51
|
Narasimhan M, Gallei M, Tan S, Johnson A, Verstraeten I, Li L, Rodriguez L, Han H, Himschoot E, Wang R, Vanneste S, Sánchez-Simarro J, Aniento F, Adamowski M, Friml J. Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking. PLANT PHYSIOLOGY 2021; 186:1122-1142. [PMID: 33734402 PMCID: PMC8195513 DOI: 10.1093/plphys/kiab134] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/23/2021] [Indexed: 05/08/2023]
Abstract
The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the auxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural indole-3-acetic acid (IAA) and synthetic naphthalene acetic acid (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere with Brefeldin A-mediated intracellular PIN2 accumulation and also with general aggregation of endomembrane compartments. NAA treatment decreased the internalization of the endocytic tracer dye, FM4-64; however, NAA treatment also affected the number, distribution, and compartment identity of the early endosome/trans-Golgi network, rendering the FM4-64 endocytic assays at high NAA concentrations unreliable. To circumvent these nonspecific effects of NAA and IAA affecting the endomembrane system, we opted for alternative approaches visualizing the endocytic events directly at the plasma membrane (PM). Using total internal reflection fluorescence microscopy, we saw no significant effects of IAA or NAA treatments on the incidence and dynamics of clathrin foci, implying that these treatments do not affect the overall endocytosis rate. However, both NAA and IAA at low concentrations rapidly and specifically promoted endocytosis of photo-converted PIN2 from the PM. These analyses identify a specific effect of NAA and IAA on PIN2 endocytosis, thus, contributing to its polarity maintenance and furthermore illustrate that high auxin levels have nonspecific effects on trafficking and endomembrane compartments.
Collapse
Affiliation(s)
| | - Michelle Gallei
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Shutang Tan
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Alexander Johnson
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Inge Verstraeten
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Lanxin Li
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Lesia Rodriguez
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Huibin Han
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Ellie Himschoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Ren Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Judit Sánchez-Simarro
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain
| | - Maciek Adamowski
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Jiří Friml
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| |
Collapse
|
52
|
Arora D, Damme DV. Motif-based endomembrane trafficking. PLANT PHYSIOLOGY 2021; 186:221-238. [PMID: 33605419 PMCID: PMC8154067 DOI: 10.1093/plphys/kiab077] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 05/08/2023]
Abstract
Endomembrane trafficking, which allows proteins and lipids to flow between the different endomembrane compartments, largely occurs by vesicle-mediated transport. Transmembrane proteins intended for transport are concentrated into a vesicle or carrier by undulation of a donor membrane. This is followed by vesicle scission, uncoating, and finally, fusion at the target membrane. Three major trafficking pathways operate inside eukaryotic cells: anterograde, retrograde, and endocytic. Each pathway involves a unique set of machinery and coat proteins that pack the transmembrane proteins, along with their associated lipids, into specific carriers. Adaptor and coatomer complexes are major facilitators that function in anterograde transport and in endocytosis. These complexes recognize the transmembrane cargoes destined for transport and recruit the coat proteins that help form the carriers. These complexes use either linear motifs or posttranslational modifications to recognize the cargoes, which are then packaged and delivered along the trafficking pathways. In this review, we focus on the different trafficking complexes that share a common evolutionary branch in Arabidopsis (Arabidopsis thaliana), and we discuss up-to-date knowledge about the cargo recognition motifs they use.
Collapse
Affiliation(s)
- Deepanksha Arora
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Daniёl Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
- Author for communication:
| |
Collapse
|
53
|
Conditional destabilization of the TPLATE complex impairs endocytic internalization. Proc Natl Acad Sci U S A 2021; 118:2023456118. [PMID: 33876766 DOI: 10.1073/pnas.2023456118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In plants, endocytosis is essential for many developmental and physiological processes, including regulation of growth and development, hormone perception, nutrient uptake, and defense against pathogens. Our toolbox to modulate this process is, however, rather limited. Here, we report a conditional tool to impair endocytosis. We generated a partially functional TPLATE allele by substituting the most conserved domain of the TPLATE subunit of the endocytic TPLATE complex (TPC). This substitution destabilizes TPC and dampens the efficiency of endocytosis. Short-term heat treatment increases TPC destabilization and reversibly delocalizes TPLATE from the plasma membrane to aggregates in the cytoplasm. This blocks FM uptake and causes accumulation of various known endocytic cargoes at the plasma membrane. Short-term heat treatment therefore transforms the partially functional TPLATE allele into an effective conditional tool to impair endocytosis. Next to their role in endocytosis, several TPC subunits are also implicated in actin-regulated autophagosomal degradation. Inactivating TPC via the WDX mutation, however, does not impair autophagy, thus enabling specific and reversible modulation of endocytosis in planta.
Collapse
|
54
|
Gu X, Fonseka K, Agneessens J, Casson SA, Smertenko A, Guo G, Topping JF, Hussey PJ, Lindsey K. The Arabidopsis R-SNARE VAMP714 is essential for polarisation of PIN proteins and auxin responses. THE NEW PHYTOLOGIST 2021; 230:550-566. [PMID: 33454983 PMCID: PMC8651015 DOI: 10.1111/nph.17205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/23/2020] [Indexed: 05/27/2023]
Abstract
The plant hormone auxin and its directional intercellular transport play a major role in diverse aspects of plant growth and development. The establishment of auxin gradients requires the asymmetric distribution of members of the auxin efflux carrier PIN-FORMED (PIN) protein family to the plasma membrane. An endocytic pathway regulates the recycling of PIN proteins between the plasma membrane and endosomes, providing a mechanism for dynamic localisation. N-Ethylmaleimide-sensitive factor adaptor protein receptors (SNAP receptors, SNAREs) mediate fusion between vesicles and target membranes and are classed as Q- or R-SNAREs based on their sequence. We analysed gain- and loss-of-function mutants, dominant-negative transgenics and localisation of the Arabidopsis R-SNARE VAMP714 protein to understand its function. We demonstrate that VAMP714 is essential for the insertion of PINs into the plasma membrane, for polar auxin transport, root gravitropism and morphogenesis. VAMP714 gene expression is upregulated by auxin, and the VAMP714 protein co-localises with endoplasmic reticulum and Golgi vesicles and with PIN proteins at the plasma membrane. It is proposed that VAMP714 mediates the delivery of PIN-carrying vesicles to the plasma membrane, and that this forms part of a positive regulatory loop in which auxin activates a VAMP714-dependent PIN/auxin transport system to control development.
Collapse
Affiliation(s)
- Xiaoyan Gu
- Department of BiosciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
| | - Kumari Fonseka
- Department of BiosciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| | | | - Stuart A. Casson
- Department of BiosciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Andrei Smertenko
- Department of BiosciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Guangqin Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou UniversityLanzhou730000China
| | | | | | - Keith Lindsey
- Department of BiosciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| |
Collapse
|
55
|
Winkler J, De Meyer A, Mylle E, Storme V, Grones P, Van Damme D. Nanobody-Dependent Delocalization of Endocytic Machinery in Arabidopsis Root Cells Dampens Their Internalization Capacity. FRONTIERS IN PLANT SCIENCE 2021; 12:538580. [PMID: 33815429 PMCID: PMC8018273 DOI: 10.3389/fpls.2021.538580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/23/2021] [Indexed: 05/08/2023]
Abstract
Plant cells perceive and adapt to an ever-changing environment by modifying their plasma membrane (PM) proteome. Whereas secretion deposits new integral membrane proteins, internalization by endocytosis removes membrane proteins and associated ligands, largely with the aid of adaptor protein (AP) complexes and the scaffolding molecule clathrin. Two AP complexes function in clathrin-mediated endocytosis at the PM in plant cells, the heterotetrameric AP-2 complex and the hetero-octameric TPLATE complex (TPC). Whereas single subunit mutants in AP-2 develop into viable plants, genetic mutation of a single TPC subunit causes fully penetrant male sterility and silencing single subunits leads to seedling lethality. To address TPC function in somatic root cells, while minimizing indirect effects on plant growth, we employed nanobody-dependent delocalization of a functional, GFP-tagged TPC subunit, TML, in its respective homozygous genetic mutant background. In order to decrease the amount of functional TPC at the PM, we targeted our nanobody construct to the mitochondria and fused it to TagBFP2 to visualize it independently of its bait. We furthermore limited the effect of our delocalization to those tissues that are easily accessible for live-cell imaging by expressing it from the PIN2 promoter, which is active in root epidermal and cortex cells. With this approach, we successfully delocalized TML from the PM. Moreover, we also show co-recruitment of TML-GFP and AP2A1-TagRFP to the mitochondria, suggesting that our approach delocalized complexes, rather than individual adaptor complex subunits. In line with the specific expression domain, we only observed minor effects on root growth, yet realized a clear reduction of endocytic flux in epidermal root cells. Nanobody-dependent delocalization in plants, here exemplified using a TPC subunit, has the potential to be widely applicable to achieve specific loss-of-function analysis of otherwise lethal mutants.
Collapse
Affiliation(s)
- Joanna Winkler
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Andreas De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Veronique Storme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Peter Grones
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
56
|
Glanc M, Van Gelderen K, Hoermayer L, Tan S, Naramoto S, Zhang X, Domjan D, Včelařová L, Hauschild R, Johnson A, de Koning E, van Dop M, Rademacher E, Janson S, Wei X, Molnár G, Fendrych M, De Rybel B, Offringa R, Friml J. AGC kinases and MAB4/MEL proteins maintain PIN polarity by limiting lateral diffusion in plant cells. Curr Biol 2021; 31:1918-1930.e5. [PMID: 33705718 PMCID: PMC8112251 DOI: 10.1016/j.cub.2021.02.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 02/12/2021] [Indexed: 12/22/2022]
Abstract
Polar subcellular localization of the PIN exporters of the phytohormone auxin is a key determinant of directional, intercellular auxin transport and thus a central topic of both plant cell and developmental biology. Arabidopsis mutants lacking PID, a kinase that phosphorylates PINs, or the MAB4/MEL proteins of unknown molecular function display PIN polarity defects and phenocopy pin mutants, but mechanistic insights into how these factors convey PIN polarity are missing. Here, by combining protein biochemistry with quantitative live-cell imaging, we demonstrate that PINs, MAB4/MELs, and AGC kinases interact in the same complex at the plasma membrane. MAB4/MELs are recruited to the plasma membrane by the PINs and in concert with the AGC kinases maintain PIN polarity through limiting lateral diffusion-based escape of PINs from the polar domain. The PIN-MAB4/MEL-PID protein complex has self-reinforcing properties thanks to positive feedback between AGC kinase-mediated PIN phosphorylation and MAB4/MEL recruitment. We thus uncover the molecular mechanism by which AGC kinases and MAB4/MEL proteins regulate PIN localization and plant development. MAB4/MEL proteins are recruited to the plasma membrane by PINs PINs, MAB4/MELs, and AGC kinases directly interact in a multiprotein complex PIN phosphorylation and MAB4/MEL recruitment form a positive feedback loop MAB4/MELs and AGC kinases maintain PIN polarity by limiting PIN lateral diffusion
Collapse
Affiliation(s)
- Matouš Glanc
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czechia; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Kasper Van Gelderen
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands; Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Lukas Hoermayer
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Shutang Tan
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Satoshi Naramoto
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Xixi Zhang
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - David Domjan
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Ludmila Včelařová
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Robert Hauschild
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Alexander Johnson
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Edward de Koning
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands
| | - Maritza van Dop
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands
| | - Eike Rademacher
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands
| | - Stef Janson
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands
| | - Xiaoyu Wei
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands
| | - Gergely Molnár
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, (BOKU), 1190 Vienna, Austria
| | - Matyáš Fendrych
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria; Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czechia
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, the Netherlands.
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria.
| |
Collapse
|
57
|
Konstantinova N, Korbei B, Luschnig C. Auxin and Root Gravitropism: Addressing Basic Cellular Processes by Exploiting a Defined Growth Response. Int J Mol Sci 2021; 22:2749. [PMID: 33803128 PMCID: PMC7963156 DOI: 10.3390/ijms22052749] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Root architecture and growth are decisive for crop performance and yield, and thus a highly topical research field in plant sciences. The root system of the model plant Arabidopsis thaliana is the ideal system to obtain insights into fundamental key parameters and molecular players involved in underlying regulatory circuits of root growth, particularly in responses to environmental stimuli. Root gravitropism, directional growth along the gravity, in particular represents a highly sensitive readout, suitable to study adjustments in polar auxin transport and to identify molecular determinants involved. This review strives to summarize and give an overview into the function of PIN-FORMED auxin transport proteins, emphasizing on their sorting and polarity control. As there already is an abundance of information, the focus lies in integrating this wealth of information on mechanisms and pathways. This overview of a highly dynamic and complex field highlights recent developments in understanding the role of auxin in higher plants. Specifically, it exemplifies, how analysis of a single, defined growth response contributes to our understanding of basic cellular processes in general.
Collapse
Affiliation(s)
| | | | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria; (N.K.); (B.K.)
| |
Collapse
|
58
|
Eldridge BM, Larson ER, Weldon L, Smyth KM, Sellin AN, Chenchiah IV, Liverpool TB, Grierson CS. A Centrifuge-Based Method for Identifying Novel Genetic Traits That Affect Root-Substrate Adhesion in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:602486. [PMID: 33732271 PMCID: PMC7959780 DOI: 10.3389/fpls.2021.602486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
The physical presence of roots and the compounds they release affect the cohesion between roots and their environment. However, the plant traits that are important for these interactions are unknown and most methods that quantify the contributions of these traits are time-intensive and require specialist equipment and complex substrates. Our lab developed an inexpensive, high-throughput phenotyping assay that quantifies root-substrate adhesion in Arabidopsis thaliana. We now report that this method has high sensitivity and versatility for identifying different types of traits affecting root-substrate adhesion including root hair morphology, vesicle trafficking pathways, and root exudate composition. We describe a practical protocol for conducting this assay and introduce its use in a forward genetic screen to identify novel genes affecting root-substrate interactions. This assay is a powerful tool for identifying and quantifying genetic contributions to cohesion between roots and their environment.
Collapse
Affiliation(s)
- Bethany M. Eldridge
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Emily R. Larson
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Laura Weldon
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Kevin M. Smyth
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Annabelle N. Sellin
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | | | - Claire S. Grierson
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
59
|
Winkler J, De Meyer A, Mylle E, Storme V, Grones P, Van Damme D. Nanobody-Dependent Delocalization of Endocytic Machinery in Arabidopsis Root Cells Dampens Their Internalization Capacity. FRONTIERS IN PLANT SCIENCE 2021. [PMID: 33815429 DOI: 10.1101/2020.02.27.968446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant cells perceive and adapt to an ever-changing environment by modifying their plasma membrane (PM) proteome. Whereas secretion deposits new integral membrane proteins, internalization by endocytosis removes membrane proteins and associated ligands, largely with the aid of adaptor protein (AP) complexes and the scaffolding molecule clathrin. Two AP complexes function in clathrin-mediated endocytosis at the PM in plant cells, the heterotetrameric AP-2 complex and the hetero-octameric TPLATE complex (TPC). Whereas single subunit mutants in AP-2 develop into viable plants, genetic mutation of a single TPC subunit causes fully penetrant male sterility and silencing single subunits leads to seedling lethality. To address TPC function in somatic root cells, while minimizing indirect effects on plant growth, we employed nanobody-dependent delocalization of a functional, GFP-tagged TPC subunit, TML, in its respective homozygous genetic mutant background. In order to decrease the amount of functional TPC at the PM, we targeted our nanobody construct to the mitochondria and fused it to TagBFP2 to visualize it independently of its bait. We furthermore limited the effect of our delocalization to those tissues that are easily accessible for live-cell imaging by expressing it from the PIN2 promoter, which is active in root epidermal and cortex cells. With this approach, we successfully delocalized TML from the PM. Moreover, we also show co-recruitment of TML-GFP and AP2A1-TagRFP to the mitochondria, suggesting that our approach delocalized complexes, rather than individual adaptor complex subunits. In line with the specific expression domain, we only observed minor effects on root growth, yet realized a clear reduction of endocytic flux in epidermal root cells. Nanobody-dependent delocalization in plants, here exemplified using a TPC subunit, has the potential to be widely applicable to achieve specific loss-of-function analysis of otherwise lethal mutants.
Collapse
Affiliation(s)
- Joanna Winkler
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Andreas De Meyer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Veronique Storme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Peter Grones
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
60
|
Ke M, Ma Z, Wang D, Sun Y, Wen C, Huang D, Chen Z, Yang L, Tan S, Li R, Friml J, Miao Y, Chen X. Salicylic acid regulates PIN2 auxin transporter hyperclustering and root gravitropic growth via Remorin-dependent lipid nanodomain organisation in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2021; 229:963-978. [PMID: 32901934 PMCID: PMC7821329 DOI: 10.1111/nph.16915] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/23/2020] [Indexed: 05/20/2023]
Abstract
To adapt to the diverse array of biotic and abiotic cues, plants have evolved sophisticated mechanisms to sense changes in environmental conditions and modulate their growth. Growth-promoting hormones and defence signalling fine tune plant development antagonistically. During host-pathogen interactions, this defence-growth trade-off is mediated by the counteractive effects of the defence hormone salicylic acid (SA) and the growth hormone auxin. Here we revealed an underlying mechanism of SA regulating auxin signalling by constraining the plasma membrane dynamics of PIN2 auxin efflux transporter in Arabidopsis thaliana roots. The lateral diffusion of PIN2 proteins is constrained by SA signalling, during which PIN2 proteins are condensed into hyperclusters depending on REM1.2-mediated nanodomain compartmentalisation. Furthermore, membrane nanodomain compartmentalisation by SA or Remorin (REM) assembly significantly suppressed clathrin-mediated endocytosis. Consequently, SA-induced heterogeneous surface condensation disrupted asymmetric auxin distribution and the resultant gravitropic response. Our results demonstrated a defence-growth trade-off mechanism by which SA signalling crosstalked with auxin transport by concentrating membrane-resident PIN2 into heterogeneous compartments.
Collapse
Affiliation(s)
- Meiyu Ke
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhou350002China
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Zhiming Ma
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Deyan Wang
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhou350002China
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Yanbiao Sun
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhou350002China
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Chenjin Wen
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Dingquan Huang
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Zichen Chen
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Liang Yang
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingapore637551Singapore
| | - Shutang Tan
- Institute of Science and Technology Austria (IST Austria)Am Campus 1Klosterneuburg3400Austria
| | - Ruixi Li
- Department of BiologySouthern University of Science and TechnologyShenzhen518055China
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria)Am Campus 1Klosterneuburg3400Austria
| | - Yansong Miao
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
| | - Xu Chen
- Haixia Institute of Science and TechnologyHorticultural Plant Biology and Metabolomics CentreFujian Agriculture and Forestry UniversityFuzhou350002China
| |
Collapse
|
61
|
Aslam M, Sugita K, Qin Y, Rahman A. Aux/IAA14 Regulates microRNA-Mediated Cold Stress Response in Arabidopsis Roots. Int J Mol Sci 2020; 21:E8441. [PMID: 33182739 PMCID: PMC7697755 DOI: 10.3390/ijms21228441] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
The phytohormone auxin and microRNA-mediated regulation of gene expressions are key regulators of plant growth and development at both optimal and under low-temperature stress conditions. However, the mechanistic link between microRNA and auxin in regulating plant cold stress response remains elusive. To better understand the role of microRNA (miR) in the crosstalk between auxin and cold stress responses, we took advantage of the mutants of Arabidopsis thaliana with altered response to auxin transport and signal. Screening of the mutants for root growth recovery after cold stress at 4 °C revealed that the auxin signaling mutant, solitary root 1 (slr1; mutation in Aux/IAA14), shows a hypersensitive response to cold stress. Genome-wide expression analysis of miRs in the wild-type and slr1 mutant roots using next-generation sequencing revealed 180 known and 71 novel cold-responsive microRNAs. Cold stress also increased the abundance of 26-31 nt small RNA population in slr1 compared with wild type. Comparative analysis of microRNA expression shows significant differential expression of 13 known and 7 novel miRs in slr1 at 4 °C compared with wild type. Target gene expression analysis of the members from one potential candidate miR, miR169, revealed the possible involvement of miR169/NF-YA module in the Aux/IAA14-mediated cold stress response. Taken together, these results indicate that SLR/IAA14, a transcriptional repressor of auxin signaling, plays a crucial role in integrating miRs in auxin and cold responses.
Collapse
Affiliation(s)
- Mohammad Aslam
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan; (M.A.); (K.S.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China;
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kenji Sugita
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan; (M.A.); (K.S.)
| | - Yuan Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China;
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Abidur Rahman
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan; (M.A.); (K.S.)
- United Graduate School of Agricultural Sciences, Iwate University, Morioka 020-8550, Japan
- Agri-Innovation Center, Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| |
Collapse
|
62
|
Liu D, Kumar R, Claus LAN, Johnson AJ, Siao W, Vanhoutte I, Wang P, Bender KW, Yperman K, Martins S, Zhao X, Vert G, Van Damme D, Friml J, Russinova E. Endocytosis of BRASSINOSTEROID INSENSITIVE1 Is Partly Driven by a Canonical Tyr-Based Motif. THE PLANT CELL 2020; 32:3598-3612. [PMID: 32958564 PMCID: PMC7610300 DOI: 10.1105/tpc.20.00384] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/25/2020] [Accepted: 09/16/2020] [Indexed: 05/06/2023]
Abstract
Clathrin-mediated endocytosis (CME) and its core endocytic machinery are evolutionarily conserved across all eukaryotes. In mammals, the heterotetrameric adaptor protein complex-2 (AP-2) sorts plasma membrane (PM) cargoes into vesicles via the recognition of motifs based on Tyr or di-Leu in their cytoplasmic tails. However, in plants, very little is known about how PM proteins are sorted for CME and whether similar motifs are required. In Arabidopsis (Arabidopsis thaliana), the brassinosteroid (BR) receptor BR INSENSITIVE1 (BRI1) undergoes endocytosis, which depends on clathrin and AP-2. Here, we demonstrate that BRI1 binds directly to the medium AP-2 subunit (AP2M). The cytoplasmic domain of BRI1 contains five putative canonical surface-exposed Tyr-based endocytic motifs. The Tyr-to-Phe substitution in Y898KAI reduced BRI1 internalization without affecting its kinase activity. Consistently, plants carrying the BRI1Y898F mutation were hypersensitive to BRs. Our study demonstrates that AP-2-dependent internalization of PM proteins via the recognition of functional Tyr motifs also operates in plants.
Collapse
Affiliation(s)
- Derui Liu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Rahul Kumar
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Lucas A N Claus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | | - Wei Siao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Isabelle Vanhoutte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Peng Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Kyle W Bender
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| | - Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Sara Martins
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Xiuyang Zhao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
63
|
Rajagopal D, Mathew MK. Role of Arabidopsis RAB5 GEF vps9a in maintaining potassium levels under sodium chloride stress. PLANT DIRECT 2020; 4:e00273. [PMID: 33103044 PMCID: PMC7576885 DOI: 10.1002/pld3.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 05/07/2023]
Abstract
Salt stress is one of the major factors impacting crop productivity worldwide. Through a variety of effector and signaling pathways, plants achieve survival under salinity stress by maintaining high cytosolic potassium/sodium ion (K+/Na+) ratios, preventing Na+ cytotoxicity, and retaining osmotic balance. Ras-related protein 5 (Rab5) members are involved in the trafficking of endosomes to the vacuole or plasma membrane (PM). The vacuolar protein sorting- associated protein 9 (vps9a) encodes the single guanine nucleotide exchange factor (GEF) that activates all three known Rab5 proteins in Arabidopsis thaliana. Previous work from our group has reported the critical function of vps9a for the operation of salt-induced endocytic pathway, as well as the expansion of endomembrane compartments under saline stress conditions. Here we show an additional role of vps9a in plant response to salt stress via maintenance of K+ status of the cell rather than Na+ homeostasis. Our results show that roots from vps9a-2 mutant, subjected to 100 mM NaCl, display alterations in transcript levels of genes involved in the K+ homeostasis pathway. Concurrent with the observed sensitivity of vps9a-2 mutant under NaCl stress, exposure to low K+ environments resulted in growth retardation, and reduced rate of endocytosis. Furthermore, vps9a-2 mutant displays reduced expression of auxin reporter, Direct Repeat-5 (DR5), and alterations in polarity and abundance of auxin efflux carrier PIN- FORMED2 (PIN2). Imposition of NaCl stress was found to be restrictive to the elongation capacity of cells in the root elongation zone of vps9a-2 mutant. Together our results indicate that alterations in K+ homeostasis and associated cellular changes causing increased cell wall pH, contribute to diminished root growth and compromised survival of vps9a-2 mutant under salt stress conditions.
Collapse
Affiliation(s)
- Divya Rajagopal
- National Centre for Biological SciencesTIFRBangaloreKarnatakaIndia
| | - M. K. Mathew
- National Centre for Biological SciencesTIFRBangaloreKarnatakaIndia
| |
Collapse
|
64
|
Iwatate RJ, Yoshinari A, Yagi N, Grzybowski M, Ogasawara H, Kamiya M, Komatsu T, Taki M, Yamaguchi S, Frommer WB, Nakamura M. Covalent Self-Labeling of Tagged Proteins with Chemical Fluorescent Dyes in BY-2 Cells and Arabidopsis Seedlings. THE PLANT CELL 2020; 32:3081-3094. [PMID: 32763980 PMCID: PMC7534461 DOI: 10.1105/tpc.20.00439] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 05/08/2023]
Abstract
Synthetic chemical fluorescent dyes promise to be useful for many applications in biology. Covalent, targeted labeling, such as with a SNAP-tag, uses synthetic dyes to label specific proteins in vivo for studying processes such as endocytosis or for imaging via super-resolution microscopy. Despite its potential, such chemical tagging has not been used effectively in plants. A major drawback has been the limited knowledge regarding cell wall and membrane permeability of the available synthetic dyes. Of 31 synthetic dyes tested here, 23 were taken up into BY-2 cells, while eight were not. This creates sets of dyes that can serve to measure endocytosis. Three of the dyes that were able to enter the cells, SNAP-tag ligands of diethylaminocoumarin, tetramethylrhodamine, and silicon-rhodamine 647, were used to SNAP-tag α-tubulin. Successful tagging was verified by live cell imaging and visualization of microtubule arrays in interphase and during mitosis in Arabidopsis (Arabidopsis thaliana) seedlings. Fluorescence activation-coupled protein labeling with DRBG-488 was used to observe PIN-FORMED2 (PIN2) endocytosis and delivery to the vacuole as well as preferential delivery of newly synthesized PIN2 to the actively forming cell plate during mitosis. Together, the data demonstrate that specific self-labeling of proteins can be used effectively in plants to study a wide variety of cellular and biological processes.
Collapse
Affiliation(s)
- Ryu J Iwatate
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
- School of Medicine, Nagoya University, Showa, Nagoya 466-8550, Japan
| | - Akira Yoshinari
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Noriyoshi Yagi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Marek Grzybowski
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Hiroaki Ogasawara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Mako Kamiya
- Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Toru Komatsu
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Masayasu Taki
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Shigehiro Yamaguchi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Wolf B Frommer
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Masayoshi Nakamura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
65
|
EPSIN1 and MTV1 define functionally overlapping but molecularly distinct trans-Golgi network subdomains in Arabidopsis. Proc Natl Acad Sci U S A 2020; 117:25880-25889. [PMID: 32989160 DOI: 10.1073/pnas.2004822117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The plant trans-Golgi network (TGN) is a central trafficking hub where secretory, vacuolar, recycling, and endocytic pathways merge. Among currently known molecular players involved in TGN transport, three different adaptor protein (AP) complexes promote vesicle generation at the TGN with different cargo specificity and destination. Yet, it remains unresolved how sorting into diverging vesicular routes is spatially organized. Here, we study the family of Arabidopsis thaliana Epsin-like proteins, which are accessory proteins to APs facilitating vesicle biogenesis. By comprehensive molecular, cellular, and genetic analysis of the EPSIN gene family, we identify EPSIN1 and MODIFIED TRANSPORT TO THE VACUOLE1 (MTV1) as its only TGN-associated members. Despite their large phylogenetic distance, they perform overlapping functions in vacuolar and secretory transport. By probing their relationship with AP complexes, we find that they define two molecularly independent pathways: While EPSIN1 associates with AP-1, MTV1 interacts with AP-4, whose function is required for MTV1 recruitment. Although both EPSIN1/AP-1 and MTV1/AP-4 pairs reside at the TGN, high-resolution microscopy reveals them as spatially separate entities. Our results strongly support the hypothesis of molecularly, functionally, and spatially distinct subdomains of the plant TGN and suggest that functional redundancy can be achieved through parallelization of molecularly distinct but functionally overlapping pathways.
Collapse
|
66
|
Johnson A, Gnyliukh N, Kaufmann WA, Narasimhan M, Vert G, Bednarek SY, Friml J. Experimental toolbox for quantitative evaluation of clathrin-mediated endocytosis in the plant model Arabidopsis. J Cell Sci 2020; 133:jcs248062. [PMID: 32616560 DOI: 10.1242/jcs.248062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/22/2020] [Indexed: 12/29/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) is a crucial cellular process implicated in many aspects of plant growth, development, intra- and intercellular signaling, nutrient uptake and pathogen defense. Despite these significant roles, little is known about the precise molecular details of how CME functions in planta To facilitate the direct quantitative study of plant CME, we review current routinely used methods and present refined, standardized quantitative imaging protocols that allow the detailed characterization of CME at multiple scales in plant tissues. These protocols include: (1) an efficient electron microscopy protocol for the imaging of Arabidopsis CME vesicles in situ, thus providing a method for the detailed characterization of the ultrastructure of clathrin-coated vesicles; (2) a detailed protocol and analysis for quantitative live-cell fluorescence microscopy to precisely examine the temporal interplay of endocytosis components during single CME events; (3) a semi-automated analysis to allow the quantitative characterization of global internalization of cargos in whole plant tissues; and (4) an overview and validation of useful genetic and pharmacological tools to interrogate the molecular mechanisms and function of CME in intact plant samples.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Alexander Johnson
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Nataliia Gnyliukh
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Walter A Kaufmann
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 24 chemin de Borde Rouge, 31320 Auzeville Tolosane, France
| | | | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
67
|
Zhang J, Mazur E, Balla J, Gallei M, Kalousek P, Medveďová Z, Li Y, Wang Y, Prát T, Vasileva M, Reinöhl V, Procházka S, Halouzka R, Tarkowski P, Luschnig C, Brewer PB, Friml J. Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization. Nat Commun 2020; 11:3508. [PMID: 32665554 PMCID: PMC7360611 DOI: 10.1038/s41467-020-17252-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 06/15/2020] [Indexed: 11/27/2022] Open
Abstract
Directional transport of the phytohormone auxin is a versatile, plant-specific mechanism regulating many aspects of plant development. The recently identified plant hormones, strigolactones (SLs), are implicated in many plant traits; among others, they modify the phenotypic output of PIN-FORMED (PIN) auxin transporters for fine-tuning of growth and developmental responses. Here, we show in pea and Arabidopsis that SLs target processes dependent on the canalization of auxin flow, which involves auxin feedback on PIN subcellular distribution. D14 receptor- and MAX2 F-box-mediated SL signaling inhibits the formation of auxin-conducting channels after wounding or from artificial auxin sources, during vasculature de novo formation and regeneration. At the cellular level, SLs interfere with auxin effects on PIN polar targeting, constitutive PIN trafficking as well as clathrin-mediated endocytosis. Our results identify a non-transcriptional mechanism of SL action, uncoupling auxin feedback on PIN polarity and trafficking, thereby regulating vascular tissue formation and regeneration.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Ewa Mazur
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032, Katowice, Poland
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), 62500, Brno, Czech Republic
| | - Jozef Balla
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
- Department of Plant Biology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Michelle Gallei
- Institute of Science and Technology (IST), Klosterneuburg, 3400, Austria
| | - Petr Kalousek
- Department of Plant Biology, Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Zuzana Medveďová
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Yang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yaping Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tomáš Prát
- Institute of Science and Technology (IST), Klosterneuburg, 3400, Austria
| | - Mina Vasileva
- Institute of Science and Technology (IST), Klosterneuburg, 3400, Austria
| | - Vilém Reinöhl
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Stanislav Procházka
- Central European Institute of Technology (CEITEC), Mendel University in Brno, Zemedelska 1, 61300, Brno, Czech Republic
| | - Rostislav Halouzka
- Central Laboratories and Research Support, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Petr Tarkowski
- Central Laboratories and Research Support, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Wien, Austria
| | - Philip B Brewer
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Precinct, The University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Jiří Friml
- Institute of Science and Technology (IST), Klosterneuburg, 3400, Austria.
| |
Collapse
|
68
|
Wang J, Mylle E, Johnson A, Besbrugge N, De Jaeger G, Friml J, Pleskot R, Van Damme D. High Temporal Resolution Reveals Simultaneous Plasma Membrane Recruitment of TPLATE Complex Subunits. PLANT PHYSIOLOGY 2020; 183:986-997. [PMID: 32321842 PMCID: PMC7333705 DOI: 10.1104/pp.20.00178] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/31/2020] [Indexed: 05/19/2023]
Abstract
The TPLATE complex (TPC) is a key endocytic adaptor protein complex in plants. TPC in Arabidopsis (Arabidopsis thaliana) contains six evolutionarily conserved subunits and two plant-specific subunits (AtEH1/Pan1 and AtEH2/Pan1) which, although cytoplasmic proteins, are not associated with the hexameric subcomplex in the cytoplasm. To investigate the dynamic assembly of the octameric TPC at the plasma membrane (PM), we performed state-of-the-art dual-color live-cell imaging at physiological and lowered temperatures. Lowering the temperature slowed down endocytosis, thereby enhancing the temporal resolution of the differential recruitment of endocytic components. Under both normal and lowered temperature conditions, the core TPC subunit TPLATE and the AtEH/Pan1 proteins exhibited simultaneous recruitment at the PM. These results, together with colocalization analysis of different TPC subunits, allow us to conclude that the TPC in plant cells is not recruited to the PM sequentially but as an octameric complex.
Collapse
Affiliation(s)
- Jie Wang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Evelien Mylle
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Alexander Johnson
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Nienke Besbrugge
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert De Jaeger
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Roman Pleskot
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Daniel Van Damme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
69
|
Hou B, Shen Y. A Clathrin-Related Protein, SCD2/RRP1, Participates in Abscisic Acid Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:892. [PMID: 32625229 PMCID: PMC7314967 DOI: 10.3389/fpls.2020.00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Abscisic acid (ABA) plays important roles in many aspects of plant growth and development, and responses to diverse stresses. Although much progress has been made in understanding the molecular mechanisms of ABA homoeostasis and signaling, the mechanism by which plant cells integrate ABA trafficking and signaling to regulate plant developmental processes is poorly understood. In this study, we used Arabidopsis STOMATAL CYTOKINESIS DEFECTIVE 2/RIPENING-REGULATED PROTEIN 1 (SCD2/RRP1) mutants and overexpression plants, in combination with transcriptome and protein-interaction assays, to investigate SCD2/RRP1 involvement in the integration of ABA trafficking and signaling in seed germination and seedling growth. Manipulation of SCD2/RRP1 expression affected ABA sensitivity in seed germination and seedling growth, as well as transcription of several ABA transporter genes and ABA content. RNA-sequencing analysis of Arabidopsis transgenic mutants suggested that SCD2/RRP1 was associated with ABA signaling via a type 2C protein phosphatase (PP2C) protein. The N- and C-terminal regions of SCD2/RRP1 separately interacted with both PYRABACTIN RESISTANCE 1 (PYR1) and ABA INSENSITIVE 1 (ABI1) on the plasma membrane, and SCD2/RRP1 acted genetically upstream of ABI1. Interestingly, ABA inhibited the interaction of SCD2/RRP1 with ABI1, but did not affect the interaction of SCD2/RRP1 with PYR1. These results suggested that in Arabidopsis SCD2/RRP1participates in early seed development and growth potentially through clathrin-mediated endocytosis- and clathrin-coated vesicle-mediated ABA trafficking and signaling. These findings provide insight into the mechanism by which cells regulate plant developmental processes through ABA.
Collapse
Affiliation(s)
- Bingzhu Hou
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuanyue Shen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
70
|
Semeradova H, Montesinos JC, Benkova E. All Roads Lead to Auxin: Post-translational Regulation of Auxin Transport by Multiple Hormonal Pathways. PLANT COMMUNICATIONS 2020; 1:100048. [PMID: 33367243 PMCID: PMC7747973 DOI: 10.1016/j.xplc.2020.100048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/26/2020] [Accepted: 04/18/2020] [Indexed: 05/03/2023]
Abstract
Auxin is a key hormonal regulator, that governs plant growth and development in concert with other hormonal pathways. The unique feature of auxin is its polar, cell-to-cell transport that leads to the formation of local auxin maxima and gradients, which coordinate initiation and patterning of plant organs. The molecular machinery mediating polar auxin transport is one of the important points of interaction with other hormones. Multiple hormonal pathways converge at the regulation of auxin transport and form a regulatory network that integrates various developmental and environmental inputs to steer plant development. In this review, we discuss recent advances in understanding the mechanisms that underlie regulation of polar auxin transport by multiple hormonal pathways. Specifically, we focus on the post-translational mechanisms that contribute to fine-tuning of the abundance and polarity of auxin transporters at the plasma membrane and thereby enable rapid modification of the auxin flow to coordinate plant growth and development.
Collapse
Affiliation(s)
- Hana Semeradova
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Eva Benkova
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
71
|
Abstract
Cell polarity in plants operates across a broad range of spatial and temporal scales to control processes from acute cell growth to systemic hormone distribution. Similar to other eukaryotes, plants generate polarity at both the subcellular and tissue levels, often through polarization of membrane-associated protein complexes. However, likely due to the constraints imposed by the cell wall and their extremely plastic development, plants possess novel polarity molecules and mechanisms highly tuned to environmental inputs. Considerable progress has been made in identifying key plant polarity regulators, but detailed molecular understanding of polarity mechanisms remains incomplete in plants. Here, we emphasize the striking similarities in the conceptual frameworks that generate polarity in both animals and plants. To this end, we highlight how novel, plant-specific proteins engage in common themes of positive feedback, dynamic intracellular trafficking, and posttranslational regulation to establish polarity axes in development. We end with a discussion of how environmental signals control intrinsic polarity to impact postembryonic organogenesis and growth.
Collapse
Affiliation(s)
- Andrew Muroyama
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305-5020, USA; .,Department of Biology, Stanford University, Stanford, California 94305-5020, USA
| | - Dominique Bergmann
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305-5020, USA; .,Department of Biology, Stanford University, Stanford, California 94305-5020, USA
| |
Collapse
|
72
|
Zhang X, Adamowski M, Marhava P, Tan S, Zhang Y, Rodriguez L, Zwiewka M, Pukyšová V, Sánchez AS, Raxwal VK, Hardtke CS, Nodzyński T, Friml J. Arabidopsis Flippases Cooperate with ARF GTPase Exchange Factors to Regulate the Trafficking and Polarity of PIN Auxin Transporters. THE PLANT CELL 2020; 32:1644-1664. [PMID: 32193204 PMCID: PMC7203944 DOI: 10.1105/tpc.19.00869] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 05/13/2023]
Abstract
Cell polarity is a fundamental feature of all multicellular organisms. PIN auxin transporters are important cell polarity markers that play crucial roles in a plethora of developmental processes in plants. Here, to identify components involved in cell polarity establishment and maintenance in plants, we performed a forward genetic screening of PIN2:PIN1-HA;pin2 Arabidopsis (Arabidopsis thaliana) plants, which ectopically express predominantly basally localized PIN1 in root epidermal cells, leading to agravitropic root growth. We identified the regulator of PIN polarity 12 (repp12) mutation, which restored gravitropic root growth and caused a switch in PIN1-HA polarity from the basal to apical side of root epidermal cells. Next Generation Sequencing and complementation experiments established the causative mutation of repp12 as a single amino acid exchange in Aminophospholipid ATPase3 (ALA3), a phospholipid flippase predicted to function in vesicle formation. repp12 and ala3 T-DNA mutants show defects in many auxin-regulated processes, asymmetric auxin distribution, and PIN trafficking. Analysis of quintuple and sextuple mutants confirmed the crucial roles of ALA proteins in regulating plant development as well as PIN trafficking and polarity. Genetic and physical interaction studies revealed that ALA3 functions together with the ADP ribosylation factor GTPase exchange factors GNOM and BIG3 in regulating PIN polarity, trafficking, and auxin-mediated development.
Collapse
Affiliation(s)
- Xixi Zhang
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Maciek Adamowski
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Petra Marhava
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Shutang Tan
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Yuzhou Zhang
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Lesia Rodriguez
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno CZ-625 00, Czech Republic
| | - Vendula Pukyšová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno CZ-625 00, Czech Republic
| | - Adrià Sans Sánchez
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno CZ-625 00, Czech Republic
| | - Vivek Kumar Raxwal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno CZ-625 00, Czech Republic
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno CZ-625 00, Czech Republic
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
73
|
Sieńko K, Poormassalehgoo A, Yamada K, Goto-Yamada S. Microautophagy in Plants: Consideration of Its Molecular Mechanism. Cells 2020; 9:cells9040887. [PMID: 32260410 PMCID: PMC7226842 DOI: 10.3390/cells9040887] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Microautophagy is a type of autophagy. It is characterized by direct enclosing with the vacuolar/lysosomal membrane, which completes the isolation and uptake of cell components in the vacuole. Several publications present evidence that plants exhibit microautophagy. Plant microautophagy is involved in anthocyanin accumulation in the vacuole, eliminating damaged chloroplasts and degrading cellular components during starvation. However, information on the molecular mechanism of microautophagy is less available than that on the general macroautophagy, because the research focusing on microautophagy has not been widely reported. In yeast and animals, it is suggested that microautophagy can be classified into several types depending on morphology and the requirements of autophagy-related (ATG) genes. This review summarizes the studies on plant microautophagy and discusses possible techniques for a future study in this field while taking into account the information on microautophagy obtained from yeast and animals.
Collapse
|
74
|
Collins CA, LaMontagne ED, Anderson JC, Ekanayake G, Clarke AS, Bond LN, Salamango DJ, Cornish PV, Peck SC, Heese A. EPSIN1 Modulates the Plasma Membrane Abundance of FLAGELLIN SENSING2 for Effective Immune Responses. PLANT PHYSIOLOGY 2020; 182:1762-1775. [PMID: 32094305 PMCID: PMC7140936 DOI: 10.1104/pp.19.01172] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/14/2020] [Indexed: 05/25/2023]
Abstract
The plasma membrane (PM) provides a critical interface between plant cells and their environment to control cellular responses. To perceive the bacterial flagellin peptide flg22 for effective defense signaling, the immune receptor FLAGELLIN SENSING2 (FLS2) needs to be at its site of function, the PM, in the correct abundance. However, the intracellular machinery that controls PM accumulation of FLS2 remains largely undefined. The Arabidopsis (Arabidopsis thaliana) clathrin adaptor EPSIN1 (EPS1) is implicated in clathrin-coated vesicle formation at the trans-Golgi network (TGN), likely aiding the transport of cargo proteins from the TGN for proper location; but EPS1's impact on physiological responses remains elusive. Here, we identify EPS1 as a positive regulator of flg22 signaling and pattern-triggered immunity against Pseudomonas syringae pv tomato DC3000. We provide evidence that EPS1 contributes to modulating the PM abundance of defense proteins for effective immune signaling because in eps1, impaired flg22 signaling correlated with reduced PM accumulation of FLS2 and its coreceptor BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 (BAK1). The eps1 mutant also exhibited reduced responses to the pathogen/damage-associated molecular patterns elf26 and AtPep1, which are perceived by the coreceptor BAK1 and cognate PM receptors. Furthermore, quantitative proteomics of enriched PM fractions revealed that EPS1 was required for proper PM abundance of a discrete subset of proteins with different cellular functions. In conclusion, our study expands the limited understanding of the physiological roles of EPSIN family members in plants and provides novel insight into the TGN-associated clathrin-coated vesicle trafficking machinery that impacts plant PM-derived defense processes.
Collapse
Affiliation(s)
- Carina A Collins
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211
| | - Erica D LaMontagne
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Jeffrey C Anderson
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211
| | - Gayani Ekanayake
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Alexander S Clarke
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Lauren N Bond
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Daniel J Salamango
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Peter V Cornish
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| | - Scott C Peck
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211
| | - Antje Heese
- University of Missouri, Division of Biochemistry, Interdisciplinary Plant Group, Columbia, Missouri 65211
| |
Collapse
|
75
|
Mazur E, Gallei M, Adamowski M, Han H, Robert HS, Friml J. Clathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110414. [PMID: 32081263 DOI: 10.1016/j.plantsci.2020.110414] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
The flexible development of plants is characterized by a high capacity for post-embryonic organ formation and tissue regeneration, processes, which require tightly regulated intercellular communication and coordinated tissue (re-)polarization. The phytohormone auxin, the main driver for these processes, is able to establish polarized auxin transport channels, which are characterized by the expression and polar, subcellular localization of the PIN1 auxin transport proteins. These channels are demarcating the position of future vascular strands necessary for organ formation and tissue regeneration. Major progress has been made in the last years to understand how PINs can change their polarity in different contexts and thus guide auxin flow through the plant. However, it still remains elusive how auxin mediates the establishment of auxin conducting channels and the formation of vascular tissue and which cellular processes are involved. By the means of sophisticated regeneration experiments combined with local auxin applications in Arabidopsis thaliana inflorescence stems we show that (i) PIN subcellular dynamics, (ii) PIN internalization by clathrin-mediated trafficking and (iii) an intact actin cytoskeleton required for post-endocytic trafficking are indispensable for auxin channel formation, de novo vascular formation and vascular regeneration after wounding. These observations provide novel insights into cellular mechanism of coordinated tissue polarization during auxin canalization.
Collapse
Affiliation(s)
- Ewa Mazur
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Michelle Gallei
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Maciek Adamowski
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Huibin Han
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Hélène S Robert
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria.
| |
Collapse
|
76
|
Internalization of miPEP165a into Arabidopsis Roots Depends on Both Passive Diffusion and Endocytosis-Associated Processes. Int J Mol Sci 2020; 21:ijms21072266. [PMID: 32218176 PMCID: PMC7178249 DOI: 10.3390/ijms21072266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022] Open
Abstract
MiPEPs are short natural peptides encoded by microRNAs in plants. Exogenous application of miPEPs increases the expression of their corresponding miRNA and, consequently, induces consistent phenotypical changes. Therefore, miPEPs carry huge potential in agronomy as gene regulators that do not require genome manipulation. However, to this end, it is necessary to know their mode of action, including where they act and how they enter the plants. Here, after analyzing the effect of Arabidopsis thaliana miPEP165a on root and aerial part development, we followed the internalization of fluorescent-labelled miPEP165a into roots and compared its uptake into endocytosis-altered mutants to that observed in wild-type plants treated or not with endocytosis inhibitors. The results show that entry of miPEP165a involves both a passive diffusion at the root apex and endocytosis-associated internalization in the differentiation and mature zones. Moreover, miPEP165a is unable to enter the central cylinder and does not migrate from the roots to the aerial part of the plant, suggesting that miPEPs have no systemic effect.
Collapse
|
77
|
Wang Y, Liu W, Wang H, Du Q, Fu Z, Li WX, Tang J. ZmEHD1 Is Required for Kernel Development and Vegetative Growth through Regulating Auxin Homeostasis. PLANT PHYSIOLOGY 2020; 182:1467-1480. [PMID: 31857426 PMCID: PMC7054883 DOI: 10.1104/pp.19.01336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/08/2019] [Indexed: 05/18/2023]
Abstract
The roles of C-terminal Eps15 homology domain (EHD) proteins in clathrin-mediated endocytosis in plants are poorly understood. Here, we isolated a maize (Zea mays) mutant, designated ehd1, which showed defects in kernel development and vegetative growth. Positional cloning and transgenic analysis revealed that ehd1 encodes an EHD protein. Internalization of the endocytic tracer FM4-64 was substantially reduced in the ehd1 mutant and ZmEHD1 knockout mutants. We further demonstrated that ZmEHD1 and the ZmAP2 σ subunit physically interact at the plasma membrane. Auxin distribution and ZmPIN1a-YFP localization were altered in the ehd1 mutant. Kernel indole-3-acetic acid levels were substantially lower in the ehd1 mutant than in wild-type maize. Exogenous application of 1-naphthaleneacetic acid, but not GA3 or 2-naphthaleneacetic acid, rescued the seed germination and seedling emergency phenotypic defects of ehd1 mutants. Taken together, these results indicate that ZmEHD1 regulates auxin homeostasis by mediating clathrin-mediated endocytosis through its interaction with the ZmAP2 σ subunit, which is crucial for kernel development and vegetative growth of maize.
Collapse
Affiliation(s)
- Yafei Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 450002 Zhengzhou, China
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Wenwen Liu
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Hongqiu Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 450002 Zhengzhou, China
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Qingguo Du
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 450002 Zhengzhou, China
| | - Wen-Xue Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, 450002 Zhengzhou, China
| |
Collapse
|
78
|
Elliott L, Moore I, Kirchhelle C. Spatio-temporal control of post-Golgi exocytic trafficking in plants. J Cell Sci 2020; 133:133/4/jcs237065. [PMID: 32102937 DOI: 10.1242/jcs.237065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A complex and dynamic endomembrane system is a hallmark of eukaryotic cells and underpins the evolution of specialised cell types in multicellular organisms. Endomembrane system function critically depends on the ability of the cell to (1) define compartment and pathway identity, and (2) organise compartments and pathways dynamically in space and time. Eukaryotes possess a complex molecular machinery to control these processes, including small GTPases and their regulators, SNAREs, tethering factors, motor proteins, and cytoskeletal elements. Whereas many of the core components of the eukaryotic endomembrane system are broadly conserved, there have been substantial diversifications within different lineages, possibly reflecting lineage-specific requirements of endomembrane trafficking. This Review focusses on the spatio-temporal regulation of post-Golgi exocytic transport in plants. It highlights recent advances in our understanding of the elaborate network of pathways transporting different cargoes to different domains of the cell surface, and the molecular machinery underpinning them (with a focus on Rab GTPases, their interactors and the cytoskeleton). We primarily focus on transport in the context of growth, but also highlight how these pathways are co-opted during plant immunity responses and at the plant-pathogen interface.
Collapse
Affiliation(s)
- Liam Elliott
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Ian Moore
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
79
|
Narasimhan M, Johnson A, Prizak R, Kaufmann WA, Tan S, Casillas-Pérez B, Friml J. Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. eLife 2020; 9:52067. [PMID: 31971511 PMCID: PMC7012609 DOI: 10.7554/elife.52067] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
In plants, clathrin mediated endocytosis (CME) represents the major route for cargo internalisation from the cell surface. It has been assumed to operate in an evolutionary conserved manner as in yeast and animals. Here we report characterisation of ultrastructure, dynamics and mechanisms of plant CME as allowed by our advancement in electron microscopy and quantitative live imaging techniques. Arabidopsis CME appears to follow the constant curvature model and the bona fide CME population generates vesicles of a predominantly hexagonal-basket type; larger and with faster kinetics than in other models. Contrary to the existing paradigm, actin is dispensable for CME events at the plasma membrane but plays a unique role in collecting endocytic vesicles, sorting of internalised cargos and directional endosome movement that itself actively promote CME events. Internalized vesicles display a strongly delayed and sequential uncoating. These unique features highlight the independent evolution of the plant CME mechanism during the autonomous rise of multicellularity in eukaryotes.
Collapse
Affiliation(s)
| | - Alexander Johnson
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roshan Prizak
- Institute of Science and Technology Austria, Klosterneuburg, Austria.,Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | | | - Shutang Tan
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
80
|
Schwihla M, Korbei B. The Beginning of the End: Initial Steps in the Degradation of Plasma Membrane Proteins. FRONTIERS IN PLANT SCIENCE 2020; 11:680. [PMID: 32528512 PMCID: PMC7253699 DOI: 10.3389/fpls.2020.00680] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/30/2020] [Indexed: 05/05/2023]
Abstract
The plasma membrane (PM), as border between the inside and the outside of a cell, is densely packed with proteins involved in the sensing and transmission of internal and external stimuli, as well as transport processes and is therefore vital for plant development as well as quick and accurate responses to the environment. It is consequently not surprising that several regulatory pathways participate in the tight regulation of the spatiotemporal control of PM proteins. Ubiquitination of PM proteins plays a key role in directing their entry into the endo-lysosomal system, serving as a signal for triggering endocytosis and further sorting for degradation. Nevertheless, a uniting picture of the different roles of the respective types of ubiquitination in the consecutive steps of down-regulation of membrane proteins is still missing. The trans-Golgi network (TGN), which acts as an early endosome (EE) in plants receives the endocytosed cargo, and here the decision is made to either recycled back to the PM or further delivered to the vacuole for degradation. A multi-complex machinery, the endosomal sorting complex required for transport (ESCRT), concentrates ubiquitinated proteins and ushers them into the intraluminal vesicles of multi-vesicular bodies (MVBs). Several ESCRTs have ubiquitin binding subunits, which anchor and guide the cargos through the endocytic degradation route. Basic enzymes and the mode of action in the early degradation steps of PM proteins are conserved in eukaryotes, yet many plant unique components exist, which are often essential in this pathway. Thus, deciphering the initial steps in the degradation of ubiquitinated PM proteins, which is the major focus of this review, will greatly contribute to the larger question of how plants mange to fine-tune their responses to their environment.
Collapse
|
81
|
Yu M, Li R, Cui Y, Chen W, Li B, Zhang X, Bu Y, Cao Y, Xing J, Jewaria PK, Li X, Bhalerao R, Yu F, Lin J. The RALF1-FERONIA interaction modulates endocytosis to mediate control of root growth in Arabidopsis. Development 2020; 147:dev.189902. [DOI: 10.1242/dev.189902] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022]
Abstract
The interaction between the receptor-like kinase (RLK) FERONIA (FER) and the secreted peptide Rapid Alkalinization Factor 1 (RALF1) is vital for development and stress responses in Arabidopsis. Ligand-induced membrane dynamics affect the function of several RLKs, but the effects of the RALF1-FER interaction on the dynamics of FER and the ensuing effects on its functionality are poorly understood. Here, we show that RALF1 modulated the dynamics and partitioning of FER-GFP at the plasma membrane (PM). Moreover, FER was internalized by both clathrin-mediated endocytosis (CME) and clathrin-independent endocytosis (CIE) under steady state conditions. After RALF1 treatment, FER-GFP internalization was primarily enhanced via the CME pathway, raising FER-GFP levels in the vacuole. RALF1 treatment also modulated trafficking of other PM proteins such as PIN2-GFP and BRI1-GFP, increasing their vacuolar levels by enhancing their internalization. Importantly, blocking CME attenuated RALF1-mediated root growth inhibition independently of RALF1-induced early signaling, suggesting that the RALF1 can also exert its effects via the CME pathway. These findings reveal that the RALF1-FER interaction modulates plant growth and development and this may also involve endocytosis of PM proteins.
Collapse
Affiliation(s)
- Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yaning Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Weijun Chen
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Bin Li
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Xi Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yufen Bu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yangyang Cao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jingjing Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, Henan University, Kaifeng 475001, China
| | - Pawan Kumar Jewaria
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Rishikesh Bhalerao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, S-901 83 Umeå, Sweden
| | - Feng Yu
- College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha 410082, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
82
|
Retzer K, Akhmanova M, Konstantinova N, Malínská K, Leitner J, Petrášek J, Luschnig C. Brassinosteroid signaling delimits root gravitropism via sorting of the Arabidopsis PIN2 auxin transporter. Nat Commun 2019; 10:5516. [PMID: 31797871 PMCID: PMC6892858 DOI: 10.1038/s41467-019-13543-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/13/2019] [Indexed: 02/03/2023] Open
Abstract
Arabidopsis PIN2 protein directs transport of the phytohormone auxin from the root tip into the root elongation zone. Variation in hormone transport, which depends on a delicate interplay between PIN2 sorting to and from polar plasma membrane domains, determines root growth. By employing a constitutively degraded version of PIN2, we identify brassinolides as antagonists of PIN2 endocytosis. This response does not require de novo protein synthesis, but involves early events in canonical brassinolide signaling. Brassinolide-controlled adjustments in PIN2 sorting and intracellular distribution governs formation of a lateral PIN2 gradient in gravistimulated roots, coinciding with adjustments in auxin signaling and directional root growth. Strikingly, simulations indicate that PIN2 gradient formation is no prerequisite for root bending but rather dampens asymmetric auxin flow and signaling. Crosstalk between brassinolide signaling and endocytic PIN2 sorting, thus, appears essential for determining the rate of gravity-induced root curvature via attenuation of differential cell elongation.
Collapse
Affiliation(s)
- Katarzyna Retzer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Wien, Austria
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263 Praha 6, 165 02, Praha, Czech Republic
| | - Maria Akhmanova
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Nataliia Konstantinova
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Wien, Austria
| | - Kateřina Malínská
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263 Praha 6, 165 02, Praha, Czech Republic
| | - Johannes Leitner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Wien, Austria
- Boehringer Ingelheim RCV, Doktor-Boehringer-Gasse 5-11, 1120, Wien, Austria
| | - Jan Petrášek
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263 Praha 6, 165 02, Praha, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 44, Prague 2, Prague, Czech Republic
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Wien, Austria.
| |
Collapse
|
83
|
Rodriguez-Furlan C, Minina EA, Hicks GR. Remove, Recycle, Degrade: Regulating Plasma Membrane Protein Accumulation. THE PLANT CELL 2019; 31:2833-2854. [PMID: 31628169 PMCID: PMC6925004 DOI: 10.1105/tpc.19.00433] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 05/21/2023]
Abstract
Interactions between plant cells and the environment rely on modulation of protein receptors, transporters, channels, and lipids at the plasma membrane (PM) to facilitate intercellular communication, nutrient uptake, environmental sensing, and directional growth. These functions are fine-tuned by cellular pathways maintaining or reducing particular proteins at the PM. Proteins are endocytosed, and their fate is decided between recycling and degradation to modulate localization, abundance, and activity. Selective autophagy is another pathway regulating PM protein accumulation in response to specific conditions or developmental signals. The mechanisms regulating recycling, degradation, and autophagy have been studied extensively, yet we are just now addressing their regulation and coordination. Here, we (1) provide context concerning regulation of protein accumulation, recycling, or degradation by overviewing endomembrane trafficking; (2) discuss pathways regulating recycling and degradation in terms of cellular roles and cargoes; (3) review plant selective autophagy and its physiological significance; (4) focus on two decision-making mechanisms: regulation of recycling versus degradation of PM proteins and coordination between autophagy and vacuolar degradation; and (5) identify future challenges.
Collapse
Affiliation(s)
- Cecilia Rodriguez-Furlan
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92506
| | - Elena A Minina
- Uppsala Bio Center, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Glenn R Hicks
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92506
- Uppsala Bio Center, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| |
Collapse
|
84
|
Béziat C, Kleine-Vehn J. The Road to Auxin-Dependent Growth Repression and Promotion in Apical Hooks. Curr Biol 2019; 28:R519-R525. [PMID: 29689235 DOI: 10.1016/j.cub.2018.01.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The phytohormone auxin controls growth rates within plant tissues, but the underlying mechanisms are still largely enigmatic. The apical hook is a superb model to understand differential growth, because it displays both auxin-dependent growth repression and promotion. In this special issue on membranes, we illustrate how the distinct utilization of vesicle trafficking contributes to the spatial control of polar auxin transport, thereby pinpointing the site of growth repression in apical hooks. We moreover highlight that the transition to growth promotion is achieved by balancing inter- and intracellular auxin transport. We emphasize here that the apical hook development is a suitable model to further advance our mechanistic knowledge on plant growth regulation.
Collapse
Affiliation(s)
- Chloé Béziat
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
85
|
Zhang X, Cui Y, Yu M, Su B, Gong W, Baluška F, Komis G, Šamaj J, Shan X, Lin J. Phosphorylation-Mediated Dynamics of Nitrate Transceptor NRT1.1 Regulate Auxin Flux and Nitrate Signaling in Lateral Root Growth. PLANT PHYSIOLOGY 2019; 181:480-498. [PMID: 31431511 PMCID: PMC6776865 DOI: 10.1104/pp.19.00346] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/09/2019] [Indexed: 05/22/2023]
Abstract
The dual-affinity nitrate transceptor NITRATE TRANSPORTER1.1 (NRT1.1) has two modes of transport and signaling, governed by Thr-101 (T101) phosphorylation. NRT1.1 regulates lateral root (LR) development by modulating nitrate-dependent basipetal auxin export and nitrate-mediated signal transduction. Here, using the Arabidopsis (Arabidopsis thaliana) NRT1.1T101D phosphomimetic and NRT1.1T101A nonphosphorylatable mutants, we found that the phosphorylation state of NRT1.1 plays a key role in NRT1.1 function during LR development. Single-particle tracking revealed that phosphorylation affected NRT1.1 spatiotemporal dynamics. The phosphomimetic NRT1.1T101D form showed fast lateral mobility and membrane partitioning that facilitated auxin flux under low-nitrate conditions. By contrast, nonphosphorylatable NRT1.1T101A showed low lateral mobility and oligomerized at the plasma membrane (PM), where it induced endocytosis via the clathrin-mediated endocytosis and microdomain-mediated endocytosis pathways under high-nitrate conditions. These behaviors promoted LR development by suppressing NRT1.1-controlled auxin transport on the PM and stimulating Ca2+-ARABIDOPSIS NITRATE REGULATED1 signaling from the endosome.
Collapse
Affiliation(s)
- Xi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| | - Yaning Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| | - Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| | - Bodan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| | - Wei Gong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, D-53115, Germany
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc 78301, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc 78301, Czech Republic
| | - Xiaoyi Shan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 10083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 10083, China
| |
Collapse
|
86
|
Han Y, Yong X, Yu J, Cheng T, Wang J, Yang W, Pan H, Zhang Q. Identification of Candidate Adaxial-Abaxial-Related Genes Regulating Petal Expansion During Flower Opening in Rosa chinensis "Old Blush". FRONTIERS IN PLANT SCIENCE 2019; 10:1098. [PMID: 31552079 PMCID: PMC6747050 DOI: 10.3389/fpls.2019.01098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Petal expansion is the main process by which flower opening occurs in roses (Rosa chinensis). Although the regulation of leaf expansion has been extensively studied, little is known about the mechanisms controlling petal expansion. The regulation of leaf dorsoventral (adaxial-abaxial) polarity is important for blade expansion and morphogenesis, but the mechanisms involved adaxial-abaxial regulation in petals are unknown. We found that auxin, a key hormonal regulator of leaf adaxial-abaxial patterning, is unevenly distributed in rose petals. The transcriptomes of the adaxial and abaxial petal tissues were sequenced at three developmental stages during flower opening. Genes that were differentially expressed between the two tissues were filtered for those known to be involved in petal expansion and phytohormone biosynthesis, transport, and signaling, revealing potential roles in petal expansion, especially auxin pathway genes. Using a weighted gene coexpression network analysis (WGCNA), we identified two gene modules that may involve in adaxial-abaxial regulation, 21 and five hub genes have been found respectively. The qRT-PCR validation results were consistent with the RNA-seq data. Based on these findings, we propose a simple network of adaxial-abaxial-related genes that regulates petal expansion in R. chinensis "Old Blush." For the first time, we report the adaxial-abaxial transcriptional changes that occur during petal expansion, providing a reference for the study of the regulation of polarity in plant development.
Collapse
Affiliation(s)
- Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xue Yong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jiayao Yu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Weiru Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
87
|
Zhao Q, Shen J, Gao C, Cui Y, Wang Y, Cui J, Cheng L, Cao W, Zhu Y, Huang S, Zhou Q, Leong CK, Leung KP, Chen X, Jiang L. RST1 Is a FREE1 Suppressor That Negatively Regulates Vacuolar Trafficking in Arabidopsis. THE PLANT CELL 2019; 31:2152-2168. [PMID: 31221737 PMCID: PMC6751125 DOI: 10.1105/tpc.19.00003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/18/2019] [Accepted: 06/17/2019] [Indexed: 05/23/2023]
Abstract
FYVE domain protein required for endosomal sorting1 (FREE1), a plant-specific endosomal sorting complex required for transport-I component, is essential for the biogenesis of multivesicular bodies (MVBs), vacuolar degradation of membrane protein, cargo vacuolar sorting, autophagic degradation, and vacuole biogenesis in Arabidopsis (Arabidopsis thaliana). Here, we report the characterization of RESURRECTION1 (RST1) as a suppressor of free1 that, when mutated as a null mutant, restores the normal MVB and vacuole formation of a FREE1-RNAi knockdown line and consequently allows survival. RST1 encodes an evolutionarily conserved multicellular organism-specific protein, which contains two Domain of Unknown Function 3730 domains, showing no similarity to known proteins, and predominantly localizes in the cytosol. The depletion of FREE1 causes substantial accumulation of RST1, and transgenic Arabidopsis plants overexpressing RST1 display retarded seedling growth with dilated MVBs, and inhibition of endocytosed FM4-64 dye to the tonoplast, suggesting that RST1 has a negative role in vacuolar transport. Consistently, enhanced endocytic degradation of membrane vacuolar cargoes occurs in the rst1 mutant. Further transcriptomic comparison of rst1 with free1 revealed a negative association between gene expression profiles, demonstrating that FREE1 and RST1 have antagonistic functions. Thus, RST1 is a negative regulator controlling membrane protein homeostasis and FREE1-mediated functions in plants.
Collapse
Affiliation(s)
- Qiong Zhao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou 510631, China
| | - Yong Cui
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yongyi Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jie Cui
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Lixin Cheng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Critical Care Medicine, Shenzhen People’s Hospital, The Second Clinical Medicine College of Ji’nan University, Shenzhen 518020, China
| | - Wenhan Cao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ying Zhu
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shuxian Huang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qianzi Zhou
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Cheuk Ka Leong
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - King Pong Leung
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
88
|
Ekanayake G, LaMontagne ED, Heese A. Never Walk Alone: Clathrin-Coated Vesicle (CCV) Components in Plant Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:387-409. [PMID: 31386597 DOI: 10.1146/annurev-phyto-080417-045841] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
At the host-pathogen interface, the protein composition of the plasma membrane (PM) has important implications for how a plant cell perceives and responds to invading microbial pathogens. A plant's ability to modulate its PM composition is critical for regulating the strength, duration, and integration of immune responses. One mechanism by which plant cells reprogram their cell surface is vesicular trafficking, including secretion and endocytosis. These trafficking processes add or remove cargo proteins (such as pattern-recognition receptors, transporters, and other proteins with immune functions) to or from the PM via small, membrane-bound vesicles. Clathrin-coated vesicles (CCVs) that form at the PM and trans-Golgi network/early endosomes have emerged as the prominent vesicle type in the regulation of plant immune responses. In this review, we discuss the roles of the CCV core, adaptors, and accessory components in plant defense signaling and immunity against various microbial pathogens.
Collapse
Affiliation(s)
- Gayani Ekanayake
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| | - Erica D LaMontagne
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| |
Collapse
|
89
|
Gao J, Chaudhary A, Vaddepalli P, Nagel MK, Isono E, Schneitz K. The Arabidopsis receptor kinase STRUBBELIG undergoes clathrin-dependent endocytosis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3881-3894. [PMID: 31107531 PMCID: PMC6685663 DOI: 10.1093/jxb/erz190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/09/2019] [Indexed: 05/04/2023]
Abstract
Signaling mediated by cell surface receptor kinases is central to the coordination of growth patterns during organogenesis. Receptor kinase signaling is in part controlled through endocytosis and subcellular distribution of the respective receptor kinase. For the majority of plant cell surface receptors, the underlying trafficking mechanisms are not characterized. In Arabidopsis, tissue morphogenesis requires the atypical receptor kinase STRUBBELIG (SUB). Here, we studied the endocytic mechanism of SUB. Our data revealed that a functional SUB-enhanced green fluorescent protein (EGFP) fusion is ubiquitinated in vivo. We further showed that plasma membrane-bound SUB:EGFP becomes internalized in a clathrin-dependent fashion. We also found that SUB:EGFP associates with the trans-Golgi network and accumulates in multivesicular bodies and the vacuole. Co-immunoprecipitation experiments revealed that SUB:EGFP and clathrin are present within the same protein complex. Our genetic analysis showed that SUB and CLATHRIN HEAVY CHAIN (CHC) 2 regulate root hair patterning. By contrast, genetic reduction of CHC activity ameliorates the floral defects of sub mutants. Taken together, the data indicate that SUB undergoes clathrin-mediated endocytosis, that this process does not rely on stimulation of SUB signaling by an exogenous agent, and that SUB genetically interacts with clathrin-dependent pathways in a tissue-specific manner.
Collapse
Affiliation(s)
- Jin Gao
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Ajeet Chaudhary
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Prasad Vaddepalli
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- Present address: Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands
| | - Marie-Kristin Nagel
- Department of Biology, Chair of Plant Physiology and Biochemistry, University of Konstanz, Konstanz, Germany
| | - Erika Isono
- Department of Biology, Chair of Plant Physiology and Biochemistry, University of Konstanz, Konstanz, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- Correspondence:
| |
Collapse
|
90
|
Zwiewka M, Bilanovičová V, Seifu YW, Nodzyński T. The Nuts and Bolts of PIN Auxin Efflux Carriers. FRONTIERS IN PLANT SCIENCE 2019; 10:985. [PMID: 31417597 PMCID: PMC6685051 DOI: 10.3389/fpls.2019.00985] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/12/2019] [Indexed: 05/20/2023]
Abstract
The plant-specific proteins named PIN-FORMED (PIN) efflux carriers facilitate the direction of auxin flow and thus play a vital role in the establishment of local auxin maxima within plant tissues that subsequently guide plant ontogenesis. They are membrane integral proteins with two hydrophobic regions consisting of alpha-helices linked with a hydrophilic loop, which is usually longer for the plasma membrane-localized PINs. The hydrophilic loop harbors molecular cues important for the subcellular localization and thus auxin efflux function of those transporters. The three-dimensional structure of PIN has not been solved yet. However, there are scattered but substantial data concerning the functional characterization of amino acid strings that constitute these carriers. These sequences include motifs vital for vesicular trafficking, residues regulating membrane diffusion, cellular polar localization, and activity of PINs. Here, we summarize those bits of information striving to provide a reference to structural motifs that have been investigated experimentally hoping to stimulate the efforts toward unraveling of PIN structure-function connections.
Collapse
Affiliation(s)
| | | | | | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| |
Collapse
|
91
|
Trusova SV, Teplova AD, Golyshev SA, Galiullina RA, Morozova EA, Chichkova NV, Vartapetian AB. Clathrin-Mediated Endocytosis Delivers Proteolytically Active Phytaspases Into Plant Cells. FRONTIERS IN PLANT SCIENCE 2019; 10:873. [PMID: 31379892 PMCID: PMC6657458 DOI: 10.3389/fpls.2019.00873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
Phytaspases belong to the family of plant subtilisin-like proteases and are distinct from other family members, as they have strict and rarely occurring aspartate cleavage specificity and unusual localization dynamics. After being secreted into the apoplast of healthy plant tissues, phytaspases are able to return back into cells that have been committed to cell death due to a variety of biotic and abiotic stresses. It was recently discovered that retrograde transport of phytaspases involves clathrin-mediated endocytosis. Here, consequences of phytaspase internalization were studied. Proteolytic activity of phytaspases in the apoplast and intracellular protein fractions obtained from Nicotiana benthamiana leaves containing either endogenous phytaspase only or transiently producing Nicotiana tabacum phytaspase-EGFP protein (NtPhyt-EGFP) was determined. We demonstrated that triggering phytaspase internalization by antimycin A-induced oxidative stress is accompanied by re-distribution of phytaspase activity from the apoplast to the cell interior. Inhibition of clathrin-mediated endocytosis by co-production of the Hub protein prevented phytaspase internalization and phytaspase activity re-localization. Specificity of endocytic uptake of phytaspases was demonstrated by the co-production of an apoplast-targeted mRFP protein marker, which retained its apoplastic localization when phytaspase internalization was essentially complete. Overproduction of NtPhyt-EGFP, but not of the proteolytically inactive phytaspase mutant, per se caused moderate damage in young Nicotiana benthamiana seedlings, whereas antimycin A treatment induced a pronounced loss of cell viability independent of the NtPhyt-EGFP overproduction. Interestingly, inhibition of clathrin-mediated endocytosis abrogated cell death symptoms in both cases. In contrast to stress-induced internalization of tobacco phytaspase, Arabidopsis thaliana phytaspase-EGFP protein (AtPhyt-EGFP) was spontaneously internalized when transiently produced in N. benthamiana leaves. The AtPhyt-EGFP uptake was dependent on clathrin-mediated endocytosis as well, the internalized protein being initially visualized within the membranous vesicles. At later time points, the EGFP tag was cleaved off from AtPhyt, though the elevated level of intracellular AtPhyt proteolytic activity persisted. Our data, therefore, point to clathrin-mediated endocytosis as a means to deliver proteolytically active phytaspases into plant cells. It would be interesting to learn whether or not phytaspases are unique among the large family of plant subtilisin-like proteases in their ability to utilize retrograde trafficking.
Collapse
Affiliation(s)
- Svetlana V. Trusova
- Department of Chemistry and Biochemistry of Nucleoproteins, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Anastasia D. Teplova
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Sergei A. Golyshev
- Department of Chemistry and Biochemistry of Nucleoproteins, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Raisa A. Galiullina
- Department of Chemistry and Biochemistry of Nucleoproteins, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Ekaterina A. Morozova
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Nina V. Chichkova
- Department of Chemistry and Biochemistry of Nucleoproteins, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Andrey B. Vartapetian
- Department of Chemistry and Biochemistry of Nucleoproteins, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| |
Collapse
|
92
|
He D, Xia B, Zhou Q, Wang L, Huang X. Rare earth elements regulate the endocytosis and DNA methylation in root cells of Arabidopsis thaliana. CHEMOSPHERE 2019; 227:522-532. [PMID: 31004819 DOI: 10.1016/j.chemosphere.2019.04.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/30/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
With increasing application of rare earth elements (REEs), the resulting environmental safety has attracted extensive attention. When REEs act on plant leaves, REEs can initiate endocytosis in leaf cells, causing more REEs enter plant cells and then severe damage to plants. But when REEs directly act on plant roots, whether and how REEs affect the endocytosis in root cells remain unknown. Here, we characterized effects of lanthanum [La(III)], a REE with high accumulation in environment, on the endocytosis in root cells of Arabidopsis thaliana, and revealed effect mechanism from the perspective of DNA methylation. We found that La(III) enhanced the endocytosis in root cells and the extent of enhancement depended on the dose and time of La(III) exposure: 160 μM > 80 μM >30 μM (12 h); 80 μM > 30 μM >160 μM (24 h); 24 h > 12 h. La(III)-enhanced endocytosis in root cells resulted from DNA methylation, which was closely related to the expression level of genes encoding DNA methylases/demethylases: CMT3, DRM2 and DNMT2 for 12 h, MET1, CMT1, CMT2, CMT3, DRM2, DNMT2, ROS1, DME, DML2, DML5a, and DML5b for 24 h. Conversely, enhanced endocytosis also promoted the expression level of genes encoding DNA methylases/demethylases. Our findings provide references for understanding the mechanisms by which REEs impact plants.
Collapse
Affiliation(s)
- Ding He
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Binxin Xia
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Lihong Wang
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Xiaohua Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
93
|
Arabinogalactan protein-rare earth element complexes activate plant endocytosis. Proc Natl Acad Sci U S A 2019; 116:14349-14357. [PMID: 31239335 DOI: 10.1073/pnas.1902532116] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Endocytosis is essential to all eukaryotes, but how cargoes are selected for internalization remains poorly characterized. Extracellular cargoes are thought to be selected by transmembrane receptors that bind intracellular adaptors proteins to initiate endocytosis. Here, we report a mechanism for clathrin-mediated endocytosis (CME) of extracellular lanthanum [La(III)] cargoes, which requires extracellular arabinogalactan proteins (AGPs) that are anchored on the outer face of the plasma membrane. AGPs were colocalized with La(III) on the cell surface and in La(III)-induced endocytic vesicles in Arabidopsis leaf cells. Superresolution imaging showed that La(III) triggered AGP movement across the plasma membrane. AGPs were then colocalized and physically associated with the μ subunit of the intracellular adaptor protein 2 (AP2) complexes. The AGP-AP2 interaction was independent of CME, whereas AGP's internalization required CME and AP2. Moreover, we show that AGP-dependent endocytosis in the presence of La(III) also occurred in human cells. These findings indicate that extracellular AGPs act as conserved CME cargo receptors, thus challenging the current paradigm about endocytosis of extracellular cargoes.
Collapse
|
94
|
Glanc M, Fendrych M, Friml J. PIN2 Polarity Establishment in Arabidopsis in the Absence of an Intact Cytoskeleton. Biomolecules 2019; 9:biom9060222. [PMID: 31181636 PMCID: PMC6628292 DOI: 10.3390/biom9060222] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/31/2022] Open
Abstract
Cell polarity is crucial for the coordinated development of all multicellular organisms. In plants, this is exemplified by the PIN-FORMED (PIN) efflux carriers of the phytohormone auxin: The polar subcellular localization of the PINs is instructive to the directional intercellular auxin transport, and thus to a plethora of auxin-regulated growth and developmental processes. Despite its importance, the regulation of PIN polar subcellular localization remains poorly understood. Here, we have employed advanced live-cell imaging techniques to study the roles of microtubules and actin microfilaments in the establishment of apical polar localization of PIN2 in the epidermis of the Arabidopsis root meristem. We report that apical PIN2 polarity requires neither intact actin microfilaments nor microtubules, suggesting that the primary spatial cue for polar PIN distribution is likely independent of cytoskeleton-guided endomembrane trafficking.
Collapse
Affiliation(s)
- Matouš Glanc
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria.
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czech Republic.
| | - Matyáš Fendrych
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria.
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague, Czech Republic.
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria.
| |
Collapse
|
95
|
Richardson LGL. The SNARE SYP132 Fine-Tunes Proton Transporter Levels at the Plasma Membrane during Plant Growth. PLANT PHYSIOLOGY 2019; 180:703-705. [PMID: 31160527 PMCID: PMC6548240 DOI: 10.1104/pp.19.00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Lynn G L Richardson
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
96
|
Xia L, Mar Marquès-Bueno M, Bruce CG, Karnik R. Unusual Roles of Secretory SNARE SYP132 in Plasma Membrane H +-ATPase Traffic and Vegetative Plant Growth. PLANT PHYSIOLOGY 2019; 180:837-858. [PMID: 30926657 PMCID: PMC6548232 DOI: 10.1104/pp.19.00266] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/22/2019] [Indexed: 05/03/2023]
Abstract
The plasma membrane proton (H+)-ATPases of plants generate steep electrochemical gradients and activate osmotic solute uptake. H+-ATPase-mediated proton pumping orchestrates cellular homeostasis and is a prerequisite for plastic cell expansion and plant growth. All evidence suggests that the population of H+-ATPase proteins at the plasma membrane reflects a balance of their roles in exocytosis, endocytosis, and recycling. Auxin governs both traffic and activation of the plasma membrane H+-ATPase proteins already present at the membrane. As in other eukaryotes, in plants, SNARE-mediated membrane traffic influences the density of several proteins at the plasma membrane. Even so, H+-ATPase traffic, its relationship with SNAREs, and its regulation by auxin have remained enigmatic. Here, we identify the Arabidopsis (Arabidopsis thaliana) Qa-SNARE SYP132 (Syntaxin of Plants132) as a key factor in H+-ATPase traffic and demonstrate its association with endocytosis. SYP132 is a low-abundant, secretory SNARE that primarily localizes to the plasma membrane. We find that SYP132 expression is tightly regulated by auxin and that augmented SYP132 expression reduces the amount of H+-ATPase proteins at the plasma membrane. The physiological consequences of SYP132 overexpression include reduced apoplast acidification and suppressed vegetative growth. Thus, SYP132 plays unexpected and vital roles in auxin-regulated H+-ATPase traffic and associated functions at the plasma membrane.
Collapse
Affiliation(s)
- Lingfeng Xia
- Plant Science Group, Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Maria Mar Marquès-Bueno
- Plant Science Group, Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Craig Graham Bruce
- Plant Science Group, Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Rucha Karnik
- Plant Science Group, Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
97
|
Oochi A, Hajny J, Fukui K, Nakao Y, Gallei M, Quareshy M, Takahashi K, Kinoshita T, Harborough SR, Kepinski S, Kasahara H, Napier R, Friml J, Hayashi KI. Pinstatic Acid Promotes Auxin Transport by Inhibiting PIN Internalization. PLANT PHYSIOLOGY 2019; 180:1152-1165. [PMID: 30936248 PMCID: PMC6548234 DOI: 10.1104/pp.19.00201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/21/2019] [Indexed: 05/09/2023]
Abstract
Polar auxin transport plays a pivotal role in plant growth and development. PIN-FORMED (PIN) auxin efflux carriers regulate directional auxin movement by establishing local auxin maxima, minima, and gradients that drive multiple developmental processes and responses to environmental signals. Auxin has been proposed to modulate its own transport by regulating subcellular PIN trafficking via processes such as clathrin-mediated PIN endocytosis and constitutive recycling. Here, we further investigated the mechanisms by which auxin affects PIN trafficking by screening auxin analogs and identified pinstatic acid (PISA) as a positive modulator of polar auxin transport in Arabidopsis (Arabidopsis thaliana). PISA had an auxin-like effect on hypocotyl elongation and adventitious root formation via positive regulation of auxin transport. PISA did not activate SCFTIR1/AFB signaling and yet induced PIN accumulation at the cell surface by inhibiting PIN internalization from the plasma membrane. This work demonstrates PISA to be a promising chemical tool to dissect the regulatory mechanisms behind subcellular PIN trafficking and auxin transport.
Collapse
Affiliation(s)
- Akihiro Oochi
- Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan
| | - Jakub Hajny
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, CZ-78371 Olomouc, Czech Republic
| | - Kosuke Fukui
- Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan
| | - Yukio Nakao
- Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan
| | - Michelle Gallei
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Koji Takahashi
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Sigurd Ramans Harborough
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Stefan Kepinski
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Hiroyuki Kasahara
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama 700-0005, Japan
| |
Collapse
|
98
|
Chen X, Li L, Xu B, Zhao S, Lu P, He Y, Ye T, Feng YQ, Wu Y. Phosphatidylinositol-specific phospholipase C2 functions in auxin-modulated root development. PLANT, CELL & ENVIRONMENT 2019; 42:1441-1457. [PMID: 30496625 DOI: 10.1111/pce.13492] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 11/08/2018] [Accepted: 11/24/2018] [Indexed: 05/11/2023]
Abstract
Nine phosphatidylinositol-specific phospholipases C (PLCs) have been identified in the Arabidopsis genome; among the importance of PLC2 in reproductive development is significant. However, the role of PLC2 in vegetative development such as in root growth is elusive. Here, we report that plc2 mutants displayed multiple auxin-defective phenotypes in root development, including short primary root, impaired root gravitropism, and inhibited root hair growth. The DR5:GUS expression and the endogenous indole-3-acetic acid (IAA) content, as well as the responses of a set of auxin-related genes to exogenous IAA treatment, were all decreased in plc2 seedlings, suggesting the influence of PLC2 on auxin accumulation and signalling. The root elongation of plc2 mutants was less sensitive to the high concentration of exogenous auxins, and the application of 1-naphthaleneacetic acid or the auxin transport inhibitor N-1-naphthylphthalamic acid could rescue the root hair growth of plc2 mutants. In addition, the PIN2 polarity and cycling in plc2 root epidermis cells were altered. These results demonstrate a critical role of PLC2 in auxin-mediated root development in Arabidopsis, in which PLC2 influences the polar distribution of PIN2.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lin Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Buxian Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shujuan Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Piaoying Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuqing He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tiantian Ye
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, China
| | - Yan Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
99
|
Braking plant endocytosis. Nat Chem Biol 2019; 15:553-555. [PMID: 31011213 DOI: 10.1038/s41589-019-0273-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
100
|
Dejonghe W, Sharma I, Denoo B, De Munck S, Lu Q, Mishev K, Bulut H, Mylle E, De Rycke R, Vasileva M, Savatin DV, Nerinckx W, Staes A, Drozdzecki A, Audenaert D, Yperman K, Madder A, Friml J, Van Damme D, Gevaert K, Haucke V, Savvides SN, Winne J, Russinova E. Disruption of endocytosis through chemical inhibition of clathrin heavy chain function. Nat Chem Biol 2019; 15:641-649. [DOI: 10.1038/s41589-019-0262-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/04/2019] [Indexed: 11/09/2022]
|