51
|
Delfosse K, Wozny MR, Barton KA, Mathur N, Griffiths N, Mathur J. Plastid Envelope-Localized Proteins Exhibit a Stochastic Spatiotemporal Relationship to Stromules. FRONTIERS IN PLANT SCIENCE 2018; 9:754. [PMID: 29915611 PMCID: PMC5995270 DOI: 10.3389/fpls.2018.00754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/16/2018] [Indexed: 05/13/2023]
Abstract
UNLABELLED Plastids in the viridiplantae sporadically form thin tubules called stromules that increase the interactive surface between the plastid and the surrounding cytoplasm. Several recent publications that report observations of certain proteins localizing to the extensions have then used the observations to suggest stromule-specific functions. The mechanisms by which specific localizations on these transient and sporadically formed extensions might occur remain unclear. Previous studies have yet to address the spatiotemporal relationship between a particular protein localization pattern and its distribution on an extended stromules and/or the plastid body. Here, we have used discrete protein patches found in several transgenic plants as fiducial markers to investigate this relationship. While we consider the inner plastid envelope-membrane localized protein patches of the GLUCOSE 6-PHOSPHATE/PHOSPHATE TRANSLOCATOR1 and the TRIOSE-PHOSPHATE/ PHOSPHATE TRANSLOCATOR 1 as artifacts of fluorescent fusion protein over-expression, stromule formation is not compromised in the respective stable transgenic lines that maintain normal growth and development. Our analysis of chloroplasts in the transgenic lines in the Arabidopsis Columbia background, and in the arc6 mutant, under stromule-inducing conditions shows that the possibility of finding a particular protein-enriched domain on an extended stromule or on a region of the main plastid body is stochastic. Our observations provide insights on the behavior of chloroplasts, the relationship between stromules and the plastid-body and strongly challenge claims of stromule-specific functions based solely upon protein localization to plastid extensions. ONE SENTENCE SUMMARY Observations of the spatiotemporal relationship between plastid envelope localized fluorescent protein fusions of two sugar-phosphate transporters and stromules suggest a stochastic rather than specific localization pattern that questions the idea of independent functions for stromules.
Collapse
|
52
|
Liu C, Wang B, Li Z, Peng Z, Zhang J. TsNAC1 Is a Key Transcription Factor in Abiotic Stress Resistance and Growth. PLANT PHYSIOLOGY 2018; 176:742-756. [PMID: 29122985 PMCID: PMC5761785 DOI: 10.1104/pp.17.01089] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/07/2017] [Indexed: 05/05/2023]
Abstract
NAC proteins constitute one of the largest families of plant-specific transcription factors, and a number of these proteins participate in the regulation of plant development and responses to abiotic stress. T. HALOPHILA STRESS RELATED NAC1 (TsNAC1), cloned from the halophyte Thellungiella halophila, is a NAC transcription factor gene, and its overexpression can improve abiotic stress resistance, especially in salt stress tolerance, in both T. halophila and Arabidopsis (Arabidopsis thaliana) and retard the growth of these plants. In this study, the transcriptional activation activity of TsNAC1 and RD26 from Arabidopsis was compared with the target genes' promoter regions of TsNAC1 from T. halophila, and the results showed that the transcriptional activation activity of TsNAC1 was higher in tobacco (Nicotiana tabacum) and yeast. The target sequence of the promoter from the target genes also was identified, and TsNAC1 was shown to target the positive regulators of ion transportation, such as T. HALOPHILA H+-PPASE1, and the transcription factors MYB HYPOCOTYL ELONGATION-RELATED and HOMEOBOX12 In addition, TsNAC1 negatively regulates the expansion of cells, inhibits LIGHT-DEPENDENT SHORT HYPOCOTYLS1 and UDP-XYLOSYLTRANSFERASE2, and directly controls the expression of MULTICOPY SUPPRESSOR OF IRA14 Based on these results, we propose that TsNAC1 functions as an important upstream regulator of plant abiotic stress responses and vegetative growth.
Collapse
Affiliation(s)
- Can Liu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Baomei Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Zhaoxia Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Zhenghua Peng
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | - Juren Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| |
Collapse
|
53
|
Mueller-Schuessele SJ, Michaud M. Plastid Transient and Stable Interactions with Other Cell Compartments. Methods Mol Biol 2018; 1829:87-109. [PMID: 29987716 DOI: 10.1007/978-1-4939-8654-5_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plastids are organelles delineated by two envelopes that play important roles in different cellular processes such as energy production or lipid biosynthesis. To regulate their biogenesis and their function, plastids have to communicate with other cellular compartments. This communication can be mediated by signaling molecules and by the establishment of direct contacts between the plastid envelope and other organelles such as the endoplasmic reticulum, the mitochondria, the plasma membrane, the peroxisomes and the nucleus. These interactions are highly dynamic and respond to different biotic and abiotic stresses. However, the mechanisms involved in the formation of plastid-organelle contact sites and their functions are still enigmatic. In this chapter, we summarize our current knowledge about plastid contact sites and their role in the regulation of plastid biogenesis and function.
Collapse
Affiliation(s)
| | - Morgane Michaud
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA. .,Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, CEA Grenoble, UMR5168, Université Grenoble Alpes, Grenoble, France.
| |
Collapse
|
54
|
Li-Beisson Y, Neunzig J, Lee Y, Philippar K. Plant membrane-protein mediated intracellular traffic of fatty acids and acyl lipids. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:138-146. [PMID: 28985576 DOI: 10.1016/j.pbi.2017.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 05/24/2023]
Abstract
In plants, de novo synthesis of fatty acids (FAs) occurs in plastids, whereas assembly and modification of acyl lipids is accomplished in the endoplasmic reticulum (ER) and plastids as well as in mitochondria. Subsequently, lipophilic compounds are distributed within the cell and delivered to their destination site. Thus, constant acyl-exchanges between subcellular compartments exist. These can occur via several modes of transport and plant membrane-intrinsic proteins for FA/lipid transfer have been shown to play an essential role in delivery and distribution. Lately, substantial progress has been made in identification and characterization of transport proteins for lipid compounds in plant organelle membranes. In this review, we focus on our current understanding of protein mediated lipid traffic between organelles of land plants.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- CEA, CNRS and Aix-Marseille Université, Institut de Biosciences et Biotechnologies d'Aix-Marseille, UMR 7265, CEA Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Jens Neunzig
- Saarland University, Center for Human- and Molecular Biology - Plant Biology, Campus A 2.4, D-66123 Saarbrücken, Germany
| | - Youngsook Lee
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang 37673, Republic of Korea
| | - Katrin Philippar
- Saarland University, Center for Human- and Molecular Biology - Plant Biology, Campus A 2.4, D-66123 Saarbrücken, Germany.
| |
Collapse
|
55
|
Zhai Z, Liu H, Xu C, Shanklin J. Sugar Potentiation of Fatty Acid and Triacylglycerol Accumulation. PLANT PHYSIOLOGY 2017; 175:696-707. [PMID: 28842550 PMCID: PMC5619906 DOI: 10.1104/pp.17.00828] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/22/2017] [Indexed: 05/19/2023]
Abstract
Photosynthetically derived sugar provides carbon skeletons for lipid biosynthesis. We used mutants of Arabidopsis (Arabidopsis thaliana) and the expression of oleogenic factors to investigate relationships among sugar availability, lipid synthesis, and the accumulation of triacylglycerol (TAG) in leaf tissue. The adg1 mutation disables the small subunit of ADP-glucose pyrophosphorylase, the first step in starch synthesis, and the suc2 mutation disables a sucrose/proton symporter that facilitates sucrose loading from leaves into phloem. The adg1suc2 double mutant increases glucose plus sucrose content in leaves 80-fold relative to the wild type, total fatty acid (FA) content 1.8-fold to 8.3% dry weight, and TAG more than 10-fold to 1.2% dry weight. The WRINKLED1 transcription factor also accumulates to higher levels in these leaves, and the rate of FA synthesis increases by 58%. Adding tt4, which disables chalcone synthase, had little effect, but adding the tgd1 mutation, which disables an importer of lipids into plastids to create adg1suc2tt4tgd1, increased total leaf FA to 13.5% dry weight and TAG to 3.8% dry weight, demonstrating a synergistic effect upon combining these mutations. Combining adg1suc2 with the sdp1 mutation, deficient in the predominant TAG lipase, had little effect on total FA content but increased the TAG accumulation by 66% to 2% dry weight. Expression of the WRINKLED1 transcription factor, along with DIACYLGLYCEROL ACYLTRANSFERASE1 and the OLEOSIN1 oil body-associated protein, in the adg1suc2 mutant doubled leaf FA content and increased TAG content to 2.3% dry weight, a level 4.6-fold higher than that resulting from expression of the same factors in the wild type.
Collapse
Affiliation(s)
- Zhiyang Zhai
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Hui Liu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
56
|
Mueller SP, Unger M, Guender L, Fekete A, Mueller MJ. Phospholipid:Diacylglycerol Acyltransferase-Mediated Triacylglyerol Synthesis Augments Basal Thermotolerance. PLANT PHYSIOLOGY 2017; 175:486-497. [PMID: 28733391 PMCID: PMC5580778 DOI: 10.1104/pp.17.00861] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/18/2017] [Indexed: 05/22/2023]
Abstract
High temperatures rapidly induce a genetically programmed heat-shock response (HSR) that is essential to establish short-term acquired thermotolerance. In addition, an immediate HSR-independent metabolic response is triggered, resulting in an accumulation of unsaturated triacylglycerols (TAGs) in the cytosol. The metabolic processes involved in heat-induced TAG formation in plants and their physiological significance remain to be clarified. Lipidomic analyses of Arabidopsis (Arabidopsis thaliana) seedlings indicated that during heat stress, polyunsaturated fatty acids from thylakoid galactolipids are incorporated into cytosolic TAGs. In addition, rapid conversion of plastidic monogalactosyl diacylglycerols (MGDGs) into oligogalactolipids, acylated MGDGs, and diacylglycerols (DAGs), the direct precursor of TAGs, was observed. For TAG synthesis, DAG requires a fatty acid from the acyl-CoA pool or phosphatidylcholine. Since seedlings deficient in PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1 (PDAT1) were unable to accumulate TAGs after heat stress, phosphatidylcholine appears to be the major fatty acid donor. Results suggest that rapid plastid lipid metabolism drives TAG accumulation during heat stress. PDAT1-mediated TAG accumulation was found to increase heat resistance, since nonacclimated pdat1 mutant seedlings were more sensitive to severe heat stress, as indicated by a more dramatic decline of the maximum efficiency of PSII and lower seedling survival compared to wild-type seedlings. In contrast, nonacclimated trigalactosyldiacylglycerol1 (tgd1) mutants overaccumulating TAGs and oligogalactolipids were more resistant to heat stress. Hence, thylakoid lipid metabolism and TAG formation increases thermotolerance in addition to the genetically encoded HSR.
Collapse
Affiliation(s)
- Stephanie P Mueller
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany
| | - Melissa Unger
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany
| | - Lena Guender
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany
| | - Agnes Fekete
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany
| | - Martin J Mueller
- Julius-von-Sachs-Institute of Biosciences, Biocenter, Pharmaceutical Biology, University of Wuerzburg, D-97082 Wuerzburg, Germany
| |
Collapse
|
57
|
Wang K, Froehlich JE, Zienkiewicz A, Hersh HL, Benning C. A Plastid Phosphatidylglycerol Lipase Contributes to the Export of Acyl Groups from Plastids for Seed Oil Biosynthesis. THE PLANT CELL 2017; 29:1678-1696. [PMID: 28687655 PMCID: PMC5559756 DOI: 10.1105/tpc.17.00397] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 05/20/2023]
Abstract
The lipid composition of thylakoid membranes inside chloroplasts is conserved from leaves to developing embryos. A finely tuned lipid assembly machinery is required to build these membranes during Arabidopsis thaliana development. Contrary to thylakoid lipid biosynthetic enzymes, the functions of most predicted chloroplast lipid-degrading enzymes remain to be elucidated. Here, we explore the biochemistry and physiological function of an Arabidopsis thylakoid membrane-associated lipase, PLASTID LIPASE1 (PLIP1). PLIP1 is a phospholipase A1 In vivo, PLIP1 hydrolyzes polyunsaturated acyl groups from a unique chloroplast-specific phosphatidylglycerol that contains 16:1 Δ3trans as its second acyl group. Thus far, a specific function of this 16:1 Δ3trans -containing phosphatidylglycerol in chloroplasts has remained elusive. The PLIP1 gene is highly expressed in seeds, and plip1 mutant seeds contain less oil and exhibit delayed germination compared with the wild type. Acyl groups released by PLIP1 are exported from the chloroplast, reincorporated into phosphatidylcholine, and ultimately enter seed triacylglycerol. Thus, 16:1 Δ3trans uniquely labels a small but biochemically active plastid phosphatidylglycerol pool in developing Arabidopsis embryos, which is subject to PLIP1 activity, thereby contributing a small fraction of the polyunsaturated fatty acids present in seed oil. We propose that acyl exchange involving thylakoid lipids functions in acyl export from plastids and seed oil biosynthesis.
Collapse
Affiliation(s)
- Kun Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - John E Froehlich
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Agnieszka Zienkiewicz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, East Lansing, Michigan 48823
| | - Hope Lynn Hersh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, East Lansing, Michigan 48823
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
58
|
Yang Y, Zienkiewicz A, Lavell A, Benning C. Coevolution of Domain Interactions in the Chloroplast TGD1, 2, 3 Lipid Transfer Complex Specific to Brassicaceae and Poaceae Plants. THE PLANT CELL 2017; 29:1500-1515. [PMID: 28526713 PMCID: PMC5502461 DOI: 10.1105/tpc.17.00182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/10/2017] [Accepted: 05/18/2017] [Indexed: 05/23/2023]
Abstract
The import of lipids into the chloroplast is essential for photosynthetic membrane biogenesis. This process requires an ABC transporter in the inner envelope membrane with three subunits, TRIGALACTOSYLDIACYLGLYCEROL (TGD) 1, 2, and 3, named after the oligogalactolipids that accumulate in the respective Arabidopsis thaliana mutants. Unlike Arabidopsis, in the model grass Brachypodium distachyon, chloroplast lipid biosynthesis is largely dependent on imported precursors, resulting in a characteristic difference in chloroplast lipid acyl composition between the two plants. Accordingly, Arabidopsis is designated as a 16:3 (acyl carbons:double bounds) plant and Brachypodium as an 18:3 plant. Repression of TGD1 (BdTGD1) in Brachypodium affected growth without triggering oligogalactolipid biosynthesis. Moreover, expressing BdTGD1 in the Arabidopsis tgd1-1 mutant restored some phenotypes but did not reverse oligogalactolipid biosynthesis. A 27-amino acid loop (L45) is solely responsible for the incomplete functioning of BdTGD1 in Arabidopsis tgd1-1 Coevolutionary analysis and coimmunoprecipitation assays showed that the TGD1 L45 loop interacts with the mycobacterial cell entry domain of TGD2. To explain the observed differences in oligogalactolipid biosynthesis between the two species, we suggest that excess monogalactosyldiacylglycerol derived from chloroplast-derived precursors in Arabidopsis tgd1-1 is converted into oligogalactolipids, a process absent from Brachypodium with reduced TGD1 levels, which assembles monogalactosyldiacylglycerol exclusively from imported precursors.
Collapse
Affiliation(s)
- Yang Yang
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
| | - Agnieszka Zienkiewicz
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
| | - Anastasiya Lavell
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Christoph Benning
- MSU-Department of Energy, Plant Research Laboratory, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
59
|
Xu C, Shanklin J. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:179-206. [PMID: 26845499 DOI: 10.1146/annurev-arplant-043015-111641] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oils in the form of triacylglycerols are the most abundant energy-dense storage compounds in eukaryotes, and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerols as a renewable and sustainable bioenergy source. Here, we review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.
Collapse
Affiliation(s)
- Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973; ,
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973; ,
| |
Collapse
|
60
|
Hori K, Nobusawa T, Watanabe T, Madoka Y, Suzuki H, Shibata D, Shimojima M, Ohta H. Tangled evolutionary processes with commonality and diversity in plastidial glycolipid synthesis in photosynthetic organisms. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1294-1308. [PMID: 27108062 DOI: 10.1016/j.bbalip.2016.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/09/2016] [Accepted: 04/15/2016] [Indexed: 01/25/2023]
Abstract
In photosynthetic organisms, the photosynthetic membrane constitutes a scaffold for light-harvesting complexes and photosynthetic reaction centers. Three kinds of glycolipids, namely monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol, constitute approximately 80-90% of photosynthetic membrane lipids and are well conserved from tiny cyanobacteria to the leaves of huge trees. These glycolipids perform a wide variety of functions beyond biological membrane formation. In particular, the capability of adaptation to harsh environments through regulation of membrane glycolipid composition is essential for healthy growth and development of photosynthetic organisms. The genome analysis and functional genetics of the model seed plant Arabidopsis thaliana have yielded many new findings concerning the biosynthesis, regulation, and functions of glycolipids. Nevertheless, it remains to be clarified how the complex biosynthetic pathways and well-organized functions of glycolipids evolved in early and primitive photosynthetic organisms, such as cyanobacteria, to yield modern photosynthetic organisms like land plants. Recently, genome data for many photosynthetic organisms have been made available as the fruit of the rapid development of sequencing technology. We also have reported the draft genome sequence of the charophyte alga Klebsormidium flaccidum, which is an intermediate organism between green algae and land plants. Here, we performed a comprehensive phylogenic analysis of glycolipid biosynthesis genes in oxygenic photosynthetic organisms including K. flaccidum. Based on the results together with membrane lipid analysis of this alga, we discuss the evolution of glycolipid synthesis in photosynthetic organisms. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Koichi Hori
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan; CREST, Japan Science and Technology Agency, Japan
| | - Takashi Nobusawa
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan; CREST, Japan Science and Technology Agency, Japan
| | - Tei Watanabe
- Tokyo Institute of Technology, Graduate School of Bioscience and Biotechnology, Yokohama City, Kanagawa 226-8501, Japan
| | - Yuka Madoka
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Daisuke Shibata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Mie Shimojima
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan
| | - Hiroyuki Ohta
- Tokyo Institute of Technology, School of Life Science and Technology, Yokohama City, Kanagawa 226-8501, Japan; CREST, Japan Science and Technology Agency, Japan; Tokyo Institute of Technology, Earth-Life Science Institute, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.
| |
Collapse
|
61
|
Li N, Xu C, Li-Beisson Y, Philippar K. Fatty Acid and Lipid Transport in Plant Cells. TRENDS IN PLANT SCIENCE 2016; 21:145-158. [PMID: 26616197 DOI: 10.1016/j.tplants.2015.10.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/29/2015] [Accepted: 10/15/2015] [Indexed: 05/18/2023]
Abstract
Fatty acids (FAs) and lipids are essential - not only as membrane constituents but also for growth and development. In plants and algae, FAs are synthesized in plastids and to a large extent transported to the endoplasmic reticulum for modification and lipid assembly. Subsequently, lipophilic compounds are distributed within the cell, and thus are transported across most membrane systems. Membrane-intrinsic transporters and proteins for cellular FA/lipid transfer therefore represent key components for delivery and dissemination. In addition to highlighting their role in lipid homeostasis and plant performance, different transport mechanisms for land plants and green algae - in the model systems Arabidopsis thaliana, Chlamydomonas reinhardtii - are compared, thereby providing a current perspective on protein-mediated FA and lipid trafficking in photosynthetic cells.
Collapse
Affiliation(s)
- Nannan Li
- Research Center of Bioenergy and Bioremediation (RCBB), College of Resources and Environment, Southwest University, Beibei District, Chongqing, 400715, P.R. China
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973-5000, USA
| | - Yonghua Li-Beisson
- Institute of Environmental Biology and Biotechnology, The French Atomic and Alternative Energy Commission, Unité Mixte de Recherche 7265, Commissariat à l'Energie Atomique (CEA) Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Katrin Philippar
- Department of Biology I, Ludwig-Maximilians-University München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
62
|
Abstract
Cyanobacteria carry out oxygenic photosynthesis and share many features with chloroplasts, including thylakoid membranes, which are mainly composed of membrane lipids and protein complexes that mediate photosynthetic electron transport. Although the functions of the various thylakoid protein complexes have been well characterized, the details underlying the biogenesis of thylakoid membranes remain unclear. Galactolipids are the major constituents of the thylakoid membrane system, and all the genes involved in galactolipid biosynthesis were recently identified. In this chapter, I summarize recent advances in our understanding of the factors involved in thylakoid development, including regulatory proteins and enzymes that mediate lipid biosynthesis.
Collapse
Affiliation(s)
- Koichiro Awai
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
- Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8011, Japan.
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
63
|
Abstract
Plant and algal oils are some of the most energy-dense renewable compounds provided by nature. Triacylglycerols (TAGs) are the major constituent of plant oils, which can be converted into fatty acid methyl esters commonly known as biodiesel. As one of the most efficient producers of TAGs, photosynthetic microalgae have attracted substantial interest for renewable fuel production. Currently, the big challenge of microalgae based TAGs for biofuels is their high cost compared to fossil fuels. A conundrum is that microalgae accumulate large amounts of TAGs only during stress conditions such as nutrient deprivation and temperature stress, which inevitably will inhibit growth. Thus, a better understanding of why and how microalgae induce TAG biosynthesis under stress conditions would allow the development of engineered microalgae with increased TAG production during conditions optimal for growth. Land plants also synthesize TAGs during stresses and we will compare new findings on environmental stress-induced TAG accumulation in plants and microalgae especially in the well-characterized model alga Chlamydomonas reinhardtii and a biotechnologically relevant genus Nannochloropsis.
Collapse
Affiliation(s)
- Zhi-Yan Du
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
64
|
Warakanont J, Tsai CH, Michel EJS, Murphy GR, Hsueh PY, Roston RL, Sears BB, Benning C. Chloroplast lipid transfer processes in Chlamydomonas reinhardtii involving a TRIGALACTOSYLDIACYLGLYCEROL 2 (TGD2) orthologue. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1005-20. [PMID: 26496373 DOI: 10.1111/tpj.13060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/05/2015] [Accepted: 10/16/2015] [Indexed: 05/10/2023]
Abstract
In plants, lipids of the photosynthetic membrane are synthesized by parallel pathways associated with the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Lipids derived from the two pathways are distinguished by their acyl-constituents. Following this plant paradigm, the prevalent acyl composition of chloroplast lipids suggests that Chlamydomonas reinhardtii (Chlamydomonas) does not use the ER pathway; however, the Chlamydomonas genome encodes presumed plant orthologues of a chloroplast lipid transporter consisting of TGD (TRIGALACTOSYLDIACYLGLYCEROL) proteins that are required for ER-to-chloroplast lipid trafficking in plants. To resolve this conundrum, we identified a mutant of Chlamydomonas deleted in the TGD2 gene and characterized the respective protein, CrTGD2. Notably, the viability of the mutant was reduced, showing the importance of CrTGD2. Galactoglycerolipid metabolism was altered in the tgd2 mutant with monogalactosyldiacylglycerol (MGDG) synthase activity being strongly stimulated. We hypothesize this to be a result of phosphatidic acid accumulation in the chloroplast outer envelope membrane, the location of MGDG synthase in Chlamydomonas. Concomitantly, increased conversion of MGDG into triacylglycerol (TAG) was observed. This TAG accumulated in lipid droplets in the tgd2 mutant under normal growth conditions. Labeling kinetics indicate that Chlamydomonas can import lipid precursors from the ER, a process that is impaired in the tgd2 mutant.
Collapse
Affiliation(s)
- Jaruswan Warakanont
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Chia-Hong Tsai
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Elena J S Michel
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - George R Murphy
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Peter Y Hsueh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Rebecca L Roston
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Barbara B Sears
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Christoph Benning
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
65
|
Fan J, Zhai Z, Yan C, Xu C. Arabidopsis TRIGALACTOSYLDIACYLGLYCEROL5 Interacts with TGD1, TGD2, and TGD4 to Facilitate Lipid Transfer from the Endoplasmic Reticulum to Plastids. THE PLANT CELL 2015; 27:2941-55. [PMID: 26410300 PMCID: PMC4682317 DOI: 10.1105/tpc.15.00394] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/24/2015] [Accepted: 09/04/2015] [Indexed: 05/20/2023]
Abstract
The biogenesis of photosynthetic membranes in the plastids of higher plants requires an extensive supply of lipid precursors from the endoplasmic reticulum (ER). Four TRIGALACTOSYLDIACYLGLYCEROL (TGD) proteins (TGD1,2,3,4) have thus far been implicated in this lipid transfer process. While TGD1, TGD2, and TGD3 constitute an ATP binding cassette transporter complex residing in the plastid inner envelope, TGD4 is a transmembrane lipid transfer protein present in the outer envelope. These observations raise questions regarding how lipids transit across the aqueous intermembrane space. Here, we describe the isolation and characterization of a novel Arabidopsis thaliana gene, TGD5. Disruption of TGD5 results in similar phenotypic effects as previously described in tgd1,2,3,4 mutants, including deficiency of ER-derived thylakoid lipids, accumulation of oligogalactolipids, and triacylglycerol. Genetic analysis indicates that TGD4 is epistatic to TGD5 in ER-to-plastid lipid trafficking, whereas double mutants of a null tgd5 allele with tgd1-1 or tgd2-1 show a synergistic embryo-lethal phenotype. TGD5 encodes a small glycine-rich protein that is localized in the envelope membranes of chloroplasts. Coimmunoprecipitation assays show that TGD5 physically interacts with TGD1, TGD2, TGD3, and TGD4. Collectively, these results suggest that TGD5 facilitates lipid transfer from the outer to the inner plastid envelope by bridging TGD4 with the TGD1,2,3 transporter complex.
Collapse
Affiliation(s)
- Jilian Fan
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Zhiyang Zhai
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Chengshi Yan
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Changcheng Xu
- Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
66
|
Tahara H, Matsuhashi A, Uchiyama J, Ogawa S, Ohta H. Sll0751 and Sll1041 are involved in acid stress tolerance in Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2015; 125:233-242. [PMID: 25952746 DOI: 10.1007/s11120-015-0153-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
The ATP-binding cassette (ABC) transporter is a multi-subunit membrane protein complex involved in lipid transport and acid stress tolerance in the cyanobacterium Synechocystis sp. PCC 6803. This organism has two sets of three ABC transporter subunits: Slr1045 and Slr1344, Sll0751 and Sll1002, and Sll1001 and Sll1041. We previously found that Slr1045 is essential for survival under acid stress condition (Tahara et al. 2012). In the present study, we examined the participation of other ABC transporter subunits in acid stress tolerance using a deletion mutant series of Synechocystis sp. PCC 6803. Although Slr1344 is highly homologous to Slr1045, Δslr1344 cells were not susceptible to acid stress. Δsll0751 and Δsll1041 cells displayed acid stress sensitivity, whereas Δsll1001/sll1002 double mutant cells grew normally. Under high- and low-temperature stress conditions, the growth rate of Δslr1344 and Δsll1001/sll1002 cells did not differ from WT cells, whereas Δsll0751 and Δsll1041 cells showed significant growth retardation, as previously observed in Δslr1045 cells. Moreover, nile red staining showed more lipid accumulation in Δslr1045, Δsll0751, and Δsll1041 cells than in WT cells. These results suggest that Slr1045, Sll0751, and Sll1041 function together as a lipid transport complex in Synechocystis sp. PCC 6803 and are essential for growth under various stresses.
Collapse
Affiliation(s)
- Hiroko Tahara
- Graduate School of Mathematics and Science Education, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-Ku, Tokyo, 162-8601, Japan,
| | | | | | | | | |
Collapse
|
67
|
Block MA, Jouhet J. Lipid trafficking at endoplasmic reticulum-chloroplast membrane contact sites. Curr Opin Cell Biol 2015; 35:21-9. [PMID: 25868077 DOI: 10.1016/j.ceb.2015.03.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/17/2015] [Accepted: 03/21/2015] [Indexed: 10/23/2022]
Abstract
Glycerolipid synthesis in plant cells is characterized by an intense trafficking of lipids between the endoplasmic reticulum (ER) and chloroplasts. Initially, fatty acids are synthesized within chloroplasts and are exported to the ER where they are used to build up phospholipids and triacylglycerol. Ultimately, derivatives of these phospholipids return to chloroplasts to form galactolipids, monogalactosyldiacylglycerol and digalactosyldiacylglycerol, the main and essential lipids of photosynthetic membranes. Lipid trafficking was proposed to transit through membrane contact sites (MCSs) connecting both organelles. Here, we review recent insights into ER-chloroplast MCSs and lipid trafficking between chloroplasts and the ER.
Collapse
Affiliation(s)
- Maryse A Block
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Université de Grenoble-Alpes, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, 17 Avenue des Martyrs, F-38054 Grenoble, France.
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Université de Grenoble-Alpes, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, 17 Avenue des Martyrs, F-38054 Grenoble, France
| |
Collapse
|
68
|
Craddock CP, Adams N, Bryant FM, Kurup S, Eastmond PJ. PHOSPHATIDIC ACID PHOSPHOHYDROLASE Regulates Phosphatidylcholine Biosynthesis in Arabidopsis by Phosphatidic Acid-Mediated Activation of CTP:PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE Activity. THE PLANT CELL 2015; 27:1251-64. [PMID: 25862304 PMCID: PMC4558698 DOI: 10.1105/tpc.15.00037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/19/2015] [Indexed: 05/04/2023]
Abstract
Regulation of membrane lipid biosynthesis is critical for cell function. We previously reported that disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE1 (PAH1) and PAH2 stimulates net phosphatidylcholine (PC) biosynthesis and proliferation of the endoplasmic reticulum (ER) in Arabidopsis thaliana. Here, we show that this response is caused specifically by a reduction in the catalytic activity of the protein and positively correlates with an accumulation of its substrate, phosphatidic acid (PA). The accumulation of PC in pah1 pah2 is suppressed by disruption of CTP:PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE1 (CCT1), which encodes a key enzyme in the nucleotide pathway for PC biosynthesis. The activity of recombinant CCT1 is stimulated by lipid vesicles containing PA. Truncation of CCT1, to remove the predicted C-terminal amphipathic lipid binding domain, produced a constitutively active enzyme. Overexpression of native CCT1 in Arabidopsis has no significant effect on PC biosynthesis or ER morphology, but overexpression of the truncated constitutively active version largely replicates the pah1 pah2 phenotype. Our data establish that membrane homeostasis is regulated by lipid composition in Arabidopsis and reveal a mechanism through which the abundance of PA, mediated by PAH activity, modulates CCT activity to govern PC content.
Collapse
Affiliation(s)
- Christian P Craddock
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Nicolette Adams
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Fiona M Bryant
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Smita Kurup
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Peter J Eastmond
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| |
Collapse
|
69
|
Allen DK, Bates PD, Tjellström H. Tracking the metabolic pulse of plant lipid production with isotopic labeling and flux analyses: Past, present and future. Prog Lipid Res 2015; 58:97-120. [PMID: 25773881 DOI: 10.1016/j.plipres.2015.02.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/30/2015] [Accepted: 02/11/2015] [Indexed: 11/25/2022]
Abstract
Metabolism is comprised of networks of chemical transformations, organized into integrated biochemical pathways that are the basis of cellular operation, and function to sustain life. Metabolism, and thus life, is not static. The rate of metabolites transitioning through biochemical pathways (i.e., flux) determines cellular phenotypes, and is constantly changing in response to genetic or environmental perturbations. Each change evokes a response in metabolic pathway flow, and the quantification of fluxes under varied conditions helps to elucidate major and minor routes, and regulatory aspects of metabolism. To measure fluxes requires experimental methods that assess the movements and transformations of metabolites without creating artifacts. Isotopic labeling fills this role and is a long-standing experimental approach to identify pathways and quantify their metabolic relevance in different tissues or under different conditions. The application of labeling techniques to plant science is however far from reaching it potential. In light of advances in genetics and molecular biology that provide a means to alter metabolism, and given recent improvements in instrumentation, computational tools and available isotopes, the use of isotopic labeling to probe metabolism is becoming more and more powerful. We review the principal analytical methods for isotopic labeling with a focus on seminal studies of pathways and fluxes in lipid metabolism and carbon partitioning through central metabolism. Central carbon metabolic steps are directly linked to lipid production by serving to generate the precursors for fatty acid biosynthesis and lipid assembly. Additionally some of the ideas for labeling techniques that may be most applicable for lipid metabolism in the future were originally developed to investigate other aspects of central metabolism. We conclude by describing recent advances that will play an important future role in quantifying flux and metabolic operation in plant tissues.
Collapse
Affiliation(s)
- Doug K Allen
- United States Department of Agriculture, Agricultural Research Service, 975 North Warson Road, St. Louis, MO 63132, United States; Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, United States.
| | - Philip D Bates
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, United States
| | - Henrik Tjellström
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, United States; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
70
|
Jessen D, Roth C, Wiermer M, Fulda M. Two activities of long-chain acyl-coenzyme A synthetase are involved in lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis. PLANT PHYSIOLOGY 2015; 167:351-66. [PMID: 25540329 PMCID: PMC4326746 DOI: 10.1104/pp.114.250365] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/19/2014] [Indexed: 05/18/2023]
Abstract
In plants, fatty acids are synthesized within the plastid and need to be distributed to the different sites of lipid biosynthesis within the cell. Free fatty acids released from the plastid need to be converted to their corresponding coenzyme A thioesters to become metabolically available. This activation is mediated by long-chain acyl-coenzyme A synthetases (LACSs), which are encoded by a family of nine genes in Arabidopsis (Arabidopsis thaliana). So far, it has remained unclear which of the individual LACS activities are involved in making plastid-derived fatty acids available to cytoplasmic glycerolipid biosynthesis. Because of its unique localization at the outer envelope of plastids, LACS9 was regarded as a candidate for linking plastidial fatty export and cytoplasmic use. However, data presented in this study show that LACS9 is involved in fatty acid import into the plastid. The analyses of mutant lines revealed strongly overlapping functions of LACS4 and LACS9 in lipid trafficking from the endoplasmic reticulum to the plastid. In vivo labeling experiments with lacs4 lacs9 double mutants suggest strongly reduced synthesis of endoplasmic reticulum-derived lipid precursors, which are required for the biosynthesis of glycolipids in the plastids. In conjunction with this defect, double-mutant plants accumulate significant amounts of linoleic acid in leaf tissue.
Collapse
Affiliation(s)
- Dirk Jessen
- Departments of Plant Biochemistry (D.J., M.F.) and Plant Cell Biology (C.R., M.W.), Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37077 Goettingen, Germany
| | - Charlotte Roth
- Departments of Plant Biochemistry (D.J., M.F.) and Plant Cell Biology (C.R., M.W.), Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37077 Goettingen, Germany
| | - Marcel Wiermer
- Departments of Plant Biochemistry (D.J., M.F.) and Plant Cell Biology (C.R., M.W.), Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37077 Goettingen, Germany
| | - Martin Fulda
- Departments of Plant Biochemistry (D.J., M.F.) and Plant Cell Biology (C.R., M.W.), Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37077 Goettingen, Germany
| |
Collapse
|
71
|
Zhiyi N, Guijuan K, Yu L, Longjun D, Rizhong Z. Whole-transcriptome survey of the putative ATP-binding cassette (ABC) transporter family genes in the latex-producing laticifers of Hevea brasiliensis. PLoS One 2015; 10:e0116857. [PMID: 25615936 PMCID: PMC4304824 DOI: 10.1371/journal.pone.0116857] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
The ATP-binding cassette (ABC) proteins or transporters constitute a large protein family in plants and are involved in many different cellular functions and processes, including solute transportation, channel regulation and molecular switches, etc. Through transcriptome sequencing, a transcriptome-wide survey and expression analysis of the ABC protein genes were carried out using the laticiferous latex from Hevea brasiliensis (rubber tree). A total of 46 putative ABC family proteins were identified in the H. brasiliensis latex. These consisted of 12 ‘full-size’, 21 ‘half-size’ and 13 other putative ABC proteins, and all of them showed strong conservation with their Arabidopsis thaliana counterparts. This study indicated that all eight plant ABC protein paralog subfamilies were identified in the H. brasiliensis latex, of which ABCB, ABCG and ABCI were the most abundant. Real-time quantitative reverse transcription-polymerase chain reaction assays demonstrated that gene expression of several latex ABC proteins was regulated by ethylene, jasmonic acid or bark tapping (a wound stress) stimulation, and that HbABCB15, HbABCB19, HbABCD1 and HbABCG21 responded most significantly of all to the abiotic stresses. The identification and expression analysis of the latex ABC family proteins could facilitate further investigation into their physiological involvement in latex metabolism and rubber biosynthesis by H. brasiliensis.
Collapse
Affiliation(s)
- Nie Zhiyi
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Kang Guijuan
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Li Yu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Dai Longjun
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Zeng Rizhong
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
- * E-mail:
| |
Collapse
|
72
|
Yin C, Andersson MX, Zhang H, Aronsson H. Phosphatidylcholine is transferred from chemically-defined liposomes to chloroplasts through proteins of the chloroplast outer envelope membrane. FEBS Lett 2015; 589:177-81. [PMID: 25479091 DOI: 10.1016/j.febslet.2014.11.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/24/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
Chloroplasts maintain their lipid balance through a tight interplay with the endoplasmic reticulum (ER). The outer envelope membrane of chloroplasts contains a large proportion of the phospholipid phosphatidylcholine (PC), which is synthesized in the ER and also a possible precursor for thylakoid galactolipids. The mechanism for PC transport from the ER to chloroplasts is not known. Using isolated chloroplasts and liposomes containing radiolabeled PC we investigated non-vesicular transport of PC in vitro. PC uptake in chloroplasts was time and temperature dependent, but nucleotide independent. Increased radius of liposomes stimulated PC uptake, and protease treatment of the chloroplasts impaired PC uptake. This implies that the chloroplast outer envelopes contains an exposed proteinaceous machinery for the uptake of PC from closely apposed membranes.
Collapse
Affiliation(s)
- Congfei Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China; Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Mats X Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, People's Republic of China.
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30 Gothenburg, Sweden.
| |
Collapse
|
73
|
Fan J, Yan C, Roston R, Shanklin J, Xu C. Arabidopsis lipins, PDAT1 acyltransferase, and SDP1 triacylglycerol lipase synergistically direct fatty acids toward β-oxidation, thereby maintaining membrane lipid homeostasis. THE PLANT CELL 2014; 26:4119-34. [PMID: 25293755 PMCID: PMC4247580 DOI: 10.1105/tpc.114.130377] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/29/2014] [Accepted: 09/19/2014] [Indexed: 05/18/2023]
Abstract
Triacylglycerol (TAG) metabolism is a key aspect of intracellular lipid homeostasis in yeast and mammals, but its role in vegetative tissues of plants remains poorly defined. We previously reported that PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1 (PDAT1) is crucial for diverting fatty acids (FAs) from membrane lipid synthesis to TAG and thereby protecting against FA-induced cell death in leaves. Here, we show that overexpression of PDAT1 enhances the turnover of FAs in leaf lipids. Using the trigalactosyldiacylglycerol1-1 (tgd1-1) mutant, which displays substantially enhanced PDAT1-mediated TAG synthesis, we demonstrate that disruption of SUGAR-DEPENDENT1 (SDP1) TAG lipase or PEROXISOMAL TRANSPORTER1 (PXA1) severely decreases FA turnover, leading to increases in leaf TAG accumulation, to 9% of dry weight, and in total leaf lipid, by 3-fold. The membrane lipid composition of tgd1-1 sdp1-4 and tgd1-1 pxa1-2 double mutants is altered, and their growth and development are compromised. We also show that two Arabidopsis thaliana lipin homologs provide most of the diacylglycerol for TAG synthesis and that loss of their functions markedly reduces TAG content, but with only minor impact on eukaryotic galactolipid synthesis. Collectively, these results show that Arabidopsis lipins, along with PDAT1 and SDP1, function synergistically in directing FAs toward peroxisomal β-oxidation via TAG intermediates, thereby maintaining membrane lipid homeostasis in leaves.
Collapse
Affiliation(s)
- Jilian Fan
- Bioscience Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Chengshi Yan
- Bioscience Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Rebecca Roston
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - John Shanklin
- Bioscience Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Changcheng Xu
- Bioscience Department, Brookhaven National Laboratory, Upton, New York 11973
| |
Collapse
|
74
|
Hurlock AK, Roston RL, Wang K, Benning C. Lipid trafficking in plant cells. Traffic 2014; 15:915-32. [PMID: 24931800 DOI: 10.1111/tra.12187] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 12/29/2022]
Abstract
Plant cells contain unique organelles such as chloroplasts with an extensive photosynthetic membrane. In addition, specialized epidermal cells produce an extracellular cuticle composed primarily of lipids, and storage cells accumulate large amounts of storage lipids. As lipid assembly is associated only with discrete membranes or organelles, there is a need for extensive lipid trafficking within plant cells, more so in specialized cells and sometimes also in response to changing environmental conditions such as phosphate deprivation. Because of the complexity of plant lipid metabolism and the inherent recalcitrance of membrane lipid transporters, the mechanisms of lipid transport within plant cells are not yet fully understood. Recently, several new proteins have been implicated in different aspects of plant lipid trafficking. While these proteins provide only first insights into limited aspects of lipid transport phenomena in plant cells, they represent exciting opportunities for further studies.
Collapse
Affiliation(s)
- Anna K Hurlock
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | | | | | | |
Collapse
|
75
|
Meng W, Hsiao AS, Gao C, Jiang L, Chye ML. Subcellular localization of rice acyl-CoA-binding proteins (ACBPs) indicates that OsACBP6::GFP is targeted to the peroxisomes. THE NEW PHYTOLOGIST 2014; 203:469-482. [PMID: 24738983 DOI: 10.1111/nph.12809] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/12/2014] [Indexed: 05/08/2023]
Abstract
Acyl-CoA-binding proteins (ACBPs) show conservation at the acyl-CoA-binding (ACB) domain which facilitates binding to acyl-CoA esters. In Arabidopsis thaliana, six ACBPs participate in development and stress responses. Rice (Oryza sativa) also contains six genes encoding ACBPs. We investigated differences in subcellular localization between monocot rice and eudicot A. thaliana ACBPs. The subcellular localization of the six OsACBPs was achieved via transient expression of green fluorescence protein (GFP) fusions in tobacco (Nicotiana tabacum) epidermal cells, and stable transformation of A. thaliana. As plant ACBPs had not been reported in the peroxisomes, OsACBP6::GFP localization was confirmed by transient expression in rice sheath cells. The function of OsACBP6 was investigated by overexpressing 35S::OsACBP6 in the peroxisomal abc transporter1 (pxa1) mutant defective in peroxisomal fatty acid β-oxidation. As predicted, OsACBP1::GFP and OsACBP2::GFP were localized to the cytosol, and OsACBP4::GFP and OsACBP5::GFP to the endoplasmic reticulum (ER). However, OsACBP3::GFP displayed subcellular multi-localization while OsACBP6::GFP was localized to the peroxisomes. 35S::OsACBP6-OE/pxa1 lines showed recovery in indole-3-butyric acid (IBA) peroxisomal β-oxidation, wound-induced VEGETATIVE STORAGE PROTEIN1 (VSP1) expression and jasmonic acid (JA) accumulation. These findings indicate a role for OsACBP6 in peroxisomal β-oxidation, and suggest that rice ACBPs are involved in lipid degradation in addition to lipid biosynthesis.
Collapse
Affiliation(s)
- Wei Meng
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - An-Shan Hsiao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Caiji Gao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
76
|
Murakawa M, Shimojima M, Shimomura Y, Kobayashi K, Awai K, Ohta H. Monogalactosyldiacylglycerol synthesis in the outer envelope membrane of chloroplasts is required for enhanced growth under sucrose supplementation. FRONTIERS IN PLANT SCIENCE 2014; 5:280. [PMID: 25002864 PMCID: PMC4066442 DOI: 10.3389/fpls.2014.00280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/28/2014] [Indexed: 05/25/2023]
Abstract
Plant galactolipid synthesis on the outer envelope membranes of chloroplasts is an important biosynthetic pathway for sustained growth under conditions of phosphate (Pi) depletion. During Pi starvation, the amount of digalactosyldiacylglycerol (DGDG) is increased to substitute for the phospholipids that are degraded for supplying Pi. An increase in DGDG concentration depends on an adequate supply of monogalactosyldiacylglycerol (MGDG), which is a substrate for DGDG synthesis and is synthesized by a type-B MGDG synthase, MGD3. Recently, sucrose was suggested to be a global regulator of plant responses to Pi starvation. Thus, we analyzed expression levels of several genes involved in lipid remodeling during Pi starvation in Arabidopsis thaliana and found that the abundance of MGD3 mRNA increased when sucrose was exogenously supplied to the growth medium. Sucrose supplementation retarded the growth of the Arabidopsis MGD3 knockout mutant mgd3 but enhanced the growth of transgenic Arabidopsis plants overexpressing MGD3 compared with wild type, indicating the involvement of MGD3 in plant growth under sucrose-replete conditions. Although most features such as chlorophyll content, photosynthetic activity, and Pi content were comparable between wild-type and the transgenic plants overexpressing MGD3, sucrose content in shoot tissues decreased and incorporation of exogenously supplied carbon to DGDG was enhanced in the MGD3-overexpressing plants compared with wild type. Our results suggest that MGD3 plays an important role in supplying DGDG as a component of extraplastidial membranes to support enhanced plant growth under conditions of carbon excess.
Collapse
Affiliation(s)
- Masato Murakawa
- Graduate School of Biological Sciences, Tokyo Institute of TechnologyYokohama, Japan
| | - Mie Shimojima
- Center for Biological Resources and Informatics, Tokyo Institute of TechnologyYokohama, Japan
| | - Yuichi Shimomura
- Graduate School of Biological Sciences, Tokyo Institute of TechnologyYokohama, Japan
| | - Koichi Kobayashi
- Graduate School of Arts and Sciences, Tokyo UniversityTokyo, Japan
| | - Koichiro Awai
- Graduate School of Science, Shizuoka UniversityShizuoka, Japan
- JST PRESTTokyo, Japan
| | - Hiroyuki Ohta
- Center for Biological Resources and Informatics, Tokyo Institute of TechnologyYokohama, Japan
- Earth-Life Science Institute, Tokyo Institute of TechnologyTokyo, Japan
- JST CRESTTokyo, Japan
| |
Collapse
|
77
|
Vanhercke T, El Tahchy A, Liu Q, Zhou XR, Shrestha P, Divi UK, Ral JP, Mansour MP, Nichols PD, James CN, Horn PJ, Chapman KD, Beaudoin F, Ruiz-López N, Larkin PJ, de Feyter RC, Singh SP, Petrie JR. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:231-9. [PMID: 24151938 PMCID: PMC4285938 DOI: 10.1111/pbi.12131] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/21/2013] [Accepted: 09/12/2013] [Indexed: 05/18/2023]
Abstract
High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications.
Collapse
Affiliation(s)
- Thomas Vanhercke
- CSIRO Food Futures National Research FlagshipCanberra, ACT, Australia
| | - Anna El Tahchy
- CSIRO Food Futures National Research FlagshipCanberra, ACT, Australia
| | - Qing Liu
- CSIRO Food Futures National Research FlagshipCanberra, ACT, Australia
| | | | - Pushkar Shrestha
- CSIRO Food Futures National Research FlagshipCanberra, ACT, Australia
| | - Uday K Divi
- CSIRO Food Futures National Research FlagshipCanberra, ACT, Australia
| | - Jean-Philippe Ral
- CSIRO Food Futures National Research FlagshipCanberra, ACT, Australia
| | | | | | - Christopher N James
- Department of Biological Sciences, Center for Plant Lipid Research, University of North TexasDenton, TX, USA
| | - Patrick J Horn
- Department of Biological Sciences, Center for Plant Lipid Research, University of North TexasDenton, TX, USA
| | - Kent D Chapman
- Department of Biological Sciences, Center for Plant Lipid Research, University of North TexasDenton, TX, USA
| | - Frederic Beaudoin
- Department of Biological Chemistry, Rothamsted ResearchHarpenden, UK
| | - Noemi Ruiz-López
- Department of Biological Chemistry, Rothamsted ResearchHarpenden, UK
| | | | | | - Surinder P Singh
- CSIRO Food Futures National Research FlagshipCanberra, ACT, Australia
| | - James R Petrie
- CSIRO Food Futures National Research FlagshipCanberra, ACT, Australia
| |
Collapse
|
78
|
|
79
|
Divi UK, El Tahchy A, Vanhercke T, Petrie JR, Robles-Martinez JA, Singh SP. Transcriptional and biochemical responses of monoacylglycerol acyltransferase-mediated oil synthesis and associated senescence-like responses in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2014; 5:204. [PMID: 24904604 PMCID: PMC4033622 DOI: 10.3389/fpls.2014.00204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/27/2014] [Indexed: 05/07/2023]
Abstract
Triacylglycerol (TAG) accumulates in plant seeds as a major renewable source of carbon for food, fuel and industrial feedstock. Approaches to enhance TAG content by altering lipid pathways and genes in vegetative parts have gained significant attention for biofuel and other applications. However, consequences of these modifications are not always studied in detail. In an attempt to increase TAG levels in leaves we previously demonstrated that a novel substrate, monoacylglycerol (MAG), can be used for the biosynthesis of diacylglycerol (DAG) and TAG. Transient expression of the Mus musculus monoacylglycerol acyltransferases MGAT1 and 2 in the model plant Nicotiana benthamiana increased TAG levels at 5 days post-infiltration (dpi). Here we show that increased TAG and DAG levels can be achieved as early as 2 dpi. In addition, the MGAT1 infiltrated areas showed senescence-like symptoms from 3 dpi onwards. To unravel underlying molecular mechanisms, Illumina deep sequencing was carried out (a) for de-novo assembling and annotation of N. benthamiana leaf transcripts and (b) to characterize MGAT1-responsive transcriptome. We found that MGAT1-responsive genes are involved in several processes including TAG biosynthesis, photosynthesis, cell-wall, cutin, suberin, wax and mucilage biosynthesis, lipid and hormone metabolism. Comparative analysis with transcript profiles from other senescence studies identified characteristic gene expression changes involved in senescence induction. We confirmed that increased TAG and observed senescence-symptoms are due to the MAG depletion caused by MGAT1 activity and suggest a mechanism for MGAT1 induced TAG increase and senescence-like symptoms. The data generated will serve as a valuable resource for oil and senescence related studies and for future N. benthamiana transcriptome studies.
Collapse
Affiliation(s)
- Uday K. Divi
- CSIRO Food Futures National Research FlagshipCanberra, ACT, Australia
- *Correspondence: Uday K. Divi, CSIRO Plant Industry, PO Box 1600, Canberra, ACT 2601, Australia e-mail:
| | - Anna El Tahchy
- CSIRO Food Futures National Research FlagshipCanberra, ACT, Australia
| | - Thomas Vanhercke
- CSIRO Food Futures National Research FlagshipCanberra, ACT, Australia
| | - James R. Petrie
- CSIRO Food Futures National Research FlagshipCanberra, ACT, Australia
| | | | - Surinder P. Singh
- CSIRO Food Futures National Research FlagshipCanberra, ACT, Australia
| |
Collapse
|
80
|
Energy densification in vegetative biomass through metabolic engineering. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
81
|
Nakamura Y. Galactolipid biosynthesis in flowers. BOTANICAL STUDIES 2013; 54:29. [PMID: 28510864 PMCID: PMC5432751 DOI: 10.1186/1999-3110-54-29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/27/2012] [Indexed: 06/07/2023]
Abstract
Phospholipids represent the highly conserved structural basis of biological membranes from bacteria to humans. However, plants and other photoautotrophic organisms are unique in using non-phosphorus galactolipids as primary components of their photosynthetic membranes. In light of the biomass of green tissues as compared with that of the overall plant body and the highly stacked thylakoid membrane structures in chloroplasts, galactolipids are the most abundant membrane lipids on the earth. Historically, the roles of galactolipids have been studied mainly in relation to photosynthesis, and recent advances in molecular biology with Arabidopsis and other model organisms have revealed an essential role of galactolipids in photosynthesis. However, these galactolipids are also abundant in non-photosynthetic organs, especially flowers, which suggests their distinct role apart from photosynthesis. The aim of this mini-review is to describe distinct biochemical properties of flower galactolipids and possible new roles, with a summary of the current understanding of galactolipid biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
- Japan Science and Technology Agency, PRESTO, Saitama, Japan.
| |
Collapse
|
82
|
Fan J, Yan C, Xu C. Phospholipid:diacylglycerol acyltransferase-mediated triacylglycerol biosynthesis is crucial for protection against fatty acid-induced cell death in growing tissues of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:930-42. [PMID: 24118513 DOI: 10.1111/tpj.12343] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/25/2013] [Accepted: 10/01/2013] [Indexed: 05/11/2023]
Abstract
Phospholipid:diacylglycerol acyltransferase (PDAT) and diacylglycerol:acyl CoA acyltransferase play overlapping roles in triacylglycerol (TAG) assembly in Arabidopsis, and are essential for seed and pollen development, but the functional importance of PDAT in vegetative tissues remains largely unknown. Taking advantage of the Arabidopsis tgd1-1 mutant that accumulates oil in vegetative tissues, we demonstrate here that PDAT1 is crucial for TAG biosynthesis in growing tissues. We show that disruption of PDAT1 in the tgd1-1 mutant background causes serious growth retardation, gametophytic defects and premature cell death in developing leaves. Lipid analysis data indicated that knockout of PDAT1 results in increases in the levels of free fatty acids (FFAs) and diacylglycerol. In vivo ¹⁴C-acetate labeling experiments showed that, compared with wild-type, tgd1-1 exhibits a 3.8-fold higher rate of fatty acid synthesis (FAS), which is unaffected by disruption or over-expression of PDAT1, indicating a lack of feedback regulation of FAS in tgd1-1. We also show that detached leaves of both pdat1-2 and tgd1-1 pdat1-2 display increased sensitivity to FFA but not to diacylglycerol. Taken together, our results reveal a critical role for PDAT1 in mediating TAG synthesis and thereby protecting against FFA-induced cell death in fast-growing tissues of plants.
Collapse
Affiliation(s)
- Jilian Fan
- Biosciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | | | | |
Collapse
|
83
|
Boudière L, Michaud M, Petroutsos D, Rébeillé F, Falconet D, Bastien O, Roy S, Finazzi G, Rolland N, Jouhet J, Block MA, Maréchal E. Glycerolipids in photosynthesis: composition, synthesis and trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:470-80. [PMID: 24051056 DOI: 10.1016/j.bbabio.2013.09.007] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/30/2013] [Accepted: 09/08/2013] [Indexed: 12/26/2022]
Abstract
Glycerolipids constituting the matrix of photosynthetic membranes, from cyanobacteria to chloroplasts of eukaryotic cells, comprise monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulfoquinovosyldiacylglycerol and phosphatidylglycerol. This review covers our current knowledge on the structural and functional features of these lipids in various cellular models, from prokaryotes to eukaryotes. Their relative proportions in thylakoid membranes result from highly regulated and compartmentalized metabolic pathways, with a cooperation, in the case of eukaryotes, of non-plastidic compartments. This review also focuses on the role of each of these thylakoid glycerolipids in stabilizing protein complexes of the photosynthetic machinery, which might be one of the reasons for their fascinating conservation in the course of evolution. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
Affiliation(s)
- Laurence Boudière
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Dimitris Petroutsos
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Denis Falconet
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Olivier Bastien
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Sylvaine Roy
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Maryse A Block
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France.
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France.
| |
Collapse
|
84
|
Zhou Y, Peisker H, Weth A, Baumgartner W, Dörmann P, Frentzen M. Extraplastidial cytidinediphosphate diacylglycerol synthase activity is required for vegetative development in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:867-879. [PMID: 23711240 DOI: 10.1111/tpj.12248] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
Cytidinediphosphate diacylglycerol synthase (CDS) catalyzes the activation of phosphatidic acid to cytidinediphosphate (CDP)-diacylglycerol, a central intermediate in glycerolipid biosynthesis in prokaryotic and eukaryotic organisms. Cytidinediphosphate-diacylglycerol is the precursor to phosphatidylinositol, phosphatidylglycerol (PG) and cardiolipin of eukaryotic phospholipids that are essential for various cellular functions. Isoforms of CDS are located in plastids, mitochondria and the endomembrane system of plants and are encoded by five genes in Arabidopsis. Two genes have previously been shown to code for the plastidial isoforms which are indispensable for the biosynthesis of plastidial PG, and thus biogenesis and function of thylakoid membranes. Here we have focused on the extraplastidial CDS isoforms, encoded by CDS1 and CDS2 which are constitutively expressed contrary to CDS3. We provide evidence that these closely related CDS genes code for membrane proteins located in the endoplasmic reticulum and possess very similar enzymatic properties. Development and analysis of Arabidopsis mutants lacking either one or both CDS1 and CDS2 genes clearly shows that these two genes have redundant functions. As reflected in the seedling lethal phenotype of the cds1cds2 double mutant, plant cells require at least one catalytically active microsomal CDS isoform for cell division and expansion. According to the altered glycerolipid composition of the double mutant in comparison with wild-type seedlings, it is likely that the drastic decrease in the level of phosphatidylinositol and the increase in phosphatidic acid cause defects in cell division and expansion.
Collapse
Affiliation(s)
- Yonghong Zhou
- Unit of Botany, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
85
|
Fan J, Yan C, Zhang X, Xu C. Dual role for phospholipid:diacylglycerol acyltransferase: enhancing fatty acid synthesis and diverting fatty acids from membrane lipids to triacylglycerol in Arabidopsis leaves. THE PLANT CELL 2013; 25:3506-18. [PMID: 24076979 PMCID: PMC3809546 DOI: 10.1105/tpc.113.117358] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 08/12/2013] [Accepted: 09/12/2013] [Indexed: 05/20/2023]
Abstract
There is growing interest in engineering green biomass to expand the production of plant oils as feed and biofuels. Here, we show that phospholipid:diacylglycerol acyltransferase1 (PDAT1) is a critical enzyme involved in triacylglycerol (TAG) synthesis in leaves. Overexpression of PDAT1 increases leaf TAG accumulation, leading to oil droplet overexpansion through fusion. Ectopic expression of oleosin promotes the clustering of small oil droplets. Coexpression of PDAT1 with oleosin boosts leaf TAG content by up to 6.4% of the dry weight without affecting membrane lipid composition and plant growth. PDAT1 overexpression stimulates fatty acid synthesis (FAS) and increases fatty acid flux toward the prokaryotic glycerolipid pathway. In the trigalactosyldiacylglycerol1-1 mutant, which is defective in eukaryotic thylakoid lipid synthesis, the combined overexpression of PDAT1 with oleosin increases leaf TAG content to 8.6% of the dry weight and total leaf lipid by fourfold. In the plastidic glycerol-3-phosphate acyltransferase1 mutant, which is defective in the prokaryotic glycerolipid pathway, PDAT1 overexpression enhances TAG content at the expense of thylakoid membrane lipids, leading to defects in chloroplast division and thylakoid biogenesis. Collectively, these results reveal a dual role for PDAT1 in enhancing fatty acid and TAG synthesis in leaves and suggest that increasing FAS is the key to engineering high levels of TAG accumulation in green biomass.
Collapse
|
86
|
Muthan B, Roston RL, Froehlich JE, Benning C. Probing Arabidopsis chloroplast diacylglycerol pools by selectively targeting bacterial diacylglycerol kinase to suborganellar membranes. PLANT PHYSIOLOGY 2013; 163:61-74. [PMID: 23839866 PMCID: PMC3762665 DOI: 10.1104/pp.113.222513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/08/2013] [Indexed: 05/18/2023]
Abstract
Diacylglycerol (DAG) is an intermediate in metabolism of both triacylglycerols and membrane lipids. Probing the steady-state pools of DAG and understanding how they contribute to the synthesis of different lipids is important when designing plants with altered lipid metabolism. However, traditional methods of assaying DAG pools are difficult, because its abundance is low and because fractionation of subcellular membranes affects DAG pools. To manipulate and probe DAG pools in an in vivo context, we generated multiple stable transgenic lines of Arabidopsis (Arabidopsis thaliana) that target an Escherichia coli DAG kinase (DAGK) to each leaflet of each chloroplast envelope membrane. E. coli DAGK is small, self inserts into membranes, and has catalytic activity on only one side of each membrane. By comparing whole-tissue lipid profiles between our lines, we show that each line has an individual pattern of DAG, phosphatidic acid, phosphatidylcholine, and triacylglycerol steady-state levels, which supports an individual function of DAG in each membrane leaflet. Furthermore, conversion of DAG in the leaflets facing the chloroplast intermembrane space by DAGK impairs plant growth. As a result of DAGK presence in the outer leaflet of the outer envelope membrane, phosphatidic acid accumulation is not observed, likely because it is either converted into other lipids or removed to other membranes. Finally, we use the outer envelope-targeted DAGK line as a tool to probe the accessibility of DAG generated in response to osmotic stress.
Collapse
|
87
|
Kelly AA, van Erp H, Quettier AL, Shaw E, Menard G, Kurup S, Eastmond PJ. The sugar-dependent1 lipase limits triacylglycerol accumulation in vegetative tissues of Arabidopsis. PLANT PHYSIOLOGY 2013; 162:1282-9. [PMID: 23686420 PMCID: PMC3707558 DOI: 10.1104/pp.113.219840] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 05/16/2013] [Indexed: 05/20/2023]
Abstract
There has been considerable interest recently in the prospect of engineering crops to produce triacylglycerol (TAG) in their vegetative tissues as a means to achieve a step change in oil yield. Here, we show that disruption of TAG hydrolysis in the Arabidopsis (Arabidopsis thaliana) lipase mutant sugar-dependent1 (sdp1) leads to a substantial accumulation of TAG in roots and stems but comparatively much lower TAG accumulation in leaves. TAG content in sdp1 roots increases with the age of the plant and can reach more than 1% of dry weight at maturity, a 50-fold increase over the wild type. TAG accumulation in sdp1 roots requires both ACYL-COENZYME A:DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) and PHOSPHATIDYLCHOLINE:DIACYLGLYCEROL ACYLTRANSFERASE1 and can also be strongly stimulated by the provision of exogenous sugar. In transgenic plants constitutively coexpressing WRINKLED1 and DGAT1, sdp1 also doubles the accumulation of TAG in roots, stems, and leaves, with levels ranging from 5% to 8% of dry weight. Finally, provision of 3% (w/v) exogenous Suc can further boost root TAG content in these transgenic plants to 17% of dry weight. This level of TAG is similar to seed tissues in many plant species and establishes the efficacy of an engineering strategy to produce oil in vegetative tissues that involves simultaneous manipulation of carbohydrate supply, fatty acid synthesis, TAG synthesis, and also TAG breakdown.
Collapse
|
88
|
Okazaki Y, Kamide Y, Hirai MY, Saito K. Plant lipidomics based on hydrophilic interaction chromatography coupled to ion trap time-of-flight mass spectrometry. Metabolomics 2013; 9:121-131. [PMID: 23463370 PMCID: PMC3580141 DOI: 10.1007/s11306-011-0318-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 05/12/2011] [Indexed: 01/16/2023]
Abstract
Plants synthesize a wide range of hydrophobic compounds, generally known as lipids. Here, we report an application of liquid chromatography ion trap time-of-flight mass spectrometry (LC-IT-TOF-MS) for plant lipidomics. Using hydrophilic interaction chromatography (HILIC) for class separation, typical membrane lipids including glycerolipids, steryl glucosides and glucosylceramides, and hydrophobic plant secondary metabolites such as saponins were analyzed simultaneously. By this method, we annotated approximately 100 molecules from Arabidopsis thaliana. To demonstrate the application of this method to biological study, we analyzed Arabidopsis mutant trigalactosyldiacylglycerol3 (tgd3), which has a complex metabolic phenotype including the accumulation of unusual forms of galactolipids. Lipid profiling by LC-MS revealed that tgd3 accumulated an unusual form of digalactosyldiacylglycerol, annotated as Gal(β1 → 6)βGalDG. The compositional difference between normal and unusual forms of digalactosyldiacylglycerol was detected by this method. In addition, we analyzed well-known Arabidopsis mutants ats1-1, fad6-1, and fad7-2, which are also disrupted in lipid metabolic genes. Untargeted lipidome analysis coupled with multivariate analysis clearly discriminated the mutants and their distinctive metabolites. These results indicated that HILIC-MS is an efficient method for plant lipidomics.
Collapse
Affiliation(s)
- Yozo Okazaki
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Yukiko Kamide
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Masami Yokota Hirai
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, 230-0045 Japan
- Japan Science and Technology Agency, CREST, Tokyo, Japan
| | - Kazuki Saito
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama, 230-0045 Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Inage-ku, Chiba, 263-8522 Japan
| |
Collapse
|
89
|
Vanhercke T, El Tahchy A, Shrestha P, Zhou XR, Singh SP, Petrie JR. Synergistic effect of WRI1 and DGAT1 coexpression on triacylglycerol biosynthesis in plants. FEBS Lett 2013; 587:364-9. [PMID: 23313251 DOI: 10.1016/j.febslet.2012.12.018] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
Abstract
Metabolic engineering approaches to increase plant oil levels can generally be divided into categories which increase fatty acid biosynthesis ('Push'), are involved in TAG assembly ('Pull') or increase TAG storage/decrease breakdown ('Accumulation'). In this study, we describe the surprising synergy when Push (WRI1) and Pull (DGAT1) approaches are combined. Co-expression of these genes in the Nicotiana benthamiana transient leaf expression system resulted in TAG levels exceeding those expected from an additive effect and biochemical tracer studies confirmed increased flux of carbon through fatty acid and TAG synthesis pathways. Leaf fatty acid profile also synergistically shifts from polyunsaturated to monounsaturated fatty acids.
Collapse
Affiliation(s)
- Thomas Vanhercke
- Food Futures National Research Flagship, P.O. Box 1600, Canberra, ACT 2601, Australia
| | | | | | | | | | | |
Collapse
|
90
|
Wang Z, Anderson NS, Benning C. The phosphatidic acid binding site of the Arabidopsis trigalactosyldiacylglycerol 4 (TGD4) protein required for lipid import into chloroplasts. J Biol Chem 2013; 288:4763-71. [PMID: 23297418 DOI: 10.1074/jbc.m112.438986] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chloroplast membrane lipid synthesis relies on the import of glycerolipids from the ER. The TGD (TriGalactosylDiacylglycerol) proteins are required for this lipid transfer process. The TGD1, -2, and -3 proteins form a putative ABC (ATP-binding cassette) transporter transporting ER-derived lipids through the inner envelope membrane of the chloroplast, while TGD4 binds phosphatidic acid (PtdOH) and resides in the outer chloroplast envelope. We identified two sequences in TGD4, amino acids 1-80 and 110-145, which are necessary and sufficient for PtdOH binding. Deletion of both sequences abolished PtdOH binding activity. We also found that TGD4 from 18:3 plants bound specifically and with increased affinity PtdOH. TGD4 did not interact with other proteins and formed a homodimer both in vitro and in vivo. Our results suggest that TGD4 is an integral dimeric β-barrel lipid transfer protein that binds PtdOH with its N terminus and contains dimerization domains at its C terminus.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
91
|
AtABCA9 transporter supplies fatty acids for lipid synthesis to the endoplasmic reticulum. Proc Natl Acad Sci U S A 2012; 110:773-8. [PMID: 23269834 DOI: 10.1073/pnas.1214159110] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fatty acids, the building blocks of biological lipids, are synthesized in plastids and then transported to the endoplasmic reticulum (ER) for assimilation into specific lipid classes. The mechanism of fatty acid transport from plastids to the ER has not been identified. Here we report that AtABCA9, an ABC transporter in Arabidopsis thaliana, mediates this transport. AtABCA9 was localized to the ER, and atabca9 null mutations reduced seed triacylglycerol (TAG) content by 35% compared with WT. Developing atabca9 seeds incorporated 35% less (14)C-oleoyl-CoA into TAG compared with WT seeds. Furthermore, overexpression of AtABCA9 enhanced TAG deposition by up to 40%. These data strongly support a role for AtABCA9 as a supplier of fatty acid substrates for TAG biosynthesis at the ER during the seed-filling stage. AtABCA9 may be a powerful tool for increasing lipid production in oilseeds.
Collapse
|
92
|
Rolland N, Curien G, Finazzi G, Kuntz M, Maréchal E, Matringe M, Ravanel S, Seigneurin-Berny D. The Biosynthetic Capacities of the Plastids and Integration Between Cytoplasmic and Chloroplast Processes. Annu Rev Genet 2012; 46:233-64. [DOI: 10.1146/annurev-genet-110410-132544] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Gilles Curien
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Marcel Kuntz
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Michel Matringe
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Stéphane Ravanel
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Daphné Seigneurin-Berny
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| |
Collapse
|
93
|
Nakamura Y. Phosphate starvation and membrane lipid remodeling in seed plants. Prog Lipid Res 2012; 52:43-50. [PMID: 22954597 DOI: 10.1016/j.plipres.2012.07.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/25/2012] [Accepted: 07/02/2012] [Indexed: 01/07/2023]
Abstract
Phosphate is an essential, yet scarce, nutrient that seed plants need to maintain viability. Phosphate-starved plants utilize their membrane phospholipids as a major source for internal phosphate supply by replacing phospholipids in their membranes with the non-phosphorus galactolipid, digalactosyldiacylglycerol. This membrane lipid remodeling has drawn much attention as a model of metabolic switching from phospholipids to the galactolipid. In the past decade, a considerable effort has been devoted to unraveling the molecular biology of this phenomenon. This review thus aims to summarize recent achievements with a focus on metabolic pathways during lipid remodeling.
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei 11529, Taiwan.
| |
Collapse
|
94
|
Roston RL, Gao J, Murcha MW, Whelan J, Benning C. TGD1, -2, and -3 proteins involved in lipid trafficking form ATP-binding cassette (ABC) transporter with multiple substrate-binding proteins. J Biol Chem 2012; 287:21406-15. [PMID: 22544736 PMCID: PMC3375562 DOI: 10.1074/jbc.m112.370213] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 04/27/2012] [Indexed: 11/06/2022] Open
Abstract
Members of the ATP-binding cassette (ABC) transporter family are essential proteins in species as diverse as archaea and humans. Their domain architecture has remained relatively fixed across these species, with rare exceptions. Here, we show one exception to be the trigalactosyldiacylglycerol 1, 2, and 3 (TGD1, -2, and -3) putative lipid transporter located at the chloroplast inner envelope membrane. TGD2 was previously shown to be in a complex of >500 kDa. We demonstrate that this complex also contains TGD1 and -3 and is very stable because it cannot be broken down by gentle denaturants to form a "core" complex similar in size to standard ABC transporters. The complex was purified from Pisum sativum (pea) chloroplast envelopes by native gel electrophoresis and examined by mass spectrometry. Identified proteins besides TGD1, -2, or -3 included a potassium efflux antiporter and a TIM17/22/23 family protein, but these were shown to be in separate high molecular mass complexes. Quantification of the complex components explained the size of the complex because 8-12 copies of the substrate-binding protein (TGD2) were found per functional transporter.
Collapse
Affiliation(s)
- Rebecca L. Roston
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| | - Jinpeng Gao
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| | - Monika W. Murcha
- the Australian Research Council Centre of Excellence Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - James Whelan
- the Australian Research Council Centre of Excellence Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Christoph Benning
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 and
| |
Collapse
|
95
|
Wang Z, Xu C, Benning C. TGD4 involved in endoplasmic reticulum-to-chloroplast lipid trafficking is a phosphatidic acid binding protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:614-23. [PMID: 22269056 DOI: 10.1111/j.1365-313x.2012.04900.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The synthesis of galactoglycerolipids, which are prevalent in photosynthetic membranes, involves enzymes at the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Genetic analysis of trigalactosyldiacylglycerol (TGD) proteins in Arabidopsis has demonstrated their role in polar lipid transfer from the ER to the chloroplast. The TGD1, 2, and 3 proteins resemble components of a bacterial-type ATP-binding cassette (ABC) transporter, with TGD1 representing the permease, TGD2 the substrate binding protein, and TGD3 the ATPase. However, the function of the TGD4 protein in this process is less clear and its location in plant cells remains to be firmly determined. The predicted C-terminal β-barrel structure of TGD4 is weakly similar to proteins of the outer cell membrane of Gram-negative bacteria. Here, we show that, like TGD2, the TGD4 protein when fused to DsRED specifically binds phosphatidic acid (PtdOH). As previously shown for tgd1 mutants, tgd4 mutants have elevated PtdOH content, probably in extraplastidic membranes. Using highly purified and specific antibodies to probe different cell fractions, we demonstrated that the TGD4 protein was present in the outer envelope membrane of chloroplasts, where it appeared to be deeply buried within the membrane except for the N-terminus, which was found to be exposed to the cytosol. It is proposed that TGD4 is either directly involved in the transfer of polar lipids, possibly PtdOH, from the ER to the outer chloroplast envelope membrane or in the transfer of PtdOH through the outer envelope membrane.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
96
|
Li Z, Gao J, Benning C, Sharkey TD. Characterization of photosynthesis in Arabidopsis ER-to-plastid lipid trafficking mutants. PHOTOSYNTHESIS RESEARCH 2012; 112:49-61. [PMID: 22446892 DOI: 10.1007/s11120-012-9734-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 03/08/2012] [Indexed: 05/31/2023]
Abstract
Vascular plants use two pathways to synthesize galactolipids, the predominant lipid species in chloroplasts-a prokaryotic pathway that resides entirely in the chloroplast, and a eukaryotic pathway that involves assembly in the endoplasmic reticulum. Mutants deficient in the endoplasmic reticulum pathway, trigalactosyldiacylglycerol (tgd1-1 and tgd2-1) mutants, had been previously identified with reduced contents of monogalactosyldiacylglycerol and digalactosyldiacylglycerol, and altered lipid molecular species composition. Here, we report that the altered lipid composition affected photosynthesis in lipid trafficking mutants. It was found that proton motive force as measured by electrochromic shift was reduced by ~40% in both tgd mutants. This effect was accompanied by an increase in thylakoid conductance attributable to ATPase activity and so the rate of ATP synthesis was nearly unchanged. Thylakoid conductance to ions also increased in tgd mutants. However, gross carbon assimilation in tgd mutants as measured by gas exchange was only marginally affected. Rubisco activity, electron transport rate, and photosystem I and II oxidation status were not altered. Despite the large differences in proton motive force, responses to heat and high light stress were similar between tgd mutants and the wild type.
Collapse
Affiliation(s)
- Ziru Li
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
97
|
Vieler A, Brubaker SB, Vick B, Benning C. A lipid droplet protein of Nannochloropsis with functions partially analogous to plant oleosins. PLANT PHYSIOLOGY 2012; 158:1562-9. [PMID: 22307965 PMCID: PMC3320170 DOI: 10.1104/pp.111.193029] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As our understanding of the dynamics of lipid droplets (LDs) in animal, plant, and fungal cells is rapidly evolving, still little is known about the formation and turnover of these organelles in microalgae. Yet with the growing importance of algal feedstock for the production of biofuels and high-value lipids, there is a need to understand the mechanisms of LD dynamics in microalgae. Thus, we investigated the proteins associated with LDs of the emerging heterokont model alga Nannochloropsis sp. and discovered an abundant hydrophobic lipid droplet surface protein (LDSP) with unique primary sequence but structural similarities to other LD proteins. LDSP abundance in Nannochloropsis cells closely tracked the amount of triacylglycerols during conditions of oil accumulation and degradation. Functional characterization of LDSP in an Arabidopsis (Arabidopsis thaliana) OLEOSIN1-deficient mutant allowed a separation of its physical and structural properties in its interaction with LDs from its physiological or biochemical activities. Although LDSP presence in Arabidopsis predictably affected LD size, it could not reverse the physiological impact of OLEOSIN deficiency on triacylglycerol hydrolysis during germination.
Collapse
|
98
|
Chloroplast lipid synthesis and lipid trafficking through ER–plastid membrane contact sites. Biochem Soc Trans 2012; 40:457-63. [DOI: 10.1042/bst20110752] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plant chloroplasts contain an intricate photosynthetic membrane system, the thylakoids, and are surrounded by two envelope membranes at which thylakoid lipids are assembled. The glycoglycerolipids mono- and digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol as well as phosphatidylglycerol, are present in thylakoid membranes, giving them a unique composition. Fatty acids are synthesized in the chloroplast and are either directly assembled into thylakoid lipids at the envelope membranes or exported to the ER (endoplasmic reticulum) for extraplastidic lipid assembly. A fraction of lipid precursors is reimported into the chloroplast for the synthesis of thylakoid lipids. Thus polar lipid assembly in plants requires tight co-ordination between the chloroplast and the ER and necessitates inter-organelle lipid trafficking. In the present paper, we discuss the current knowledge of the export of fatty acids from the chloroplast and the import of chloroplast lipid precursors assembled at the ER. Direct membrane contact sites between the ER and the chloroplast outer envelopes are discussed as possible conduits for lipid transfer.
Collapse
|
99
|
Tahara H, Uchiyama J, Yoshihara T, Matsumoto K, Ohta H. Role of Slr1045 in environmental stress tolerance and lipid transport in the cyanobacterium Synechocystis sp. PCC6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1360-6. [PMID: 22414664 DOI: 10.1016/j.bbabio.2012.02.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/23/2012] [Accepted: 02/27/2012] [Indexed: 11/19/2022]
Abstract
ATP-binding cassette (ABC) transporter proteins mediate energy-dependent transport of substrates across cell membranes. Numerous ABC transporter-related genes have been found in the Synechocystis sp. PCC6803 genome by genome sequence analysis including H(+), iron, phosphate, polysaccharide, and CO(2) transport-related genes. The substrates of many other ABC transporters are still unknown. To identify ABC transporters involved in acid tolerance, deletion mutants of ABC transporter genes with unknown substrates were screened for acid stress sensitivities in low pH medium. It was found that cells expressing the deletion mutant of slr1045 were more sensitive to acid stress than the wild-type cells. Moreover, slr1045 expression in the wild-type cells was increased under acid stress. These results indicate that slr1045 is an essential gene for survival under acid stress. The mutant displayed high osmotic stress resistance and high/low temperature stress sensitivity. Considering the temperature-sensitive phenotype and homology to the organic solvent-resistant ABC system, we subsequently compared the lipid profiles of slr1045 mutant and wild-type cells by thin-layer chromatography. In acid stress conditions, the phosphatidylglycerol (PG) content in the slr1045 mutant cells was approximately 40% of that in the wild-type cells. Moreover, the addition of PG to the medium compensated for the growth deficiency of the slr1045 mutant cells under acid stress conditions. These data suggest that slr1045 plays a role in the stabilization of cell membranes in challenging environmental conditions. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Hiroko Tahara
- Department of Biology, Tokyo University of Science, Shinjuku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
100
|
Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E. Plant ABC Transporters. THE ARABIDOPSIS BOOK 2011; 9:e0153. [PMID: 22303277 PMCID: PMC3268509 DOI: 10.1199/tab.0153] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ABC transporters constitute one of the largest protein families found in all living organisms. ABC transporters are driven by ATP hydrolysis and can act as exporters as well as importers. The plant genome encodes for more than 100 ABC transporters, largely exceeding that of other organisms. In Arabidopsis, only 22 out of 130 have been functionally analyzed. They are localized in most membranes of a plant cell such as the plasma membrane, the tonoplast, chloroplasts, mitochondria and peroxisomes and fulfill a multitude of functions. Originally identified as transporters involved in detoxification processes, they have later been shown to be required for organ growth, plant nutrition, plant development, response to abiotic stresses, pathogen resistance and the interaction of the plant with its environment. To fulfill these roles they exhibit different substrate specifies by e.g. depositing surface lipids, accumulating phytate in seeds, and transporting the phytohormones auxin and abscisic acid. The aim of this review is to give an insight into the functions of plant ABC transporters and to show their importance for plant development and survival.
Collapse
Affiliation(s)
- Joohyun Kang
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Jiyoung Park
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Hyunju Choi
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Bo Burla
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Tobias Kretzschmar
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Youngsook Lee
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
- Division of Integrative Biosciences and Biotechnology, World Class University Program, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Enrico Martinoia
- POSTECH-UZH Global Research Laboratory, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| |
Collapse
|