51
|
Cornelius S, Witz S, Rolletschek H, Möhlmann T. Pyrimidine degradation influences germination seedling growth and production of Arabidopsis seeds. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5623-32. [PMID: 21865177 PMCID: PMC3223058 DOI: 10.1093/jxb/err251] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/30/2011] [Accepted: 07/18/2011] [Indexed: 05/20/2023]
Abstract
PYD1 (dihydropyrimidine dehydogenase) initiates the degradation of pyrimidine nucleobases and is located in plastids. In this study, a physiological analysis of PYD1 employing T-DNA knockout mutants and overexpressors was carried out. PYD1 knockout mutants were restricted in degradation of exogenously provided uracil and accumulated high uracil levels in plant organs throughout development, especially in dry seeds. Moreover, PYD1 knockout mutants showed delayed germination which was accompanied by low invertase activity and decreased monosaccharide levels. Abscisic acid (ABA) is an important regulator of seed germination, and ABA-responsive genes were deregulated in PYD1 knockout mutants. Together with an observed increased PYD1 expression in wild-type seedlings upon ABA treatment, an interference of PYD1 with ABA signalling can be assumed. Constitutive PYD1 overexpression mutants showed increased growth and higher seed number compared with wild-type and knockout mutant plants. During senescence PYD1 expression increased to allow uracil catabolism. From this it is concluded that early in development and during seed production PYD1 is needed to balance pyrimidine catabolism versus salvage.
Collapse
Affiliation(s)
- Stefanie Cornelius
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany
| | - Sandra Witz
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany
| | - Hardy Rolletschek
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Technische Universität Kaiserslautern, Corrensstraße 3, D-06466 Gatersleben, Germany
| | - Torsten Möhlmann
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany
| |
Collapse
|
52
|
Bernard C, Traub M, Kunz HH, Hach S, Trentmann O, Möhlmann T. Equilibrative nucleoside transporter 1 (ENT1) is critical for pollen germination and vegetative growth in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4627-37. [PMID: 21642237 PMCID: PMC3170557 DOI: 10.1093/jxb/err183] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/29/2011] [Accepted: 05/06/2011] [Indexed: 05/18/2023]
Abstract
ENT1 of Arabidopsis thaliana was the first member of the equilibrative nucleoside transporter (ENT) family to be identified in plants and characterized as a cellular, high-affinity nucleoside importer. Evidence is presented here for a tonoplast localization of ENT1 based on proteome data and Western blot analyses. Increased export of adenosine from reconstituted tonoplast preparations from 35S:ENT1 mutants compared with those from the wild type and ENT1-RNAi mutants support this view. Furthermore, increased vacuolar adenosine and vacuolar 2'3'-cAMP (an intermediate of RNA catabolism) contents in ENT1-RNAi mutants, but decreased contents of these metabolites in 35S:ENT1 over-expresser mutants, were observed. An up-regulation of the salvage pathway was detected in the latter mutants, leading to the conclusion that draining the vacuolar adenosine storage by ENT1 over-expression interferes with cellular nucleotide metabolism. As a consequence of the observed metabolic alterations 35S:ENT1 over-expresser mutants exhibited a smaller phenotypic appearance compared with wild-type plants. In addition, ENT1:RNAi mutants exhibited significantly lower in vitro germination of pollen and contained reduced internal and external ATP levels. This indicates that ENT1-mediated nucleosides, especially adenosine transport, is important for nucleotide metabolism, thus influencing growth and pollen germination.
Collapse
Affiliation(s)
- Carsten Bernard
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Postfach 3049, D-67663 Kaiserslautern, Germany
| | - Michaela Traub
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Postfach 3049, D-67663 Kaiserslautern, Germany
| | | | - Stefanie Hach
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Postfach 3049, D-67663 Kaiserslautern, Germany
| | - Oliver Trentmann
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Postfach 3049, D-67663 Kaiserslautern, Germany
| | - Torsten Möhlmann
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Postfach 3049, D-67663 Kaiserslautern, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
53
|
Chen M, Thelen JJ. Plastid uridine salvage activity is required for photoassimilate allocation and partitioning in Arabidopsis. THE PLANT CELL 2011; 23:2991-3006. [PMID: 21828290 PMCID: PMC3180806 DOI: 10.1105/tpc.111.085829] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nucleotides are synthesized from de novo and salvage pathways. To characterize the uridine salvage pathway, two genes, UKL1 and UKL2, that tentatively encode uridine kinase (UK) and uracil phosphoribosyltransferase (UPRT) bifunctional enzymes were studied in Arabidopsis thaliana. T-DNA insertions in UKL1 and UKL2 reduced transcript expression and increased plant tolerance to toxic analogs 5-fluorouridine and 5-fluorouracil. Enzyme activity assays using purified recombinant proteins indicated that UKL1 and UKL2 have UK but not UPRT activity. Subcellular localization using a C-terminal enhanced yellow fluorescent protein fusion indicated that UKL1 and UKL2 localize to plastids. The ukl2 mutant shows reduced transient leaf starch during the day. External application of orotate rescued this phenotype in ukl2, indicating pyrimidine pools are limiting for starch synthesis in ukl2. Intermediates for lignin synthesis were upregulated, and there was increased lignin and reduced cellulose content in the ukl2 mutant. Levels of ATP, ADP, ADP-glucose, UTP, UDP, and UDP-glucose were altered in a light-dependent manner. Seed composition of the ukl1 and ukl2 mutants included lower oil and higher protein compared with the wild type. Unlike single gene mutants, the ukl1 ukl2 double mutant has severe developmental defects and reduced biomass accumulation, indicating these enzymes catalyze redundant reactions. These findings point to crucial roles played by uridine salvage for photoassimilate allocation and partitioning.
Collapse
Affiliation(s)
- Mingjie Chen
- Division of Biochemistry and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA.
| | | |
Collapse
|
54
|
Riegler H, Geserick C, Zrenner R. Arabidopsis thaliana nucleosidase mutants provide new insights into nucleoside degradation. THE NEW PHYTOLOGIST 2011; 191:349-359. [PMID: 21599668 PMCID: PMC3147060 DOI: 10.1111/j.1469-8137.2011.03711.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 02/25/2011] [Indexed: 05/17/2023]
Abstract
A central step in nucleoside and nucleobase salvage pathways is the hydrolysis of nucleosides to their respective nucleobases. In plants this is solely accomplished by nucleosidases (EC 3.2.2.x). To elucidate the importance of nucleosidases for nucleoside degradation, general metabolism, and plant growth, thorough phenotypic and biochemical analyses were performed using Arabidopsis thaliana T-DNA insertion mutants lacking expression of the previously identified genes annotated as uridine ribohydrolases (URH1 and URH2). Comprehensive functional analyses of single and double mutants demonstrated that both isoforms are unimportant for seedling establishment and plant growth, while one participates in uridine degradation. Rather unexpectedly, nucleoside and nucleotide profiling and nucleosidase activity screening of soluble crude extracts revealed a deficiency of xanthosine and inosine hydrolysis in the single mutants, with substantial accumulation of xanthosine in one of them. Mixing of the two mutant extracts, and by in vitro activity reconstitution using a mixture of recombinant URH1 and URH2 proteins, both restored activity, thus providing biochemical evidence that at least these two isoforms are needed for inosine and xanthosine hydrolysis. This mutant study demonstrates the utility of in vivo systems for the examination of metabolic activities, with the discovery of the new substrate xanthosine and elucidation of a mechanism for expanding the nucleosidase substrate spectrum.
Collapse
Affiliation(s)
- Heike Riegler
- Max-Planck-Institute of Molecular Plant Physiology14467 Potsdam, Germany
| | - Claudia Geserick
- Max-Planck-Institute of Molecular Plant Physiology14467 Potsdam, Germany
| | - Rita Zrenner
- Max-Planck-Institute of Molecular Plant Physiology14467 Potsdam, Germany
- Leibniz-Institute of Vegetable and Ornamental Crops14979 Grossbeeren, Germany
| |
Collapse
|
55
|
Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P. Evolution of cytokinin biosynthesis and degradation. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2431-52. [PMID: 21321050 DOI: 10.1093/jxb/err004] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cytokinin hormones are important regulators of development and environmental responses of plants that execute their action via the molecular machinery of signal perception and transduction. The limiting step of the whole process is the availability of the hormone in suitable concentrations in the right place and at the right time to interact with the specific receptor. Hence, the hormone concentrations in individual tissues, cells, and organelles must be properly maintained by biosynthetic and metabolic enzymes. Although there are merely two active cytokinins, isopentenyladenine and its hydroxylated derivative zeatin, a variety of conjugates they may form and the number of enzymes/isozymes with varying substrate specificity involved in their biosynthesis and conversion gives the plant a variety of tools for fine tuning of the hormone level. Recent genome-wide studies revealed the existence of the respective coding genes and gene families in plants and in some bacteria. This review summarizes present knowledge on the enzymes that synthesize cytokinins, form cytokinin conjugates, and carry out irreversible elimination of the hormones, including their phylogenetic analysis and possible variations in different organisms.
Collapse
Affiliation(s)
- Ivo Frébort
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 813/21, CZ-78371 Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
56
|
Jung B, Hoffmann C, Möhlmann T. Arabidopsis nucleoside hydrolases involved in intracellular and extracellular degradation of purines. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:703-11. [PMID: 21235647 DOI: 10.1111/j.1365-313x.2010.04455.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Recently, the first plant nucleoside hydrolase, NSH1 (former designation URH1), was identified at the molecular level. This enzyme's highest hydrolysis capacity is for uridine, thereby balancing pyrimidine salvage and catabolism. NSH1 was found to be less efficient in the hydrolysis of further nucleosides. However, it remained unclear whether purine nucleosides are processed by NSH1. Moreover, the biochemical and physiological functions of further NSH isoforms in Arabidopsis has not been analyzed. Here we show that NSH1 is also able to hydrolyze xanthosine with high efficiency, and thus represents the leading activity in purine and pyrimidine breakdown in a cell. A knockout mutant for NSH1 showed symptoms of accelerated senescence, accompanied by marked accumulation of uridine and xanthosine under conditions of prolonged darkness. The closest, so far uncharacterized, homolog of NSH1, NSH2, was found to act during the late phase of senescence and may support inosine breakdown. NSH3, another NSH isoform, surprisingly functions as an extracellular, purine-specific hydrolase that is involved in degradation of extracellular nucleosides and may participate in wound and pathogen responses.
Collapse
Affiliation(s)
- Benjamin Jung
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany
| | | | | |
Collapse
|
57
|
Belmonte M, Elhiti M, Ashihara H, Stasolla C. Brassinolide-improved development of Brassica napus microspore-derived embryos is associated with increased activities of purine and pyrimidine salvage pathways. PLANTA 2011; 233:95-107. [PMID: 20931222 DOI: 10.1007/s00425-010-1287-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/21/2010] [Indexed: 05/13/2023]
Abstract
Cellular brassinolide (BL) levels regulate the development of Brassica napus microspore-derived embryos (MDEs). Synthesis and degradation of nucleotides were measured on developing MDEs treated with BL or brassinazole (BrZ), a biosynthetic inhibitor of BL. Purine metabolism was investigated by following the metabolic fate of (14)C-labelled adenine and adenosine, substrates of the salvage pathway, and inosine, an intermediate of both salvage and degradation pathways. For pyrimidine, orotic acid, uridine and uracil were employed as markers for the de novo (orotic acid), salvage (uridine and uracil), and degradation (uracil) pathways. Our results indicate that utilization of adenine, adenosine, and uridine for nucleotides and nucleic acids increased significantly in BL-treated embryos at day 15 and remained high throughout the culture period. These metabolic changes were ascribed to the activities of the respective salvage enzymes: adenine phosphoribosyltransferase (EC 2.4.2.7), adenosine kinase (EC 2.7.1.20), and uridine kinase (EC 2.7.1.48), which were induced by BL applications. The BL promotion of salvage synthesis was accompanied by a reduction in the activities of the degradation pathways, suggesting the presence of competitive anabolic and catabolic mechanisms utilizing the labelled precursors. In BrZ-treated embryos, with depleted BL levels, the salvage activity of both purine and pyrimidine nucleotides was reduced and this was associated to structural abnormalities and poor embryonic performance. In these embryos, the activities of major salvage enzymes were consistently lower to those measured in their control (untreated) counterparts.
Collapse
Affiliation(s)
- Mark Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
58
|
Möhlmann T, Bernard C, Hach S, Ekkehard Neuhaus H. Nucleoside transport and associated metabolism. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12 Suppl 1:26-34. [PMID: 20712618 DOI: 10.1111/j.1438-8677.2010.00351.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nucleosides are intermediates of nucleotide metabolism. Nucleotide de novo synthesis generates the nucleoside monophosphates AMP and UMP, which are further processed to all purine and pyrimidine nucleotides involved in multiple cellular reactions, including the synthesis of nucleic acids. Catabolism of these substances results in the formation of nucleosides, which are further degraded by nucleoside hydrolase to nucleobases. Both nucleosides and nucleobases can be exchanged between cells and tissues through multiple isoforms of corresponding transport proteins. After uptake into a cell, nucleosides and nucleobases can undergo salvage reactions or catabolism. Whereas energy is preserved by salvage pathway reactions, catabolism liberates ammonia, which is then incorporated into amino acids. Keeping the balance between nitrogen consumption during nucleotide de novo synthesis and ammonia liberation by nucleotide catabolism is essential for correct plant development. Senescence and seed germination represent situations in plant development where marked fluctuations in nucleotide pools occur. Furthermore, extracellular nucleotide metabolism has become an immensely interesting research topic. In addition, selected aspects of nucleoside transport in yeast, protists and humans are discussed.
Collapse
Affiliation(s)
- T Möhlmann
- Abteilung Pflanzenphysiologie, Fachbereich Biologie, Technische Universität Kaiserslautern, Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
59
|
Stockbridge RB, Schroeder GK, Wolfenden R. The rate of spontaneous cleavage of the glycosidic bond of adenosine. Bioorg Chem 2010; 38:224-8. [PMID: 20580404 DOI: 10.1016/j.bioorg.2010.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
Abstract
Previous estimates of the rate of spontaneous cleavage of the glycosidic bond of adenosine were determined by extrapolating the rates of the acid- and base-catalyzed reactions to neutral pH. Here we show that cleavage also proceeds through a pH-independent mechanism. Rate constants were determined as a function of temperature at pH 7 and a linear Arrhenius plot was constructed. Uncatalyzed cleavage occurs with a rate constant of 3.7x10(-12)s(-1) at 25 degrees C, and the rate enhancement generated by the corresponding glycoside hydrolase is approximately 5x10(12)-fold.
Collapse
Affiliation(s)
- Randy B Stockbridge
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 27599, United States
| | | | | |
Collapse
|
60
|
Zhang J, Vankova R, Malbeck J, Dobrev PI, Xu Y, Chong K, Neff MM. AtSOFL1 and AtSOFL2 act redundantly as positive modulators of the endogenous content of specific cytokinins in Arabidopsis. PLoS One 2009; 4:e8236. [PMID: 20011053 PMCID: PMC2785485 DOI: 10.1371/journal.pone.0008236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/28/2009] [Indexed: 01/07/2023] Open
Abstract
Background Although cytokinins have been known for decades to play important roles in the regulation of plant growth and development, our knowledge of the regulatory mechanism of endogenous content of specific cytokinins remains limited. Methodology/Principal Findings Here, we characterized two SOB five-like (SOFL) genes, AtSOFL1 and AtSOFL2, in Arabidopsis (Arabidopsis thaliana) and showed that they acted redundantly in regulating specific cytokinin levels. Analysis of the translational fusion AtSOFL1:AtSOFL1-GUS and AtSOFL2:AtSOFL2-GUS indicated that AtSOFL1 and AtSOFL2 exhibited similar expression patterns. Both proteins were predominantly expressed in the vascular tissues of developing leaves, flowers and siliques, but barely detectable in roots and stems. Overexpression of either AtSOFL1 or AtSOFL2 led to increased cytokinin content and obvious corresponding mutant phenotypes for both transgenic seedlings and adult plants. In addition, overexpression and site-directed mutagenesis experiments demonstrated that the SOFL domains are necessary for AtSOFL2's overexpression phenotypes. Silencing or disrupting either AtSOFL1 or AtSOFL2 caused no obvious developmental defects. Endogenous cytokinin analysis, however, revealed that compared to the wild type control, the SOFL1-RNAi62 sofl2-1 double mutant accumulated lower levels of trans-zeatin riboside monophosphate (tZRMP) and N6-(Δ2-isopentenyl)adenosine monophosphate (iPRMP), which are biosynthetic intermediates of bioactive cytokinins. The double mutant also displayed decreased response to exogenous cytokinin in both callus-formation and inhibition-of-hypocotyl-elongation assays. Conclusions/Significance Taken together, our data suggest that in plants AtSOFL1 and AtSOFL2 work redundantly as positive modulators in the fine-tuning of specific cytokinin levels as well as responsiveness.
Collapse
Affiliation(s)
- Jingyu Zhang
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Prague, Czech Republic
| | - Jiri Malbeck
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Prague, Czech Republic
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Prague, Czech Republic
| | - Yunyuan Xu
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Kang Chong
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Michael M. Neff
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
- * E-mail:
| |
Collapse
|
61
|
Rasmusson AG, Fernie AR, van Dongen JT. Alternative oxidase: a defence against metabolic fluctuations? PHYSIOLOGIA PLANTARUM 2009; 137:371-82. [PMID: 19558416 DOI: 10.1111/j.1399-3054.2009.01252.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
An increasing number of oscillating or fluctuating cellular systems have been recently described following the adaptation of fluorescent technology. In diverse organisms, these variously involve signalling factors, heat production, central metabolism and reactive oxygen species (ROS). In response to many plant stresses and primarily via the influence of ROS, changes in mRNA and protein levels or in vivo activity of alternative oxidase are often observed. However, in several investigations, a lack of correlation between the mRNA, protein and in vivo activity has been evident. This discrepancy has made it questionable whether the induction of alternative oxidase has importance in regulating alternative pathway activity in vivo, or being diagnostic for a role of alternative oxidase in stress tolerance and ROS avoidance. Here, we suggest a role of alternative oxidase in counteracting deleterious short-term metabolic fluctuations, especially under stress conditions. This model emphasizes the importance of peak activity for establishing protein levels and allows an amalgamation of the present status of physiological, cellular and molecular knowledge.
Collapse
Affiliation(s)
- Allan G Rasmusson
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35B, SE-22362 Lund, Sweden.
| | | | | |
Collapse
|
62
|
Mainguet SE, Gakière B, Majira A, Pelletier S, Bringel F, Guérard F, Caboche M, Berthomé R, Renou JP. Uracil salvage is necessary for early Arabidopsis development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:280-91. [PMID: 19563437 DOI: 10.1111/j.1365-313x.2009.03963.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Uridine nucleotides can be formed by energy-consuming de novo synthesis or by the energy-saving recycling of nucleobases resulting from nucleotide catabolism. Uracil phosphoribosyltransferases (UPRTs; EC 2.4.2.9) are involved in the salvage of pyrimidines by catalyzing the formation of uridine monophosphate (UMP) from uracil and phosphoribosylpyrophosphate. To date, UPRTs are described as non-essential, energy-saving enzymes. In the present work, the six genes annotated as UPRTs in the Arabidopsis genome are examined through phylogenetic and functional complementation approaches and the available T-DNA insertion mutants are characterized. We show that a single nuclear gene encoding a protein targeted to plastids, UPP, is responsible for almost all UPRT activity in Arabidopsis. The inability to salvage uracil caused a light-dependent dramatic pale-green to albino phenotype, dwarfism and the inability to produce viable progeny in loss-of-function mutants. Plastid biogenesis and starch accumulation were affected in all analysed tissues, with the exception of stomata. Therefore we propose that uracil salvage is of major importance for plant development.
Collapse
Affiliation(s)
- Samuel E Mainguet
- URGV, UMR 1165 Institut National de la Recherche Agronomique-CNRS, Evry cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H. Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. THE PLANT CELL 2009; 21:3152-69. [PMID: 19837870 PMCID: PMC2782294 DOI: 10.1105/tpc.109.068676] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cytokinins play crucial roles in diverse aspects of plant growth and development. Spatiotemporal distribution of bioactive cytokinins is finely regulated by metabolic enzymes. LONELY GUY (LOG) was previously identified as a cytokinin-activating enzyme that works in the direct activation pathway in rice (Oryza sativa) shoot meristems. In this work, nine Arabidopsis thaliana LOG genes (At LOG1 to LOG9) were predicted as homologs of rice LOG. Seven At LOGs, which are localized in the cytosol and nuclei, had enzymatic activities equivalent to that of rice LOG. Conditional overexpression of At LOGs in transgenic Arabidopsis reduced the content of N(6)-(Delta(2)-isopentenyl)adenine (iP) riboside 5'-phosphates and increased the levels of iP and the glucosides. Multiple mutants of At LOGs showed a lower sensitivity to iP riboside in terms of lateral root formation and altered root and shoot morphology. Analyses of At LOG promoter:beta-glucuronidase fusion genes revealed differential expression of LOGs in various tissues during plant development. Ectopic overexpression showed pleiotropic phenotypes, such as promotion of cell division in embryos and leaf vascular tissues, reduced apical dominance, and a delay of leaf senescence. Our results strongly suggest that the direct activation pathway via LOGs plays a pivotal role in regulating cytokinin activity during normal growth and development in Arabidopsis.
Collapse
Affiliation(s)
- Takeshi Kuroha
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan
| | - Hiroki Tokunaga
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Mikiko Kojima
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan
| | - Nanae Ueda
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan
| | - Takashi Ishida
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan
| | - Shingo Nagawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033 Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033 Japan
| | - Keiko Sugimoto
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan
- Address correspondence to
| |
Collapse
|
64
|
Mach J. Uridine ribohydrolase and the balance between nucleotide degradation and salvage. THE PLANT CELL 2009; 21:699. [PMID: 19293368 PMCID: PMC2671702 DOI: 10.1105/tpc.109.210312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|