51
|
Zhang Z, Guo J, Zhao Y, Chen J. Identification and characterization of maize ACD6-like gene reveal ZmACD6 as the maize orthologue conferring resistance to Ustilago maydis. PLANT SIGNALING & BEHAVIOR 2019; 14:e1651604. [PMID: 31397626 PMCID: PMC6768228 DOI: 10.1080/15592324.2019.1651604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 05/22/2023]
Abstract
Enhancing broad-spectrum resistance is a major goal of crop breeding. However, broad-spectrum resistance has not been thoroughly investigated, and its underlying molecular mechanisms remain elusive. In the model plant Arabidopsis (Arabidopsis thaliana), ACCELERATED CELL DEATH6 (ACD6) is a key component of broad-spectrum resistance that acts in a positive feedback loop with salicylic acid (SA) to regulate multiple pattern recognition receptors. However, the role of ACD6 in disease resistance in crop plants is unclear. Here, we show that the transcript of ANK23, one of the 15 ACD6-like genes in maize (Zea mays), is induced by SA and by infection with the pathogenic fungus Ustilago maydis. Heterologous expression of ANK23 restored disease resistance in the Arabidopsis mutant acd6-2. We show that ANK23 is a maize ortholog of ACD6 and therefore rename ANK23 as ZmACD6. Furthermore, using CRISPR/Cas9, we generated ZmACD6 knockout maize plants, which are more susceptible to U. maydis than wild-type plants. We also identified a maize line (SC-9) with relatively high ZmACD6 expression levels from a diverse natural maize population. SC-9 has increased disease resistance to U. maydis and defense activation, suggesting a practical approach to cultivate elite varieties with enhanced disease resistance.
Collapse
Affiliation(s)
- Zhongqin Zhang
- Hebei Sub-center of the Chinese National Maize Improvement Center, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Agricultural University of Hebei, Baoding, China
- CONTACT Zhongqin Zhang Hebei Sub-center of the Chinese National Maize Improvement Center, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Agricultural University of Hebei, Baoding, China
| | - Jinjie Guo
- Hebei Sub-center of the Chinese National Maize Improvement Center, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Agricultural University of Hebei, Baoding, China
| | - Yongfeng Zhao
- Hebei Sub-center of the Chinese National Maize Improvement Center, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Agricultural University of Hebei, Baoding, China
| | - Jingtang Chen
- Hebei Sub-center of the Chinese National Maize Improvement Center, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
52
|
Vaid N, Laitinen RAE. Diverse paths to hybrid incompatibility in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:199-213. [PMID: 30098060 DOI: 10.1111/tpj.14061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 05/28/2023]
Abstract
One of the most essential questions of biology is to understand how different species have evolved. Hybrid incompatibility, a phenomenon in which hybrids show reduced fitness in comparison with their parents, can result in reproductive isolation and speciation. Therefore, studying hybrid incompatibility provides an entry point in understanding speciation. Hybrid incompatibilities are known throughout taxa, and the underlying mechanisms have mystified scientists since the theory of evolution by means of natural selection was introduced. In plants, it is only in recent years that the high-throughput genetic and molecular tools have become available for the Arabidopsis genus, thus helping to shed light on the different genes and molecular and evolutionary mechanisms that underlie hybrid incompatibilities. In this review, we highlight the current knowledge of diverse mechanisms that are known to contribute to hybrid incompatibility.
Collapse
Affiliation(s)
- Neha Vaid
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Roosa A E Laitinen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
53
|
In silico Analysis of qBFR4 and qLBL5 in Conferring Quantitative Resistance Against Rice Blast. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.03] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
54
|
Qi G, Chen J, Chang M, Chen H, Hall K, Korin J, Liu F, Wang D, Fu ZQ. Pandemonium Breaks Out: Disruption of Salicylic Acid-Mediated Defense by Plant Pathogens. MOLECULAR PLANT 2018; 11:1427-1439. [PMID: 30336330 DOI: 10.1016/j.molp.2018.10.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 05/26/2023]
Abstract
Salicylic acid (SA) or 2-hydroxybenoic acid is a phenolic plant hormone that plays an essential role in plant defense against biotrophic and semi-biotrophic pathogens. In Arabidopsis, SA is synthesized from chorismate in the chloroplast through the ICS1 (isochorismate synthase I) pathway during pathogen infection. The transcription co-activator NPR1 (Non-Expresser of Pathogenesis-Related Gene 1), as the master regulator of SA signaling, interacts with transcription factors to induce the expression of anti-microbial PR (Pathogenesis-Related) genes. To establish successful infections, plant bacterial, oomycete, fungal, and viral pathogens have evolved at least three major strategies to disrupt SA-mediated defense. The first strategy is to reduce SA accumulation directly by converting SA into its inactive derivatives. The second strategy is to interrupt SA biosynthesis by targeting the ICS1 pathway. In the third major strategy, plant pathogens deploy different mechanisms to interfere with SA downstream signaling. The wide array of strategies deployed by plant pathogens highlights the crucial role of disruption of SA-mediated plant defense in plant pathogenesis. A deeper understanding of this topic will greatly expand our knowledge of how plant pathogens cause diseases and consequently pave the way for the development of more effective ways to control these diseases.
Collapse
Affiliation(s)
- Guang Qi
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Jian Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Ming Chang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Katherine Hall
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - John Korin
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China.
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
55
|
Fordyce RF, Soltis NE, Caseys C, Gwinner R, Corwin JA, Atwell S, Copeland D, Feusier J, Subedy A, Eshbaugh R, Kliebenstein DJ. Digital Imaging Combined with Genome-Wide Association Mapping Links Loci to Plant-Pathogen Interaction Traits. PLANT PHYSIOLOGY 2018; 178:1406-1422. [PMID: 30266748 PMCID: PMC6236616 DOI: 10.1104/pp.18.00851] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/18/2018] [Indexed: 05/04/2023]
Abstract
Plant resistance to generalist pathogens with broad host ranges, such as Botrytis cinerea (Botrytis), is typically quantitative and highly polygenic. Recent studies have begun to elucidate the molecular genetic basis of plant-pathogen interactions using commonly measured traits, including lesion size and/or pathogen biomass. However, with the advent of digital imaging and high-throughput phenomics, there are a large number of additional traits available to study quantitative resistance. In this study, we used high-throughput digital imaging analysis to investigate previously poorly characterized visual traits of plant-pathogen interactions related to disease resistance using the Arabidopsis (Arabidopsis thaliana)/Botrytis pathosystem. From a large collection of visual lesion trait measurements, we focused on color, shape, and size to test how these aspects of the Arabidopsis/Botrytis interaction are genetically related. Through genome-wide association mapping in Arabidopsis, we show that lesion color and shape are genetically separable traits associated with plant disease resistance. Moreover, by employing defined mutants in 23 candidate genes identified from the genome-wide association mapping, we demonstrate links between loci and each of the different plant-pathogen interaction traits. These results expand our understanding of the functional mechanisms driving plant disease resistance.
Collapse
Affiliation(s)
- Rachel F Fordyce
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Nicole E Soltis
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Celine Caseys
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Raoni Gwinner
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Jason A Corwin
- Department of Plant Sciences, University of California, Davis, California 95616
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309-0334
| | - Susana Atwell
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Daniel Copeland
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Julie Feusier
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Anushriya Subedy
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Robert Eshbaugh
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, California 95616
- DynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
56
|
Zhu W, Zaidem M, Van de Weyer AL, Gutaker RM, Chae E, Kim ST, Bemm F, Li L, Todesco M, Schwab R, Unger F, Beha MJ, Demar M, Weigel D. Modulation of ACD6 dependent hyperimmunity by natural alleles of an Arabidopsis thaliana NLR resistance gene. PLoS Genet 2018; 14:e1007628. [PMID: 30235212 PMCID: PMC6168153 DOI: 10.1371/journal.pgen.1007628] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/02/2018] [Accepted: 08/14/2018] [Indexed: 01/09/2023] Open
Abstract
Plants defend themselves against pathogens by activating an array of immune responses. Unfortunately, immunity programs may also cause unintended collateral damage to the plant itself. The quantitative disease resistance gene ACCELERATED CELL DEATH 6 (ACD6) serves to balance growth and pathogen resistance in natural populations of Arabidopsis thaliana. An autoimmune allele, ACD6-Est, which strongly reduces growth under specific laboratory conditions, is found in over 10% of wild strains. There is, however, extensive variation in the strength of the autoimmune phenotype expressed by strains with an ACD6-Est allele, indicative of genetic modifiers. Quantitative genetic analysis suggests that ACD6 activity can be modulated in diverse ways, with different strains often carrying different large-effect modifiers. One modifier is SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), located in a highly polymorphic cluster of nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes, which are prototypes for qualitative disease resistance genes. Allelic variation at SNC1 correlates with ACD6-Est activity in multiple accessions, and a common structural variant affecting the NL linker sequence can explain differences in SNC1 activity. Taken together, we find that an NLR gene can mask the activity of an ACD6 autoimmune allele in natural A. thaliana populations, thereby linking different arms of the plant immune system. Plants defend themselves against pathogens by activating immune responses. Unfortunately, these can cause unintended collateral damage to the plant itself. Nevertheless, some wild plants have genetic variants that confer a low threshold for the activation of immunity. While these enable a plant to respond particularly quickly to pathogen attack, such variants might be potentially dangerous. We are investigating one such variant of the immune gene ACCELERATED CELL DEATH 6 (ACD6) in the plant Arabidopsis thaliana. We discovered that there are variants at other genetic loci that can mask the effects of an overly active ACD6 gene. One of these genes, SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), codes for a known immune receptor. The SNC1 variant that attenuates ACD6 activity is rather common in A. thaliana populations, suggesting that new combinations of the hyperactive ACD6 variant and this antagonistic SNC1 variant will often arise by natural crosses. Similarly, because the two genes are unlinked, outcrossing will often lead to the hyperactive ACD6 variants being unmasked again. We propose that allelic diversity at SNC1 contributes to the maintenance of the hyperactive ACD6 variant in natural A. thaliana populations.
Collapse
Affiliation(s)
- Wangsheng Zhu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anna-Lena Van de Weyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rafal M. Gutaker
- Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marco Todesco
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Frederik Unger
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marcel Janis Beha
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Monika Demar
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail:
| |
Collapse
|
57
|
Huang XX, Zhu GQ, Liu Q, Chen L, Li YJ, Hou BK. Modulation of Plant Salicylic Acid-Associated Immune Responses via Glycosylation of Dihydroxybenzoic Acids. PLANT PHYSIOLOGY 2018; 176:3103-3119. [PMID: 29483147 PMCID: PMC5884596 DOI: 10.1104/pp.17.01530] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/16/2018] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA) plays a crucial role in plant innate immunity. The deployment of SA-associated immune responses is primarily affected by SA concentration, which is determined by a balance between SA biosynthesis and catabolism. However, the mechanisms regulating SA homeostasis are poorly understood. In this study, we characterized a unique UDP-glycosyltransferase, UGT76D1, which plays an important role in SA homeostasis and associated immune responses in Arabidopsis (Arabidopsis thaliana). Expression of UGT76D1 was induced by treatment with both the pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 and SA. Overexpression of UGT76D1 resulted in high SA accumulation, significant up-regulation of pathogen-related genes, and a hypersensitive response (HR)-like lesion mimic phenotype. This HR-like phenotype was not observed following UGT76D1 overexpression in SA-deficient NahG transgenic or sid2 plants, suggesting that the phenotype is SA dependent. Biochemical assays showed that UGT76D1 glycosylated 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-dihydroxybenzoic acid (2,5-DHBA), the major catabolic forms of SA, to their Glc and Xyl conjugates in vitro and in vivo. Moreover, in a mutant background blocked in the formation of 2,3-DHBA and 2,5-DHBA, UGT76D1 overexpression did not cause a HR-like lesion mimic phenotype. Following infection with Pst DC3000, UGT76D1 knockout mutants displayed a delayed immune response, with reduced levels of DHBA glycosides and SA, and down-regulated SA synthase expression. By contrast, UGT76D1 overexpression lines showed an enhanced immune response and increased SA biosynthesis before and after pathogen infection. Thus, we propose that UGT76D1 plays an important role in SA homeostasis and plant immune responses by facilitating glycosylation of dihydroxybenzoic acids.
Collapse
Affiliation(s)
- Xu-Xu Huang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, China
| | - Guo-Qing Zhu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, China
| | - Qian Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, China
| | - Lu Chen
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, China
| | - Yan-Jie Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, China
| | - Bing-Kai Hou
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, China
| |
Collapse
|
58
|
Radojičić A, Li X, Zhang Y. Salicylic Acid: A Double-Edged Sword for Programed Cell Death in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1133. [PMID: 30131819 PMCID: PMC6090181 DOI: 10.3389/fpls.2018.01133] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/13/2018] [Indexed: 05/04/2023]
Abstract
In plants, salicylic acid (SA) plays important roles in regulating immunity and programed cell death. Early studies revealed that increased SA accumulation is associated with the onset of hypersensitive reaction during resistance gene-mediated defense responses. SA was also found to accumulate to high levels in lesion-mimic mutants and in some cases the accumulation of SA is required for the spontaneous cell death phenotype. Meanwhile, high levels of SA have been shown to negatively regulate plant cell death during effector-triggered immunity, suggesting that SA has dual functions in cell death control. The molecular mechanisms of how SA regulates cell death in plants are discussed.
Collapse
Affiliation(s)
- Ana Radojičić
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Xin Li
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
- The Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada
| | - Yuelin Zhang
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Yuelin Zhang,
| |
Collapse
|
59
|
Fusari CM, Kooke R, Lauxmann MA, Annunziata MG, Enke B, Hoehne M, Krohn N, Becker FFM, Schlereth A, Sulpice R, Stitt M, Keurentjes JJB. Genome-Wide Association Mapping Reveals That Specific and Pleiotropic Regulatory Mechanisms Fine-Tune Central Metabolism and Growth in Arabidopsis. THE PLANT CELL 2017; 29:2349-2373. [PMID: 28954812 PMCID: PMC5774568 DOI: 10.1105/tpc.17.00232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/30/2017] [Accepted: 09/25/2017] [Indexed: 05/18/2023]
Abstract
Central metabolism is a coordinated network that is regulated at multiple levels by resource availability and by environmental and developmental cues. Its genetic architecture has been investigated by mapping metabolite quantitative trait loci (QTL). A more direct approach is to identify enzyme activity QTL, which distinguishes between cis-QTL in structural genes encoding enzymes and regulatory trans-QTL. Using genome-wide association studies, we mapped QTL for 24 enzyme activities, nine metabolites, three structural components, and biomass in Arabidopsis thaliana We detected strong cis-QTL for five enzyme activities. A cis-QTL for UDP-glucose pyrophosphorylase activity in the UGP1 promoter is maintained through balancing selection. Variation in acid invertase activity reflects multiple evolutionary events in the promoter and coding region of VAC-INVcis-QTL were also detected for ADP-glucose pyrophosphorylase, fumarase, and phosphoglucose isomerase activity. We detected many trans-QTL, including transcription factors, E3 ligases, protein targeting components, and protein kinases, and validated some by knockout analysis. trans-QTL are more frequent but tend to have smaller individual effects than cis-QTL. We detected many colocalized QTL, including a multitrait QTL on chromosome 4 that affects six enzyme activities, three metabolites, protein, and biomass. These traits are coordinately modified by different ACCELERATED CELL DEATH6 alleles, revealing a trade-off between metabolism and defense against biotic stress.
Collapse
Affiliation(s)
- Corina M Fusari
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Rik Kooke
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
- Centre for Biosystems Genomics, Wageningen Campus, 6708 PB Wageningen, The Netherlands
| | - Martin A Lauxmann
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Beatrice Enke
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Melanie Hoehne
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Nicole Krohn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Armin Schlereth
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ronan Sulpice
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
- Centre for Biosystems Genomics, Wageningen Campus, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
60
|
Jin J, Zhang H, Zhang J, Liu P, Chen X, Li Z, Xu Y, Lu P, Cao P. Integrated transcriptomics and metabolomics analysis to characterize cold stress responses in Nicotiana tabacum. BMC Genomics 2017; 18:496. [PMID: 28662642 PMCID: PMC5492280 DOI: 10.1186/s12864-017-3871-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND CB-1 and K326 are closely related tobacco cultivars; however, their cold tolerance capacities are different. K326 is much more cold tolerant than CB-1. RESULTS We studied the transcriptomes and metabolomes of CB-1 and K326 leaf samples treated with cold stress. Totally, we have identified 14,590 differentially expressed genes (DEGs) in CB-1 and 14,605 DEGs in K326; there was also 200 differentially expressed metabolites in CB-1 and 194 in K326. Moreover, there were many overlapping genes (around 50%) that were cold-responsive in both plant cultivars, although there were also many differences in the cold responsive genes between the two cultivars. Importantly, for most of the overlapping cold responsive genes, the extent of the changes in expression were typically much more pronounced in K326 than in CB-1, which may help explain the superior cold tolerance of K326. Similar results were found in the metabolome analysis, particularly with the analysis of primary metabolites, including amino acids, organic acids, and sugars. The large number of specific responsive genes and metabolites highlight the complex regulatory mechanisms associated with cold stress in tobacco. In addition, our work implies that the energy metabolism and hormones may function distinctly between CB-1 and K326. CONCLUSIONS Differences in gene expression and metabolite levels following cold stress treatment seem likely to have contributed to the observed difference in the cold tolerance phenotype of these two tobacco cultivars.
Collapse
Affiliation(s)
- Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Hui Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Jianfeng Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Xia Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Peng Lu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| |
Collapse
|
61
|
Velásquez AC, Oney M, Huot B, Xu S, He SY. Diverse mechanisms of resistance to Pseudomonas syringae in a thousand natural accessions of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2017; 214:1673-1687. [PMID: 28295393 PMCID: PMC5423860 DOI: 10.1111/nph.14517] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/07/2017] [Indexed: 05/03/2023]
Abstract
Plants are continuously threatened by pathogen attack and, as such, they have evolved mechanisms to evade, escape and defend themselves against pathogens. However, it is not known what types of defense mechanisms a plant would already possess to defend against a potential pathogen that has not co-evolved with the plant. We addressed this important question in a comprehensive manner by studying the responses of 1041 accessions of Arabidopsis thaliana to the foliar pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. We characterized the interaction using a variety of established methods, including different inoculation techniques, bacterial mutant strains, and assays for the hypersensitive response, salicylic acid (SA) accumulation and reactive oxygen species production . Fourteen accessions showed resistance to infection by Pst DC3000. Of these, two accessions had a surface-based mechanism of resistance, six showed a hypersensitive-like response while three had elevated SA levels. Interestingly, A. thaliana was discovered to have a recognition system for the effector AvrPto, and HopAM1 was found to modulate Pst DC3000 resistance in two accessions. Our comprehensive study has significant implications for the understanding of natural disease resistance mechanisms at the species level and for the ecology and evolution of plant-pathogen interactions.
Collapse
Affiliation(s)
| | - Matthew Oney
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA
| | - Bethany Huot
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - Shu Xu
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, P. R. China
| | - Sheng Yang He
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Howard Hughes Medical Institute, Gordon and Betty Moore Foundation, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
62
|
Yanagawa D, Ishikawa T, Imai H. Synthesis and degradation of long-chain base phosphates affect fumonisin B 1-induced cell death in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2017; 130:571-585. [PMID: 28303405 DOI: 10.1007/s10265-017-0923-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/07/2016] [Indexed: 05/12/2023]
Abstract
Fumonisin B1 (FB1), an inducer of cell death, disrupts sphingolipid metabolism; large accumulations of de novo synthesized free long-chain bases (LCBs) are observed. However, it remains unclear whether tolerance to FB1 toxicity in plants is connected with preventing the accumulation of free LCBs through their phosphorylation. Here a workflow for the extraction, detection and quantification of LCB phosphates (LCBPs) in Arabidopsis thaliana was developed. We studied the effect of expression of genes for three enzymes involved in the synthesis and degradation of LCBPs, LCB kinase (LCBK1), LCBP phosphatase (SPP1) and lyase (DPL1) on FB1-induced cell death. As expected, large accumulations of saturated free LCBs, dihydrosphingosine and phytosphingosine, were observed in the FB1-treated leaves. On the other hand, a high level of sphingenine phosphate was found in the FB1-treated leaves even though free sphingenine was found in low amounts in these leaves. In comparison of WT and spp1 plants, the LCBP/LCB ratio is likely to be correlated with the degree of FB1-induced cell death determined by trypan blue staining. The FB1-treated leaves in dpl1 plants showed severe cell death and the elevation of free LCBs and LCBPs. LCBK1-OX and -KD plants showed resistance and sensitivity to FB1, respectively, whereas free LCB and LCBP levels in FB1-treated LCBK1-OX and -KD plants were moderately different to those in FB1-treated WT plants. Overall, the findings described here suggest that LCBP/LCB homeostasis is an important topic that participates in the tolerance of plant cells to FB1.
Collapse
Affiliation(s)
- Daiki Yanagawa
- Department of Biology, Graduate School of Natural Science, Konan University, Kobe, 658-8501, Japan
- The Institute for Integrative Neurobiology, Konan University, Kobe, 658-8501, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Hiroyuki Imai
- Department of Biology, Graduate School of Natural Science, Konan University, Kobe, 658-8501, Japan.
- The Institute for Integrative Neurobiology, Konan University, Kobe, 658-8501, Japan.
| |
Collapse
|
63
|
Zhang Z, Tateda C, Jiang SC, Shrestha J, Jelenska J, Speed DJ, Greenberg JT. A Suite of Receptor-Like Kinases and a Putative Mechano-Sensitive Channel Are Involved in Autoimmunity and Plasma Membrane-Based Defenses in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:150-160. [PMID: 28051349 DOI: 10.1094/mpmi-09-16-0184-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, cell surface pattern recognition receptors (PRRs) provide a first line of defense against pathogens. Although each PRR recognizes a specific ligand, they share common signaling outputs, such as callose and other cell wall-based defenses. Several PRRs are also important for callose induction in response to the defense signal salicylic acid (SA). The extent to which common components are needed for PRR signaling outputs is not known. The gain-of-function Arabidopsis mutant of ACCELERATED CELL DEATH6 (ACD6) acd6-1 shows constitutive callose production that partially depends on PRRs. ACD6-1 (and ACD6) forms complexes with the PRR FLAGELLIN SENSING2, and ACD6 is needed for responses to several PRR ligands. Thus, ACD6-1 could serve as a probe to identify additional proteins important for PRR-mediated signaling. Candidate signaling proteins (CSPs), identified in our proteomic screen after immunoprecipitation of hemagglutinin (HA)-tagged ACD6-1, include several subfamilies of receptor-like kinase (RLK) proteins and a MECHANO-SENSITIVE CHANNEL OF SMALL CONDUCTANCE-LIKE 4 (MSL4). In acd6-1, CSPs contribute to autoimmunity. In wild type, CSPs are needed for defense against bacteria and callose responses to two or more microbial-derived patterns and an SA agonist. CSPs may function to either i) promote the assembly of signaling complexes, ii) regulate the output of known PRRs, or both.
Collapse
Affiliation(s)
- Zhongqin Zhang
- Department of Molecular Genetics and Cell Biology, The University of Chicago
| | - Chika Tateda
- Department of Molecular Genetics and Cell Biology, The University of Chicago
| | - Shang-Chuan Jiang
- Department of Molecular Genetics and Cell Biology, The University of Chicago
| | - Jay Shrestha
- Department of Molecular Genetics and Cell Biology, The University of Chicago
| | - Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, The University of Chicago
| | | | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago
| |
Collapse
|
64
|
Świadek M, Proost S, Sieh D, Yu J, Todesco M, Jorzig C, Rodriguez Cubillos AE, Plötner B, Nikoloski Z, Chae E, Giavalisco P, Fischer A, Schröder F, Kim ST, Weigel D, Laitinen RAE. Novel allelic variants in ACD6 cause hybrid necrosis in local collection of Arabidopsis thaliana. THE NEW PHYTOLOGIST 2017; 213:900-915. [PMID: 27588563 DOI: 10.1111/nph.14155] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
Hybrid necrosis is a common type of hybrid incompatibility in plants. This phenomenon is caused by deleterious epistatic interactions, resulting in spontaneous activation of plant defenses associated with leaf necrosis, stunted growth and reduced fertility in hybrids. Specific combinations of alleles of ACCELERATED CELL DEATH 6 (ACD6) have been shown to be a common cause of hybrid necrosis in Arabidopsis thaliana. Increased ACD6 activity confers broad-spectrum resistance against biotrophic pathogens but reduces biomass production. We generated 996 crosses among individuals derived from a single collection area around Tübingen (Germany) and screened them for hybrid necrosis. Necrotic hybrids were further investigated by genetic linkage, amiRNA silencing, genomic complementation and metabolic profiling. Restriction site associated DNA (RAD)-sequencing was used to understand genetic diversity in the collection sites containing necrosis-inducing alleles. Novel combinations of ACD6 alleles found in neighbouring stands were found to activate the A. thaliana immune system. In contrast to what we observed in controlled conditions, necrotic hybrids did not show reduced fitness in the field. Metabolic profiling revealed changes associated with the activation of the immune system in ACD6-dependent hybrid necrosis. This study expands our current understanding of the active role of ACD6 in mediating trade-offs between defense responses and growth in A. thaliana.
Collapse
Affiliation(s)
- Magdalena Świadek
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Sebastian Proost
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- University of Potsdam, Potsdam, 14476, Germany
| | - Daniela Sieh
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Jing Yu
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Marco Todesco
- Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Christian Jorzig
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | | | - Björn Plötner
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Eunyoung Chae
- Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Patrick Giavalisco
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Axel Fischer
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Florian Schröder
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Sang-Tae Kim
- Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Roosa A E Laitinen
- Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| |
Collapse
|
65
|
Hashimoto M, Neriya Y, Keima T, Iwabuchi N, Koinuma H, Hagiwara-Komoda Y, Ishikawa K, Himeno M, Maejima K, Yamaji Y, Namba S. EXA1, a GYF domain protein, is responsible for loss-of-susceptibility to plantago asiatica mosaic virus in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:120-131. [PMID: 27402258 DOI: 10.1111/tpj.13265] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
One of the plant host resistance machineries to viruses is attributed to recessive alleles of genes encoding critical host factors for virus infection. This type of resistance, also referred to as recessive resistance, is useful for revealing plant-virus interactions and for breeding antivirus resistance in crop plants. Therefore, it is important to identify a novel host factor responsible for robust recessive resistance to plant viruses. Here, we identified a mutant from an ethylmethane sulfonate (EMS)-mutagenized Arabidopsis population which confers resistance to plantago asiatica mosaic virus (PlAMV, genus Potexvirus). Based on map-based cloning and single nucleotide polymorphism analysis, we identified a premature termination codon in a functionally unknown gene containing a GYF domain, which binds to proline-rich sequences in eukaryotes. Complementation analyses and robust resistance to PlAMV in a T-DNA mutant demonstrated that this gene, named Essential for poteXvirus Accumulation 1 (EXA1), is indispensable for PlAMV infection. EXA1 contains a GYF domain and a conserved motif for interaction with eukaryotic translation initiation factor 4E (eIF4E), and is highly conserved among monocot and dicot species. Analysis using qRT-PCR and immunoblotting revealed that EXA1 was expressed in all tissues, and was not transcriptionally responsive to PlAMV infection in Arabidopsis plants. Moreover, accumulation of PlAMV and a PlAMV-derived replicon was drastically diminished in the initially infected cells by the EXA1 deficiency. Accumulation of two other potexviruses also decreased in exa1-1 mutant plants. Our results provided a functional annotation to GYF domain-containing proteins by revealing the function of the highly conserved EXA1 gene in plant-virus interactions.
Collapse
Affiliation(s)
- Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yutaro Neriya
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takuya Keima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Nozomu Iwabuchi
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroaki Koinuma
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuka Hagiwara-Komoda
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuya Ishikawa
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Misako Himeno
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kensaku Maejima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
66
|
Krizek BA, Bequette CJ, Xu K, Blakley IC, Fu ZQ, Stratmann JW, Loraine AE. RNA-Seq Links the Transcription Factors AINTEGUMENTA and AINTEGUMENTA-LIKE6 to Cell Wall Remodeling and Plant Defense Pathways. PLANT PHYSIOLOGY 2016; 171:2069-84. [PMID: 27208279 PMCID: PMC4936541 DOI: 10.1104/pp.15.01625] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/18/2016] [Indexed: 05/18/2023]
Abstract
AINTEGUMENTA (ANT) and AINTEGUMENTA-LIKE6 (AIL6) are two related transcription factors in Arabidopsis (Arabidopsis thaliana) that have partially overlapping roles in several aspects of flower development, including floral organ initiation, identity specification, growth, and patterning. To better understand the biological processes regulated by these two transcription factors, we performed RNA sequencing (RNA-Seq) on ant ail6 double mutants. We identified thousands of genes that are differentially expressed in the double mutant compared with the wild type. Analyses of these genes suggest that ANT and AIL6 regulate floral organ initiation and growth through modifications to the cell wall polysaccharide pectin. We found reduced levels of demethylesterified homogalacturonan and altered patterns of auxin accumulation in early stages of ant ail6 flower development. The RNA-Seq experiment also revealed cross-regulation of AIL gene expression at the transcriptional level. The presence of a number of overrepresented Gene Ontology terms related to plant defense in the set of genes differentially expressed in ant ail6 suggest that ANT and AIL6 also regulate plant defense pathways. Furthermore, we found that ant ail6 plants have elevated levels of two defense hormones: salicylic acid and jasmonic acid, and show increased resistance to the bacterial pathogen Pseudomonas syringae These results suggest that ANT and AIL6 regulate biological pathways that are critical for both development and defense.
Collapse
Affiliation(s)
- Beth A Krizek
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina (B.A.K., C.J.B., K.X., Z.Q.F., J.W.S.); andDepartment of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina (I.C.B., A.E.L.)
| | - Carlton J Bequette
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina (B.A.K., C.J.B., K.X., Z.Q.F., J.W.S.); andDepartment of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina (I.C.B., A.E.L.)
| | - Kaimei Xu
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina (B.A.K., C.J.B., K.X., Z.Q.F., J.W.S.); andDepartment of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina (I.C.B., A.E.L.)
| | - Ivory C Blakley
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina (B.A.K., C.J.B., K.X., Z.Q.F., J.W.S.); andDepartment of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina (I.C.B., A.E.L.)
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina (B.A.K., C.J.B., K.X., Z.Q.F., J.W.S.); andDepartment of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina (I.C.B., A.E.L.)
| | - Johannes W Stratmann
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina (B.A.K., C.J.B., K.X., Z.Q.F., J.W.S.); andDepartment of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina (I.C.B., A.E.L.)
| | - Ann E Loraine
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina (B.A.K., C.J.B., K.X., Z.Q.F., J.W.S.); andDepartment of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina (I.C.B., A.E.L.)
| |
Collapse
|
67
|
Corwin JA, Subedy A, Eshbaugh R, Kliebenstein DJ. Expansive Phenotypic Landscape of Botrytis cinerea Shows Differential Contribution of Genetic Diversity and Plasticity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:287-298. [PMID: 26828401 DOI: 10.1094/mpmi-09-15-0196-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The modern evolutionary synthesis suggests that both environmental variation and genetic diversity are critical determinants of pathogen success. However, the relative contribution of these two sources of variation is not routinely measured. To estimate the relative contribution of plasticity and genetic diversity for virulence-associated phenotypes in a generalist plant pathogen, we grew a population of 15 isolates of Botrytis cinerea from throughout the world, under a variety of in vitro and in planta conditions. Under in planta conditions, phenotypic differences between the isolates were determined by the combination of genotypic variation within the pathogen and environmental variation. In contrast, phenotypic differences between the isolates under in vitro conditions were predominantly determined by genetic variation in the pathogen. Using a correlation network approach, we link the phenotypic variation under in vitro experimental conditions to phenotypic variation during plant infection. This study indicates that there is a high level of phenotypic variation within B. cinerea that is controlled by a mixture of genetic variation, environment, and genotype × environment. This argues that future experiments into the pathogenicity of B. cinerea must account for the genetic and environmental variation within the pathogen to better sample the potential phenotypic space of the pathogen.
Collapse
Affiliation(s)
- Jason A Corwin
- 1 Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, U.S.A.; and
| | - Anushriya Subedy
- 1 Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, U.S.A.; and
| | - Robert Eshbaugh
- 1 Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, U.S.A.; and
| | - Daniel J Kliebenstein
- 1 Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, U.S.A.; and
- 2 DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
68
|
Hamdoun S, Zhang C, Gill M, Kumar N, Churchman M, Larkin JC, Kwon A, Lu H. Differential Roles of Two Homologous Cyclin-Dependent Kinase Inhibitor Genes in Regulating Cell Cycle and Innate Immunity in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:515-27. [PMID: 26561564 PMCID: PMC4704592 DOI: 10.1104/pp.15.01466] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/06/2015] [Indexed: 05/03/2023]
Abstract
Precise cell-cycle control is critical for plant development and responses to pathogen invasion. Two homologous cyclin-dependent kinase inhibitor genes, SIAMESE (SIM) and SIM-RELATED 1 (SMR1), were recently shown to regulate Arabidopsis (Arabidopsis thaliana) defense based on phenotypes conferred by a sim smr1 double mutant. However, whether these two genes play differential roles in cell-cycle and defense control is unknown. In this report, we show that while acting synergistically to promote endoreplication, SIM and SMR1 play different roles in affecting the ploidy of trichome and leaf cells, respectively. In addition, we found that the smr1-1 mutant, but not sim-1, was more susceptible to a virulent Pseudomonas syringae strain, and this susceptibility could be rescued by activating salicylic acid (SA)-mediated defense. Consistent with these results, smr1-1 partially suppressed the dwarfism, high SA levels, and cell death phenotypes in acd6-1, a mutant used to gauge the change of defense levels. Thus, SMR1 functions partly through SA in defense control. The differential roles of SIM and SMR1 are due to differences in temporal and spatial expression of these two genes in Arabidopsis tissues and in response to P. syringae infection. In addition, flow-cytometry analysis of plants with altered SA signaling revealed that SA is necessary, but not sufficient, to change cell-cycle progression. We further found that a mutant with three CYCD3 genes disrupted also compromised disease resistance to P. syringae. Together, this study reveals differential roles of two homologous cyclin-dependent kinase inhibitors in regulating cell-cycle progression and innate immunity in Arabidopsis and provides insights into the importance of cell-cycle control during host-pathogen interactions.
Collapse
Affiliation(s)
- Safae Hamdoun
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - Chong Zhang
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - Manroop Gill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - Narender Kumar
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - Michelle Churchman
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - John C Larkin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - Ashley Kwon
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland 21250 (S.H., C.Z., M.G., A.K., H.L.); andDepartment of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 (N.K., M.C., J.C.L.)
| |
Collapse
|
69
|
Micol-Ponce R, Sánchez-García AB, Xu Q, Barrero JM, Micol JL, Ponce MR. Arabidopsis INCURVATA2 Regulates Salicylic Acid and Abscisic Acid Signaling, and Oxidative Stress Responses. PLANT & CELL PHYSIOLOGY 2015; 56:2207-2219. [PMID: 26423959 DOI: 10.1093/pcp/pcv132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
Epigenetic regulatory states can persist through mitosis and meiosis, but the connection between chromatin structure and DNA replication remains unclear. Arabidopsis INCURVATA2 (ICU2) encodes the catalytic subunit of DNA polymerase α, and null alleles of ICU2 have an embryo-lethal phenotype. Analysis of icu2-1, a hypomorphic allele of ICU2, demonstrated that ICU2 functions in chromatin-mediated cellular memory; icu2-1 strongly impairs ICU2 function in the maintenance of repressive epigenetic marks but does not seem to affect ICU2 polymerase activity. To better understand the global function of ICU2 in epigenetic regulation, here we performed a microarray analysis of icu2-1 mutant plants. We found that the genes up-regulated in the icu2-1 mutant included genes encoding transcription factors and targets of the Polycomb Repressive Complexes. The down-regulated genes included many known players in salicylic acid (SA) biosynthesis and accumulation, ABA signaling and ABA-mediated responses. In addition, we found that icu2-1 plants had reduced SA levels in normal conditions; infection by Fusarium oxysporum induced SA accumulation in the En-2 wild type but not in the icu2-1 mutant. The icu2-1 plants were also hypersensitive to salt stress and exogenous ABA in seedling establishment, post-germination growth and stomatal closure, and accumulated more ABA than the wild type in response to salt stress. The icu2-1 mutant also showed high tolerance to the oxidative stress produced by 3-amino-1,2,4-triazole (3-AT). Our results uncover a role for ICU2 in the regulation of genes involved in ABA signaling as well as in SA biosynthesis and accumulation.
Collapse
Affiliation(s)
- Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Ana Belén Sánchez-García
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Qian Xu
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| | - José María Barrero
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| |
Collapse
|
70
|
Domínguez-Ferreras A, Kiss-Papp M, Jehle AK, Felix G, Chinchilla D. An Overdose of the Arabidopsis Coreceptor BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 or Its Ectodomain Causes Autoimmunity in a SUPPRESSOR OF BIR1-1-Dependent Manner. PLANT PHYSIOLOGY 2015; 168:1106-21. [PMID: 25944825 PMCID: PMC4741324 DOI: 10.1104/pp.15.00537] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/29/2015] [Indexed: 05/02/2023]
Abstract
The membrane-bound Brassinosteroid insensitive1-associated receptor kinase1 (BAK1) is a common coreceptor in plants and regulates distinct cellular programs ranging from growth and development to defense against pathogens. BAK1 functions through binding to ligand-stimulated transmembrane receptors and activating their kinase domains via transphosphorylation. In the absence of microbes, BAK1 activity may be suppressed by different mechanisms, like interaction with the regulatory BIR (for BAK1-interacting receptor-like kinase) proteins. Here, we demonstrated that BAK1 overexpression in Arabidopsis (Arabidopsis thaliana) could cause detrimental effects on plant development, including growth arrest, leaf necrosis, and reduced seed production. Further analysis using an inducible expression system showed that BAK1 accumulation quickly stimulated immune responses, even under axenic conditions, and led to increased resistance to pathogenic Pseudomonas syringae pv tomato DC3000. Intriguingly, our study also revealed that the plasma membrane-associated BAK1 ectodomain was sufficient to induce autoimmunity, indicating a novel mode of action for BAK1 in immunity control. We postulate that an excess of BAK1 or its ectodomain could trigger immune receptor activation in the absence of microbes through unbalancing regulatory interactions, including those with BIRs. Consistently, mutation of suppressor of BIR1-1, which encodes an emerging positive regulator of transmembrane receptors in plants, suppressed the effects of BAK1 overexpression. In conclusion, our findings unravel a new role for the BAK1 ectodomain in the tight regulation of Arabidopsis immune receptors necessary to avoid inappropriate activation of immunity.
Collapse
Affiliation(s)
- Ana Domínguez-Ferreras
- University of Basel, Plant Science Center, Department of Environmental Sciences, CH-4056 Basel, Switzerland (A.D.-F., M.K.-P., D.C.); andUniversity of Tuebingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, 72076 Tuebingen, Germany (A.K.J., G.F.)
| | - Marta Kiss-Papp
- University of Basel, Plant Science Center, Department of Environmental Sciences, CH-4056 Basel, Switzerland (A.D.-F., M.K.-P., D.C.); andUniversity of Tuebingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, 72076 Tuebingen, Germany (A.K.J., G.F.)
| | - Anna Kristina Jehle
- University of Basel, Plant Science Center, Department of Environmental Sciences, CH-4056 Basel, Switzerland (A.D.-F., M.K.-P., D.C.); andUniversity of Tuebingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, 72076 Tuebingen, Germany (A.K.J., G.F.)
| | - Georg Felix
- University of Basel, Plant Science Center, Department of Environmental Sciences, CH-4056 Basel, Switzerland (A.D.-F., M.K.-P., D.C.); andUniversity of Tuebingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, 72076 Tuebingen, Germany (A.K.J., G.F.)
| | - Delphine Chinchilla
- University of Basel, Plant Science Center, Department of Environmental Sciences, CH-4056 Basel, Switzerland (A.D.-F., M.K.-P., D.C.); andUniversity of Tuebingen, Center for Plant Molecular Biology, Department of Plant Biochemistry, 72076 Tuebingen, Germany (A.K.J., G.F.)
| |
Collapse
|
71
|
Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. Proc Natl Acad Sci U S A 2015; 112:5533-8. [PMID: 25870275 DOI: 10.1073/pnas.1504154112] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oligogalacturonides (OGs) are fragments of pectin that activate plant innate immunity by functioning as damage-associated molecular patterns (DAMPs). We set out to test the hypothesis that OGs are generated in planta by partial inhibition of pathogen-encoded polygalacturonases (PGs). A gene encoding a fungal PG was fused with a gene encoding a plant polygalacturonase-inhibiting protein (PGIP) and expressed in transgenic Arabidopsis plants. We show that expression of the PGIP-PG chimera results in the in vivo production of OGs that can be detected by mass spectrometric analysis. Transgenic plants expressing the chimera under control of a pathogen-inducible promoter are more resistant to the phytopathogens Botrytis cinerea, Pectobacterium carotovorum, and Pseudomonas syringae. These data provide strong evidence for the hypothesis that OGs released in vivo act as a DAMP signal to trigger plant immunity and suggest that controlled release of these molecules upon infection may be a valuable tool to protect plants against infectious diseases. On the other hand, elevated levels of expression of the chimera cause the accumulation of salicylic acid, reduced growth, and eventually lead to plant death, consistent with the current notion that trade-off occurs between growth and defense.
Collapse
|
72
|
Sharma M, Bhatt D. The circadian clock and defence signalling in plants. MOLECULAR PLANT PATHOLOGY 2015; 16:210-8. [PMID: 25081907 PMCID: PMC6638510 DOI: 10.1111/mpp.12178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The circadian clock is the internal time-keeping machinery in higher organisms. Cross-talk between the circadian clock and a diverse range of physiological processes in plants, including stress acclimatization, hormone signalling, photomorphogenesis and defence signalling, is currently being explored. Recent studies on circadian clock genes and genes involved in defence signalling have indicated a possible reciprocal interaction between the two. It has been proposed that the circadian clock shapes the outcome of plant-pathogen interactions. In this review, we highlight the studies carried out so far on two model plant pathogens, namely Pseudomonas syringae and Hyaloperonospora arabidopsidis, and the involvement of the circadian clock in gating effector-triggered immunity and pathogen-associated molecular pattern-triggered immunity. We focus on how the circadian clock gates the expression of various stress-related transcripts in a prolific manner to enhance plant fitness. An understanding of this dynamic relationship between clock and stress will open up new avenues in the understanding of endogenous mechanisms of defence signalling in plants.
Collapse
Affiliation(s)
- Mayank Sharma
- Mahyco Life Science Research Center, PO Box 76, Jalna (MS), 431203, India
| | | |
Collapse
|
73
|
Gargul JM, Mibus H, Serek M. Manipulation of MKS1 gene expression affects Kalanchoë blossfeldiana and Petunia hybrida phenotypes. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:51-61. [PMID: 25082411 DOI: 10.1111/pbi.12234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/17/2014] [Accepted: 06/26/2014] [Indexed: 05/02/2023]
Abstract
The establishment of alternative methods to chemical treatments for growth retardation and pathogen protection in ornamental plant production has become a major goal in recent breeding programmes. This study evaluates the effect of manipulating MAP kinase 4 nuclear substrate 1 (MKS1) expression in Kalanchoë blossfeldiana and Petunia hybrida. The Arabidopsis thaliana MKS1 gene was overexpressed in both species via Agrobacterium-mediated transformation, resulting in dwarfed phenotypes and delayed flowering in both species and increased tolerance to Pseudomonas syringae pv. tomato in transgenic Petunia plants. The lengths of the stems and internodes were decreased, while the number of nodes in the transgenic plants was similar to that of the control plants in both species. The transgenic Kalanchoë flowers had an increased anthocyanin concentration, and the length of the inflorescence stem was decreased. The morphology of transgenic Petunia flowers was not altered. The results of the Pseudomonas syringae tolerance test showed that Petunia plants with one copy of the transgene reacted similarly to the nontransgenic control plants; however, plants with four copies of the transgene exhibited considerably higher tolerance to bacterial attack. Transgene integration and expression was determined by Southern blot hybridization and RT-PCR analyses. MKS1 in wild-type Petunia plants was down-regulated through a virus-induced gene silencing (VIGS) method using tobacco rattle virus vectors. There were no significant phenotypic differences between the plants with silenced MKS1 genes and the controls. The relative concentration of the MKS1 transcript in VIGS-treated plants was estimated by quantitative RT-PCR.
Collapse
Affiliation(s)
- Joanna Maria Gargul
- Horticulture Production Systems, Section Floriculture, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | | | | |
Collapse
|
74
|
Sharma M, Pandey GK. Expansion and Function of Repeat Domain Proteins During Stress and Development in Plants. FRONTIERS IN PLANT SCIENCE 2015; 6:1218. [PMID: 26793205 PMCID: PMC4707873 DOI: 10.3389/fpls.2015.01218] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/17/2015] [Indexed: 05/18/2023]
Abstract
The recurrent repeats having conserved stretches of amino acids exists across all domains of life. Subsequent repetition of single sequence motif and the number and length of the minimal repeating motifs are essential characteristics innate to these proteins. The proteins with tandem peptide repeats are essential for providing surface to mediate protein-protein interactions for fundamental biological functions. Plants are enriched in tandem repeat containing proteins typically distributed into various families. This has been assumed that the occurrence of multigene repeats families in plants enable them to cope up with adverse environmental conditions and allow them to rapidly acclimatize to these conditions. The evolution, structure, and function of repeat proteins have been studied in all kingdoms of life. The presence of repeat proteins is particularly profuse in multicellular organisms in comparison to prokaryotes. The precipitous expansion of repeat proteins in plants is presumed to be through internal tandem duplications. Several repeat protein gene families have been identified in plants. Such as Armadillo (ARM), Ankyrin (ANK), HEAT, Kelch-like repeats, Tetratricopeptide (TPR), Leucine rich repeats (LRR), WD40, and Pentatricopeptide repeats (PPR). The structure and functions of these repeat proteins have been extensively studied in plants suggesting a critical role of these repeating peptides in plant cell physiology, stress and development. In this review, we illustrate the structural, functional, and evolutionary prospects of prolific repeat proteins in plants.
Collapse
|
75
|
Tateda C, Zhang Z, Greenberg JT. Linking pattern recognition and salicylic acid responses in Arabidopsis through ACCELERATED CELL DEATH6 and receptors. PLANT SIGNALING & BEHAVIOR 2015; 10:e1010912. [PMID: 26442718 PMCID: PMC4883847 DOI: 10.1080/15592324.2015.1010912] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/22/2014] [Accepted: 01/05/2015] [Indexed: 05/19/2023]
Abstract
The Arabidopsis membrane protein ACCELERATED CELL DEATH 6 (ACD6) and the defense signal salicylic acid (SA) are part of a positive feedback loop that regulates the levels of at least 2 pathogen-associated molecular patterns (PAMP) receptors, including FLAGELLIN SENSING 2 (FLS2) and CHITIN ELICITOR RECEPTOR (LYSM domain receptor-like kinase 1, CERK1). ACD6- and SA-mediated regulation of these receptors results in potentiation of responses to FLS2 and CERK1 ligands (e.g. flg22 and chitin, respectively). ACD6, FLS2 and CERK1 are also important for callose induction in response to an SA agonist even in the absence of PAMPs. Here, we report that another receptor, EF-Tu RECEPTOR (EFR) is also part of the ACD6/SA signaling network, similar to FLS2 and CERK1.
Collapse
Affiliation(s)
- Chika Tateda
- Department of Molecular Genetics and Cell Biology; The University of Chicago; Chicago, IL USA
| | - Zhongqin Zhang
- Department of Molecular Genetics and Cell Biology; The University of Chicago; Chicago, IL USA
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology; The University of Chicago; Chicago, IL USA
- Correspondence to: Jean T Greenberg;
| |
Collapse
|
76
|
Bruggeman Q, Raynaud C, Benhamed M, Delarue M. To die or not to die? Lessons from lesion mimic mutants. FRONTIERS IN PLANT SCIENCE 2015; 6:24. [PMID: 25688254 PMCID: PMC4311611 DOI: 10.3389/fpls.2015.00024] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/12/2015] [Indexed: 05/19/2023]
Abstract
Programmed cell death (PCD) is a ubiquitous genetically regulated process consisting in an activation of finely controlled signaling pathways that lead to cellular suicide. Although some aspects of PCD control appear evolutionary conserved between plants, animals and fungi, the extent of conservation remains controversial. Over the last decades, identification and characterization of several lesion mimic mutants (LMM) has been a powerful tool in the quest to unravel PCD pathways in plants. Thanks to progress in molecular genetics, mutations causing the phenotype of a large number of LMM and their related suppressors were mapped, and the identification of the mutated genes shed light on major pathways in the onset of plant PCD such as (i) the involvements of chloroplasts and light energy, (ii) the roles of sphingolipids and fatty acids, (iii) a signal perception at the plasma membrane that requires efficient membrane trafficking, (iv) secondary messengers such as ion fluxes and ROS and (v) the control of gene expression as the last integrator of the signaling pathways.
Collapse
Affiliation(s)
- Quentin Bruggeman
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
| | - Cécile Raynaud
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
| | - Moussa Benhamed
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Marianne Delarue
- Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant SciencesOrsay, France
- *Correspondence: Marianne Delarue, Institut de Biologie des Plantes, UMR CNRS 8618, Université Paris-Sud, Saclay Plant Sciences, Bâtiment 630, Route de Noetzlin, 91405 Orsay Cedex, France e-mail:
| |
Collapse
|
77
|
Chai J, Liu J, Zhou J, Xing D. Mitogen-activated protein kinase 6 regulates NPR1 gene expression and activation during leaf senescence induced by salicylic acid. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6513-28. [PMID: 25210078 DOI: 10.1093/jxb/eru369] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant senescence is a highly regulated process that can be induced by a range of factors. The nonexpressor of pathogenesis-related genes 1 (npr1) mutant is defective in the salicylic acid (SA) signalling pathway, displaying delayed yellowing during developmental senescence. However, the regulating mechanism of NPR1 on exogenous SA-induced senescence in detached Arabidopsis leaves has not yet been clarified. It was shown here that mitogen-activated protein kinase 6 (MPK6) is involved in promoting exogenous SA-induced detached leaf senescence. During the process of SA-induced senescence, the expression of NPR1 and senescence-related transcription factor WRKY6 was suppressed in mpk6 mutant plants. Further analyses showed that the NPR1 mRNA level is reduced in wrky6 mutants and enhanced in WRKY6 overexpressing lines. Meanwhile, chromatin immunoprecipitation experiments revealed that WRKY6 binds directly to the NPR1 promoter containing W-box motifs. Moreover, inhibition of MPK6 function diminished SA-induced monomerization and nuclear localization of NPR1. In addition, the expression of Trx h5, which catalyses the SA-induced NPR1 activation, was suppressed in the mpk6 mutant, suggesting that MPK6 promotes NPR1 activation, possibly by regulating the expression of Trx h5. Collectively, MPK6-mediated WRKY6 and Trx h5 transcriptional activation co-regulated the expression of the NPR1 gene and the monomerization of NPR1 protein, allowing it to enter the nucleus, thereby promoting SA-induced leaf senescence. These results provide new insight into the mechanism of exogenous SA-induced detached leaf senescence.
Collapse
Affiliation(s)
- Jinyu Chai
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jian Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jun Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
78
|
Serrano I, Gu Y, Qi D, Dubiella U, Innes RW. The Arabidopsis EDR1 protein kinase negatively regulates the ATL1 E3 ubiquitin ligase to suppress cell death. THE PLANT CELL 2014; 26:4532-46. [PMID: 25398498 PMCID: PMC4277226 DOI: 10.1105/tpc.114.131540] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/18/2014] [Accepted: 10/27/2014] [Indexed: 05/19/2023]
Abstract
Loss-of-function mutations in the Arabidopsis thaliana ENHANCED DISEASE RESISTANCE1 (EDR1) gene confer enhanced programmed cell death under a variety of abiotic and biotic stress conditions. All edr1 mutant phenotypes can be suppressed by missense mutations in the KEEP ON GOING gene, which encodes a trans-Golgi network/early endosome (TGN/EE)-localized E3 ubiquitin ligase. Here, we report that EDR1 interacts with a second E3 ubiquitin ligase, ARABIDOPSIS TOXICOS EN LEVADURA1 (ATL1), and negatively regulates its activity. Overexpression of ATL1 in transgenic Arabidopsis induced severe growth inhibition and patches of cell death, while transient overexpression in Nicotiana benthamiana leaves induced cell death and tissue collapse. The E3 ligase activity of ATL1 was required for both of these processes. Importantly, we found that ATL1 interacts with EDR1 on TGN/EE vesicles and that EDR1 suppresses ATL1-mediated cell death in N. benthamiana and Arabidopsis. Lastly, knockdown of ATL1 expression suppressed cell death phenotypes associated with the edr1 mutant and made Arabidopsis hypersusceptible to powdery mildew infection. Taken together, our data indicate that ATL1 is a positive regulator of programmed cell death and EDR1 negatively regulates ATL1 activity at the TGN/EE and thus controls stress responses initiated by ATL1-mediated ubiquitination events.
Collapse
Affiliation(s)
- Irene Serrano
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Yangnan Gu
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Dong Qi
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Ullrich Dubiella
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
79
|
Tateda C, Zhang Z, Shrestha J, Jelenska J, Chinchilla D, Greenberg JT. Salicylic acid regulates Arabidopsis microbial pattern receptor kinase levels and signaling. THE PLANT CELL 2014; 26:4171-87. [PMID: 25315322 PMCID: PMC4247590 DOI: 10.1105/tpc.114.131938] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 09/19/2014] [Accepted: 09/27/2014] [Indexed: 05/18/2023]
Abstract
In Arabidopsis thaliana, responses to pathogen-associated molecular patterns (PAMPs) are mediated by cell surface pattern recognition receptors (PRRs) and include the accumulation of reactive oxygen species, callose deposition in the cell wall, and the generation of the signal molecule salicylic acid (SA). SA acts in a positive feedback loop with ACCELERATED CELL DEATH6 (ACD6), a membrane protein that contributes to immunity. This work shows that PRRs associate with and are part of the ACD6/SA feedback loop. ACD6 positively regulates the abundance of several PRRs and affects the responsiveness of plants to two PAMPs. SA accumulation also causes increased levels of PRRs and potentiates the responsiveness of plants to PAMPs. Finally, SA induces PRR- and ACD6-dependent signaling to induce callose deposition independent of the presence of PAMPs. This PAMP-independent effect of SA causes a transient reduction of PRRs and ACD6-dependent reduced responsiveness to PAMPs. Thus, SA has a dynamic effect on the regulation and function of PRRs. Within a few hours, SA signaling promotes defenses and downregulates PRRs, whereas later (within 24 to 48 h) SA signaling upregulates PRRs, and plants are rendered more responsive to PAMPs. These results implicate multiple modes of signaling for PRRs in response to PAMPs and SA.
Collapse
Affiliation(s)
- Chika Tateda
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Zhongqin Zhang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Jay Shrestha
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Delphine Chinchilla
- Zurich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
80
|
Dong CJ, Li L, Shang QM, Liu XY, Zhang ZG. Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings. PLANTA 2014; 240:687-700. [PMID: 25034826 DOI: 10.1007/s00425-014-2115-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/21/2014] [Indexed: 05/03/2023]
Abstract
Salicylic acid (SA) is an important plant hormone, and its exogenous application can induce tolerance to multiple environmental stresses in plants. In this study, we examine the potential involvement of endogenous SA in response to chilling in cucumber (Cucumis sativus L.) seedlings. A low temperature of 8 °C induces a moderate increase in endogenous SA levels. Chilling stimulates the enzymatic activities and the expression of genes for phenylalanine ammonia-lyase (PAL) and benzoic acid-2-hydroxylase rather than isochorismate synthase. This indicates that the PAL enzymatic pathway contributes to chilling-induced SA production. Cucumber seedlings pretreated with SA biosynthesis inhibitors accumulate less endogenous SA and suffer more from chilling damage. The expression of cold-responsive genes is also repressed by SA inhibitors. The reduction in stress tolerance and in gene expression can be restored by the exogenous application of SA, confirming the critical roles of SA in chilling responses in cucumber seedlings. Furthermore, the inhibition of SA biosynthesis under chilling stress results in a prolonged and enhanced hydrogen peroxide (H2O2) accumulation. The application of exogenous SA and the chemical scavenger of H2O2 reduces the excess H2O2 and alleviates chilling injury. In contrast, the protective effects of SA are negated by foliar spraying with high concentrations of H2O2 and an inhibitor of the antioxidant enzyme. These results suggest that endogenous SA is required in response to chilling stress in cucumber seedlings, by modulating the expression of cold-responsive genes and the precise induction of cellular H2O2 levels.
Collapse
Affiliation(s)
- Chun-Juan Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081, Peoples' Republic of China,
| | | | | | | | | |
Collapse
|
81
|
Zhang Z, Shrestha J, Tateda C, Greenberg JT. Salicylic acid signaling controls the maturation and localization of the arabidopsis defense protein ACCELERATED CELL DEATH6. MOLECULAR PLANT 2014; 7:1365-1383. [PMID: 24923602 PMCID: PMC4168298 DOI: 10.1093/mp/ssu072] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ACCELERATED CELL DEATH6 (ACD6) is a multipass membrane protein with an ankyrin domain that acts in a positive feedback loop with the defense signal salicylic acid (SA). This study implemented biochemical approaches to infer changes in ACD6 complexes and localization. In addition to forming endoplasmic reticulum (ER)- and plasma membrane (PM)-localized complexes, ACD6 forms soluble complexes, where it is bound to cytosolic HSP70, ubiquitinated, and degraded via the proteasome. Thus, ACD6 constitutively undergoes ER-associated degradation. During SA signaling, the soluble ACD6 pool decreases, whereas the PM pool increases. Similarly, ACD6-1, an activated version of ACD6 that induces SA, is present at low levels in the soluble fraction and high levels in the PM. However, ACD6 variants with amino acid substitutions in the ankyrin domain form aberrant, inactive complexes, are induced by a SA agonist, but show no PM localization. SA signaling also increases the PM pools of FLAGELLIN SENSING2 (FLS2) and BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1). FLS2 forms complexes ACD6; both FLS2 and BAK1 require ACD6 for maximal accumulation at the PM in response to SA signaling. A plausible scenario is that SA increases the efficiency of productive folding and/or complex formation in the ER, such that ACD6, together with FLS2 and BAK1, reaches the cell surface to more effectively promote immune responses.
Collapse
Affiliation(s)
- Zhongqin Zhang
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Jay Shrestha
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Chika Tateda
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57 Street, GCIS W524, Chicago, IL 60637, USA.
| |
Collapse
|
82
|
Zhang N, Lariviere A, Tonsor SJ, Traw MB. Constitutive camalexin production and environmental stress response variation in Arabidopsis populations from the Iberian Peninsula. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 225:77-85. [PMID: 25017162 DOI: 10.1016/j.plantsci.2014.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/07/2014] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
Optimal defense theory predicts that induction of defensive secondary metabolites in plants will be inversely correlated with constitutive expression of those compounds. Here, we asked whether camalexin, an important defense against fungal and bacterial pathogens, support this prediction in structured natural populations of Arabidopsis thaliana from the Iberian Peninsula. In common garden experiments, we found that genotypes from the VIE population constitutively hyper-accumulated camalexin. Camalexin concentrations were not induced significantly when plants were exposed to a temperature of 10°C for 48h. However, they were induced when plants were exposed to 48h of infection by the virulent bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. Genotypes from the VIE population with the hyper-accumulation of camalexin were significantly more resistant to bacterial growth. Induction of camalexin was negatively correlated with constitutive camalexin concentrations following log transformation and two different corrections for autocorrelation, thus supporting the tradeoff predicted by optimal defense theory. Constitutive overexpression of camalexin was not explained by the only known natural genetic polymorphism at the Accelerated Cell Death 6, ACD6, locus. Collectively, the results support an important role of camalexin in defense against P. syringae as well as significant structured variation in defense levels within wild populations.
Collapse
Affiliation(s)
- Nana Zhang
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, United States
| | - Andy Lariviere
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, United States
| | - Stephen J Tonsor
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, United States
| | - M Brian Traw
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, United States.
| |
Collapse
|
83
|
Bi FC, Liu Z, Wu JX, Liang H, Xi XL, Fang C, Sun TJ, Yin J, Dai GY, Rong C, Greenberg JT, Su WW, Yao N. Loss of ceramide kinase in Arabidopsis impairs defenses and promotes ceramide accumulation and mitochondrial H2O2 bursts. THE PLANT CELL 2014; 26:3449-67. [PMID: 25149397 PMCID: PMC4176443 DOI: 10.1105/tpc.114.127050] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/12/2014] [Accepted: 08/04/2014] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana plants that lack ceramide kinase, encoded by ACCELERATED CELL DEATH5 (ACD5), display spontaneous programmed cell death late in development and accumulate substrates of ACD5. Here, we compared ceramide accumulation kinetics, defense responses, ultrastructural features, and sites of reactive oxygen species (ROS) production in wild-type and acd5 plants during development and/or Botrytis cinerea infection. Quantitative sphingolipid profiling indicated that ceramide accumulation in acd5 paralleled the appearance of spontaneous cell death, and it was accompanied by autophagy and mitochondrial ROS accumulation. Plants lacking ACD5 differed significantly from the wild type in their responses to B. cinerea, showing earlier and higher increases in ceramides, greater disease, smaller cell wall appositions (papillae), reduced callose deposition and apoplastic ROS, and increased mitochondrial ROS. Together, these data show that ceramide kinase greatly affects sphingolipid metabolism and the site of ROS accumulation during development and infection, which likely explains the developmental and infection-related cell death phenotypes. The acd5 plants also showed an early defect in restricting B. cinerea germination and growth, which occurred prior to the onset of cell death. This early defect in B. cinerea restriction in acd5 points to a role for ceramide phosphate and/or the balance of ceramides in mediating early antifungal responses that are independent of cell death.
Collapse
Affiliation(s)
- Fang-Cheng Bi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Zhe Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jian-Xin Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Hua Liang
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
| | - Xue-Li Xi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Ce Fang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Tie-Jun Sun
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jian Yin
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Guang-Yi Dai
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Chan Rong
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637
| | - Wei-Wei Su
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
84
|
Todesco M, Kim ST, Chae E, Bomblies K, Zaidem M, Smith LM, Weigel D, Laitinen RAE. Activation of the Arabidopsis thaliana immune system by combinations of common ACD6 alleles. PLoS Genet 2014; 10:e1004459. [PMID: 25010663 PMCID: PMC4091793 DOI: 10.1371/journal.pgen.1004459] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/09/2014] [Indexed: 11/23/2022] Open
Abstract
A fundamental question in biology is how multicellular organisms distinguish self and non-self. The ability to make this distinction allows animals and plants to detect and respond to pathogens without triggering immune reactions directed against their own cells. In plants, inappropriate self-recognition results in the autonomous activation of the immune system, causing affected individuals to grow less well. These plants also suffer from spontaneous cell death, but are at the same time more resistant to pathogens. Known causes for such autonomous activation of the immune system are hyperactive alleles of immune regulators, or epistatic interactions between immune regulators and unlinked genes. We have discovered a third class, in which the Arabidopsis thaliana immune system is activated by interactions between natural alleles at a single locus, ACCELERATED CELL DEATH 6 (ACD6). There are two main types of these interacting alleles, one of which has evolved recently by partial resurrection of a pseudogene, and each type includes multiple functional variants. Most previously studies hybrid necrosis cases involve rare alleles found in geographically unrelated populations. These two types of ACD6 alleles instead occur at low frequency throughout the range of the species, and have risen to high frequency in the Northeast of Spain, suggesting a role in local adaptation. In addition, such hybrids occur in these populations in the wild. The extensive functional variation among ACD6 alleles points to a central role of this locus in fine-tuning pathogen defenses in natural populations. Plants and their pathogens are engaged in an endless evolutionary battle. The invention of new strategies by pathogens pushes plants to continuously update their defenses. This in turn leads the pathogens to circumvent these new defenses, and so on. Given the abundance of potential enemies, it is therefore not surprising that genes involved in defense against pathogens are among the most variable in plants. A drawback of this extreme variation in pathogen-recognition mechanisms is that at times the plant mistakes itself for an enemy, leading to autonomous activation of defense responses in the absence of pathogens. Conventional models for this phenomenon, called hybrid necrosis, require the interaction between two different genes. Here we show instead that hybrid necrosis can be triggered by interactions between variants of a single gene, ACD6 (ACCELERATED CELL DEATH 6). Several of these variants are common in natural Arabidopsis thaliana populations and can interact to give different levels of activation of the immune system. Our results provide important information into the evolution and operation of the plant defense system. Moreover, the abundant presence of ACD6 functional variation suggests a major role for this gene in modulating plant defenses in nature.
Collapse
Affiliation(s)
- Marco Todesco
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Kirsten Bomblies
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lisa M. Smith
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail:
| | - Roosa A. E. Laitinen
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
85
|
Gawroński P, Witoń D, Vashutina K, Bederska M, Betliński B, Rusaczonek A, Karpiński S. Mitogen-activated protein kinase 4 is a salicylic acid-independent regulator of growth but not of photosynthesis in Arabidopsis. MOLECULAR PLANT 2014; 7:1151-66. [PMID: 24874867 DOI: 10.1093/mp/ssu060] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mitogen-activated protein kinase (MAPK) pathways regulate signal transduction from different cellular compartments and from the extracellular environment to the nucleus in all eukaryotes. One of the best-characterized MAPKs in Arabidopsis thaliana is MPK4, which was shown to be a negative regulator of systemic-acquired resistance. The mpk4 mutant accumulates salicylic acid (SA), possesses constitutive expression of pathogenesis-related (PR) genes, and has an extremely dwarf phenotype. We show that suppression of SA and phylloquinone synthesis in chloroplasts by knocking down the ICS1 gene (by crossing it with the ics1 mutant) in the mpk4 mutant background did not revert mpk4-impaired growth. However, it did cause changes in the photosynthetic apparatus and severely impaired the quantum yield of photosystem II. Transmission microscopy analysis revealed that the chloroplasts' structure was strongly altered in the mpk4 and mpk4/ics1 double mutant. Analysis of reactive oxygen species (ROS)-scavenging enzymes expression showed that suppression of SA and phylloquinone synthesis in the chloroplasts of the mpk4 mutant caused imbalances in ROS homeostasis which were more pronounced in mpk4/ics1 than in mpk4. Taken together, the presented results strongly suggest that MPK4 is an ROS/hormonal rheostat hub that negatively, in an SA-dependent manner, regulates immune defenses, but at the same time positively regulates photosynthesis, ROS metabolism, and growth. Therefore, we concluded that MPK4 is a complex regulator of chloroplastic retrograde signaling for photosynthesis, growth, and immune defenses in Arabidopsis.
Collapse
Affiliation(s)
- Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Damian Witoń
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Kateryna Vashutina
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Magdalena Bederska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Błażej Betliński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Anna Rusaczonek
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| |
Collapse
|
86
|
Xu E, Brosché M. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling. BMC PLANT BIOLOGY 2014; 14:155. [PMID: 24898702 PMCID: PMC4057906 DOI: 10.1186/1471-2229-14-155] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/29/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. RESULTS In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. CONCLUSIONS Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling.
Collapse
Affiliation(s)
- Enjun Xu
- Division of Plant Biology, Department of Biosciences, University of Helsinki, P.O. Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland
| | - Mikael Brosché
- Division of Plant Biology, Department of Biosciences, University of Helsinki, P.O. Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
87
|
Himeno M, Kitazawa Y, Yoshida T, Maejima K, Yamaji Y, Oshima K, Namba S. Purple top symptoms are associated with reduction of leaf cell death in phytoplasma-infected plants. Sci Rep 2014; 4:4111. [PMID: 24531261 PMCID: PMC3925944 DOI: 10.1038/srep04111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/31/2014] [Indexed: 12/14/2022] Open
Abstract
Plants exhibit a wide variety of disease symptoms in response to pathogen attack. In general, most plant symptoms are recognized as harmful effects on host plants, and little is known about positive aspects of symptoms for infected plants. Herein, we report the beneficial role of purple top symptoms, which are characteristic of phytoplasma-infected plants. First, by using plant mutants defective in anthocyanin biosynthesis, we demonstrated that anthocyanin accumulation is directly responsible for the purple top symptoms, and is associated with reduction of leaf cell death caused by phytoplasma infection. Furthermore, we revealed that phytoplasma infection led to significant activation of the anthocyanin biosynthetic pathway and dramatic accumulation of sucrose by about 1000-fold, which can activate the anthocyanin biosynthetic pathway. This is the first study to demonstrate the role and mechanism of the purple top symptoms in plant-phytoplasma interactions.
Collapse
Affiliation(s)
- Misako Himeno
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yugo Kitazawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuya Yoshida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kensaku Maejima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuyuki Yamaji
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kenro Oshima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigetou Namba
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
88
|
Miura K, Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid. FRONTIERS IN PLANT SCIENCE 2014; 5:4. [PMID: 24478784 PMCID: PMC3899523 DOI: 10.3389/fpls.2014.00004] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/04/2014] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant-pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation). Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this article, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed.
Collapse
Affiliation(s)
- Kenji Miura
- Faculty of Life and Environmental Sciences, University of TsukubaTsukuba, Japan
- *Correspondence: Kenji* Miura, Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan e-mail:
| | - Yasuomi Tada
- Faculty of Agriculture, Kagawa UniversityKagawa, Japan
| |
Collapse
|
89
|
Ding Y, Shaholli D, Mou Z. A large-scale genetic screen for mutants with altered salicylic acid accumulation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:763. [PMID: 25610446 PMCID: PMC4285869 DOI: 10.3389/fpls.2014.00763] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/10/2014] [Indexed: 05/03/2023]
Abstract
Salicylic acid (SA) is a key defense signal molecule against biotrophic and hemibiotrophic pathogens in plants, but how SA is synthesized in plant cells still remains elusive. Identification of new components involved in pathogen-induced SA accumulation would help address this question. To this end, we performed a large-scale genetic screen for mutants with altered SA accumulation during pathogen infection in Arabidopsis using a bacterial biosensor Acinetobacter sp. ADPWH_lux-based SA quantification method. A total of 35,000 M2 plants in the npr1-3 mutant background have been individually analyzed for the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326-induced SA accumulation. Among the mutants isolated, 19 had SA levels lower than npr1 (sln) and two exhibited increased SA accumulation in npr1 (isn). Complementation tests revealed that seven of the sln mutants are new alleles of eds5/sid1, two are sid2/eds16 alleles, one is allelic to pad4, and the remaining seven sln and two isn mutants are new non-allelic SA accumulation mutants. Interestingly, a large group of mutants (in the npr1-3 background), in which Psm ES4326-induced SA levels were similar to those in the wild-type Columbia plants, were identified, suggesting that the signaling network fine-tuning pathogen-induced SA accumulation is complex. We further characterized the sln1 single mutant and found that Psm ES4326-induced defense responses were compromised in this mutant. These defense response defects could be rescued by exogenous SA, suggesting that SLN1 functions upstream of SA. The sln1 mutation was mapped to a region on the north arm of chromosome I, which contains no known genes regulating pathogen-induced SA accumulation, indicating that SLN1 likely encodes a new regulator of SA biosynthesis. Thus, the new sln and isn mutants identified in this genetic screen are valuable for dissecting the molecular mechanisms underlying pathogen-induced SA accumulation in plants.
Collapse
Affiliation(s)
| | | | - Zhonglin Mou
- *Correspondence: Zhonglin Mou, Department of Microbiology and Cell Science, University of Florida, Museum Road, Building 981, Gainesville, FL 32611, USA e-mail:
| |
Collapse
|
90
|
Wang G, Zhang C, Battle S, Lu H. The phosphate transporter PHT4;1 is a salicylic acid regulator likely controlled by the circadian clock protein CCA1. FRONTIERS IN PLANT SCIENCE 2014; 5:701. [PMID: 25566276 PMCID: PMC4267192 DOI: 10.3389/fpls.2014.00701] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/25/2014] [Indexed: 05/08/2023]
Abstract
The small phenolic compound salicylic acid (SA) plays a critical role in plant defense against broad-spectrum of pathogens. The phosphate transporter gene PHT4;1 was previously shown to affect SA-mediated defense and its expression is regulated by the circadian clock. To further understand how PHT4;1 affects SA accumulation, here we analyzed the genetic interactions between the gain-of-function mutant pht4;1-1 and several known SA mutants, including sid2-1, ald1-1, eds5-3, and pad4-1. The genetic analysis was conducted in the acd6-1 background since the change of acd6-1 dwarfism can be used as a convenient readout for the change of defense levels caused by impairments in some SA genes. We found that compared with the corresponding double mutants, the triple mutants acd6-1pht4;1-1ald1-1, acd6-1pht4;1-1eds5-3, and acd6-1pht4;1-1pad4-1 accumulated lower levels of SA and PR1 transcripts, suggesting that PHT4;1 contributes to acd6-1-conferred defense phenotypes independently of these known SA regulators. Although some triple mutants had wild type (wt)-like levels of SA and PR1 transcripts, these plants were smaller than wt and displayed minor cell death, suggesting that additional regulatory pathways contribute to acd6-1-conferred dwarfism and cell death. Our data further showed that circadian expression of PHT4;1 was dependent on CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), a central oscillator component of Arabidopsis circadian clock. Recombinant CCA1 protein was demonstrated to bind to the PHT4;1 promoter in electrophoretic mobility shift assays, suggesting a direct transcriptional regulation of PHT4;1 by CCA1. Together these results indicate that PHT4;1 is a SA regulator acting independently of several known SA genes and they also implicate a role of the circadian clock mediated by CCA1 in regulating phosphate transport and/or innate immunity in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | - Hua Lu
- *Correspondence: Hua Lu, Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA e-mail:
| |
Collapse
|
91
|
Okuma E, Nozawa R, Murata Y, Miura K. Accumulation of endogenous salicylic acid confers drought tolerance to Arabidopsis. PLANT SIGNALING & BEHAVIOR 2014; 9:e28085. [PMID: 24603484 PMCID: PMC4091426 DOI: 10.4161/psb.28085] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We investigated stomatal phenotype and drought tolerance of Arabidopsis salicylic acid-accumulating mutants, acd6 and cpr5. In these mutants, the light-induced stomatal opening was impaired and the impairment of stomatal opening was restored by peroxidase inhibitors, salicylhydroxamic acid, and azide. The acd6 and cpr5 mutant plants were more tolerant to drought stress than wild-type plants. Introduction of nahG gene into the acd6 and cpr5 mutants removed the inhibition of stomatal opening and reduced the drought tolerance. Drought tolerance-related genes were more highly expressed in the cpr5 and acd6 mutant plants than in the wild-type plants. These results suggest that accumulation of salicylic acid improves drought tolerance through inhibition of light-induced stomatal opening in Arabidopsis.
Collapse
Affiliation(s)
- Eiji Okuma
- Graduate School of Natural Science and Technology; Okayama University; Okayama, Japan
| | - Rieko Nozawa
- Faculty of Life and Environmental Sciences; University of Tsukuba; Tsukuba, Japan
| | - Yoshiyuki Murata
- Graduate School of Natural Science and Technology; Okayama University; Okayama, Japan
- Correspondence to: Yoshiyuki Murata, and Kenji Miura,
| | - Kenji Miura
- Faculty of Life and Environmental Sciences; University of Tsukuba; Tsukuba, Japan
- Correspondence to: Yoshiyuki Murata, and Kenji Miura,
| |
Collapse
|
92
|
Hamdoun S, Liu Z, Gill M, Yao N, Lu H. Dynamics of defense responses and cell fate change during Arabidopsis-Pseudomonas syringae interactions. PLoS One 2013; 8:e83219. [PMID: 24349466 PMCID: PMC3859648 DOI: 10.1371/journal.pone.0083219] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/01/2013] [Indexed: 11/24/2022] Open
Abstract
Plant-pathogen interactions involve sophisticated action and counteraction strategies from both parties. Plants can recognize pathogen derived molecules, such as conserved pathogen associated molecular patterns (PAMPs) and effector proteins, and subsequently activate PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI), respectively. However, pathogens can evade such recognitions and suppress host immunity with effectors, causing effector-triggered susceptibility (ETS). The differences among PTI, ETS, and ETI have not been completely understood. Toward a better understanding of PTI, ETS, and ETI, we systematically examined various defense-related phenotypes of Arabidopsis infected with different Pseudomonas syringae pv. maculicola ES4326 strains, using the virulence strain DG3 to induce ETS, the avirulence strain DG34 that expresses avrRpm1 (recognized by the resistance protein RPM1) to induce ETI, and HrcC- that lacks the type three secretion system to activate PTI. We found that plants infected with different strains displayed dynamic differences in the accumulation of the defense signaling molecule salicylic acid, expression of the defense marker gene PR1, cell death formation, and accumulation/localization of the reactive oxygen species, H2O2. The differences between PTI, ETS, and ETI are dependent on the doses of the strains used. These data support the quantitative nature of PTI, ETS, and ETI and they also reveal qualitative differences between PTI, ETS, and ETI. Interestingly, we observed the induction of large cells in the infected leaves, most obviously with HrcC- at later infection stages. The enlarged cells have increased DNA content, suggesting a possible activation of endoreplication. Consistent with strong induction of abnormal cell growth by HrcC-, we found that the PTI elicitor flg22 also activates abnormal cell growth, depending on a functional flg22-receptor FLS2. Thus, our study has revealed a comprehensive picture of dynamic changes of defense phenotypes and cell fate determination during Arabidopsis-P. syringae interactions, contributing to a better understanding of plant defense mechanisms.
Collapse
Affiliation(s)
- Safae Hamdoun
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Zhe Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Manroop Gill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
93
|
Ralstonia solanacearum requires PopS, an ancient AvrE-family effector, for virulence and To overcome salicylic acid-mediated defenses during tomato pathogenesis. mBio 2013; 4:e00875-13. [PMID: 24281716 PMCID: PMC3870264 DOI: 10.1128/mbio.00875-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During bacterial wilt of tomato, the plant pathogen Ralstonia solanacearum upregulates expression of popS, which encodes a type III-secreted effector in the AvrE family. PopS is a core effector present in all sequenced strains in the R. solanacearum species complex. The phylogeny of popS mirrors that of the species complex as a whole, suggesting that this is an ancient, vertically inherited effector needed for association with plants. A popS mutant of R. solanacearum UW551 had reduced virulence on agriculturally important Solanum spp., including potato and tomato plants. However, the popS mutant had wild-type virulence on a weed host, Solanum dulcamara, suggesting that some species can avoid the effects of PopS. The popS mutant was also significantly delayed in colonization of tomato stems compared to the wild type. Some AvrE-type effectors from gammaproteobacteria suppress salicylic acid (SA)-mediated plant defenses, suggesting that PopS, a betaproteobacterial ortholog, has a similar function. Indeed, the popS mutant induced significantly higher expression of tomato SA-triggered pathogenesis-related (PR) genes than the wild type. Further, pretreatment of roots with SA exacerbated the popS mutant virulence defect. Finally, the popS mutant had no colonization defect on SA-deficient NahG transgenic tomato plants. Together, these results indicate that this conserved effector suppresses SA-mediated defenses in tomato roots and stems, which are R. solanacearum’s natural infection sites. Interestingly, PopS did not trigger necrosis when heterologously expressed in Nicotiana leaf tissue, unlike the AvrE homolog DspEPcc from the necrotroph Pectobacterium carotovorum subsp. carotovorum. This is consistent with the differing pathogenesis modes of necrosis-causing gammaproteobacteria and biotrophic R. solanacearum. The type III-secreted AvrE effector family is widely distributed in high-impact plant-pathogenic bacteria and is known to suppress plant defenses for virulence. We characterized the biology of PopS, the only AvrE homolog made by the bacterial wilt pathogen Ralstonia solanacearum. To our knowledge, this is the first study of R. solanacearum effector function in roots and stems, the natural infection sites of this pathogen. Unlike the functionally redundant R. solanacearum effectors studied to date, PopS is required for full virulence and wild-type colonization of two natural crop hosts. R. solanacearum is a biotrophic pathogen that causes a nonnecrotic wilt. Consistent with this, PopS suppressed plant defenses but did not elicit cell death, unlike AvrE homologs from necrosis-causing plant pathogens. We propose that AvrE family effectors have functionally diverged to adapt to the necrotic or nonnecrotic lifestyle of their respective pathogens.
Collapse
|
94
|
Zhang C, Xie Q, Anderson RG, Ng G, Seitz NC, Peterson T, McClung CR, McDowell JM, Kong D, Kwak JM, Lu H. Crosstalk between the circadian clock and innate immunity in Arabidopsis. PLoS Pathog 2013; 9:e1003370. [PMID: 23754942 PMCID: PMC3675028 DOI: 10.1371/journal.ppat.1003370] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 04/04/2013] [Indexed: 12/17/2022] Open
Abstract
The circadian clock integrates temporal information with environmental cues in regulating plant development and physiology. Recently, the circadian clock has been shown to affect plant responses to biotic cues. To further examine this role of the circadian clock, we tested disease resistance in mutants disrupted in CCA1 and LHY, which act synergistically to regulate clock activity. We found that cca1 and lhy mutants also synergistically affect basal and resistance gene-mediated defense against Pseudomonas syringae and Hyaloperonospora arabidopsidis. Disrupting the circadian clock caused by overexpression of CCA1 or LHY also resulted in severe susceptibility to P. syringae. We identified a downstream target of CCA1 and LHY, GRP7, a key constituent of a slave oscillator regulated by the circadian clock and previously shown to influence plant defense and stomatal activity. We show that the defense role of CCA1 and LHY against P. syringae is at least partially through circadian control of stomatal aperture but is independent of defense mediated by salicylic acid. Furthermore, we found defense activation by P. syringae infection and treatment with the elicitor flg22 can feedback-regulate clock activity. Together this data strongly supports a direct role of the circadian clock in defense control and reveal for the first time crosstalk between the circadian clock and plant innate immunity.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Qiguang Xie
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Ryan G. Anderson
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Gina Ng
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Nicholas C. Seitz
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Thomas Peterson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - C. Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - John M. McDowell
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Dongdong Kong
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - June M. Kwak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Department of Cell Biology and Molecular Genetics, Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, United States of America
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|
95
|
Han Y, Chaouch S, Mhamdi A, Queval G, Zechmann B, Noctor G. Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H(2)O(2) to activation of salicylic acid accumulation and signaling. Antioxid Redox Signal 2013; 18:2106-21. [PMID: 23148658 PMCID: PMC3629853 DOI: 10.1089/ars.2012.5052] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/11/2012] [Indexed: 01/08/2023]
Abstract
AIMS Through its interaction with H(2)O(2), glutathione is a candidate for transmission of signals in plant responses to pathogens, but identification of signaling roles is complicated by its antioxidant function. Using a genetic approach based on a conditional catalase-deficient Arabidopsis mutant, cat2, this study aimed at establishing whether GSH plays an important functional role in the transmission of signals downstream of H(2)O(2). RESULTS Introducing the cad2 or allelic mutations in the glutathione synthesis pathway into cat2 blocked H(2)O(2)-triggered GSH oxidation and accumulation. While no effects on NADP(H) or ascorbate were observed, and H(2)O(2)-induced decreases in growth were maintained, blocking GSH modulation antagonized salicylic acid (SA) accumulation and SA-dependent responses. Other novel double and triple mutants were produced and compared with cat2 cad2 at the levels of phenotype, expression of marker genes, nontargeted metabolite profiling, accumulation of SA, and bacterial resistance. Most of the effects of the cad2 mutation on H(2)O(2)-triggered responses were distinct from those produced by mutations for GLUTATHIONE REDUCTASE1 (GR1) or NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), and were linked to compromised induction of ISOCHORISMATE SYNTHASE1 (ICS1) and ICS1-dependent SA accumulation. INNOVATION A novel genetic approach was used in which GSH content or antioxidative capacity was independently modified in an H(2)O(2) signaling background. Analysis of new double and triple mutants allowed us to infer previously undescribed regulatory roles for GSH. CONCLUSION In parallel to its antioxidant role, GSH acts independently of NPR1 to allow increased intracellular H(2)O(2) to activate SA signaling, a key defense response in plants.
Collapse
Affiliation(s)
- Yi Han
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris Sud, Orsay Cedex, France
| | - Sejir Chaouch
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris Sud, Orsay Cedex, France
| | - Amna Mhamdi
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris Sud, Orsay Cedex, France
| | - Guillaume Queval
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris Sud, Orsay Cedex, France
| | - Bernd Zechmann
- Institute of Plant Sciences, University of Graz, Graz, Austria
| | - Graham Noctor
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris Sud, Orsay Cedex, France
| |
Collapse
|
96
|
Han Y, Chaouch S, Mhamdi A, Queval G, Zechmann B, Noctor G. Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H(2)O(2) to activation of salicylic acid accumulation and signaling. Antioxid Redox Signal 2013. [PMID: 23148658 DOI: 10.1089/ars.20125052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
AIMS Through its interaction with H(2)O(2), glutathione is a candidate for transmission of signals in plant responses to pathogens, but identification of signaling roles is complicated by its antioxidant function. Using a genetic approach based on a conditional catalase-deficient Arabidopsis mutant, cat2, this study aimed at establishing whether GSH plays an important functional role in the transmission of signals downstream of H(2)O(2). RESULTS Introducing the cad2 or allelic mutations in the glutathione synthesis pathway into cat2 blocked H(2)O(2)-triggered GSH oxidation and accumulation. While no effects on NADP(H) or ascorbate were observed, and H(2)O(2)-induced decreases in growth were maintained, blocking GSH modulation antagonized salicylic acid (SA) accumulation and SA-dependent responses. Other novel double and triple mutants were produced and compared with cat2 cad2 at the levels of phenotype, expression of marker genes, nontargeted metabolite profiling, accumulation of SA, and bacterial resistance. Most of the effects of the cad2 mutation on H(2)O(2)-triggered responses were distinct from those produced by mutations for GLUTATHIONE REDUCTASE1 (GR1) or NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), and were linked to compromised induction of ISOCHORISMATE SYNTHASE1 (ICS1) and ICS1-dependent SA accumulation. INNOVATION A novel genetic approach was used in which GSH content or antioxidative capacity was independently modified in an H(2)O(2) signaling background. Analysis of new double and triple mutants allowed us to infer previously undescribed regulatory roles for GSH. CONCLUSION In parallel to its antioxidant role, GSH acts independently of NPR1 to allow increased intracellular H(2)O(2) to activate SA signaling, a key defense response in plants.
Collapse
Affiliation(s)
- Yi Han
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris Sud, Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
97
|
Han Y, Mhamdi A, Chaouch S, Noctor G. Regulation of basal and oxidative stress-triggered jasmonic acid-related gene expression by glutathione. PLANT, CELL & ENVIRONMENT 2013; 36:1135-46. [PMID: 23210597 DOI: 10.1111/pce.12048] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/27/2012] [Accepted: 11/27/2012] [Indexed: 05/18/2023]
Abstract
Glutathione is a determinant of cellular redox state with roles in defence and detoxification. Emerging concepts suggest that this compound also has functions in cellular signalling. Here, we report evidence that glutathione plays potentially important roles in setting signalling strength through the jasmonic acid (JA) pathway. Firstly, we show that basal expression of JA-related genes is correlated with leaf glutathione content when the latter is manipulated either genetically or pharmacologically. Secondly, analyses of an oxidative stress signalling mutant, cat2, reveal that up-regulation of the JA pathway triggered by intracellular oxidation requires accompanying glutathione accumulation. Genetically blocking this accumulation in a cat2 cad2 line largely annuls H2 O2 -induced expression of JA-linked genes, and this effect can be rescued by exogenously supplying glutathione. While most attention on glutathione functions in biotic stress responses has been focused on the thiol-regulated protein NPR1, a comparison of JA-linked gene expression in cat2 cad2 and cat2 npr1 double mutants provides evidence that glutathione acts through other components to regulate the response of this pathway to oxidative stress. Our study provides new information implicating glutathione as a factor determining basal JA gene expression and suggests novel glutathione-dependent control points that regulate JA signalling in response to intracellular oxidation.
Collapse
Affiliation(s)
- Yi Han
- Institut de Biologie des Plantes, UMR CNRS 8618, Université de Paris Sud 11, 91405, Orsay Cedex, France
| | | | | | | |
Collapse
|
98
|
Guo CY, Wu GH, Xing J, Li WQ, Tang DZ, Cui BM. A mutation in a coproporphyrinogen III oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in Arabidopsis. PLANT CELL REPORTS 2013; 32:687-702. [PMID: 23462936 DOI: 10.1007/s00299-013-1403-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/07/2013] [Accepted: 02/20/2013] [Indexed: 05/27/2023]
Abstract
A gene encoding a coproporphyrinogen III oxidase mediates disease resistance in plants by the salicylic acid pathway. A number of genes that regulate powdery mildew resistance have been identified in Arabidopsis, such as ENHANCED DISEASE RESISTANCE 1 to 3 (EDR1 to 3). To further study the molecular interactions between the powdery mildew pathogen and Arabidopsis, we isolated and characterized a mutant that exhibited enhanced resistance to powdery mildew. The mutant also showed dramatic powdery mildew-induced cell death as well as growth defects and early senescence in the absence of pathogens. We identified the affected gene by map-based cloning and found that the gene encodes a coproporphyrinogen III oxidase, a key enzyme in the tetrapyrrole biosynthesis pathway, previously known as LESION INITIATION 2 (LIN2). Therefore, we designated the mutant lin2-2. Further studies revealed that the lin2-2 mutant also displayed enhanced resistance to Hyaloperonospora arabidopsidis (H.a.) Noco2. Genetic analysis showed that the lin2-2-mediated disease resistance and spontaneous cell death were dependent on PHYTOALEXIN DEFICIENT 4 (PAD4), SALICYLIC ACID INDUCTION-DEFICIENT 2 (SID2), and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), which are all involved in salicylic acid signaling. Furthermore, the relative expression levels of defense-related genes were induced after powdery mildew infection in the lin2-2 mutant. These data indicated that LIN2 plays an important role in cell death control and defense responses in plants.
Collapse
Affiliation(s)
- Chuan-yu Guo
- College of Life Science, Shihezi University, Shihezi, 832003, Xinjiang, PR China.
| | | | | | | | | | | |
Collapse
|
99
|
Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:91-104. [PMID: 22963672 DOI: 10.1111/tpj.12014] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 05/20/2023]
Abstract
Transpiration and gas exchange occur through stomata. Thus, the control of stomatal aperture is important for the efficiency and regulation of water use, and for the response to drought. Here, we demonstrate that SIZ1-mediated endogenous salicylic acid (SA) accumulation plays an important role in stomatal closure and drought tolerance. siz1 reduced stomatal apertures. The reduced stomatal apertures of siz1 were inhibited by the application of peroxidase inhibitors, salicylhydroxamic acid and azide, which inhibits SA-dependent reactive oxygen species (ROS) production, but not by an NADPH oxidase inhibitor, diphenyl iodonium chloride, which inhibits ABA-dependent ROS production. Furthermore, the introduction of nahG into siz1, which reduces SA accumulation, restored stomatal opening. Stomatal closure is generally induced by water deficit. The siz1 mutation caused drought tolerance, whereas nahG siz1 suppressed the tolerant phenotype. Drought stresses also induced expression of SA-responsive genes, such as PR1 and PR2. Furthermore, other SA-accumulating mutants, cpr5 and acd6, exhibited stomatal closure and drought tolerance, and nahG suppressed the phenotype of cpr5 and acd6, as did siz1 and nahG siz1. Together, these results suggest that SIZ1 negatively affects stomatal closure and drought tolerance through the accumulation of SA.
Collapse
Affiliation(s)
- Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tukuba, 305-8572, Japan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907-2010, USA
| | - Hiroyuki Okamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Eiji Okuma
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hayato Shiba
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tukuba, 305-8572, Japan
| | - Hiroshi Kamada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tukuba, 305-8572, Japan
| | - Paul M Hasegawa
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907-2010, USA
| | - Yoshiyuki Murata
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
100
|
Nair P, Kandasamy S, Zhang J, Ji X, Kirby C, Benkel B, Hodges MD, Critchley AT, Hiltz D, Prithiviraj B. Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genomics 2012; 13:643. [PMID: 23171218 PMCID: PMC3560180 DOI: 10.1186/1471-2164-13-643] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/22/2012] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND We have previously shown that lipophilic components (LPC) of the brown seaweed Ascophyllum nodosum (ANE) improved freezing tolerance in Arabidopsis thaliana. However, the mechanism(s) of this induced freezing stress tolerance is largely unknown. Here, we investigated LPC induced changes in the transcriptome and metabolome of A. thaliana undergoing freezing stress. RESULTS Gene expression studies revealed that the accumulation of proline was mediated by an increase in the expression of the proline synthesis genes P5CS1 and P5CS2 and a marginal reduction in the expression of the proline dehydrogenase (ProDH) gene. Moreover, LPC application significantly increased the concentration of total soluble sugars in the cytosol in response to freezing stress. Arabidopsis sfr4 mutant plants, defective in the accumulation of free sugars, treated with LPC, exhibited freezing sensitivity similar to that of untreated controls. The 1H NMR metabolite profile of LPC-treated Arabidopsis plants exposed to freezing stress revealed a spectrum dominated by chemical shifts (δ) representing soluble sugars, sugar alcohols, organic acids and lipophilic components like fatty acids, as compared to control plants. Additionally, 2D NMR spectra suggested an increase in the degree of unsaturation of fatty acids in LPC treated plants under freezing stress. These results were supported by global transcriptome analysis. Transcriptome analysis revealed that LPC treatment altered the expression of 1113 genes (5%) in comparison with untreated plants. A total of 463 genes (2%) were up regulated while 650 genes (3%) were down regulated. CONCLUSION Taken together, the results of the experiments presented in this paper provide evidence to support LPC mediated freezing tolerance enhancement through a combination of the priming of plants for the increased accumulation of osmoprotectants and alteration of cellular fatty acid composition.
Collapse
Affiliation(s)
- Prasanth Nair
- Department of Environmental Sciences, Dalhousie Agricultural Campus, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Saveetha Kandasamy
- Department of Environmental Sciences, Dalhousie Agricultural Campus, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Junzeng Zhang
- Institute for Nutrisciences and Health, National Research Council of Canada, Charlottetown, PEI, C1A 4P3, Canada
| | - Xiuhong Ji
- Institute for Nutrisciences and Health, National Research Council of Canada, Charlottetown, PEI, C1A 4P3, Canada
| | - Chris Kirby
- Crops and Livestock Research Centre, Agriculture and Agri-Food Canada, 550 University Avenue, Charlottetown, PE, C1A 4N6, Canada
| | - Bernhard Benkel
- Department of Environmental Sciences, Dalhousie Agricultural Campus, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Mark D Hodges
- Atlantic Food and Horticulture Research Centre, Agriculture and Agri-Food Canada, Kentville, NS, B4N 1J5, Canada
| | - Alan T Critchley
- Acadian Seaplants Limited, 30 Brown Ave., Dartmouth, NS, B3B 1X8, Canada
| | - David Hiltz
- Acadian Seaplants Limited, 30 Brown Ave., Dartmouth, NS, B3B 1X8, Canada
| | - Balakrishnan Prithiviraj
- Department of Environmental Sciences, Dalhousie Agricultural Campus, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|