51
|
Jégou C, Kervarec N, Cérantola S, Bihannic I, Stiger-Pouvreau V. NMR use to quantify phlorotannins: the case of Cystoseira tamariscifolia, a phloroglucinol-producing brown macroalga in Brittany (France). Talanta 2015; 135:1-6. [PMID: 25640118 DOI: 10.1016/j.talanta.2014.11.059] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/19/2014] [Accepted: 11/22/2014] [Indexed: 11/16/2022]
Abstract
Among the most renowned natural products from brown algae, phlorotannins are phloroglucinol polymers that have been extensively studied, both for their biotechnological potential and their interest in chemical ecology. The accurate quantification of these compounds is a key point to understand their role as mediators of chemical defense. In recent years, the Folin-Ciocalteu assay has remained a classic protocol for phlorotannin quantification, even though it frequently leads to over-estimations. Furthermore, the quantification of the whole pool of phlorotannins may not be relevant in ecological surveys. In this study, we propose a rapid (1)H qNMR method for the quantification of phlorotannins. We identified phloroglucinol as the main phenolic compound produced by the brown macroalga Cystoseira tamariscifolia. This monomer was detected in vivo using (1)H HR-MAS spectroscopy. We quantified this molecule through (1)H qNMR experiments using TSP as internal standard. The results are discussed by comparison with a standard Folin-Ciocalteu assay performed on purified extracts. The accuracy and simplicity of qNMR makes this method a good candidate as a standard phlorotannin assay.
Collapse
Affiliation(s)
- Camille Jégou
- Laboratoire Universitaire de Biodiversité et d׳Écologie Microbienne (EA 3882), IUT de Quimper, Université de Bretagne Occidentale, 6 rue de l׳Université, 29000 Quimper, France
| | - Nelly Kervarec
- Service commun de Résonance Magnétique Nucléaire, UFR Sciences, Université de Bretagne Occidentale, 6 avenue Victor Le Gorgeu-CS93837, 29238 Brest Cedex 3, France
| | - Stéphane Cérantola
- Service commun de Résonance Magnétique Nucléaire, UFR Sciences, Université de Bretagne Occidentale, 6 avenue Victor Le Gorgeu-CS93837, 29238 Brest Cedex 3, France
| | - Isabelle Bihannic
- Laboratoire des Sciences de l׳Environnement Marin (UMR 6539), Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, rue Dumont d׳Urville, 29280 Plouzané, France
| | - Valérie Stiger-Pouvreau
- Laboratoire des Sciences de l׳Environnement Marin (UMR 6539), Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, rue Dumont d׳Urville, 29280 Plouzané, France.
| |
Collapse
|
52
|
Lange BM. The evolution of plant secretory structures and emergence of terpenoid chemical diversity. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:139-59. [PMID: 25621517 DOI: 10.1146/annurev-arplant-043014-114639] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Secretory structures in terrestrial plants appear to have first emerged as intracellular oil bodies in liverworts. In vascular plants, internal secretory structures, such as resin ducts and laticifers, are usually found in conjunction with vascular bundles, whereas subepidermal secretory cavities and epidermal glandular trichomes generally have more complex tissue distribution patterns. The primary function of plant secretory structures is related to defense responses, both constitutive and induced, against herbivores and pathogens. The ability to sequester secondary (or specialized) metabolites and defense proteins in secretory structures was a critical adaptation that shaped plant-herbivore and plant-pathogen interactions. Although this review places particular emphasis on describing the evolution of pathways leading to terpenoids, it also assesses the emergence of other metabolite classes to outline the metabolic capabilities of different plant lineages.
Collapse
Affiliation(s)
- Bernd Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, Washington 99164-6340;
| |
Collapse
|
53
|
Deniaud-Bouët E, Kervarec N, Michel G, Tonon T, Kloareg B, Hervé C. Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae. ANNALS OF BOTANY 2014; 114:1203-16. [PMID: 24875633 PMCID: PMC4195554 DOI: 10.1093/aob/mcu096] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/09/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Brown algae are photosynthetic multicellular marine organisms evolutionarily distant from land plants, with a distinctive cell wall. They feature carbohydrates shared with plants (cellulose), animals (fucose-containing sulfated polysaccharides, FCSPs) or bacteria (alginates). How these components are organized into a three-dimensional extracellular matrix (ECM) still remains unclear. Recent molecular analysis of the corresponding biosynthetic routes points toward a complex evolutionary history that shaped the ECM structure in brown algae. METHODS Exhaustive sequential extractions and composition analyses of cell wall material from various brown algae of the order Fucales were performed. Dedicated enzymatic degradations were used to release and identify cell wall partners. This approach was complemented by systematic chromatographic analysis to study polymer interlinks further. An additional structural assessment of the sulfated fucan extracted from Himanthalia elongata was made. KEY RESULTS The data indicate that FCSPs are tightly associated with proteins and cellulose within the walls. Alginates are associated with most phenolic compounds. The sulfated fucans from H. elongata were shown to have a regular α-(1→3) backbone structure, while an alternating α-(1→3), (1→4) structure has been described in some brown algae from the order Fucales. CONCLUSIONS The data provide a global snapshot of the cell wall architecture in brown algae, and contribute to the understanding of the structure-function relationships of the main cell wall components. Enzymatic cross-linking of alginates by phenols may regulate the strengthening of the wall, and sulfated polysaccharides may play a key role in the adaptation to osmotic stress. The emergence and evolution of ECM components is further discussed in relation to the evolution of multicellularity in brown algae.
Collapse
Affiliation(s)
- Estelle Deniaud-Bouët
- Sorbonne Universités, UPMC Université Paris 06, UMR 8227 Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France CNRS, UMR 8227 Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
| | - Nelly Kervarec
- Service RMN-RPE, UFR Sciences et Techniques, Université de Bretagne Occidentale (UBO), Avenue Le Gorgeu, 29200 Brest, France
| | - Gurvan Michel
- Sorbonne Universités, UPMC Université Paris 06, UMR 8227 Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France CNRS, UMR 8227 Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
| | - Thierry Tonon
- Sorbonne Universités, UPMC Université Paris 06, UMR 8227 Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France CNRS, UMR 8227 Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
| | - Bernard Kloareg
- Sorbonne Universités, UPMC Université Paris 06, UMR 8227 Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France CNRS, UMR 8227 Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
| | - Cécile Hervé
- Sorbonne Universités, UPMC Université Paris 06, UMR 8227 Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France CNRS, UMR 8227 Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
| |
Collapse
|
54
|
Prigent S, Collet G, Dittami SM, Delage L, Ethis de Corny F, Dameron O, Eveillard D, Thiele S, Cambefort J, Boyen C, Siegel A, Tonon T. The genome-scale metabolic network of Ectocarpus siliculosus (EctoGEM): a resource to study brown algal physiology and beyond. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:367-81. [PMID: 25065645 DOI: 10.1111/tpj.12627] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/04/2014] [Accepted: 07/21/2014] [Indexed: 06/03/2023]
Abstract
Brown algae (stramenopiles) are key players in intertidal ecosystems, and represent a source of biomass with several industrial applications. Ectocarpus siliculosus is a model to study the biology of these organisms. Its genome has been sequenced and a number of post-genomic tools have been implemented. Based on this knowledge, we report the reconstruction and analysis of a genome-scale metabolic network for E. siliculosus, EctoGEM (http://ectogem.irisa.fr). This atlas of metabolic pathways consists of 1866 reactions and 2020 metabolites, and its construction was performed by means of an integrative computational approach for identifying metabolic pathways, gap filling and manual refinement. The capability of the network to produce biomass was validated by flux balance analysis. EctoGEM enabled the reannotation of 56 genes within the E. siliculosus genome, and shed light on the evolution of metabolic processes. For example, E. siliculosus has the potential to produce phenylalanine and tyrosine from prephenate and arogenate, but does not possess a phenylalanine hydroxylase, as is found in other stramenopiles. It also possesses the complete eukaryote molybdenum co-factor biosynthesis pathway, as well as a second molybdopterin synthase that was most likely acquired via horizontal gene transfer from cyanobacteria by a common ancestor of stramenopiles. EctoGEM represents an evolving community resource to gain deeper understanding of the biology of brown algae and the diversification of physiological processes. The integrative computational method applied for its reconstruction will be valuable to set up similar approaches for other organisms distant from biological benchmark models.
Collapse
Affiliation(s)
- Sylvain Prigent
- Université de Rennes 1, IRISA UMR 6074, Campus de Beaulieu, 35042, Rennes, France; CNRS, IRISA UMR 6074, Campus de Beaulieu, 35042, Rennes, France; Centre Rennes-Bretagne-Atlantique, Projet Dyliss, INRIA, Campus de Beaulieu, 35042, Rennes Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Choi HJ, Park JH, Lee BH, Chee HY, Lee KB, Oh SM. Suppression of NF-κB by dieckol extracted from Ecklonia cava negatively regulates LPS induction of inducible nitric oxide synthase gene. Appl Biochem Biotechnol 2014; 173:957-67. [PMID: 24744158 DOI: 10.1007/s12010-014-0910-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/07/2014] [Indexed: 11/26/2022]
Abstract
Dieckol, extracted from brown algae, Ecklonia cava, is suggested to elicit anti-inflammatory or anti-tumorigenic activities. However, dieckol-mediated regulatory mechanism for inflammatory response still remains elusive. Here, we show that dieckol suppressed lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) expression in mouse leukemic macrophage Raw264.7 cells. Also, dieckol decreased LPS-induced both nitric oxide (NO) production and iNOS promoter-driven transcriptional activity in a dose-dependent manner. On the other hand, LPS-mediated NF-κB activity was inhibited by dieckol treatment. Moreover, results revealed that dieckol diminished LPS-mediated p65 nuclear translocation or IκBα phosphorylation dose-dependently, and reduced LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), significantly p38MAPK. Collectively, these findings suggest that dieckol acts as a negative regulator of LPS-mediated iNOS induction through suppression of NF-κB activity, implying a mechanistic role of dieckol in regulation of inflammatory response.
Collapse
Affiliation(s)
- Hye-Jin Choi
- Department of Biochemistry, College of Medicine, Konyang University, 685 Gasuwon-dong, Seo-gu, Daejeon, 302-832, South Korea
| | | | | | | | | | | |
Collapse
|
56
|
Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications. Appl Microbiol Biotechnol 2014; 98:2917-35. [PMID: 24562178 DOI: 10.1007/s00253-014-5557-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 01/02/2023]
Abstract
Marine microorganisms play key roles in every marine ecological process, hence the growing interest in studying their populations and functions. Microbial communities on algae remain underexplored, however, despite their huge biodiversity and the fact that they differ markedly from those living freely in seawater. The study of this microbiota and of its relationships with algal hosts should provide crucial information for ecological investigations on algae and aquatic ecosystems. Furthermore, because these microorganisms interact with algae in multiple, complex ways, they constitute an interesting source of novel bioactive compounds with biotechnological potential, such as dehalogenases, antimicrobials, and alga-specific polysaccharidases (e.g., agarases, carrageenases, and alginate lyases). Here, to demonstrate the huge potential of alga-associated organisms and their metabolites in developing future biotechnological applications, we first describe the immense diversity and density of these microbial biofilms. We further describe their complex interactions with algae, leading to the production of specific bioactive compounds and hydrolytic enzymes of biotechnological interest. We end with a glance at their potential use in medical and industrial applications.
Collapse
|
57
|
|