51
|
Iwakawa HO, Lam AYW, Mine A, Fujita T, Kiyokawa K, Yoshikawa M, Takeda A, Iwasaki S, Tomari Y. Ribosome stalling caused by the Argonaute-microRNA-SGS3 complex regulates the production of secondary siRNAs in plants. Cell Rep 2021; 35:109300. [PMID: 34192539 DOI: 10.1016/j.celrep.2021.109300] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/10/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022] Open
Abstract
The path of ribosomes on mRNAs can be impeded by various obstacles. One such example is halting of ribosome movement by microRNAs, but the exact mechanism and physiological role remain unclear. Here, we find that ribosome stalling caused by the Argonaute-microRNA-SGS3 complex regulates production of secondary small interfering RNAs (siRNAs) in plants. We show that the double-stranded RNA-binding protein SGS3 interacts directly with the 3' end of the microRNA in an Argonaute protein, resulting in ribosome stalling. Importantly, microRNA-mediated ribosome stalling correlates positively with efficient production of secondary siRNAs from target mRNAs. Our results illustrate a role of paused ribosomes in regulation of small RNA function that may have broad biological implications across the plant kingdom.
Collapse
Affiliation(s)
- Hiro-Oki Iwakawa
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan.
| | - Andy Y W Lam
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Akira Mine
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan; Department of Biotechnology, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Tomoya Fujita
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Kanagawa 226-8503, Japan
| | - Kaori Kiyokawa
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Manabu Yoshikawa
- Division of Crop Growth Mechanism, Research Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518, Japan
| | - Atsushi Takeda
- Department of Biotechnology, Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
52
|
Decle-Carrasco S, Rodríguez-Zapata LC, Castano E. Plant viral proteins and fibrillarin: the link to complete the infective cycle. Mol Biol Rep 2021; 48:4677-4686. [PMID: 34036480 DOI: 10.1007/s11033-021-06401-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
The interaction between viruses with the nucleolus is already a well-defined field of study in plant virology. This interaction is not restricted to those viruses that replicate in the nucleus, in fact, RNA viruses that replicate exclusively in the cytoplasm express proteins that localize in the nucleolus. Some positive single stranded RNA viruses from animals and plants have been reported to interact with the main nucleolar protein, Fibrillarin. Among nucleolar proteins, Fibrillarin is an essential protein that has been conserved in sequence and function throughout evolution. Fibrillarin is a methyltransferase protein with more than 100 methylation sites in the pre-ribosomal RNA, involved in multiple cellular processes, including initiation of transcription, oncogenesis, and apoptosis, among others. Recently, it was found that AtFib2 shows a ribonuclease activity. In plant viruses, Fibrillarin is involved in long-distance movement and cell-to-cell movement, being two highly different processes. The mechanism that Fibrillarin performs is still unknown. However, and despite belonging to very different viral families, the majority comply with the following. (1) They are positive single stranded RNA viruses; (2) encode different types of viral proteins that partially localize in the nucleolus; (3) interacts with Fibrillarin exporting it to the cytoplasm; (4) the viral protein-Fibrillarin interaction forms an RNP complex with the viral RNA and; (5) Fibrillarin depletion affects the infective cycle of the virus. Here we review the relationship of those plant viruses with Fibrillarin interaction, with special focus on the molecular processes of the virus to sequester Fibrillarin to complete its infective cycle.
Collapse
Affiliation(s)
- Stefano Decle-Carrasco
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Luis Carlos Rodríguez-Zapata
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Enrique Castano
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México.
| |
Collapse
|
53
|
Decle-Carrasco S, Rodríguez-Zapata LC, Castano E. Plant viral proteins and fibrillarin: the link to complete the infective cycle. Mol Biol Rep 2021. [PMID: 34036480 DOI: 10.1007/s11033-021-06401-1/tables/1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The interaction between viruses with the nucleolus is already a well-defined field of study in plant virology. This interaction is not restricted to those viruses that replicate in the nucleus, in fact, RNA viruses that replicate exclusively in the cytoplasm express proteins that localize in the nucleolus. Some positive single stranded RNA viruses from animals and plants have been reported to interact with the main nucleolar protein, Fibrillarin. Among nucleolar proteins, Fibrillarin is an essential protein that has been conserved in sequence and function throughout evolution. Fibrillarin is a methyltransferase protein with more than 100 methylation sites in the pre-ribosomal RNA, involved in multiple cellular processes, including initiation of transcription, oncogenesis, and apoptosis, among others. Recently, it was found that AtFib2 shows a ribonuclease activity. In plant viruses, Fibrillarin is involved in long-distance movement and cell-to-cell movement, being two highly different processes. The mechanism that Fibrillarin performs is still unknown. However, and despite belonging to very different viral families, the majority comply with the following. (1) They are positive single stranded RNA viruses; (2) encode different types of viral proteins that partially localize in the nucleolus; (3) interacts with Fibrillarin exporting it to the cytoplasm; (4) the viral protein-Fibrillarin interaction forms an RNP complex with the viral RNA and; (5) Fibrillarin depletion affects the infective cycle of the virus. Here we review the relationship of those plant viruses with Fibrillarin interaction, with special focus on the molecular processes of the virus to sequester Fibrillarin to complete its infective cycle.
Collapse
Affiliation(s)
- Stefano Decle-Carrasco
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Luis Carlos Rodríguez-Zapata
- Unidad de Biotecnología. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | - Enrique Castano
- Unidad de Bioquímica y Biología Molecular de Plantas. Centro de Investigación Científica de Yucatán, A.C. Calle 43 No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México.
| |
Collapse
|
54
|
Soltani N, Staton M, Gwinn KD. Response of bitter and sweet Chenopodium quinoa varieties to cucumber mosaic virus: Transcriptome and small RNASeq perspective. PLoS One 2021; 16:e0244364. [PMID: 33621238 PMCID: PMC7901783 DOI: 10.1371/journal.pone.0244364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/08/2020] [Indexed: 12/25/2022] Open
Abstract
Saponins are secondary metabolites with antiviral properties. Low saponin (sweet) varieties of quinoa (Chenopodium quinoa) have been developed because seeds high in saponins taste bitter. The aim of this study was to elucidate the role of saponin in resistance of quinoa to Cucumber mosaic virus (CMV). Differential gene expression was studied in time-series study of CMV infection. High-throughput transcriptome sequence data were obtained from 36 samples (3 varieties × +/- CMV × 1 or 4 days after inoculation × 3 replicates). Translation, lipid, nitrogen, amino acid metabolism, and mono- and sesquiterpenoid biosynthesis genes were upregulated in CMV infections. In 'Red Head' (bitter), CMV-induced systemic symptoms were concurrent with downregulation of a key saponin biosynthesis gene, TSARL1, four days after inoculation. In local lesion responses (sweet and semi-sweet), TSARL1 levels remained up-regulated. Known microRNAs (miRNA) (81) from 11 miR families and 876 predicted novel miRNAs were identified. Differentially expressed miRNA and short interfering RNA clusters (24nt) induced by CMV infection are predicted to target genomic and intergenic regions enriched in repetitive elements. This is the first report of integrated RNASeq and sRNASeq data in quinoa-virus interactions and provides comprehensive understanding of involved genes, non-coding regions, and biological pathways in virus resistance.
Collapse
Affiliation(s)
- Nourolah Soltani
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, United States of America
- Department of Plant Pathology, University of California-Davis, Davis, California, United States of America
| | - Margaret Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Kimberly D. Gwinn
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
55
|
Ando S, Jaskiewicz M, Mochizuki S, Koseki S, Miyashita S, Takahashi H, Conrath U. Priming for enhanced ARGONAUTE2 activation accompanies induced resistance to cucumber mosaic virus in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2021; 22:19-30. [PMID: 33073913 PMCID: PMC7749747 DOI: 10.1111/mpp.13005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 05/29/2023]
Abstract
Systemic acquired resistance (SAR) is a broad-spectrum disease resistance response that can be induced upon infection from pathogens or by chemical treatment, such as with benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH). SAR involves priming for more robust activation of defence genes upon pathogen attack. Whether priming for SAR would involve components of RNA silencing remained unknown. Here, we show that upon leaf infiltration of water, BTH-primed Arabidopsis thaliana plants accumulate higher amounts of mRNA of ARGONAUTE (AGO)2 and AGO3, key components of RNA silencing. The enhanced AGO2 expression is associated with prior-to-activation trimethylation of lysine 4 in histone H3 and acetylation of histone H3 in the AGO2 promoter and with induced resistance to the yellow strain of cucumber mosaic virus (CMV[Y]). The results suggest that priming A. thaliana for enhanced defence involves modification of histones in the AGO2 promoter that condition AGO2 for enhanced activation, associated with resistance to CMV(Y). Consistently, the fold-reduction in CMV(Y) coat protein accumulation by BTH pretreatment was lower in ago2 than in wild type, pointing to reduced capacity of ago2 to activate BTH-induced CMV(Y) resistance. A role of AGO2 in pathogen-induced SAR is suggested by the enhanced activation of AGO2 after infiltrating systemic leaves of plants expressing a localized hypersensitive response upon CMV(Y) infection. In addition, local inoculation of SAR-inducing Pseudomonas syringae pv. maculicola causes systemic priming for enhanced AGO2 expression. Together our results indicate that defence priming targets the AGO2 component of RNA silencing whose enhanced expression is likely to contribute to SAR.
Collapse
Affiliation(s)
- Sugihiro Ando
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
- Department of Plant PhysiologyAachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Michal Jaskiewicz
- Department of Plant PhysiologyAachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Sei Mochizuki
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Saeko Koseki
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Shuhei Miyashita
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Hideki Takahashi
- Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Uwe Conrath
- Department of Plant PhysiologyAachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
56
|
Jin Y, Zhao JH, Guo HS. Recent advances in understanding plant antiviral RNAi and viral suppressors of RNAi. Curr Opin Virol 2020; 46:65-72. [PMID: 33360834 DOI: 10.1016/j.coviro.2020.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Molecular plant-virus interactions provide an excellent model to understanding host antiviral immunity and viral counter-defense mechanisms. The primary antiviral defense is triggered inside the infected plant cell by virus-derived small-interfering RNAs, which guide homology-dependent RNA interference (RNAi) and/or RNA-directed DNA methylation (RdDM) to target RNA and DNA viruses. In counter-defense, plant viruses have independently evolved viral suppressors of RNAi (VSRs) to specifically antagonize antiviral RNAi. Recent studies have shown that plant antiviral responses are regulated by endogenous small silencing RNAs, RNA decay and autophagy and that some known VSRs of plant RNA and DNA viruses also target these newly recognized defense responses to promote infection. This review focuses on these recent advances that have revealed multilayered regulation of plant-virus interactions.
Collapse
Affiliation(s)
- Yun Jin
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
57
|
Sun F, Hu P, Wang W, Lan Y, Du L, Zhou Y, Zhou T. Rice Stripe Virus Coat Protein-Mediated Virus Resistance Is Associated With RNA Silencing in Arabidopsis. Front Microbiol 2020; 11:591619. [PMID: 33281789 PMCID: PMC7691420 DOI: 10.3389/fmicb.2020.591619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Rice stripe virus (RSV) causes rice stripe disease, which is one of the most serious rice diseases in eastern Asian countries. It has been shown that overexpression of RSV coat protein (CP) in rice plants enhances resistance against virus infection. However, the detailed mechanism underlying RSV CP-mediated virus resistance remains to be determined. In this study, we show that both translatable and non-translatable RSV CP transgenic Arabidopsis plants exhibited immunity to virus infection. By using deep sequencing analysis, transgene-derived small interfering RNAs (t-siRNAs) from non-translatable CP transgenic plants and virus-derived small interfering RNAs (vsiRNAs) mapping in the CP region from RSV-infected wild-type plants showed similar sequence distribution patterns, except for a significant increase in the abundance of t-siRNA reads compared with that of CP-derived vsiRNAs. To further test the correlation of t-siRNAs with RSV immunity, we developed RSV CP transgenic Arabidopsis plants in an siRNA-deficient dcl2/3/4 mutant background, and these CP transgenic plants showed the same sensitivity to RSV infection as non-transgenic plants. Together, our data indicate that the expression of RSV CP protein from a transgene is not a prerequisite for virus resistance and RSV CP-mediated resistance is mostly associated with the RNA silencing mechanism in Arabidopsis plants.
Collapse
Affiliation(s)
- Feng Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peng Hu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,The State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Wei Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ying Lan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Linlin Du
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yijun Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tong Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
58
|
Han K, Huang H, Zheng H, Ji M, Yuan Q, Cui W, Zhang H, Peng J, Lu Y, Rao S, Wu G, Lin L, Song X, Sun Z, Li J, Zhang C, Lou Y, Chen J, Yan F. Rice stripe virus coat protein induces the accumulation of jasmonic acid, activating plant defence against the virus while also attracting its vector to feed. MOLECULAR PLANT PATHOLOGY 2020; 21:1647-1653. [PMID: 32969146 PMCID: PMC7694675 DOI: 10.1111/mpp.12995] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 05/05/2023]
Abstract
The jasmonic acid (JA) pathway plays crucial roles in plant defence against pathogens and herbivores. Rice stripe virus (RSV) is the type member of the genus Tenuivirus. It is transmitted by the small brown planthopper (SBPH) and causes damaging epidemics in East Asia. The role(s) that JA may play in the tripartite interaction against RSV, its host, and vector are poorly understood. Here, we found that the JA pathway was induced by RSV infection and played a defence role against RSV. The coat protein (CP) was the major viral component responsible for inducing the JA pathway. Methyl jasmonate treatment attracted SBPHs to feed on rice plants while a JA-deficient mutant was less attractive than wild-type rice. SBPHs showed an obvious preference for feeding on transgenic rice lines expressing RSV CP. Our results demonstrate that CP is an inducer of the JA pathway that activates plant defence against RSV while also attracting SBPHs to feed and benefitting viral transmission. This is the first report of the function of JA in the tripartite interaction between RSV, its host, and its vector.
Collapse
Affiliation(s)
- Kelei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Haijian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Mengfei Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Quan Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Weijun Cui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Xuemei Song
- School of MedicineNingbo UniversityNingboChina
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Junmin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Chuanxi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yonggen Lou
- State Key Laboratory of Rice BiologyInstitute of Insect SciencesZhejiang UniversityHangzhouChina
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐productsInstitute of Plant VirologyNingbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang ProvinceZhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
59
|
Effect of virus infection on the secondary metabolite production and phytohormone biosynthesis in plants. 3 Biotech 2020; 10:547. [PMID: 33269181 DOI: 10.1007/s13205-020-02541-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 10/31/2020] [Indexed: 02/06/2023] Open
Abstract
Plants have evolved according to their environmental conditions and continuously interact with different biological entities. These interactions induce many positive and negative effects on plant metabolism. Many viruses also associate with various plant species and alter their metabolism. Further, virus-plant interaction also alters the expression of many plant hormones. To overcome the biotic stress imposed by the virus's infestation, plants produce different kinds of secondary metabolites that play a significant role in plant defense against the viral infection. In this review, we briefly highlight the mechanism of virus infection, their influence on the plant secondary metabolites and phytohormone biosynthesis in response to the virus-plant interactions.
Collapse
|
60
|
Wu H, Qu X, Dong Z, Luo L, Shao C, Forner J, Lohmann JU, Su M, Xu M, Liu X, Zhu L, Zeng J, Liu S, Tian Z, Zhao Z. WUSCHEL triggers innate antiviral immunity in plant stem cells. Science 2020; 370:227-231. [PMID: 33033220 DOI: 10.1126/science.abb7360] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/28/2020] [Accepted: 08/21/2020] [Indexed: 02/05/2023]
Abstract
Stem cells in plants constantly supply daughter cells to form new organs and are expected to safeguard the integrity of the cells from biological invasion. Here, we show how stem cells of the Arabidopsis shoot apical meristem and their nascent daughter cells suppress infection by cucumber mosaic virus (CMV). The stem cell regulator WUSCHEL responds to CMV infection and represses virus accumulation in the meristem central and peripheral zones. WUSCHEL inhibits viral protein synthesis by repressing the expression of plant S-adenosyl-l-methionine-dependent methyltransferases, which are involved in ribosomal RNA processing and ribosome stability. Our results reveal a conserved strategy in plants to protect stem cells against viral intrusion and provide a molecular basis for WUSCHEL-mediated broad-spectrum innate antiviral immunity in plants.
Collapse
Affiliation(s)
- Haijun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoya Qu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhicheng Dong
- School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Linjie Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chen Shao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Joachim Forner
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg D-69120, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, Heidelberg D-69120, Germany
| | - Meng Su
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Mengchu Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaobin Liu
- School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Lei Zhu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Sumei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhaoxia Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Zhong Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
61
|
Kwon J, Kasai A, Maoka T, Masuta C, Sano T, Nakahara KS. RNA silencing-related genes contribute to tolerance of infection with potato virus X and Y in a susceptible tomato plant. Virol J 2020; 17:149. [PMID: 33032637 PMCID: PMC7542965 DOI: 10.1186/s12985-020-01414-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 09/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In plants, the RNA silencing system functions as an antiviral defense mechanism following its induction with virus-derived double-stranded RNAs. This occurs through the action of RNA silencing components, including Dicer-like (DCL) nucleases, Argonaute (AGO) proteins, and RNA-dependent RNA polymerases (RDR). Plants encode multiple AGOs, DCLs, and RDRs. The functions of these components have been mainly examined in Arabidopsis thaliana and Nicotiana benthamiana. In this study, we investigated the roles of DCL2, DCL4, AGO2, AGO3 and RDR6 in tomato responses to viral infection. For this purpose, we used transgenic tomato plants (Solanum lycopersicum cv. Moneymaker), in which the expression of these genes were suppressed by double-stranded RNA-mediated RNA silencing. METHODS We previously created multiple DCL (i.e., DCL2 and DCL4) (hpDCL2.4) and RDR6 (hpRDR6) knockdown transgenic tomato plants and here additionally did multiple AGO (i.e., AGO2 and AGO3) knockdown plants (hpAGO2.3), in which double-stranded RNAs cognate to these genes were expressed to induce RNA silencing to them. Potato virus X (PVX) and Y (PVY) were inoculated onto these transgenic tomato plants, and the reactions of these plants to the viruses were investigated. In addition to observation of symptoms, viral coat protein and genomic RNA were detected by western and northern blotting and reverse transcription-polymerase chain reaction (RT-PCR). Host mRNA levels were investigated by quantitative RT-PCR. RESULTS Following inoculation with PVX, hpDCL2.4 plants developed a more severe systemic mosaic with leaf curling compared with the other inoculated plants. Systemic necrosis was also observed in hpAGO2.3 plants. Despite the difference in the severity of symptoms, the accumulation of PVX coat protein (CP) and genomic RNA in the uninoculated upper leaves was not obviously different among hpDCL2.4, hpRDR6, and hpAGO2.3 plants and the empty vector-transformed plants. Moneymaker tomato plants were asymptomatic after infection with PVY. However, hpDCL2.4 plants inoculated with PVY developed symptoms, including leaf curling. Consistently, PVY CP was detected in the uninoculated symptomatic upper leaves of hpDCL2.4 plants through western blotting. Of note, PVY CP was rarely detected in other asymptomatic transgenic or wild-type plants. However, PVY was detected in the uninoculated upper leaves of all the inoculated plants using reverse transcription-polymerase chain reactions. These findings indicated that PVY systemically infected asymptomatic Moneymaker tomato plants at a low level (i.e., no detection of CP via western blotting). CONCLUSION Our results indicate that the tomato cultivar Moneymaker is susceptible to PVX and shows mild mosaic symptoms, whereas it is tolerant and asymptomatic to systemic PVY infection with a low virus titer. In contrast, in hpDCL2.4 plants, PVX-induced symptoms became more severe and PVY infection caused symptoms. These results indicate that DCL2, DCL4, or both contribute to tolerance to infection with PVX and PVY. PVY CP and genomic RNA accumulated to a greater extent in DCL2.4-knockdown plants. Hence, the contribution of these DCLs to tolerance to infection with PVY is at least partly attributed to their roles in anti-viral RNA silencing, which controls the multiplication of PVY in tomato plants. The necrotic symptoms observed in the PVX-infected hpAGO2.3 plants suggest that AGO2, AGO3 or both are also distinctly involved in tolerance to infection with PVX.
Collapse
Affiliation(s)
- Joon Kwon
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Atsushi Kasai
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Tetsuo Maoka
- Division of Agro-Environmental Research, Hokkaido Agricultural Research Center, NARO, Sapporo, Hokkaido, 062-8555, Japan
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan.,Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Kenji S Nakahara
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan. .,Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan.
| |
Collapse
|
62
|
Sun Q, Zhuo T, Zhao T, Zhou C, Li Y, Wang Y, Li D, Yu J, Han C. Functional Characterization of RNA Silencing Suppressor P0 from Pea Mild Chlorosis Virus. Int J Mol Sci 2020; 21:E7136. [PMID: 32992609 PMCID: PMC7582759 DOI: 10.3390/ijms21197136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 01/22/2023] Open
Abstract
To counteract host antiviral RNA silencing, plant viruses encode numerous viral suppressors of RNA silencing (VSRs). P0 proteins have been identified as VSRs in many poleroviruses. However, their suppressor function has not been fully characterized. Here, we investigated the function of P0 from pea mild chlorosis virus (PMCV) in the suppression of local and systemic RNA silencing via green fluorescent protein (GFP) co-infiltration assays in wild-type and GFP-transgenic Nicotiana benthamiana (line 16c). Amino acid deletion analysis showed that N-terminal residues Asn 2 and Val 3, but not the C-terminus residues from 230-270 aa, were necessary for PMCV P0 (P0PM) VSR activity. P0PM acted as an F-box protein, and triple LPP mutation (62LPxx79P) at the F-box-like motif abolished its VSR activity. In addition, P0PM failed to interact with S-phase kinase-associated protein 1 (SKP1), which was consistent with previous findings of P0 from potato leafroll virus. These data further support the notion that VSR activity of P0 is independent of P0-SKP1 interaction. Furthermore, we examined the effect of P0PM on ARGONAUTE1 (AGO1) protein stability, and co-expression analysis showed that P0PM triggered AGO1 degradation. Taken together, our findings suggest that P0PM promotes degradation of AGO1 to suppress RNA silencing independent of SKP1 interaction.
Collapse
Affiliation(s)
- Qian Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China;
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Tao Zhuo
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Tianyu Zhao
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Cuiji Zhou
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Yuanyuan Li
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Ying Wang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Dawei Li
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Jialin Yu
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| | - Chenggui Han
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (T.Z.); (T.Z.); (C.Z.); (Y.L.); (Y.W.); (D.L.); (J.Y.)
| |
Collapse
|
63
|
Khaing YY, Kobayashi Y, Takeshita M. The C-terminal region of the 2a protein and 2b protein of cucumber mosaic virus are involved in the induction of shoestring-like leaf blade in tomato. Virus Res 2020; 289:198172. [PMID: 32980403 DOI: 10.1016/j.virusres.2020.198172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 11/28/2022]
Abstract
Cucumber mosaic virus (CMV) has numerous strains with distinct pathological properties in nature. In this study, we focused on the distinct host-specificity of two isolates of CMV regarding induction of the shoestring-like leaf blade (SLB) in tomato (Solanum lycopersicum cv. Sekaiichi). During the initial infection stage, plants inoculated with CMV-D8 and CMV-Y developed green/yellow systemic mosaic and stunting. Late in infection, CMV-D8 caused severe systemic symptoms with SLB on the newly emerged leaves, whereas CMY-Y caused severe yellow mosaic with stunting. Accumulation of viral RNA of CMV-D8 during initial infection was higher than for CMV-Y, but their levels did not differ significantly at 5 weeks post inoculation. Pseudorecombination and recombination analyses between CMV-D8 and CMV-Y genomic RNAs showed that recombinant that contained the C-terminal region of 2a and the entire 2b protein of CMV-D8 (D2a-C/D2b) induced SLB. Changing isoleucine to valine at position 830 in the 2a ORF played an important role in formation of chronic SLB. We further elucidated that infection with CMV-D8 or the recombinant Y1Y2(D2a-C/D2b)D3, but not with CMV-Y, upregulated miRNAs and transcript levels of AGO1, which is involved in RNA silencing, and of HD-ZIP, TCP4, and PHAN, which are essential for leaf morphogenesis. The present results first demonstrated that the cooperative function of D2a-C/D2b is involved indispensably in SLB formation. In addition, we suggest that D2a-C/D2b region interferes with the miRNA pathway that is associated with RNA silencing and leaf morphogenesis, leading to the enhanced virulence of CMV-D8.
Collapse
Affiliation(s)
- Yu Yu Khaing
- Laboratory of Plant Pathology, Faculty of Agriculture, Department of Agricultural and Environmental Sciences, University of Miyazaki, Gakuenkibanadainishi 1-1, Miyazaki 889-2192, Japan
| | - Yudai Kobayashi
- Laboratory of Plant Pathology, Faculty of Agriculture, Department of Agricultural and Environmental Sciences, University of Miyazaki, Gakuenkibanadainishi 1-1, Miyazaki 889-2192, Japan
| | - Minoru Takeshita
- Laboratory of Plant Pathology, Faculty of Agriculture, Department of Agricultural and Environmental Sciences, University of Miyazaki, Gakuenkibanadainishi 1-1, Miyazaki 889-2192, Japan.
| |
Collapse
|
64
|
Tyurin AA, Suhorukova AV, Kabardaeva KV, Goldenkova-Pavlova IV. Transient Gene Expression is an Effective Experimental Tool for the Research into the Fine Mechanisms of Plant Gene Function: Advantages, Limitations, and Solutions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1187. [PMID: 32933006 PMCID: PMC7569937 DOI: 10.3390/plants9091187] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
A large data array on plant gene expression accumulated thanks to comparative omic studies directs the efforts of researchers to the specific or fine effects of the target gene functions and, as a consequence, elaboration of relatively simple and concurrently effective approaches allowing for the insight into the physiological role of gene products. Numerous studies have convincingly demonstrated the efficacy of transient expression strategy for characterization of the plant gene functions. The review goals are (i) to consider the advantages and limitations of different plant systems and methods of transient expression used to find out the role of gene products; (ii) to summarize the current data on the use of the transient expression approaches for the insight into fine mechanisms underlying the gene function; and (iii) to outline the accomplishments in efficient transient expression of plant genes. In general, the review discusses the main and critical steps in each of the methods of transient gene expression in plants; areas of their application; main results obtained using plant objects; their contribution to our knowledge about the fine mechanisms of the plant gene functions underlying plant growth and development; and clarification of the mechanisms regulating complex metabolic pathways.
Collapse
Affiliation(s)
| | | | | | - Irina V. Goldenkova-Pavlova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences (IPP RAS), Moscow 127276, Russia; (A.A.T.); (A.V.S.); (K.V.K.)
| |
Collapse
|
65
|
Mishra GP, Dikshit HK, S. V. R, Tripathi K, Kumar RR, Aski M, Singh A, Roy A, Priti, Kumari N, Dasgupta U, Kumar A, Praveen S, Nair RM. Yellow Mosaic Disease (YMD) of Mungbean ( Vigna radiata (L.) Wilczek): Current Status and Management Opportunities. FRONTIERS IN PLANT SCIENCE 2020; 11:918. [PMID: 32670329 PMCID: PMC7327115 DOI: 10.3389/fpls.2020.00918] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/04/2020] [Indexed: 03/30/2024]
Abstract
Globally, yellow mosaic disease (YMD) remains a major constraint of mungbean production, and management of this deadly disease is still the biggest challenge. Thus, finding ways to manage YMD including development of varieties possessing resistance against mungbean yellow mosaic virus (MYMV) and mungbean yellow mosaic India virus (MYMIV) is a research priority for mungbean crop. Characterization of YMD resistance using various advanced molecular and biochemical approaches during plant-virus interactions has unfolded a comprehensive network of pathogen survival, disease severity, and the response of plants to pathogen attack, including mechanisms of YMD resistance in mungbean. The biggest challenge in YMD management is the effective utilization of an array of information gained so far, in an integrated manner for the development of genotypes having durable resistance against yellow mosaic virus (YMV) infection. In this backdrop, this review summarizes the role of various begomoviruses, its genomic components, and vector whiteflies, including cryptic species in the YMD expression. Also, information about the genetics of YMD in both mungbean and blackgram crops is comprehensively presented, as both the species are crossable, and same viral strains are also found affecting these crops. Also, implications of various management strategies including the use of resistance sources, the primary source of inoculums and vector management, wide-hybridization, mutation breeding, marker-assisted selection (MAS), and pathogen-derived resistance (PDR) are thoroughly discussed. Finally, the prospects of employing various powerful emerging tools like translational genomics, and gene editing using CRISPR/Cas9 are also highlighted to complete the YMD management perspective in mungbean.
Collapse
Affiliation(s)
- Gyan P. Mishra
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Harsh K. Dikshit
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ramesh S. V.
- Division of Physiology, Biochemistry and PHT, ICAR-Central Plantation, Kasaragod, India
| | - Kuldeep Tripathi
- Germplasm Evaluation Division, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ranjeet R. Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Muraleedhar Aski
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Akanksha Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anirban Roy
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Priti
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Nikki Kumari
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Uttarayan Dasgupta
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Atul Kumar
- Division of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shelly Praveen
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ramakrishnan M. Nair
- World Vegetable Center, South Asia, ICRISAT Campus, Patancheru, Hyderabad, India
| |
Collapse
|
66
|
Nigam D, LaTourrette K, Garcia-Ruiz H. Mutations in virus-derived small RNAs. Sci Rep 2020; 10:9540. [PMID: 32533016 PMCID: PMC7293216 DOI: 10.1038/s41598-020-66374-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/18/2020] [Indexed: 02/03/2023] Open
Abstract
RNA viruses exist as populations of genome variants. Virus-infected plants accumulate 21–24 nucleotide small interfering RNAs (siRNAs) derived from viral RNA (virus-derived siRNAs) through gene silencing. This paper describes the profile of mutations in virus-derived siRNAs for three members of the family Potyviridae: Turnip mosaic virus (TuMV), Papaya ringspot virus (PRSV) and Wheat streak mosaic virus (WSMV). For TuMV in Arabidopsis thaliana, profiles were obtained for mechanically inoculated rosette leaves and systemically infected cauline leaves and inflorescence. Results are consistent with selection pressure on the viral genome imposed by local and systemic movement. By genetically removing gene silencing in the plant and silencing suppression in the virus, our results showed that antiviral gene silencing imposes selection in viral populations. Mutations in siRNAs derived from a PRSV coat protein transgene in the absence of virus replication showed the contribution of cellular RNA-dependent RNA polymerases to the generation of mutations in virus-derived siRNAs. Collectively, results are consistent with two sources of mutations in virus-derived siRNAs: viral RNA-dependent RNA polymerases responsible for virus replication and cellular RNA-dependent RNA polymerases responsible for gene silencing amplification.
Collapse
Affiliation(s)
- Deepti Nigam
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Nebraska, United States of America
| | - Katherine LaTourrette
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Nebraska, United States of America
| | - Hernan Garcia-Ruiz
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Nebraska, United States of America.
| |
Collapse
|
67
|
Efficient silencing gene construct for resistance to multiple common bean ( Phaseolus vulgaris L.) viruses. 3 Biotech 2020; 10:278. [PMID: 32537378 DOI: 10.1007/s13205-020-02276-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
One promising strategy to engineer plants that are resistant to plant pathogens involves transforming plants with RNA silencing constructs for resistance to multiple pathogens. Garden bean is significantly damaged by bean common mosaic virus (BCMV), bean common mosaic necrosis virus (BCMNV) and cucumber mosaic virus (CMV). In this study, we prepared constructs producing sense, antisense and hairpin RNA (hpRNA) structures to target single as well as multiple viruses. Silencing efficiency of these constructions was analyzed using Agrobacterium (GV3101) transient expression in Nicothinia bethamiana and Phaseolus vulgaris plants. The results showed significantly reduced disease symptoms and virus accumulation in N. bethamiana plants. Generally, the efficiency of the prepared constructs was hairpin, antisense and sense, respectively, and also, there was a significant difference between mono-gene and multiple-gene constructs for reducng virus accumulation and the multiple-gene constructs showed higher effectiveness. Experiments in this study showed that using Agrobacterium harboring binary constructs containing a Caenorhabditis elegans gene, Ced-9, or a plant gene, AtBag-4, anti-apoptosis gene as a mix suspension with an Agrobacterium containing pFGC-BNC.h, a plasmid containing multiple gene fragments consisting of BCMV-CP, BCMNV-HC-Pro and CMV-2b, improved the efficiency of pFGC-BNC.h transformation. We showed reduced virus accumulation in these transgenic bean plans.
Collapse
|
68
|
Zhong J, He W, Peng Z, Zhang H, Li F, Yao J. A putative AGO protein, OsAGO17, positively regulates grain size and grain weight through OsmiR397b in rice. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:916-928. [PMID: 31529568 PMCID: PMC7061870 DOI: 10.1111/pbi.13256] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 05/03/2023]
Abstract
Argonaute (AGO) proteins and small RNAs (sRNAs) are core components of the RNA-induced silencing complex (RISC). It has been reported that miRNAs regulate plant height and grain size in rice, but which AGO is involved in grain size regulation remains unclear. Here, we report that enhanced expression of OsAGO17, a putative AGO protein, could improve grain size and weight and promote stem development in rice. Cytological evidence showed that these effects are mainly caused by alteration of cell elongation. Expression analyses showed that OsAGO17 was highly expressed in young panicles and nodes, which was consistent with the expression pattern of OsmiR397b. SRNA sequencing, stem-loop RT-PCR and sRNA blotting showed that the expression of OsmiR397b was reduced in ago17 and enhanced in the OsAGO17 OE lines. Four OsmiR397b target laccase (LAC) genes showed complementary expression patterns with OsAGO17 and OsmiR397b. Combined with the results of immunoprecipitation (IP) analysis, we suggested that OsAGO17 formed an RISC with OsmiR397b and affected rice development by suppression of LAC expression. In conclusion, OsAGO17 might be a critical protein in the sRNA pathway and positively regulates grain size and weight in rice.
Collapse
Affiliation(s)
- Jun Zhong
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- College of Life ScienceNanjing Normal UniversityNanjingChina
| | - Weijie He
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zhu Peng
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Hui Zhang
- College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Feng Li
- College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Jialing Yao
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
69
|
Abstract
Protection against microbial infection in eukaryotes is provided by diverse cellular and molecular mechanisms. Here, we present a comparative view of the antiviral activity of virus-derived small interfering RNAs in fungi, plants, invertebrates and mammals, detailing the mechanisms for their production, amplification and activity. We also highlight the recent discovery of viral PIWI-interacting RNAs in animals and a new role for mobile host and pathogen small RNAs in plant defence against eukaryotic pathogens. In turn, viruses that infect plants, insects and mammals, as well as eukaryotic pathogens of plants, have evolved specific virulence proteins that suppress RNA interference (RNAi). Together, these advances suggest that an antimicrobial function of the RNAi pathway is conserved across eukaryotic kingdoms.
Collapse
|
70
|
Moura MO, Fausto AKS, Fanelli A, Guedes FADF, Silva TDF, Romanel E, Vaslin MFS. Genome-wide identification of the Dicer-like family in cotton and analysis of the DCL expression modulation in response to biotic stress in two contrasting commercial cultivars. BMC PLANT BIOLOGY 2019; 19:503. [PMID: 31729948 PMCID: PMC6858778 DOI: 10.1186/s12870-019-2112-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Dicer-like proteins (DCLs) are essential players in RNA-silencing mechanisms, acting in gene regulation via miRNAs and in antiviral protection in plants and have also been associated to other biotic and abiotic stresses. To the best of our knowledge, despite being identified in some crops, cotton DCLs haven't been characterized until now. In this work, we characterized the DCLs of three cotton species and analyzed their expression profiles during biotic stress. RESULTS As main results, 11 DCLs in the allotetraploid cotton Gossypium hirsutum, 7 and 6 in the diploid G. arboreum and G. raimondii, were identified, respectively. Among some DCLs duplications observed in these genomes, the presence of an extra DCL3 in the three cotton species were detected, which haven't been found in others eudicots. All the DCL types identified by in silico analysis in the allotetraploid cotton genome were able to generate transcripts, as observed by gene expression analysis in distinct tissues. Based on the importance of DCLs for plant defense against virus, responses of cotton DCLs to virus infection and/or herbivore attack using two commercial cotton cultivars (cv.), one susceptible (FM966) and another resistant (DO) to polerovirus CLRDV infection, were analyzed. Both cvs. Responded differently to virus infection. At the inoculation site, the resistant cv. showed strong induction of DCL2a and b, while the susceptible cv. showed a down-regulation of these genes, wherever DCL4 expression was highly induced. A time course of DCL expression in aerial parts far from inoculation site along infection showed that DCL2b and DCL4 were repressed 24 h after infection in the susceptible cotton. As CLRDV is aphid-transmitted, herbivore attack was also checked. Opposite expression pattern of DCL2a and b and DCL4 was observed for R and S cottons, showing that aphid feeding alone may induce DCL modulation. CONCLUSIONS Almost all the DCLs of the allotetraploide G. hirsutum cotton were found in their relative diploids. Duplications of DCL2 and DCL3 were found in the three species. All four classes of DCL responded to aphid attack and virus infection in G. hirsutum. DCLs initial responses against the virus itself and/or herbivore attack may be contributing towards virus resistance.
Collapse
Affiliation(s)
- Marianna O. Moura
- Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590 Brazil
| | - Anna Karoline S. Fausto
- Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590 Brazil
| | - Amanda Fanelli
- Departamento de Biotecnologia, Escola de Engenharia de Lorena/Universidade de São Paulo (EEL/USP), Lorena, SP 12602-810 Brazil
| | - Fernanda A. de F. Guedes
- Programa de Pós-graduação em Biotecnologia Vegetal, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590 Brazil
| | - Tatiane da F. Silva
- Departamento de Biotecnologia, Escola de Engenharia de Lorena/Universidade de São Paulo (EEL/USP), Lorena, SP 12602-810 Brazil
| | - Elisson Romanel
- Departamento de Biotecnologia, Escola de Engenharia de Lorena/Universidade de São Paulo (EEL/USP), Lorena, SP 12602-810 Brazil
| | - Maite F. S. Vaslin
- Departamento de Virologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590 Brazil
| |
Collapse
|
71
|
Abstract
Plant virus genome replication and movement is dependent on host resources and factors. However, plants respond to virus infection through several mechanisms, such as autophagy, ubiquitination, mRNA decay and gene silencing, that target viral components. Viral factors work in synchrony with pro-viral host factors during the infection cycle and are targeted by antiviral responses. Accordingly, establishment of virus infection is genetically determined by the availability of the pro-viral factors necessary for genome replication and movement, and by the balance between plant defence and viral suppression of defence responses. Sequential requirement of pro-viral factors and the antagonistic activity of antiviral factors suggest a two-step model to explain plant-virus interactions. At each step of the infection process, host factors with antiviral activity have been identified. Here we review our current understanding of host factors with antiviral activity against plant viruses.
Collapse
Affiliation(s)
- Hernan Garcia‐Ruiz
- Nebraska Center for Virology, Department of Plant PathologyUniversity of Nebraska‐LincolnLincolnNE68503USA
| |
Collapse
|
72
|
He L, Wang Q, Gu Z, Liao Q, Palukaitis P, Du Z. A conserved RNA structure is essential for a satellite RNA-mediated inhibition of helper virus accumulation. Nucleic Acids Res 2019; 47:8255-8271. [PMID: 31269212 PMCID: PMC6735963 DOI: 10.1093/nar/gkz564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/30/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022] Open
Abstract
As a class of parasitic, non-coding RNAs, satellite RNAs (satRNAs) have to compete with their helper virus for limited amounts of viral and/or host resources for efficient replication, by which they usually reduce viral accumulation and symptom expression. Here, we report a cucumber mosaic virus (CMV)-associated satRNA (sat-T1) that ameliorated CMV-induced symptoms, accompanied with a significant reduction in the accumulation of viral genomic RNAs 1 and 2, which encode components of the viral replicase. Intrans replication assays suggest that the reduced accumulation is the outcome of replication competition. The structural basis of sat-T1 responsible for the inhibition of viral RNA accumulation was determined to be a three-way branched secondary structure that contains two biologically important hairpins. One is indispensable for the helper virus inhibition, and the other engages in formation of a tertiary pseudoknot structure that is essential for sat-T1 survival. The secondary structure containing the pseudoknot is the first RNA element with a biological phenotype experimentally identified in CMV satRNAs, and it is structurally conserved in most CMV satRNAs. Thus, this may be a generic method for CMV satRNAs to inhibit the accumulation of the helper virus via the newly-identified RNA structure.
Collapse
Affiliation(s)
- Lu He
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qian Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Zhouhang Gu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Qiansheng Liao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women's University, Nowon-gu, Seoul 01797, Republic of Korea
| | - Zhiyou Du
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
73
|
Yao S, Yang Z, Yang R, Huang Y, Guo G, Kong X, Lan Y, Zhou T, Wang H, Wang W, Cao X, Wu J, Li Y. Transcriptional Regulation of miR528 by OsSPL9 Orchestrates Antiviral Response in Rice. MOLECULAR PLANT 2019; 12:1114-1122. [PMID: 31059826 DOI: 10.1016/j.molp.2019.04.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/15/2019] [Accepted: 04/25/2019] [Indexed: 05/04/2023]
Abstract
Many microRNAs (miRNAs) are critical regulators of plant antiviral defense. However, little is known about how these miRNAs respond to virus invasion at the transcriptional level. We previously show that defense against Rice stripe virus (RSV) invasion entailed a reduction of miR528 accumulation in rice, alleviating miR528-mediated degradation of L-Ascorbate Oxidase (AO) mRNA and bolstering the antiviral activity of AO. Here we show that the miR528-AO defense module is regulated by the transcription factor SPL9. SPL9 displayed high-affinity binding to specific motifs within the promoter region of miR528 and activated the expression of miR528 gene in vivo. Loss-of-function mutations in SPL9 caused a significant reduction in miR528 accumulation but a substantial increase of AO mRNA, resulting in enhanced plant resistance to RSV. Conversely, transgenic overexpression of SPL9 stimulated the expression of miR528 gene, hence lowering the level of AO mRNA and compromising rice defense against RSV. Importantly, gain in RSV susceptibility did not occur when SPL9 was overexpressed in mir528 loss-of-function mutants, or in transgenic rice expressing a miR528-resistant AO. Taken together, the finding of SPL9-mediated transcriptional activation of miR528 expression adds a new regulatory layer to the miR528-AO antiviral defense pathway.
Collapse
Affiliation(s)
- Shengze Yao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Rongxin Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Huang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ge Guo
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiangyue Kong
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Lan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tong Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - He Wang
- Rice Research Institute and College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenming Wang
- Rice Research Institute and College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianguo Wu
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
74
|
Gupta AK, Tatineni S. RNA silencing suppression mechanisms of Triticum mosaic virus P1: dsRNA binding property and mapping functional motifs. Virus Res 2019; 269:197640. [DOI: 10.1016/j.virusres.2019.197640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/08/2019] [Accepted: 06/14/2019] [Indexed: 11/24/2022]
|
75
|
Gupta AK, Hein GL, Tatineni S. P7 and P8 proteins of High Plains wheat mosaic virus, a negative-strand RNA virus, employ distinct mechanisms of RNA silencing suppression. Virology 2019; 535:20-31. [PMID: 31254744 DOI: 10.1016/j.virol.2019.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 10/26/2022]
Abstract
High Plains wheat mosaic virus (genus Emaravirus), an octapartite negative-sense RNA virus, encodes two RNA silencing suppressors, P7 and P8. In this study, we found that P7 and P8 efficiently delayed the onset of dsRNA-induced transitive pathway of RNA silencing. Electrophoretic mobility shift assays (EMSA) revealed that only P7 protected long dsRNAs from dicing in vitro and bound weakly to 21- and 24-nt PTGS-like ds-siRNAs. In contrast, P8 bound strongly and relatively weakly to 21- and 24-nt ds-siRNAs, respectively, suggesting size-specific binding. In EMSA, neither protein bound to 180-nt and 21-nt ssRNAs at detectable levels. Sequence analysis revealed that P7 contains a conserved GW motif. Mutational disruption of this motif resulted in loss of suppression of RNA silencing and pathogenicity enhancement, and failure to complement the silencing suppression-deficient wheat streak mosaic virus. Collectively, these data suggest that P7 and P8 proteins utilize distinct mechanisms to overcome host RNA silencing for successful establishment of systemic infection in planta.
Collapse
Affiliation(s)
- Adarsh K Gupta
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Gary L Hein
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
76
|
Small RNA Functions as a Trafficking Effector in Plant Immunity. Int J Mol Sci 2019; 20:ijms20112816. [PMID: 31181829 PMCID: PMC6600683 DOI: 10.3390/ijms20112816] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/01/2019] [Accepted: 06/06/2019] [Indexed: 01/04/2023] Open
Abstract
Small RNAs represent a class of small but powerful agents that regulate development and abiotic and biotic stress responses during plant adaptation to a constantly challenging environment. Previous findings have revealed the important roles of small RNAs in diverse cellular processes. The recent discovery of bidirectional trafficking of small RNAs between different kingdoms has raised many interesting questions. The subsequent demonstration of exosome-mediated small RNA export provided a possible tool for further investigating how plants use small RNAs as a weapon during the arms race between plant hosts and pathogens. This review will focus on discussing the roles of small RNAs in plant immunity in terms of three aspects: the biogenesis of extracellular small RNAs and the transportation and trafficking small RNA-mediated gene silencing in pathogens.
Collapse
|
77
|
Wheat streak mosaic virus P1 Binds to dsRNAs without Size and Sequence Specificity and a GW Motif Is Crucial for Suppression of RNA Silencing. Viruses 2019; 11:v11050472. [PMID: 31137615 PMCID: PMC6563293 DOI: 10.3390/v11050472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 01/30/2023] Open
Abstract
Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae) is an economically important virus infecting wheat in the Great Plains region of the USA. Previously, we reported that the P1 protein of WSMV acts as a viral suppressor of RNA silencing. In this study, we delineated the minimal region of WSMV P1 and examined its mechanisms in suppression of RNA silencing. We found that the 25 N-terminal amino acids are dispensable, while deletion of a single amino acid at the C-terminal region completely abolished the RNA silencing suppression activity of P1. Electrophoretic mobility shift assays with in vitro expressed P1 revealed that the P1 protein formed complexes with green fluorescent protein-derived 180-nt dsRNA and 21 and 24-nt ds-siRNAs, and WSMV coat protein-specific 600-nt dsRNA. These data suggest that the P1 protein of WSMV binds to dsRNAs in a size- and sequence-independent manner. Additionally, in vitro dicing assay with human Dicer revealed that the P1 protein efficiently protects dsRNAs from processing by Dicer into siRNAs, by forming complexes with dsRNA. Sequence comparison of P1-like proteins from select potyvirid species revealed that WSMV P1 harbors a glycine-tryptophan (GW) motif at the C-terminal region. Disruption of GW motif in WSMV P1 through W303A mutation resulted in loss of silencing suppression function and pathogenicity enhancement, and abolished WSMV viability. These data suggest that the mechanisms of suppression of RNA silencing of P1 proteins of potyvirid species appear to be broadly conserved in the family Potyviridae.
Collapse
|
78
|
Global Transcriptomic Analysis Reveals Insights into the Response of 'Etrog' Citron ( Citrus medica L.) to Citrus Exocortis Viroid Infection. Viruses 2019; 11:v11050453. [PMID: 31109003 PMCID: PMC6563217 DOI: 10.3390/v11050453] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Citrus exocortis viroid (CEVd) is the causal agent of citrus exocortis disease. We employed CEVd-infected ‘Etrog’ citron as a system to study the feedback regulation mechanism using transcriptome analysis in this study. Three months after CEVd infection, the transcriptome of fresh leaves was analyzed, and 1530 differentially expressed genes were detected. The replication of CEVd in citron induced upregulation of genes encoding key proteins that were involved in the RNA silencing pathway such as Dicer-like 2, RNA-dependent RNA polymerase 1, argonaute 2, argonaute 7, and silencing defective 3, as well as those genes encoding proteins that are related to basic defense responses. Many genes involved in secondary metabolite biosynthesis and chitinase activity were upregulated, whereas other genes related to cell wall and phytohormone signal transduction were downregulated. Moreover, genes encoding disease resistance proteins, pathogenicity-related proteins, and heat shock cognate 70 kDa proteins were also upregulated in response to CEVd infection. These results suggest that basic defense and RNA silencing mechanisms are activated by CEVd infection, and this information improves our understanding of the pathogenesis of viroids in woody plants.
Collapse
|
79
|
DNA Methylation Analysis of the Citrullus lanatus Response to Cucumber Green Mottle Mosaic Virus Infection by Whole-Genome Bisulfite Sequencing. Genes (Basel) 2019; 10:genes10050344. [PMID: 31067797 PMCID: PMC6562589 DOI: 10.3390/genes10050344] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 01/11/2023] Open
Abstract
DNA methylation is an important epigenetic mark associated with plant immunity, butlittle is known about its roles in viral infection of watermelon. We carried out whole-genomebisulfite sequencing of watermelon leaves at 0 h (ck), 48 h, and 25 days post-inoculation withCucumber green mottle mosaic virus (CGMMV). The number of differentially methylated regions(DMRs) increased during CGMMV infection and 2788 DMR-associated genes (DMGs) werescreened out among three libraries. Most DMRs and DMGs were obtained under the CHH context.These DMGs were significantly enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG)pathways of secondary biosynthesis and metabolism, plant-pathogen interactions, Toll-likereceptor signaling, and ABC transporters. Additionally, DMGs encoding PR1a, CaMs, calciumbindingprotein, RIN4, BAK1, WRKYs, RBOHs, STKs, and RLPs/RLKs were involved in thewatermelon-CGMMV interaction and signaling. The association between DNA methylation andgene expression was analyzed by RNA-seq and no clear relationship was detected. Moreover,downregulation of genes in the RdDM pathway suggested the reduced RdDM-directed CHHmethylation plays an important role in antiviral defense in watermelon. Our findings providegenome-wide DNA methylation profiles of watermelon and will aid in revealing the molecularmechanism in response to CGMMV infection at the methylation level.
Collapse
|
80
|
Ban Y, Morita Y, Ogawa M, Higashi K, Nakatsuka T, Nishihara M, Nakayama M. Inhibition of post-transcriptional gene silencing of chalcone synthase genes in petunia picotee petals by fluacrypyrim. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1513-1523. [PMID: 30690559 DOI: 10.1093/jxb/erz009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
In petals of picotee petunia (Petunia hybrida) cultivars, margin-specific post-transcriptional gene silencing (PTGS) of chalcone synthase A (CHSA) inhibits anthocyanin biosynthesis, resulting in marginal white tissue formation. In this study, we found that a low molecular mass compound, fluacrypyrim, inhibits PTGS of CHSA, and we explored the site-specific PTGS mechanism of operation. Fluacrypyrim treatment abolished the picotee pattern and eliminated site-specific differences in the levels of anthocyanin-related compounds, CHSA expression, and CHSA small interfering RNA (siRNA). In addition, fluacrypyrim abolished the petunia star-type pattern, which is also caused by PTGS of CHSA. Fluacrypyrim treatment was effective only at the early floral developmental stage and predominantly eliminated siRNA derived from CHS genes; i.e. siRNA derived from other genes remained at a comparable level. Fluacrypyrim probably targets the induction of PTGS that specifically operates for CHS genes in petunia picotee flowers, rather than common PTGS maintenance mechanisms that degrade mRNAs and generate siRNA. Upon treatment, the proportion of colored tissue increased due to a shift of the border between white and colored sites toward the margin in a time- and dose-dependent manner. These findings imply that the fluacrypyrim-targeted PTGS induction is completed gradually and its strength is attenuated from the margins to the center of petunia picotee petals.
Collapse
Affiliation(s)
- Yusuke Ban
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- Western Region Agricultural Research Center, NARO, Fukuyama, Hiroshima, Japan
| | - Yasumasa Morita
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
- Experimental Farm, Faculty of Agriculture, Meijo University, Kasugai, Aichi, Japan
| | - Mika Ogawa
- Teikyo University of Science, Adachi, Tokyo, Japan
| | | | - Takashi Nakatsuka
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Graduate School of Agriculture, Shizuoka University, Shizuoka, Shizuoka, Japan
| | | | - Masayoshi Nakayama
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
81
|
Katsarou K, Mitta E, Bardani E, Oulas A, Dadami E, Kalantidis K. DCL-suppressed Nicotiana benthamiana plants: valuable tools in research and biotechnology. MOLECULAR PLANT PATHOLOGY 2019; 20:432-446. [PMID: 30343523 PMCID: PMC6637889 DOI: 10.1111/mpp.12761] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
RNA silencing is a universal mechanism involved in development, epigenetic modifications and responses to biotic and abiotic stresses. The major components of this mechanism are Dicer-like (DCL), Argonaute (AGO) and RNA-dependent RNA polymerase (RDR) proteins. Understanding the role of each component is of great scientific and agronomic importance. Plants, including Nicotiana benthamiana, an important plant model, usually possess four DCL proteins, each of which has a specific role, namely being responsible for the production of an exclusive small RNA population. Here, we used RNA interference (RNAi) technology to target DCL proteins and produced single and combinatorial mutants for DCL. We analysed the phenotype for each DCL knockdown plant, together with the small RNA profile, by next-generation sequencing (NGS). We also investigated transgene expression, as well as viral infections, and were able to show that DCL suppression results in distinct developmental defects, changes in small RNA populations, increases in transgene expression and, finally, higher susceptibility in certain RNA viruses. Therefore, these plants are excellent tools for the following: (i) to study the role of DCL enzymes; (ii) to overexpress proteins of interest; and (iii) to understand the complex relationship between the plant silencing mechanism and biotic or abiotic stresses.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
| | - Eleni Mitta
- Department of BiologyUniversity of CreteHeraklionGreece
| | | | - Anastasis Oulas
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
- Present address:
Bioinformatics Group, The Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Elena Dadami
- Department of BiologyUniversity of CreteHeraklionGreece
- Present address:
RLP AgroScience, AlPlantaNeustadtGermany
| | - Kriton Kalantidis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
- Department of BiologyUniversity of CreteHeraklionGreece
| |
Collapse
|
82
|
The Tug-of-War between Plants and Viruses: Great Progress and Many Remaining Questions. Viruses 2019; 11:v11030203. [PMID: 30823402 PMCID: PMC6466000 DOI: 10.3390/v11030203] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 12/19/2022] Open
Abstract
Plants are persistently challenged by various phytopathogens. To protect themselves, plants have evolved multilayered surveillance against all pathogens. For intracellular parasitic viruses, plants have developed innate immunity, RNA silencing, translation repression, ubiquitination-mediated and autophagy-mediated protein degradation, and other dominant resistance gene-mediated defenses. Plant viruses have also acquired diverse strategies to suppress and even exploit host defense machinery to ensure their survival. A better understanding of the defense and counter-defense between plants and viruses will obviously benefit from the development of efficient and broad-spectrum virus resistance for sustainable agriculture. In this review, we summarize the cutting edge of knowledge concerning the defense and counter-defense between plants and viruses, and highlight the unexploited areas that are especially worth investigating in the near future.
Collapse
|
83
|
RNA Interference: A Natural Immune System of Plants to Counteract Biotic Stressors. Cells 2019; 8:cells8010038. [PMID: 30634662 PMCID: PMC6356646 DOI: 10.3390/cells8010038] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
During plant-pathogen interactions, plants have to defend the living transposable elements from pathogens. In response to such elements, plants activate a variety of defense mechanisms to counteract the aggressiveness of biotic stressors. RNA interference (RNAi) is a key biological process in plants to inhibit gene expression both transcriptionally and post-transcriptionally, using three different groups of proteins to resist the virulence of pathogens. However, pathogens trigger an anti-silencing mechanism through the expression of suppressors to block host RNAi. The disruption of the silencing mechanism is a virulence strategy of pathogens to promote infection in the invaded hosts. In this review, we summarize the RNA silencing pathway, anti-silencing suppressors, and counter-defenses of plants to viral, fungal, and bacterial pathogens.
Collapse
|
84
|
Guo Z, Wang XB, Li WX, Ding SW. A Sensitized Genetic Screen to Identify Novel Components and Regulators of the Host Antiviral RNA Interference Pathway. Methods Mol Biol 2019; 2028:215-229. [PMID: 31228117 DOI: 10.1007/978-1-4939-9635-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA interference (RNAi) acts as a natural defense mechanism against virus infection in plants and animals. Much is known about the antiviral function of the core RNAi pathway components identified mostly by genetic screens based on specific RNAi of cellular mRNAs. Here we describe a sensitized genetic screening system for the identification of novel components and regulators in the antiviral RNAi pathway established in the model plant species Arabidopsis thaliana. Our genetic screen identifies antiviral RNAi (avi)-defective Arabidopsis mutants that develop visible disease symptoms after infection with CMV-∆2b, a Cucumber mosaic virus mutant deficient in the expression of its viral suppressor of RNAi. Loss of RNAi suppression renders CMV-∆2b highly susceptible to antiviral RNAi so that it replicates to high levels and induces disease development only in avi mutants. This chapter provides the methods for the propagation of CMV-∆2b, preparation of the mutant plants for virus inoculation, identification and characterization of avi mutants, and cloning of the genes responsible for the mutant phenotype by either the genetic linkage to T-DNA insertion or a mapping-by-sequencing approach.
Collapse
Affiliation(s)
- Zhongxin Guo
- Vector-Borne Virus Research Center, Haixia Institute of Science and Technology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China.
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China.
| | - Wan-Xiang Li
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, University of California, Riverside, CA, USA
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
85
|
CMV2b-Dependent Regulation of Host Defense Pathways in the Context of Viral Infection. Viruses 2018; 10:v10110618. [PMID: 30423959 PMCID: PMC6265714 DOI: 10.3390/v10110618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 01/26/2023] Open
Abstract
RNA silencing (or RNA interference, RNAi) plays direct roles in plant host defenses against viruses. Viruses encode suppressors of RNAi (VSRs) to counteract host antiviral defenses. The generation of transgenic plants expressing VSRs facilitates the understanding of the mechanisms of VSR-mediated interference with the endogenous silencing pathway. However, studying VSRs independent of other viral components simplifies the complex roles of VSRs during natural viral infection. While suppression of transgene silencing by the VSR 2b protein encoded by cucumber mosaic virus (CMV) requires 2b-small RNA (sRNA) binding activity, suppression of host antiviral defenses requires the binding activity of both sRNAs and AGOs proteins. This study, aimed to understand the functions of 2b in the context of CMV infection; thus, we performed genome-wide analyses of differential DNA methylation regions among wild-type CMV-infected, CMVΔ2b-infected, and 2b-transgenic Arabidopsis plants. These analyses, together with transcriptome sequencing and RT-qPCR analyses, show that while the majority of induced genes in 2b-transgenic plants were involved in extensive metabolic pathways, CMV-infection 2b-dependent induced genes were enriched in plant immunity pathways, including salicylic acid (SA) signaling. Together with infection with CMV mutants that expressed the 2b functional domains of sRNA or AGO binding, our data demonstrate that CMV-accelerated SA signaling depends on 2b-sRNA binding activity which is also responsible for virulence.
Collapse
|
86
|
Ambrós S, de la Iglesia F, Rosario SM, Butkovic A, Elena SF. Engineered Functional Redundancy Relaxes Selective Constraints upon Endogenous Genes in Viral RNA Genomes. Genome Biol Evol 2018; 10:1823-1836. [PMID: 29982435 PMCID: PMC6059116 DOI: 10.1093/gbe/evy141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 11/25/2022] Open
Abstract
Functional redundancy, understood as the functional overlap of different genes, is a double-edge sword. At the one side, it is thought to serve as a robustness mechanism that buffers the deleterious effect of mutations hitting one of the redundant copies, thus resulting in pseudogenization. At the other side, it is considered as a source of genetic and functional innovation. In any case, genetically redundant genes are expected to show an acceleration in the rate of molecular evolution. Here, we tackle the role of functional redundancy in viral RNA genomes. To this end, we have evaluated the rates of compensatory evolution for deleterious mutations affecting an essential function, the suppression of RNA silencing plant defense, of tobacco etch potyvirus (TEV). TEV genotypes containing deleterious mutations in presence/absence of engineered functional redundancy were evolved and the pattern of fitness and pathogenicity recovery evaluated. Genetically redundant genotypes suffered less from the effect of deleterious mutations and showed relatively minor changes in fitness and pathogenicity. By contrast, nongenetically redundant genotypes had very low fitness and pathogenicity at the beginning of the evolution experiment that were fully recovered by the end. At the molecular level, the outcome depended on the combination of the actual mutations being compensated and the presence/absence of functional redundancy. Reversions to wild-type alleles were the norm in the nonredundant genotypes while redundant ones either did not fix any mutation at all or showed a higher nonsynonymous mutational load.
Collapse
Affiliation(s)
- Silvia Ambrós
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Spain
| | - Francisca de la Iglesia
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Spain
| | - Sttefany M Rosario
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Spain.,Laboratorio de Biología Molecular, Facultad de Agronomía y Veterinaria, UASD, Santo Domingo, Dominican Republic
| | - Anamarija Butkovic
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Spain.,Instituto de Biología Integrativa de Sistemas (I 2 SysBio), CSIC-Universitat de València, Paterna, Spain.,The Santa Fe Institute, Santa Fe, New Mexico
| |
Collapse
|
87
|
Li Z, Zhang T, Huang X, Zhou G. Impact of Two Reoviruses and Their Coinfection on the Rice RNAi System and vsiRNA Production. Viruses 2018; 10:v10110594. [PMID: 30380782 PMCID: PMC6267445 DOI: 10.3390/v10110594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/20/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022] Open
Abstract
Both Southern rice black-streaked dwarf virus (SRBSDV) and Rice ragged stunt virus (RRSV) belong to the family Reoviridae, and synergistic infection of these two viruses commonly occurs in the field. This study revealed that both SRBSDV and RRSV affect the RNA interference (RNAi) pathway and form different virus-derived interfering RNA (vsiRNA) profiles in rice. Co-infection of rice by SRBSDV and RRSV up-regulated the expression of rice DICER-like (DCL) proteins but down-regulated the expression of rice RNA-dependent RNA polymerases (RDRs), and the accumulation of vsiRNAs of either RBSDV or RRSV was decreased compared with that in singly infected plants. The majority of SRBSDV vsiRNAs were 21 nt or 22 nt in length, whether plants were singly infected with SRBSDV or co-infected with RRSV. On the other hand, the majority of RRSV vsiRNAs were 20 nt, 21 nt, or 22 nt in length, among which those 20 nt in length accounted for the largest proportion; co-infection with SRBSDV further increased the proportion of 20 nt vsiRNAs and decreased the proportion of 21 nt vsiRNAs. Co-infection had no effects on the strand favoritism and hot spots of the vsiRNAs, but changed the bias of the 5′ terminal nucleotide significantly. This study provides a reference for further study on the pathogenesis and synergistic mechanism of SRBSDV and RRSV.
Collapse
Affiliation(s)
- Zhanbiao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China.
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China.
| | - Xiuqin Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China.
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
88
|
Gao S, Lu J, Cheng X, Gu Z, Liao Q, Du Z. Heterologous Replicase from Cucumoviruses can Replicate Viral RNAs, but is Defective in Transcribing Subgenomic RNA4A or Facilitating Viral Movement. Viruses 2018; 10:v10110590. [PMID: 30373277 PMCID: PMC6265798 DOI: 10.3390/v10110590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 12/05/2022] Open
Abstract
Interspecific exchange of RNA1 or RNA2 between the cucumoviruses cucumber mosaic virus (CMV) and tomato aspermy virus (TAV) was reported to be non-viable in plants previously. Here we investigated viability of the reassortants between CMV and TAV in Nicotiana benthamiana plants by Agrobacterium-mediated viral inoculation. The reassortants were composed of CMV RNA1 and TAV RNA2 plus RNA3 replicated in the inoculated leaves, while they were defective in viral systemic movement at the early stage of infection. Interestingly, the reassortant containing TAV RNA1 and CMV RNA2 and RNA3 infected plants systemically, but produced RNA4A (the RNA2 subgenome) at an undetectable level. The defect in production of RNA4A was due to the 1a protein encoded by TAV RNA1, and partially restored by replacing the C-terminus (helicase domain) in TAV 1a with that of CMV 1a. Collectively, exchange of the replicase components between CMV and TAV was acceptable for viral replication, but was defective in either directing transcription of subgenomic RNA4A or facilitating viral long-distance movement. Our finding may shed some light on evolution of subgenomic RNA4A in the family Bromoviridae.
Collapse
Affiliation(s)
- Shuangyu Gao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Jinda Lu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xiaodong Cheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zhouhang Gu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Qiansheng Liao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zhiyou Du
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
89
|
Yang M, Xu Z, Zhao W, Liu Q, Li Q, Lu L, Liu R, Zhang X, Cui F. Rice stripe virus-derived siRNAs play different regulatory roles in rice and in the insect vector Laodelphax striatellus. BMC PLANT BIOLOGY 2018; 18:219. [PMID: 30286719 PMCID: PMC6172784 DOI: 10.1186/s12870-018-1438-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/23/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Most plant viruses depend on vector insects for transmission. Upon viral infection, virus-derived small interfering RNAs (vsiRNAs) can target both viral and host transcripts. Rice stripe virus (RSV) is a persistent-propagative virus transmitted by the small brown planthopper (Laodelphax striatellus, Fallen) and can cause a severe disease on rice. RESULTS To investigate how vsiRNAs regulate gene expressions in the host plant and the insect vector, we analyzed the expression profiles of small RNAs (sRNAs) and mRNAs in RSV-infected rice and RSV-infected planthopper. We obtained 88,247 vsiRNAs in rice that were predominantly derived from the terminal regions of the RSV RNA segments, and 351,655 vsiRNAs in planthopper that displayed relatively even distributions on RSV RNA segments. 38,112 and 80,698 unique vsiRNAs were found only in rice and planthopper, respectively, while 14,006 unique vsiRNAs were found in both of them. Compared to mock-inoculated rice, 273 genes were significantly down-regulated genes (DRGs) in RSV-infected rice, among which 192 (70.3%) were potential targets of vsiRNAs based on sequence complementarity. Gene ontology (GO) analysis revealed that these 192 DRGs were enriched in genes involved in kinase activity, carbohydrate binding and protein binding. Similarly, 265 DRGs were identified in RSV-infected planthoppers, among which 126 (47.5%) were potential targets of vsiRNAs. These planthopper target genes were enriched in genes that are involved in structural constituent of cuticle, serine-type endopeptidase activity, and oxidoreductase activity. CONCLUSIONS Taken together, our results reveal that infection by the same virus can generate distinct vsiRNAs in different hosts to potentially regulate different biological processes, thus reflecting distinct virus-host interactions.
Collapse
Affiliation(s)
- Meiling Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Bei Chen Xi Lu 1-5, Beijing, 100101 China
| | - Zhongtian Xu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Wan Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Bei Chen Xi Lu 1-5, Beijing, 100101 China
| | - Qing Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Bei Chen Xi Lu 1-5, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qiong Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Bei Chen Xi Lu 1-5, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lu Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Bei Chen Xi Lu 1-5, Beijing, 100101 China
| | - Renyi Liu
- Center for Agroforestry Mega Data Science and FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Bei Chen Xi Lu 1-5, Beijing, 100101 China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Bei Chen Xi Lu 1-5, Beijing, 100101 China
| |
Collapse
|
90
|
Qiao W, Zarzyńska‐Nowak A, Nerva L, Kuo Y, Falk BW. Accumulation of 24 nucleotide transgene-derived siRNAs is associated with crinivirus immunity in transgenic plants. MOLECULAR PLANT PATHOLOGY 2018; 19:2236-2247. [PMID: 29704454 PMCID: PMC6638120 DOI: 10.1111/mpp.12695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
RNA silencing is a conserved antiviral defence mechanism that has been used to develop robust resistance against plant virus infections. Previous efforts have been made to develop RNA silencing-mediated resistance to criniviruses, yet none have given immunity. In this study, transgenic Nicotiana benthamiana plants harbouring a hairpin construct of the Lettuce infectious yellows virus (LIYV) RNA-dependent RNA polymerase (RdRp) sequence exhibited immunity to systemic LIYV infection. Deep sequencing analysis was performed to characterize virus-derived small interfering RNAs (vsiRNAs) generated on systemic LIYV infection in non-transgenic N. benthamiana plants as well as transgene-derived siRNAs (t-siRNAs) derived from the immune-transgenic plants before and after LIYV inoculation. Interestingly, a similar sequence distribution pattern was obtained with t-siRNAs and vsiRNAs mapped to the transgene region in both immune and susceptible plants, except for a significant increase in t-siRNAs of 24 nucleotides in length, which was consistent with small RNA northern blot results that showed the abundance of t-siRNAs of 21, 22 and 24 nucleotides in length. The accumulated 24-nucleotide sequences have not yet been reported in transgenic plants partially resistant to criniviruses, and thus may indicate their correlation with crinivirus immunity. To further test this hypothesis, we developed transgenic melon (Cucumis melo) plants immune to systemic infection of another crinivirus, Cucurbit yellow stunting disorder virus (CYSDV). As predicted, the accumulation of 24-nucleotide t-siRNAs was detected in transgenic melon plants by northern blot. Together with our findings and previous studies on crinivirus resistance, we propose that the accumulation of 24-nucleotide t-siRNAs is associated with crinivirus immunity in transgenic plants.
Collapse
Affiliation(s)
- Wenjie Qiao
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA, 95616
| | - Aleksandra Zarzyńska‐Nowak
- Department of Virology and BacteriologyInstitute of Plant Protection‐National Research InstitutePoznańPoland, 60‐318
| | - Luca Nerva
- Council for Agricultural Research and Economics – Research Centre for Viticulture and EnologyConegliano (TV)Italy, 00198
- Institute for Sustainable Plant ProtectionTorinoItaly, 10135
| | - Yen‐Wen Kuo
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA, 95616
| | - Bryce W. Falk
- Department of Plant PathologyUniversity of CaliforniaDavisCAUSA, 95616
| |
Collapse
|
91
|
Yang Z, Li Y. Dissection of RNAi-based antiviral immunity in plants. Curr Opin Virol 2018; 32:88-99. [PMID: 30388659 DOI: 10.1016/j.coviro.2018.08.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 10/28/2022]
Abstract
RNA interference (RNAi)-based antiviral defense is a small RNA-dependent repression mechanism of plants to against viruses. Although the core components of antiviral RNAi are well known, it is unclear whether additional factors exist that regulate RNAi. Recently, a forward genetic screen identified two novel components of antiviral RNAi, providing important insights into the antiviral RNAi mechanism. Meanwhile, it was discovered that microRNAs make important contributions to host antiviral RNAi. On the other hand, to counteract host antiviral RNAi, most viruses encode viral suppressors of RNA silencing (VSRs). Recent studies have revealed the multiple functions of VSRs and the intricate interactions between plant hosts and viruses. These findings add to our knowledge of the sophisticated host antiviral defense mechanism in plants. Ongoing molecular functional studies will improve our understanding of the co-evolutionary arms race between viruses and plants, and thereby provide key information for the development of plant antiviral strategies.
Collapse
Affiliation(s)
- Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
92
|
Salánki K, Gellért Á, Nemes K, Divéki Z, Balázs E. Molecular Modeling for Better Understanding of Cucumovirus Pathology. Adv Virus Res 2018; 102:59-88. [PMID: 30266176 DOI: 10.1016/bs.aivir.2018.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Cucumber mosaic virus (CMV) is a small RNA virus capable of infecting a wide variety of plant species. The high economic losses due to the CMV infection made this virus a relevant subject of scientific studies, which were further facilitated by the small size of the viral genome. Hence, CMV also became a model organism to investigate the molecular mechanism of pathogenesis. All viral functions are dependent on intra- and intermolecular interactions between nucleic acids and proteins of the virus and the host. This review summarizes the recent data on molecular determinants of such interactions. A particular emphasis is given to the results obtained by utilizing molecular-based planning and modeling techniques.
Collapse
Affiliation(s)
- Katalin Salánki
- MTA ATK, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ákos Gellért
- MTA ATK, Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Katalin Nemes
- MTA ATK, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zoltán Divéki
- MTA ATK, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ervin Balázs
- MTA ATK, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
93
|
Garcia-Ruiz H. Susceptibility Genes to Plant Viruses. Viruses 2018; 10:E484. [PMID: 30201857 PMCID: PMC6164914 DOI: 10.3390/v10090484] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 12/26/2022] Open
Abstract
Plant viruses use cellular factors and resources to replicate and move. Plants respond to viral infection by several mechanisms, including innate immunity, autophagy, and gene silencing, that viruses must evade or suppress. Thus, the establishment of infection is genetically determined by the availability of host factors necessary for virus replication and movement and by the balance between plant defense and viral suppression of defense responses. Host factors may have antiviral or proviral activities. Proviral factors condition susceptibility to viruses by participating in processes essential to the virus. Here, we review current advances in the identification and characterization of host factors that condition susceptibility to plant viruses. Host factors with proviral activity have been identified for all parts of the virus infection cycle: viral RNA translation, viral replication complex formation, accumulation or activity of virus replication proteins, virus movement, and virion assembly. These factors could be targets of gene editing to engineer resistance to plant viruses.
Collapse
Affiliation(s)
- Hernan Garcia-Ruiz
- Nebraska Center for Virology, Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA.
| |
Collapse
|
94
|
Rosa C, Kuo YW, Wuriyanghan H, Falk BW. RNA Interference Mechanisms and Applications in Plant Pathology. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:581-610. [PMID: 29979927 DOI: 10.1146/annurev-phyto-080417-050044] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The origin of RNA interference (RNAi), the cell sentinel system widely shared among eukaryotes that recognizes RNAs and specifically degrades or prevents their translation in cells, is suggested to predate the last eukaryote common ancestor ( 138 ). Of particular relevance to plant pathology is that in plants, but also in some fungi, insects, and lower eukaryotes, RNAi is a primary and effective antiviral defense, and recent studies have revealed that small RNAs (sRNAs) involved in RNAi play important roles in other plant diseases, including those caused by cellular plant pathogens. Because of this, and because RNAi can be manipulated to interfere with the expression of endogenous genes in an intra- or interspecific manner, RNAi has been used as a tool in studies of gene function but also for plant protection. Here, we review the discovery of RNAi, canonical mechanisms, experimental and translational applications, and new RNA-based technologies of importance to plant pathology.
Collapse
Affiliation(s)
- Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yen-Wen Kuo
- Department of Plant Pathology, University of California, Davis, California 95616, USA;
| | - Hada Wuriyanghan
- School of Life Sciences, University of Inner Mongolia, Hohhot, Inner Mongolia 010021, China
| | - Bryce W Falk
- Department of Plant Pathology, University of California, Davis, California 95616, USA;
| |
Collapse
|
95
|
Wang F, Zhao X, Dong Q, Zhou B, Gao Z. Characterization of an RNA silencing suppressor encoded by maize yellow dwarf virus-RMV2. Virus Genes 2018; 54:570-577. [PMID: 29752617 DOI: 10.1007/s11262-018-1565-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/27/2018] [Indexed: 12/19/2022]
Abstract
Maize yellow dwarf virus-RMV2 (MYDV-RMV2) causes dwarfing and yellowing symptoms on leaves in field-grown maize plants in Anhui province in China. Herein, we evaluated the RNA silencing suppressor (RSS) activity of the P0 protein from MYDV-RMV2 by co-infiltration assays using wild-type and GFP-transgenic Nicotiana benthamiana (line 16C). The P0 of MYDV-RMV2 exhibited RSS activity and inhibited RNA silencing both locally and systemically. MYDV-RMV2 P0 acts as an F-box-like motif, and mutations to Ala at positions 67, 68, and 81 in the F-box-like motif (67LPxx81P) abolished the RSS activity of P0. However, MYDV-RMV2 P0 failed to interact with AGO1 from Arabidopsis thaliana. Expressing P0 induced developmental defects. P0 was targeted to both the nuclei and cytoplasm of plant cells. These findings expand our knowledge of the role of polerovirus P0 proteins in RNA silencing.
Collapse
Affiliation(s)
- Fang Wang
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Xia Zhao
- Cereal Institute, Henan Academy of Agricultural Sciences/Henan Provincial Key Laboratory of Maize Biology, Zhengzhou, 450002, Henan, China
| | - Qing Dong
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Benguo Zhou
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China
| | - Zhengliang Gao
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui, China.
| |
Collapse
|
96
|
Qiu Y, Wu Y, Zhang Y, Xu W, Wang C, Zhu S. Profiling of small RNAs derived from cucumber mosaic virus in infected Nicotiana benthamiana plants by deep sequencing. Virus Res 2018; 252:1-7. [PMID: 29763626 DOI: 10.1016/j.virusres.2018.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 12/31/2022]
Abstract
In plants, RNA silencing is a conserved mechanism underlying antiviral immunity. To investigate antiviral responses in Nicotiana benthamiana, we analyzed the profiles of the virus-derived small RNAs (vsRNAs) in wild-type N. benthamiana and NbRDR6 mutant plants infected with the cucumber mosaic virus (CMV) 2b-deficient mutant. We observed that NbRDR6 regulates RNA silencing by producing vsRNAs that trigger an effective antiviral response, while NbRDR1 may nonredundantly and synergistically function with NbRDR6 to mediate immune responses. The vsRNAs in N. benthamiana and NbRDR6 mutant plants mainly comprised 21 or 22 nucleotides, and mostly consisted of a 5'-terminal adenine. Additionally, NbAGO2 expression was significantly up-regulated in N. benthamiana and NbRDR6 mutant plants, suggesting that NbAGO2 is closely associated with the antiviral activities of vsRNAs. The distribution of vsRNAs in the CMV genome was biased toward RNA sense strands in both N. benthamiana and NbRDR6 mutant plants. These findings indicate the specific and conserved antiviral immunity in Nicotiana benthamiana.
Collapse
Affiliation(s)
- Yanhong Qiu
- Chinese Academy of Inspection and Quarantine, Ronghua South Street No. 11, Beijing 100176, China
| | - Yuping Wu
- Chinese Academy of Inspection and Quarantine, Ronghua South Street No. 11, Beijing 100176, China
| | - Yongjiang Zhang
- Chinese Academy of Inspection and Quarantine, Ronghua South Street No. 11, Beijing 100176, China
| | - Wenjie Xu
- Chinese Academy of Inspection and Quarantine, Ronghua South Street No. 11, Beijing 100176, China; China Agricultural University, Yuanmingyuan West Street No. 2, Beijing 100193, China
| | - Chenguang Wang
- Chinese Academy of Inspection and Quarantine, Ronghua South Street No. 11, Beijing 100176, China
| | - Shuifang Zhu
- Chinese Academy of Inspection and Quarantine, Ronghua South Street No. 11, Beijing 100176, China.
| |
Collapse
|
97
|
Polydore S, Axtell MJ. Analysis of RDR1/RDR2/RDR6-independent small RNAs in Arabidopsis thaliana improves MIRNA annotations and reveals unexplained types of short interfering RNA loci. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1051-1063. [PMID: 29654642 DOI: 10.1111/tpj.13919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/26/2018] [Accepted: 03/15/2018] [Indexed: 05/21/2023]
Abstract
Plant small RNAs (sRNAs) modulate key physiological mechanisms through post-transcriptional and transcriptional silencing of gene expression. Small RNAs fall into two major categories: those are reliant on RNA-dependent RNA polymerases (RDRs) for biogenesis and those that are not. Known RDR1/2/6-dependent sRNAs include phased and repeat-associated short interfering RNAs, while known RDR1/2/6-independent sRNAs are primarily microRNAs (miRNA) and other hairpin-derived sRNAs. In this study we produced and analyzed sRNA-seq libraries from rdr1/rdr2/rdr6 triple mutant plants. We found 58 previously annotated miRNA loci that were reliant on RDR1, -2, or -6 function, casting doubt on their classification. We also found 38 RDR1/2/6-independent sRNA loci that are not MIRNAs or otherwise hairpin-derived, and did not fit into other known paradigms for sRNA biogenesis. These 38 sRNA-producing loci have as-yet-undescribed biogenesis mechanisms, and are frequently located in the vicinity of protein-coding genes. Altogether, our analysis suggests that these 38 loci represent one or more undescribed types of sRNA in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Seth Polydore
- Genetics PhD Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Michael J Axtell
- Genetics PhD Program, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
98
|
Samuel GH, Adelman ZN, Myles KM. Antiviral Immunity and Virus-Mediated Antagonism in Disease Vector Mosquitoes. Trends Microbiol 2018; 26:447-461. [PMID: 29395729 PMCID: PMC5910197 DOI: 10.1016/j.tim.2017.12.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022]
Abstract
More than 100 pathogens, spanning multiple virus families, broadly termed 'arthropod-borne viruses (arboviruses)' have been associated with human and/or animal diseases. These viruses persist in nature through transmission cycles that involve alternating replication in susceptible vertebrate and invertebrate hosts. Collectively, these viruses are among the greatest burdens to global health, due to their widespread prevalence, and the severe morbidity and mortality they cause in human and animal hosts. Specific examples of mosquito-borne pathogens include Zika virus (ZIKV), West Nile virus (WNV), dengue virus serotypes 1-4 (DENV 1-4), Japanese encephalitis virus (JEV), yellow fever virus (YFV), chikungunya virus (CHIKV), and Rift Valley fever virus (RVFV). Interactions between arboviruses and the immune pathways of vertebrate hosts have been extensively reviewed. In this review we focus on the antiviral immune pathways present in mosquitoes. We also discuss mechanisms by which mosquito-borne viruses may antagonize antiviral pathways in disease vectors. Finally, we elaborate on the possibility that mosquito-borne viruses may be engaged in an evolutionary arms race with their invertebrate vector hosts, and the possible implications of this for understanding the transmission of mosquito-borne viruses.
Collapse
Affiliation(s)
- Glady Hazitha Samuel
- Texas A & M University, Department of Entomology, Minnie Belle Heep Center, College Station, TX 77843-2475, USA
| | - Zach N Adelman
- Texas A & M University, Department of Entomology, Minnie Belle Heep Center, College Station, TX 77843-2475, USA
| | - Kevin M Myles
- Texas A & M University, Department of Entomology, Minnie Belle Heep Center, College Station, TX 77843-2475, USA.
| |
Collapse
|
99
|
Tomato Spotted Wilt Virus NSs Protein Supports Infection and Systemic Movement of a Potyvirus and Is a Symptom Determinant. Viruses 2018. [PMID: 29538326 PMCID: PMC5869522 DOI: 10.3390/v10030129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plant viruses are inducers and targets of antiviral RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressor proteins that interfere with antiviral RNA silencing. The NSs protein is an RNA silencing suppressor in orthotospoviruses, such as the tomato spotted wilt virus (TSWV). The mechanism of RNA silencing suppression by NSs and its role in virus infection and movement are poorly understood. Here, we cloned and tagged TSWV NSs and expressed it from a GFP-tagged turnip mosaic virus (TuMV-GFP) carrying either a wild-type or suppressor-deficient (AS9) helper component proteinase (HC-Pro). When expressed in cis, NSs restored pathogenicity and promoted systemic infection of suppressor-deficient TuMV-AS9-GFP in Nicotiana benthamiana and Arabidopsis thaliana. Inactivating mutations were introduced in NSs RNA-binding domain one. A genetic analysis with active and suppressor-deficient NSs, in combination with wild-type and mutant plants lacking essential components of the RNA silencing machinery, showed that the NSs insert is stable when expressed from a potyvirus. NSs can functionally replace potyviral HC-Pro, condition virus susceptibility, and promote systemic infection and symptom development by suppressing antiviral RNA silencing through a mechanism that partially overlaps that of potyviral HC-Pro. The results presented provide new insight into the mechanism of silencing suppression by NSs and its effect on virus infection.
Collapse
|
100
|
Zhang X, Ma X, Jing S, Zhang H, Zhang Y. Non-coding RNAs and retroviruses. Retrovirology 2018; 15:20. [PMID: 29426337 PMCID: PMC5807749 DOI: 10.1186/s12977-018-0403-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/31/2018] [Indexed: 02/06/2023] Open
Abstract
Retroviruses can cause severe diseases such as cancer and acquired immunodeficiency syndrome. A unique feature in the life cycle of retroviruses is that their RNA genome is reverse transcribed into double-stranded DNA, which then integrates into the host genome to exploit the host machinery for their benefits. The metazoan genome encodes numerous non-coding RNAs (ncRNA), which act as key regulators in essential cellular processes such as antiviral response. The development of next-generation sequencing technology has greatly accelerated the detection of ncRNAs from viruses and their hosts. ncRNAs have been shown to play important roles in the retroviral life cycle and virus–host interactions. Here, we review recent advances in ncRNA studies with special focus on those have changed our understanding of retroviruses or provided novel strategies to treat retrovirus-related diseases. Many ncRNAs such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are involved in the late phase of the retroviral life cycle. However, their roles in the early phase of viral replication merit further investigations.
Collapse
Affiliation(s)
- Xu Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiancai Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shuliang Jing
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China. .,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China. .,Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Yijun Zhang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|