also changed. Furthermore, endogenous IAA content was decreased in inbred plants, in agreement with expression and methylation data. Chemical inhibition of auxin also replicated the degenerated phenotype in normal plants, while exogenous IAA application had no effect in inbred depression plants, suggesting a more complex mechanism. These data indicate DNA methylation-regulated auxin pathways play a role in establishing inbred depression phenotypes in plants. Our findings reveal new insights into inbreeding depression and leafy head development in Chinese cabbage.
Collapse
Affiliation(s)
- Yan Liu
- College of Horticulture, Northeast Agricultural University, Harbin 150030, PR China
| | - Cui Xu
- College of Horticulture, Northeast Agricultural University, Harbin 150030, PR China
| | - Xuebing Tang
- College of Horticulture, Northeast Agricultural University, Harbin 150030, PR China
| | - Surui Pei
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing 100176, PR China
| | - Di Jin
- College of Horticulture, Northeast Agricultural University, Harbin 150030, PR China
| | - Minghao Guo
- College of Horticulture, Northeast Agricultural University, Harbin 150030, PR China
| | - Meng Yang
- College of Horticulture, Northeast Agricultural University, Harbin 150030, PR China
| | - Yaowei Zhang
- College of Horticulture, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin 150030, PR China.
| |
Collapse
|
77
|
Duca DR, Rose DR, Glick BR. Indole acetic acid overproduction transformants of the rhizobacterium Pseudomonas sp. UW4. Antonie Van Leeuwenhoek 2018; 111:1645-1660. [PMID: 29492769 DOI: 10.1007/s10482-018-1051-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/16/2018] [Indexed: 10/17/2022]
Abstract
The plant growth-promoting rhizobacterium Pseudomonas sp. UW4 was transformed to increase the biosynthesis of the auxin, indole-3-acetic acid (IAA). Four native IAA biosynthesis genes from strain UW4 were individually cloned into an expression vector and introduced back into the wild-type strain. Quantitative real-time polymerase chain reaction analysis revealed that the introduced genes ami, nit, nthAB and phe were all overexpressed in these transformants. A significant increase in the production of IAA was observed for all modified strains. Canola plants inoculated with the modified strains showed enhanced root elongation under gnotobiotic conditions. The growth rate and 1-aminocyclopropane-1-carboxylate deaminase activity of transformant strains was lower compared to the wild-type. The indoleacetic acid biosynthesis pathways and the role of this phytohormone in the mechanism of plant growth stimulation by Pseudomonas sp. UW4 is discussed.
Collapse
Affiliation(s)
- Daiana R Duca
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - David R Rose
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
78
|
Han XM, Yang Q, Liu YJ, Yang ZL, Wang XR, Zeng QY, Yang HL. Evolution and Function of the Populus SABATH Family Reveal That a Single Amino Acid Change Results in a Substrate Switch. PLANT & CELL PHYSIOLOGY 2018; 59:392-403. [PMID: 29237058 DOI: 10.1093/pcp/pcx198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Evolutionary mechanisms of substrate specificities of enzyme families remain poorly understood. Plant SABATH methyltransferases catalyze methylation of the carboxyl group of various low molecular weight metabolites. Investigation of the functional diversification of the SABATH family in plants could shed light on the evolution of substrate specificities in this enzyme family. Previous studies identified 28 SABATH genes from the Populus trichocarpa genome. In this study, we re-annotated the Populus SABATH gene family, and performed molecular evolution, gene expression and biochemical analyses of this large gene family. Twenty-eight Populus SABATH genes were divided into three classes with distinct divergences in their gene structure, expression responses to abiotic stressors and enzymatic properties of encoded proteins. Populus class I SABATH proteins converted IAA to methyl-IAA, class II SABATH proteins converted benzoic acid (BA) and salicylic acid (SA) to methyl-BA and methyl-SA, while class III SABATH proteins converted farnesoic acid (FA) to methyl-FA. For Populus class II SABATH proteins, both forward and reverse mutagenesis studies showed that a single amino acid switch between PtSABATH4 and PtSABATH24 resulted in substrate switch. Our findings provide new insights into the evolution of substrate specificities of enzyme families.
Collapse
Affiliation(s)
- Xue-Min Han
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qi Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yan-Jing Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhi-Ling Yang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiao-Ru Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qing-Yin Zeng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hai-Ling Yang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
79
|
Wang Y, Zhang T, Wang R, Zhao Y. Recent advances in auxin research in rice and their implications for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:255-263. [PMID: 28992208 DOI: 10.1093/jxb/erx228] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/08/2017] [Indexed: 05/18/2023]
Abstract
Auxin is essential for various aspects of plant development, and modulation of auxin pathways has great potential for crop improvement. Although the current understanding of auxin biology including auxin biosynthesis, transport, and signaling mainly originated from studies in Arabidopsis, several key auxin genes were first discovered in rice, indicating that it is useful to employ several plant systems for auxin research. In this review, we summarize the recent advances in auxin biology in rice, highlight the main contributions of rice research to auxin biology, and discuss the potential for crop improvement through modulating auxin pathways.
Collapse
Affiliation(s)
- Yidong Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, China
| | - Tao Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, China
| | - Rongchen Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, China
| | - Yunde Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, China
- Section of Cell and Developmental Biology, University of California San Diego, USA
| |
Collapse
|
80
|
Ma Q, Grones P, Robert S. Auxin signaling: a big question to be addressed by small molecules. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:313-328. [PMID: 29237069 PMCID: PMC5853230 DOI: 10.1093/jxb/erx375] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/16/2017] [Indexed: 05/20/2023]
Abstract
Providing a mechanistic understanding of the crucial roles of the phytohormone auxin has been an important and coherent aspect of plant biology research. Since its discovery more than a century ago, prominent advances have been made in the understanding of auxin action, ranging from metabolism and transport to cellular and transcriptional responses. However, there is a long road ahead before a thorough understanding of its complex effects is achieved, because a lot of key information is still missing. The availability of an increasing number of technically advanced scientific tools has boosted the basic discoveries in auxin biology. A plethora of bioactive small molecules, consisting of the synthetic auxin-like herbicides and the more specific auxin-related compounds, developed as a result of the exploration of chemical space by chemical biology, have made the tool box for auxin research more comprehensive. This review mainly focuses on the compounds targeting the auxin co-receptor complex, demonstrates the various ways to use them, and shows clear examples of important basic knowledge obtained by their usage. Application of these precise chemical tools, together with an increasing amount of structural information for the major components in auxin action, will certainly aid in strengthening our insights into the complexity and diversity of auxin response.
Collapse
Affiliation(s)
- Qian Ma
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Sweden
| | - Peter Grones
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Sweden
| | | |
Collapse
|
81
|
Abbas M, Hernández‐García J, Blanco‐Touriñán N, Aliaga N, Minguet EG, Alabadí D, Blázquez MA. Reduction of indole-3-acetic acid methyltransferase activity compensates for high-temperature male sterility in Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:272-279. [PMID: 28574629 PMCID: PMC5785359 DOI: 10.1111/pbi.12768] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 05/29/2023]
Abstract
High temperature is a general stress factor that causes a decrease in crop yield. It has been shown that auxin application reduces the male sterility caused by exposure to higher temperatures. However, widespread application of a hormone with vast effects on plant physiology may be discouraged in many cases. Therefore, the generation of new plant varieties that locally enhance auxin in reproductive organs may represent an alternative strategy. We have explored the possibility of increasing indole-3-acetic acid (IAA) in ovaries by reducing IAA methyltransferase1 (IAMT1) activity in Arabidopsis thaliana. The iamt1 mutant showed increased auxin signalling in funiculi, which correlated with a higher growth rate of wild-type pollen in contact with mutant ovaries and premature ovule fertilization. While the production of seeds per fruit was similar in the wild type and the mutant at 20 °C, exposure to 29 °C caused a more severe decrease in fertility in the wild type than in the mutant. Loss of IAMT1 activity was also associated with the production of more nodes after flowering and higher tolerance of the shoot apical meristem to higher temperatures. As a consequence, the productivity of the iamt1 mutant under higher temperatures was more than double of that of the wild type, with almost no apparent trade-off.
Collapse
Affiliation(s)
- Mohamad Abbas
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de ValenciaValenciaSpain
- Present address:
Plant and Crop ScienceSutton Bonington CampusUniversity of NottinghamNottinghamUK
| | - Jorge Hernández‐García
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de ValenciaValenciaSpain
| | - Noel Blanco‐Touriñán
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de ValenciaValenciaSpain
| | - Norma Aliaga
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de ValenciaValenciaSpain
| | - Eugenio G. Minguet
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de ValenciaValenciaSpain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de ValenciaValenciaSpain
| | - Miguel A. Blázquez
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas (CSIC)—Universidad Politécnica de ValenciaValenciaSpain
| |
Collapse
|
82
|
Gu A, Meng C, Chen Y, Wei L, Dong H, Lu Y, Wang Y, Chen X, Zhao J, Shen S. Coupling Seq-BSA and RNA-Seq Analyses Reveal the Molecular Pathway and Genes Associated with Heading Type in Chinese Cabbage. Front Genet 2017; 8:176. [PMID: 29312432 PMCID: PMC5733010 DOI: 10.3389/fgene.2017.00176] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/24/2017] [Indexed: 02/04/2023] Open
Abstract
In Chinese cabbage, heading type is a key agricultural trait of significant economic importance. Using a natural microspore-derived doubled haploid plant, we generated self-crossed progeny with overlapping or outward curling head morphotypes. Sequencing-based bulked segregant analysis (Seq-BSA) revealed a candidate region of 0.52 Mb (A06: 1,824,886~2,347,097 bp) containing genes enriched for plant hormone signal transduction. RNA Sequencing (RNA-Seq) analysis supported the hormone pathway enrichment leading to the identification of two key candidate genes, BrGH3.12 and BrABF1. The regulated homologous genes and the relationship between genes in this pathway were also revealed. Expression of BrGH3.12 varied significantly in the apical portion of the leaf, consistent with the morphological differences between overlapping and outward curling leaves. Transcript levels of BrABF1 in the top, middle and basal segments of the leaf were significantly different between the two types. The two morphotypes contained different concentrations of IAA in the apical portion of their leaves while levels of ABA differed significantly between plant types in the top, middle, and basal leaf segments. Results from Seq-BSA, RNA-Seq and metabolite analyses all support a role for IAA and ABA in heading type formation. These findings increase our understanding of the molecular basis for pattern formation of the leafy head in Chinese cabbage and will contribute to future work developing more desirable leafy head patterns.
Collapse
Affiliation(s)
- AiXia Gu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Chuan Meng
- Economic Crop Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - YueQi Chen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Lai Wei
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Hui Dong
- Shijiazhuang Pomology Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Yin Lu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - YanHua Wang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - XuePing Chen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - JianJun Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - ShuXing Shen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
83
|
Genome-Wide Comprehensive Analysis the Molecular Phylogenetic Evaluation and Tissue-Specific Expression of SABATH Gene Family in Salvia miltiorrhiza. Genes (Basel) 2017; 8:genes8120365. [PMID: 29206198 PMCID: PMC5748683 DOI: 10.3390/genes8120365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/16/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
The plant SABATH gene family is a group of O-methyltransferases (O-MTs), which belongs to the S-adenosyl-l-methionine-dependent methyltransferases (SAM-MTs). The resulting reaction products of SABATH genes play an important role in various processes of plant development. In this study, a total of 30 SABATH genes were detected in Salvia miltiorrhiza, which is an important medicinal plant, widely used to treat cardiovascular disease. Multiple sequence alignment and phylogenetic analyses showed that SmSABATH genes could be classified into three groups. The ratios of non-synonymous (Ka) and synonymous (Ks) substitution rates of 11 pairs paralogous of SmSABATH genes revealed that the SmSABATH genes had gone through purifying selection. Positive selection analyses using site models and branch-site models indicated that SmSABATH genes had undergone selective pressure for adaptive evolution. Functional divergence analyses suggested that the SmSABATH subgroup genes were divergent in terms of functions and positive selection sites that contributed to a functional divergence among the subgroups that were detected. Tissue-specific expression showed that the SABATH gene family in S. miltiorrhiza was primarily expressed in stems and leaves.
Collapse
|
84
|
Root system growth biomimicry for global optimization models and emergent behaviors. Soft comput 2017. [DOI: 10.1007/s00500-016-2297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
85
|
Olatunji D, Geelen D, Verstraeten I. Control of Endogenous Auxin Levels in Plant Root Development. Int J Mol Sci 2017; 18:E2587. [PMID: 29194427 PMCID: PMC5751190 DOI: 10.3390/ijms18122587] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/26/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022] Open
Abstract
In this review, we summarize the different biosynthesis-related pathways that contribute to the regulation of endogenous auxin in plants. We demonstrate that all known genes involved in auxin biosynthesis also have a role in root formation, from the initiation of a root meristem during embryogenesis to the generation of a functional root system with a primary root, secondary lateral root branches and adventitious roots. Furthermore, the versatile adaptation of root development in response to environmental challenges is mediated by both local and distant control of auxin biosynthesis. In conclusion, auxin homeostasis mediated by spatial and temporal regulation of auxin biosynthesis plays a central role in determining root architecture.
Collapse
Affiliation(s)
- Damilola Olatunji
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Inge Verstraeten
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
86
|
Guo P, Li Z, Huang P, Li B, Fang S, Chu J, Guo H. A Tripartite Amplification Loop Involving the Transcription Factor WRKY75, Salicylic Acid, and Reactive Oxygen Species Accelerates Leaf Senescence. THE PLANT CELL 2017; 29:2854-2870. [PMID: 29061866 PMCID: PMC5728132 DOI: 10.1105/tpc.17.00438] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/26/2017] [Accepted: 10/19/2017] [Indexed: 05/18/2023]
Abstract
Leaf senescence is a highly coordinated, complicated process involving the integration of numerous internal and environmental signals. Salicylic acid (SA) and reactive oxygen species (ROS) are two well-defined inducers of leaf senescence whose contents progressively and interdependently increase during leaf senescence via an unknown mechanism. Here, we characterized the transcription factor WRKY75 as a positive regulator of leaf senescence in Arabidopsis thaliana. Knockdown or knockout of WRKY75 delayed age-dependent leaf senescence, while overexpression of WRKY75 accelerated this process. WRKY75 transcription is induced by age, SA, H2O2, and multiple plant hormones. Meanwhile, WRKY75 promotes SA production by inducing the transcription of SA INDUCTION-DEFICIENT2 (SID2) and suppresses H2O2 scavenging, partly by repressing the transcription of CATALASE2 (CAT2). Genetic analysis revealed that the mutation of SID2 or an increase in catalase activity rescued the precocious leaf senescence phenotype evoked by WRKY75 overexpression. Based on these results, we propose a tripartite amplification loop model in which WRKY75, SA, and ROS undergo a gradual but self-sustained rise driven by three interlinking positive feedback loops. This tripartite amplification loop provides a molecular framework connecting upstream signals, such as age and plant hormones, to the downstream regulatory network executed by SA- and H2O2-responsive transcription factors during leaf senescence.
Collapse
Affiliation(s)
- Pengru Guo
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhonghai Li
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing 100871, China
| | - Peixin Huang
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- The State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing 100871, China
| | - Bosheng Li
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Shuang Fang
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100864, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100864, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| |
Collapse
|
87
|
Santos ICD, Almeida AAFD, Pirovani CP, Costa MGC, Silva MFDGFD, Bellete BS, Freschi L, Soares Filho W, Coelho Filho MA, Gesteira ADS. Differential accumulation of flavonoids and phytohormones resulting from the canopy/rootstock interaction of citrus plants subjected to dehydration/rehydration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:147-158. [PMID: 28866236 DOI: 10.1016/j.plaphy.2017.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 05/08/2023]
Abstract
Water scarcity can elicit drastic changes in plant metabolic and hormonal regulation, which may be of fundamental importance to stress tolerance. The study of plant the metabolic alterations in response to water deficit, especially the effects of the rootstocks level, is important to elucidate the mechanisms associated to drought tolerance. To verify the influence of rootstock and grafting on the tolerance to drought in citrus plants, we analyzed the growth, phytohormone levels and flavonoid profiles in grafted and ungrafted citrus plants subjected to different soil water regimes on plant status (well-watered, moderate drought and severe drought and rehydrated) under field conditions. The experiments were conducted under field conditions in the Brazilian Agricultural Research Corporation (EMBRAPA), Cruz das Almas, BA, Brazil. Water deficit reduced the total leaf area per plant in all canopy/rootstock combinations. Self-grafting reduce root volume, area and length when compared to ungrafted plants. Drought-induced increases in salicylic acid and abscisic acid associated with concomitant reductions in indoleacetic acid were observed in most canopy/rootstock combinations. However, plants with 'Sunki Maravilha' rootstocks exhibited the most pronounced changes in hormonal levels upon drought stress. Associated to these hormonal changes, drought also significantly affected flavonoid content and profile in both leaves and roots of the distinct citrus combinations. Glycosylated (GFs) and polimethoxylated flavonoids were predominantly found in leaves, whereas prenylated coumarins were found in the roots. Leaf levels of GFs (vicenin, F11, rutin and rhoifolin) were particularly modulated by drought in plants with 'Rangpur Santa Cruz' lime rootstock, whereas root levels of prenylated coumarins were most regulated by drought in plants with the 'Sunki Maravilha' root system. Taken together, these data indicate that the impacts of water deficit restriction on growth, hormonal balance and flavonoid profiles significantly varies depending on the canopy/rootstock combinations.
Collapse
Affiliation(s)
- Ivanildes C Dos Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Alex-Alan Furtado de Almeida
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Carlos P Pirovani
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Márcio Gilberto Cardoso Costa
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil
| | - Maria Fatima das Graças Fernandes da Silva
- Departamento de Química, Laboratório de Produtos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235 - SP-310, 13565-905, São Carlos, São Paulo, Brazil
| | - Barbara Sayuri Bellete
- Departamento de Química, Laboratório de Produtos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235 - SP-310, 13565-905, São Carlos, São Paulo, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - Walter Soares Filho
- Embrapa Mandioca e Fruticultura, Rua Embrapa s/n, CP 007, Cruz das Almas, BA, Brazil
| | | | | |
Collapse
|
88
|
Overexpressed BRH1, a RING finger gene, alters rosette leaf shape in Arabidopsis thaliana. SCIENCE CHINA-LIFE SCIENCES 2017; 61:79-87. [DOI: 10.1007/s11427-017-9133-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/26/2017] [Indexed: 12/28/2022]
|
89
|
Hao L, Wei X, Zhu J, Shi J, Liu J, Gu H, Tsuge T, Qu LJ. SNAIL1 is essential for female gametogenesis in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:629-641. [PMID: 28776932 DOI: 10.1111/jipb.12572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Two yeast Brix family members Ssf1 and Ssf2, involved in large ribosomal subunit synthesis, are essential for yeast cell viability and mating efficiency. Their putative homologs exist in the Arabidopsis genome; however, their role in plant development is unknown. Here, we show that Arabidopsis thaliana SNAIL1 (AtSNAIL1), a protein sharing high sequence identity with yeast Ssf1 and Ssf2, is critical to mitosis progression of female gametophyte development. The snail1 homozygous mutant was nonviable and its heterozygous mutant was semi-sterile with shorter siliques. The mutation in SNAIL1 led to absence of female transmission and reduced male transmission. Further phenotypic analysis showed that the synchronic development of female gametophyte in the snail1 heterozygous mutant was greatly impaired and the snail1 pollen tube growth, in vivo, was also compromised. Furthermore, SNAIL1 was a nucleolar-localized protein with a putative role in protein synthesis. Our data suggest that SNAIL1 may function in ribosome biogenesis like Ssf1 and Ssf2 and plays an important role during megagametogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Lihong Hao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaolin Wei
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiulei Zhu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiao Shi
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jingjing Liu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
- National Plant Gene Research Center (Beijing), Beijing 100101, China
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
- National Plant Gene Research Center (Beijing), Beijing 100101, China
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
- National Plant Gene Research Center (Beijing), Beijing 100101, China
| |
Collapse
|
90
|
Ma L, Wang X, Huang M, Zhang H, Chen H. A novel evolutionary root system growth algorithm for solving multi-objective optimization problems. Appl Soft Comput 2017. [DOI: 10.1016/j.asoc.2017.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
91
|
Abstract
Nearly all programmed and plastic plant growth responses are at least partially regulated by auxins, such as indole-3-acetic acid (IAA). Although vectorial, long distance auxin transport is essential to its regulatory function, all auxin responses are ultimately localized in individual target cells. As a consequence, cellular auxin concentrations are tightly regulated via coordinated biosynthesis, transport, conjugation, and oxidation. The primary auxin oxidative product across species is 2-oxindole-3-acetic acid (oxIAA), followed by glucose and amino acid conjugation to oxIAA. Recently, the enzymes catalyzing the oxidative reaction were characterized in Arabidopsis thaliana. DIOXYGENASE OF AUXIN OXIDATION (DAO) comprises a small subfamily of the 2-oxoglutarate and Fe(II) [2-OG Fe(II)] dependent dioxygenase superfamily. Biochemical and genetic studies have revealed critical physiological functions of DAO during plant growth and development. Thus far, DAO has been identified in three species by homology. Here, we review historical and recent studies and discuss future perspectives regarding DAO and IAA oxidation.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742,USA
| | - Wendy Ann Peer
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
92
|
Glazinska P, Wojciechowski W, Kulasek M, Glinkowski W, Marciniak K, Klajn N, Kesy J, Kopcewicz J. De novo Transcriptome Profiling of Flowers, Flower Pedicels and Pods of Lupinus luteus (Yellow Lupine) Reveals Complex Expression Changes during Organ Abscission. FRONTIERS IN PLANT SCIENCE 2017; 8:641. [PMID: 28512462 PMCID: PMC5412092 DOI: 10.3389/fpls.2017.00641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/10/2017] [Indexed: 05/03/2023]
Abstract
Yellow lupine (Lupinus luteus L., Taper c.), a member of the legume family (Fabaceae L.), has an enormous practical importance. Its excessive flower and pod abscission represents an economic drawback, as proper flower and seed formation and development is crucial for the plant's productivity. Generative organ detachment takes place at the basis of the pedicels, within a specialized group of cells collectively known as the abscission zone (AZ). During plant growth these cells become competent to respond to specific signals that trigger separation and lead to the abolition of cell wall adhesion. Little is known about the molecular network controlling the yellow lupine organ abscission. The aim of our study was to establish the divergences and similarities in transcriptional networks in the pods, flowers and flower pedicels abscised or maintained on the plant, and to identify genes playing key roles in generative organ abscission in yellow lupine. Based on de novo transcriptome assembly, we identified 166,473 unigenes representing 219,514 assembled unique transcripts from flowers, flower pedicels and pods undergoing abscission and from control organs. Comparison of the cDNA libraries from dropped and control organs helped in identifying 1,343, 2,933 and 1,491 differentially expressed genes (DEGs) in the flowers, flower pedicels and pods, respectively. In DEG analyses, we focused on genes involved in phytohormonal regulation, cell wall functioning and metabolic pathways. Our results indicate that auxin, ethylene and gibberellins are some of the main factors engaged in generative organ abscission. Identified 28 DEGs common for all library comparisons are involved in cell wall functioning, protein metabolism, water homeostasis and stress response. Interestingly, among the common DEGs we also found an miR169 precursor, which is the first evidence of micro RNA engaged in abscission. A KEGG pathway enrichment analysis revealed that the identified DEGs were predominantly involved in carbohydrate and amino acid metabolism, but some other pathways were also targeted. This study represents the first comprehensive transcriptome-based characterization of organ abscission in L. luteus and provides a valuable data source not only for understanding the abscission signaling pathway in yellow lupine, but also for further research aimed at improving crop yields.
Collapse
Affiliation(s)
- Paulina Glazinska
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus UniversityTorun, Poland
| | - Waldemar Wojciechowski
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus UniversityTorun, Poland
| | - Milena Kulasek
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| | - Wojciech Glinkowski
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| | - Katarzyna Marciniak
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus UniversityTorun, Poland
| | - Natalia Klajn
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| | - Jacek Kesy
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| | - Jan Kopcewicz
- Department of Biology and Environmental Science, Nicolaus Copernicus UniversityTorun, Poland
| |
Collapse
|
93
|
Yang J, Yuan Z, Meng Q, Huang G, Périn C, Bureau C, Meunier AC, Ingouff M, Bennett MJ, Liang W, Zhang D. Dynamic Regulation of Auxin Response during Rice Development Revealed by Newly Established Hormone Biosensor Markers. FRONTIERS IN PLANT SCIENCE 2017; 8:256. [PMID: 28326089 PMCID: PMC5339295 DOI: 10.3389/fpls.2017.00256] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/10/2017] [Indexed: 05/18/2023]
Abstract
The hormone auxin is critical for many plant developmental processes. Unlike the model eudicot plant Arabidopsis (Arabidopsis thaliana), auxin distribution and signaling in rice tissues has not been systematically investigated due to the absence of suitable auxin response reporters. In this study we observed the conservation of auxin signaling components between Arabidopsis and model monocot crop rice (Oryza sativa), and generated complementary types of auxin biosensor constructs, one derived from the Aux/IAA-based biosensor DII-VENUS but constitutively driven by maize ubiquitin-1 promoter, and the other termed DR5-VENUS in which a synthetic auxin-responsive promoter (DR5rev ) was used to drive expression of the yellow fluorescent protein (YFP). Using the obtained transgenic lines, we observed that during the vegetative development, accumulation of DR5-VENUS signal was at young and mature leaves, tiller buds and stem base. Notably, abundant DR5-VENUS signals were observed in the cytoplasm of cortex cells surrounding lateral root primordia (LRP) in rice. In addition, auxin maxima and dynamic re-localization were seen at the initiation sites of inflorescence and spikelet primordia including branch meristems (BMs), female and male organs. The comparison of these observations among Arabidopsis, rice and maize suggests the unique role of auxin in regulating rice lateral root emergence and reproduction. Moreover, protein localization of auxin transporters PIN1 homologs and GFP tagged OsAUX1 overlapped with DR5-VENUS during spikelet development, helping validate these auxin response reporters are reliable markers in rice. This work firstly reveals the direct correspondence between auxin distribution and rice reproductive and root development at tissue and cellular level, and provides high-resolution auxin tools to probe fundamental developmental processes in rice and to establish links between auxin, development and agronomical traits like yield or root architecture.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong UniversityShanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | - Zheng Yuan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | - Qingcai Meng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | - Guoqiang Huang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | | | | | | | | | - Malcolm J. Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai, China
- School of Agriculture, Food and Wine, University of AdelaideUrrbrae, SA, Australia
| |
Collapse
|
94
|
Zhang J, Wei B, Yuan R, Wang J, Ding M, Chen Z, Yu H, Qin G. The Arabidopsis RING-Type E3 Ligase TEAR1 Controls Leaf Development by Targeting the TIE1 Transcriptional Repressor for Degradation. THE PLANT CELL 2017; 29:243-259. [PMID: 28100709 PMCID: PMC5354194 DOI: 10.1105/tpc.16.00771] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/03/2017] [Accepted: 01/17/2017] [Indexed: 05/20/2023]
Abstract
The developmental plasticity of leaf size and shape is important for leaf function and plant survival. However, the mechanisms by which plants form diverse leaves in response to environmental conditions are not well understood. Here, we identified TIE1-ASSOCIATED RING-TYPE E3 LIGASE1 (TEAR1) and found that it regulates leaf development by promoting the degradation of TCP INTERACTOR-CONTAINING EAR MOTIF PROTEIN1 (TIE1), an important repressor of CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors, which are key for leaf development. TEAR1 contains a typical C3H2C3-type RING domain and has E3 ligase activity. We show that TEAR1 interacts with the TCP repressor TIE1, which is ubiquitinated in vivo and degraded by the 26S proteasome system. We demonstrate that TEAR1 is colocalized with TIE1 in nuclei and negatively regulates TIE1 protein levels. Overexpression of TEAR1 rescued leaf defects caused by TIE1 overexpression, whereas disruption of TEAR1 resulted in leaf phenotypes resembling those caused by TIE1 overexpression or TCP dysfunction. Deficiency in TEAR partially rescued the leaf defects of TCP4 overexpression line and enhanced the wavy leaf phenotypes of jaw-5D We propose that TEAR1 positively regulates CIN-like TCP activity to promote leaf development by mediating the degradation of the TCP repressor TIE1.
Collapse
Affiliation(s)
- Jinzhe Zhang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Baoye Wei
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Rongrong Yuan
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jianhui Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Mingxin Ding
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Zhuoyao Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
95
|
Raad MD, Modavi C, Sukovich DJ, Anderson JC. Observing Biosynthetic Activity Utilizing Next Generation Sequencing and the DNA Linked Enzyme Coupled Assay. ACS Chem Biol 2017; 12:191-199. [PMID: 28103681 DOI: 10.1021/acschembio.6b00652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Currently, the identification of new genes drastically outpaces current experimental methods for determining their enzymatic function. This disparity necessitates the development of high-throughput techniques that operate with the same scalability as modern gene synthesis and sequencing technologies. In this paper, we demonstrate the versatility of the recently reported DNA-Linked Enzyme-Coupled Assay (DLEnCA) and its ability to support high-throughput data acquisition through next-generation sequencing (NGS). Utilizing methyltransferases, we highlight DLEnCA's ability to rapidly profile an enzyme's substrate specificity, determine relative enzyme kinetics, detect biosynthetic formation of a target molecule, and its potential to benefit from the scales and standardization afforded by NGS. This improved methodology minimizes the effort in acquiring biosynthetic knowledge by tying biochemical techniques to the rapidly evolving abilities in sequencing and synthesizing DNA.
Collapse
Affiliation(s)
- Markus de Raad
- Department of Biological
Engineering, Synthetic Biology Institute, University of California, Berkeley, Berkeley, California 94704, United States
| | - Cyrus Modavi
- Department of Biological
Engineering, Synthetic Biology Institute, University of California, Berkeley, Berkeley, California 94704, United States
| | - David J. Sukovich
- Department of Biological
Engineering, Synthetic Biology Institute, University of California, Berkeley, Berkeley, California 94704, United States
| | - J. Christopher Anderson
- Department of Biological
Engineering, Synthetic Biology Institute, University of California, Berkeley, Berkeley, California 94704, United States
| |
Collapse
|
96
|
He S, Sun Y, Yang Q, Zhang X, Huang Q, Zhao P, Sun M, Liu J, Qian W, Qin G, Gu H, Qu LJ. A Novel Imprinted Gene NUWA Controls Mitochondrial Function in Early Seed Development in Arabidopsis. PLoS Genet 2017; 13:e1006553. [PMID: 28095407 PMCID: PMC5283763 DOI: 10.1371/journal.pgen.1006553] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 01/31/2017] [Accepted: 12/24/2016] [Indexed: 12/28/2022] Open
Abstract
Imprinted genes display biased expression of paternal and maternal alleles and are only found in mammals and flowering plants. Compared to several hundred imprinted genes that are functionally characterized in mammals, very few imprinted genes were confirmed in plants and even fewer of them have been functionally investigated. Here, we report a new imprinted gene, NUWA, in plants. NUWA is an essential gene, because loss of its function resulted in reduced transmission through the female gametophyte and defective cell/nuclear proliferation in early Arabidopsis embryo and endosperm. NUWA is a maternally expressed imprinted gene, as only the maternal allele of NUWA is transcribed and translated from gametogenesis to the 16-cell globular embryo stage after fertilization, and the de novo transcription of the maternal allele of NUWA starts from the zygote stage. Different from other identified plant imprinted genes whose encoded proteins are mostly localized to the nucleus, the NUWA protein was localized to the mitochondria and was essential for mitochondria function. Our work uncovers a novel imprinted gene of a previously unidentified type, namely, a maternal-specific expressed nuclear gene with its encoded protein localizing to and controlling the function of the maternally inherited mitochondria. This reveals a unique mechanism of maternal control of the mitochondria and adds an extra layer of complexity to the regulation of nucleus-organelle coordination during early plant development.
Collapse
Affiliation(s)
- Shan He
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Yan Sun
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Qian Yang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Xiangyu Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Qingpei Huang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Peng Zhao
- Department of Cell and Development Biology, College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China
| | - Mengxiang Sun
- Department of Cell and Development Biology, College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China
| | - Jingjing Liu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Hongya Gu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
- The National Plant Gene Research Center (Beijing), Beijing, China
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
- The National Plant Gene Research Center (Beijing), Beijing, China
| |
Collapse
|
97
|
Sandalio LM, Rodríguez-Serrano M, Romero-Puertas MC. Leaf epinasty and auxin: A biochemical and molecular overview. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:187-193. [PMID: 27968987 DOI: 10.1016/j.plantsci.2016.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 05/16/2023]
Abstract
Leaf epinasty involves the downward bending of leaves as a result of disturbances in their growth, with a greater expansion in adaxial cells as compared to abaxial surface cells. The co-ordinated anisotropy of growth in epidermal, palisade mesophyll and vascular tissues contributes to epinasty. This phenotype, which is regulated by auxin (indole-3-acetic acid, IAA), controls plant cell division and elongation by regulating the expression of a vast number of genes. Other plant hormones, such as ethylene, abscisic acid and brassinosteroids, also regulate epinasty and hyponasty. Reactive oxygen species (ROS) accumulation induced by auxins and 2,4-dichlorophenoxyacetic acid (2,4-D) triggers epinasty. The role of ROS and nitric oxide (NO) in the regulation of epinasty has recently been established. Thus, treatment with synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) induces disturbances in the actin cytoskeleton through ROS and NO-dependent post-translational modifications in actin by carbonylation and S-nitrosylation, which cause a reduction in the actin filament. Reorientation of microtubules has become a major feature of the response to auxin. The cytoskeleton is therefore a key player in epinastic development.
Collapse
Affiliation(s)
- Luisa M Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain.
| | - María Rodríguez-Serrano
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - María C Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
98
|
Gao C, Yang B, Zhang D, Chen M, Tian J. Enhanced metabolic process to indole alkaloids in Clematis terniflora DC. after exposure to high level of UV-B irradiation followed by the dark. BMC PLANT BIOLOGY 2016; 16:231. [PMID: 27776479 PMCID: PMC5078895 DOI: 10.1186/s12870-016-0920-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/17/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Indole alkaloids, which characteristically contain an indole nucleus, have pharmaceutical potential in a diverse range of applications. UV-B can elicit the accumulation of indole alkaloids. The indole alkaloid (6-hydroxyl-1H-indol-3-yl) carboxylic acid methyl ester with cytotoxic activity was found to accumulate in Clematis terniflora DC. leaves after exposure to high level of UV-B irradiation and the dark. However, a more in-depth analysis of the process behind this response has not yet been performed. Therefore, an integrated approach involving metabolomic, proteomic, and transcriptomic analyses is essential to detail the biosynthetic mechanisms of the regulation of indole alkaloid under binary stress. RESULTS Indole alkaloid (6-hydroxyl-1H-indol-3-yl) carboxylic acid methyl ester was found to increase 7-fold in C. terniflora leaves post-treatment with high level of UV-B irradiation followed by an incubation in the dark compared with pre-treatment. Analysis by proteomics and metabolomics indicates a decrease in photosynthesis and carbohydrate metabolism, respectively. By contrast, amino acid metabolism was activated by this binary stress, and, specifically, the genes involved in the metabolic pathway converting shikimate to L-tryptophan were concurrently upregulated. Metabolites involved in indole biosynthesis (shikimate metabolic) pathway were anthranilate, indole, and L-tryptophan, which increased 2-, 441-, and 1-fold, respectively. In addition, there was an increase of 2- and 9-fold in L-serine deaminase (L-SD) and L-tryptophan synthase activity in C. terniflora leaves after exposure to high level of UV-B irradiation and the dark. CONCLUSIONS (6-hydroxyl-1H-indol-3-yl) carboxylic acid methyl ester was found to increase in response to high level of UV-B irradiation followed by an incubation in the dark, implying that indole alkaloid biosynthesis was activated in C. terniflora leaves. Analysis of perturbations in metabolism in these leaves demonstrated that amino acid metabolism was specifically activated by this binary stress. In addition, an enhancement in serine level and L-SD activity was noted, which likely leads to an accumulation of pyruvate that, in turn, supplies shikimate metabolic pathway. The genes, metabolites, and L-tryptophan synthase activity that are involved in the metabolic pathway leading from shikimate to L-tryptophan all increased under the experimental binary stress, resulting in an enhancement of indole biosynthesis (shikimate metabolic) pathway. Therefore, the metabolic process to indole alkaloids in C. terniflora was enhanced after exposure to high level of UV-B irradiation followed by the dark.
Collapse
Affiliation(s)
- Cuixia Gao
- Institute of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Bingxian Yang
- Institute of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Dandan Zhang
- Institute of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Meng Chen
- Institute of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Jingkui Tian
- Institute of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China.
- Ministry of Education Key Laboratory for Biomedical Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
99
|
Indole-3-acetic acid in plant-pathogen interactions: a key molecule for in planta bacterial virulence and fitness. Res Microbiol 2016; 167:774-787. [PMID: 27637152 DOI: 10.1016/j.resmic.2016.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/06/2016] [Accepted: 09/01/2016] [Indexed: 11/22/2022]
Abstract
The plant pathogenic bacterium Pseudomonas savastanoi, the causal agent of olive and oleander knot disease, uses the so-called "indole-3-acetamide pathway" to convert tryptophan to indole-3-acetic acid (IAA) via a two-step pathway catalyzed by enzymes encoded by the genes in the iaaM/iaaH operon. Moreover, pathovar nerii of P. savastanoi is able to conjugate IAA to lysine to generate the less biologically active compound IAA-Lys via the enzyme IAA-lysine synthase encoded by the iaaL gene. Interestingly, iaaL is now known to be widespread in many Pseudomonas syringae pathovars, even in the absence of the iaaM and iaaH genes for IAA biosynthesis. Here, two knockout mutants, ΔiaaL and ΔiaaM, of strain Psn23 of P. savastanoi pv. nerii were produced. Pathogenicity tests using the host plant Nerium oleander showed that ΔiaaL and ΔiaaM were hypervirulent and hypovirulent, respectively and these features appeared to be related to their differential production of free IAA. Using the Phenotype Microarray approach, the chemical sensitivity of these mutants was shown to be comparable to that of wild-type Psn23. The main exception was 8 hydroxyquinoline, a toxic compound that is naturally present in plant exudates and is used as a biocide, which severely impaired the growth of ΔiaaL and ΔiaaM, as well as growth of the non-pathogenic mutant ΔhrpA, which lacks a functional Type Three Secretion System (TTSS). According to bioinformatics analysis of the Psn23 genome, a gene encoding a putative Multidrug and Toxic compound Extrusion (MATE) transporter, was found upstream of iaaL. Similarly to iaaL and iaaM, its expression appeared to be TTSS-dependent. Moreover, auxin-responsive elements were identified for the first time in the modular promoters of both the iaaL gene and the iaaM/iaaH operon of P. savastanoi, suggesting their IAA-inducible transcription. Gene expression analysis of several genes related to TTSS, IAA metabolism and drug resistance confirmed the presence of a concerted regulatory network in this phytopathogen among virulence, fitness and drug efflux.
Collapse
|
100
|
Koeduka T, Kajiyama M, Suzuki H, Furuta T, Tsuge T, Matsui K. Benzenoid biosynthesis in the flowers of Eriobotrya japonica: molecular cloning and functional characterization of p-methoxybenzoic acid carboxyl methyltransferase. PLANTA 2016; 244:725-736. [PMID: 27146420 DOI: 10.1007/s00425-016-2542-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
p -Methoxybenzoic acid carboxyl methyltransferase (MBMT) was isolated from loquat flowers. MBMT displayed high similarity to jasmonic acid carboxyl methyltransferases, but exhibited high catalytic activity to form methyl p -methoxybenzoate from p -methoxybenzoic acid. Volatile benzenoids impart the characteristic fragrance of loquat (Eriobotrya japonica) flowers. Here, we report that loquat produces methyl p-methoxybenzoate, along with other benzenoids, as the flowers bloom. Although the adaxial side of flower petals is covered with hairy trichomes, the trichomes are not the site of volatile benzenoid formation. Here we identified four carboxyl methyltransferase (EjMT1 to EjMT4) genes from loquat and functionally characterized EjMT1 which we found to encode a p-methoxybenzoic acid carboxyl methyltransferase (MBMT); an enzyme capable of converting p-methoxybenzoic acid to methyl p-methoxybenzoate via methylation of the carboxyl group. We found that transcript levels of MBMT continually increased throughout the flower development with peak expression occurring in fully opened flowers. Recombinant MBMT protein expressed in Escherichia coli showed the highest substrate preference toward p-methoxybenzoic acid with an apparent K m value of 137.3 µM. In contrast to benzoic acid carboxyl methyltransferase (BAMT) and benzoic acid/salicylic acid carboxyl methyltransferase, MBMT also displayed activity towards both benzoic acid and jasmonic acid. Phylogenetic analysis revealed that loquat MBMT forms a monophyletic group with jasmonic acid carboxyl methyltransferases (JMTs) from other plant species. Our results suggest that plant enzymes with same BAMT activity have evolved independently.
Collapse
Affiliation(s)
- Takao Koeduka
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan.
| | - Mami Kajiyama
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Hideyuki Suzuki
- Department of Research and Development, Kazusa DNA Research Institute, Chiba, 292-0818, Japan
| | - Takumi Furuta
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Kenji Matsui
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
| |
Collapse
|