51
|
Wang S, Zhang K, Li H, Xiao LP, Song G. Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst. Nat Commun 2021; 12:416. [PMID: 33462206 PMCID: PMC7814062 DOI: 10.1038/s41467-020-20684-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/14/2020] [Indexed: 02/02/2023] Open
Abstract
C-lignin is a homo-biopolymer, being made up of caffeyl alcohol exclusively. There is significant interest in developing efficient and selective catalyst for depolymerization of C-lignin, as it represents an ideal feedstock for producing catechol derivatives. Here we report an atomically dispersed Ru catalyst, which can serve as an efficient catalyst for the hydrogenolysis of C-lignin via the cleavage of C-O bonds in benzodioxane linkages, giving catechols in high yields with TONs up to 345. A unique selectivity to propenylcatechol (77%) is obtained, which is otherwise hard to achieve, because this catalyst is capable of hydrogenolysis rather than hydrogenation. This catalyst also demonstrates good reusability in C-lignin depolymerization. Detailed investigations by model compounds concluded that the pathways involving dehydration and/or dehydrogenation reactions are incompatible routes; we deduced that caffeyl alcohol generated via concurrent C-O bonds cleavage of benzodioxane unit may act as an intermediate in the C-lignin hydrogenolysis. Current demonstration validates that atomically dispersed metals can not only catalyze small molecules reactions, but also drive the transformation of abundant and renewable biopolymer.
Collapse
Affiliation(s)
- Shuizhong Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Kaili Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Helong Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P.R. China
| | - Ling-Ping Xiao
- Center for Lignocellulosic Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, 116034, P.R. China
| | - Guoyong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P.R. China.
| |
Collapse
|
52
|
Chen F, Zhuo C, Xiao X, Pendergast TH, Devos KM. A rapid thioacidolysis method for biomass lignin composition and tricin analysis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:18. [PMID: 33430954 PMCID: PMC7798261 DOI: 10.1186/s13068-020-01865-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/21/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Biomass composition varies from plant to plant and greatly affects biomass utilization. Lignin is a heterogeneous phenolic polymer derived mainly from p-coumaryl, coniferyl, and sinapyl alcohols and makes up to 10-25% of lignocellulosic biomass. Recently, tricin, an O-methylated flavone, was identified as a lignin monomer in many grass species. Tricin may function as a nucleation site for lignification and is advocated as a novel target for lignin engineering to reduce lignin content and improve biomass digestibility in grasses. Thioacidolysis is an analytical method that can be adapted to analyze both lignin monomeric composition and tricin content in the lignin polymer. However, the original thioacidolysis procedure is complex, laborious, and time consuming, making it difficult to be adopted for large-scale screening in biomass research. In this study, a modified, rapid higher throughput thioacidolysis method was developed. RESULTS In combination with gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS), the modified thioacidolysis method can be used to simultaneously characterize the lignin composition and tricin content using 2-5 mg of dry samples. The modified method eliminates the solvent extraction and drastically improves the throughput; 80 samples can be processed in one day per person. Our results indicate that there is no significant difference in the determination of lignin S/G ratio and tricin content between the original and modified methods. CONCLUSIONS A modified thioacidolysis protocol was established. The results demonstrate that the modified method can be used for rapid, high-throughput, and reliable lignin composition and tricin content analyses for screening transgenic plants for cell wall modifications or in large-scale genome-wide association studies (GWAS).
Collapse
Affiliation(s)
- Fang Chen
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA.
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Chunliu Zhuo
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xirong Xiao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Thomas H Pendergast
- Institute of Plant Breeding, Genetics and Genomics, Department of Crop and Soil Sciences, and Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Katrien M Devos
- Institute of Plant Breeding, Genetics and Genomics, Department of Crop and Soil Sciences, and Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
53
|
Wang X, Zhuo C, Xiao X, Wang X, Docampo-Palacios M, Chen F, Dixon RA. Substrate Specificity of LACCASE8 Facilitates Polymerization of Caffeyl Alcohol for C-Lignin Biosynthesis in the Seed Coat of Cleome hassleriana. THE PLANT CELL 2020; 32:3825-3845. [PMID: 33037146 PMCID: PMC7721330 DOI: 10.1105/tpc.20.00598] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 05/02/2023]
Abstract
Catechyl lignin (C-lignin) is a linear homopolymer of caffeyl alcohol found in the seed coats of diverse plant species. Its properties make it a natural source of carbon fibers and high-value chemicals, but the mechanism of in planta polymerization of caffeyl alcohol remains unclear. In the ornamental plant Cleome hassleriana, lignin biosynthesis in the seed coat switches from guaiacyl lignin to C-lignin at ∼12 d after pollination. Here we found that the transcript profile of the laccase gene ChLAC8 parallels the accumulation of C-lignin during seed coat development. Recombinant ChLAC8 oxidizes caffeyl and sinapyl alcohols, generating their corresponding dimers or trimers in vitro, but cannot oxidize coniferyl alcohol. We propose a basis for this substrate preference based on molecular modeling/docking experiments. Suppression of ChLAC8 expression led to significantly reduced C-lignin content in the seed coats of transgenic Cleome plants. Feeding of 13C-caffeyl alcohol to the Arabidopsis (Arabidopsis thaliana) caffeic acid o-methyltransferase mutant resulted in no incorporation of 13C into C-lignin, but expressing ChLAC8 in this genetic background led to appearance of C-lignin with >40% label incorporation. These results indicate that ChLAC8 is required for C-lignin polymerization and determines lignin composition when caffeyl alcohol is available.
Collapse
Affiliation(s)
- Xin Wang
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chunliu Zhuo
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Xirong Xiao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Xiaoqiang Wang
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | - Maite Docampo-Palacios
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Fang Chen
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| |
Collapse
|
54
|
Novel lignin-containing high-performance adhesive for extreme environment. Int J Biol Macromol 2020; 164:1832-1839. [PMID: 32758609 DOI: 10.1016/j.ijbiomac.2020.07.307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022]
Abstract
The gradual depletion of petroleum is a main challenge restricting the development for the fine chemicals, such as epoxy resin adhesive. In this study, a novel lignin-containing high-performance epoxy resin adhesive is synthesized using lignin as precursor material. Lignin is a unique biomacromolecule with three dimensional network structure, large molecular weight, and aromatic structure. The lignin is simply hydrolyzed and modified by epichlorohydrin to obtain lignin-based epoxy prepolymer. The hydrolysis process effectively reduces the molecular weight and improves the chemical reactivity of lignin, thus increasing the number of modified functional groups and the dispersibility of lignin concurrently. With the introduction of the lignin-based epoxy prepolymers, the shear strength of the adhesive increases obviously and reaches 10.42 MPa, which displays 228% of the shear strength of commercial epoxy resin adhesives. Furthermore, the lignin-containing epoxy resin adhesive still displays excellent mechanical properties in extreme environments, including extreme temperature and high humidity environment.
Collapse
|
55
|
Ramachandran V, Tobimatsu Y, Masaomi Y, Sano R, Umezawa T, Demura T, Ohtani M. Plant-specific Dof transcription factors VASCULAR-RELATED DOF1 and VASCULAR-RELATED DOF2 regulate vascular cell differentiation and lignin biosynthesis in Arabidopsis. PLANT MOLECULAR BIOLOGY 2020; 104:263-281. [PMID: 32740898 DOI: 10.1007/s11103-020-01040-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 07/23/2020] [Indexed: 05/28/2023]
Abstract
Plant-specific Dof transcription factors VDOF1 and VDOF2 are novel regulators of vascular cell differentiation through the course of a lifetime in Arabidopsis, with shifting their transcriptional target genes. Vascular system is one of critical tissues for vascular plants to transport low-molecular compounds, such as water, minerals, and the photosynthetic product, sucrose. Here, we report the involvement of two Dof transcription factors, named VASCULAR-RELATED DOF1 (VDOF1)/VDOF4.6 and VDOF2/VDOF1.8, in vascular cell differentiation and lignin biosynthesis in Arabidopsis. VDOF genes were expressed in vascular tissues, but the detailed expression sites were partly different between VDOF1 and VDOF2. Vein patterning and lignin analysis of VDOF overexpressors and double mutant vdof1 vdof2 suggested that VDOF1 and VDOF2 would function as negative regulators of vein formation in seedlings, and lignin deposition in inflorescence stems. Interestingly, effects of VDOF overexpression in lignin deposition were different by developmental stages of inflorescence stems, and total lignin contents were increased and decreased in VDOF1 and VDOF2 overexpressors, respectively. RNA-seq analysis of inducible VDOF overexpressors demonstrated that the genes for cell wall biosynthesis, including lignin biosynthetic genes, and the transcription factor genes related to stress response and brassinosteroid signaling were commonly affected by VDOF1 and VDOF2 overexpression. Taken together, we concluded that VDOF1 and VDOF2 are novel regulators of vascular cell differentiation through the course of a lifetime, with shifting their transcriptional target genes: in seedlings, the VDOF genes negatively regulate vein formation, while at reproductive stages, the VDOF proteins target lignin biosynthesis.
Collapse
Affiliation(s)
- Vasagi Ramachandran
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yamamura Masaomi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Ryosuke Sano
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
- Research Unit for Development of Global Sustainability, Kyoto University, Uji, Gokasho, Kyoto, 611-0011, Japan
| | - Taku Demura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| | - Misato Ohtani
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan.
| |
Collapse
|
56
|
Miyagawa Y, Tobimatsu Y, Lam PY, Mizukami T, Sakurai S, Kamitakahara H, Takano T. Possible mechanisms for the generation of phenyl glycoside-type lignin-carbohydrate linkages in lignification with monolignol glucosides. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:156-170. [PMID: 32623768 DOI: 10.1111/tpj.14913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
The existence and formation of covalent lignin-carbohydrate (LC) linkages in plant cell walls has long been a matter of debate in terms of their roles in cell wall development and biomass use. Of the various putative LC linkages proposed to date, evidence of the native existence and formation mechanism of phenyl glycoside (PG)-type LC linkages in planta is particularly scarce. The present study aimed to explore previously overlooked mechanisms for the formation of PG-type LC linkages through the incorporation of monolignol glucosides, which are possible lignin precursors, into lignin polymers during lignification. Peroxidase-catalyzed lignin polymerization of coniferyl alcohol in the presence of coniferin and syringin in vitro resulted in the generation of PG-type LC linkages in synthetic lignin polymers, possibly via nucleophilic addition onto quinone methide (QM) intermediates formed during polymerization. Biomimetic lignin polymerization of coniferin via the β-glucosidase/peroxidase system also resulted in the generation of PG-type as well as alkyl glycoside-type LC linkages. This occurred via non-enzymatic QM-involving reactions and also via enzymatic transglycosylations involving β-glucosidase, which was demonstrated by in-depth structural analysis of the synthetic lignins by two-dimensional NMR. We collected heteronuclear single-quantum coherence (HSQC) NMR for native cell wall fractions prepared from pine (Pinus taeda), eucalyptus (Eucalyptus camaldulensis), acacia (Acacia mangium), poplar (Populus × eurarnericana) and bamboo (Phyllostachys edulis) wood samples, which exhibited correlations, albeit at low levels, that were well matched with those of the PG-type LC linkages in synthetic lignins incorporating monolignol glucosides. Overall, our results provide a molecular basis for feasible mechanisms for the generation of PG-type LC linkages from monolignol glucosides and further substantiates their existence in planta.
Collapse
Affiliation(s)
- Yasuyuki Miyagawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
| | - Yuki Tobimatsu
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takahito Mizukami
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
| | - Sayaka Sakurai
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
| | - Hiroshi Kamitakahara
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
| | - Toshiyuki Takano
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
| |
Collapse
|
57
|
Fang L, Xu X, Li J, Zheng F, Li M, Yan J, Li Y, Zhang X, Li L, Ma G, Zhang A, Lv F, Wu K, Zeng S. Transcriptome analysis provides insights into the non-methylated lignin synthesis in Paphiopedilum armeniacum seed. BMC Genomics 2020; 21:524. [PMID: 32727352 PMCID: PMC7391499 DOI: 10.1186/s12864-020-06931-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 07/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUNDS Paphiopedilum is an important genus of the orchid family Orchidaceae and has high horticultural value. The wild populations are under threat of extinction because of overcollection and habitat destruction. Mature seeds of most Paphiopedilum species are difficult to germinate, which severely restricts their germplasm conservation and commercial production. The factors inhibiting germination are largely unknown. RESULTS In this study, large amounts of non-methylated lignin accumulated during seed maturation of Paphiopedilum armeniacum (P. armeniacum), which negatively correlates with the germination rate. The transcriptome profiles of P. armeniacum seed at different development stages were compared to explore the molecular clues for non-methylated lignin synthesis. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that a large number of genes associated with phenylpropanoid biosynthesis and phenylalanine metabolism during seed maturation were differentially expressed. Several key genes in the lignin biosynthetic pathway displayed different expression patterns during the lignification process. PAL, 4CL, HCT, and CSE upregulation was associated with C and H lignin accumulation. The expression of CCoAOMT, F5H, and COMT were maintained at a low level or down-regulated to inhibit the conversion to the typical G and S lignin. Quantitative real-time RT-PCR analysis confirmed the altered expression levels of these genes in seeds and vegetative tissues. CONCLUSIONS This work demonstrated the plasticity of natural lignin polymer assembly in seed and provided a better understanding of the molecular mechanism of seed-specific lignification process.
Collapse
Affiliation(s)
- Lin Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xin Xu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Zheng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Mingzhi Li
- Independent Researcher, Guangzhou, 510555, China
| | - Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yuan Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xinhua Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Fubing Lv
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Kunlin Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Songjun Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China. .,Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
58
|
Miyamoto T, Takada R, Tobimatsu Y, Suzuki S, Yamamura M, Osakabe K, Osakabe Y, Sakamoto M, Umezawa T. Double knockout of OsWRKY36 and OsWRKY102 boosts lignification with altering culm morphology of rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110466. [PMID: 32539998 DOI: 10.1016/j.plantsci.2020.110466] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/18/2020] [Accepted: 03/08/2020] [Indexed: 06/11/2023]
Abstract
Breeding to enrich lignin, a major component of lignocelluloses, in plants contributes to enhanced applications of lignocellulosic biomass into solid biofuels and valuable aromatic chemicals. To collect information on enhancing lignin deposition in grass species, important lignocellulose feedstocks, we generated rice (Oryza sativa) transgenic lines deficient in OsWRKY36 and OsWRKY102, which encode putative transcriptional repressors for secondary cell wall formation. We used CRISPR/Cas9-mediated targeted mutagenesis and closely characterized their altered cell walls using chemical and nuclear magnetic resonance (NMR) methods. Both OsWRKY36 and OsWRKY102 mutations significantly increased lignin content by up to 28 % and 32 %, respectively. Additionally, OsWRKY36/OsWRKY102-double-mutant lines displayed lignin enrichment of cell walls (by up to 41 %) with substantially altered culm morphology over the single-mutant lines as well as the wild-type controls. Our chemical and NMR analyses showed that relative abundances of guaiacyl and p-coumarate units were slightly higher and lower, respectively, in the WRKY mutant lignins compared with those in the wild-type lignins. Our results provide evidence that both OsWRKY36 and OsWRKY102 are associated with repression of rice lignification.
Collapse
Affiliation(s)
- Takuji Miyamoto
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Rie Takada
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shiro Suzuki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuriko Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan; Research Unit for Development of Global Sustainability, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
59
|
Kijak H, Ratajczak E. What Do We Know About the Genetic Basis of Seed Desiccation Tolerance and Longevity? Int J Mol Sci 2020; 21:E3612. [PMID: 32443842 PMCID: PMC7279459 DOI: 10.3390/ijms21103612] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/02/2023] Open
Abstract
Long-term seed storage is important for protecting both economic interests and biodiversity. The extraordinary properties of seeds allow us to store them in the right conditions for years. However, not all types of seeds are resilient, and some do not tolerate extreme desiccation or low temperature. Seeds can be divided into three categories: (1) orthodox seeds, which tolerate water losses of up to 7% of their water content and can be stored at low temperature; (2) recalcitrant seeds, which require a humidity of 27%; and (3) intermediate seeds, which lose their viability relatively quickly compared to orthodox seeds. In this article, we discuss the genetic bases for desiccation tolerance and longevity in seeds and the differences in gene expression profiles between the mentioned types of seeds.
Collapse
Affiliation(s)
- Hanna Kijak
- Institute of Dendrology, Polish Academy of Sciences, 62-035 Kórnik, Poland;
| | | |
Collapse
|
60
|
Gui J, Lam PY, Tobimatsu Y, Sun J, Huang C, Cao S, Zhong Y, Umezawa T, Li L. Fibre-specific regulation of lignin biosynthesis improves biomass quality in Populus. THE NEW PHYTOLOGIST 2020; 226:1074-1087. [PMID: 31909485 PMCID: PMC7216960 DOI: 10.1111/nph.16411] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/27/2019] [Indexed: 05/03/2023]
Abstract
Lignin is a major component of cell wall biomass and decisively affects biomass utilisation. Engineering of lignin biosynthesis is extensively studied, while lignin modification often causes growth defects. We developed a strategy for cell-type-specific modification of lignin to achieve improvements in cell wall property without growth penalty. We targeted a lignin-related transcription factor, LTF1, for modification of lignin biosynthesis. LTF1 can be engineered to a nonphosphorylation form which is introduced into Populus under the control of either a vessel-specific or fibre-specific promoter. The transgenics with lignin suppression in vessels showed severe dwarfism and thin-walled vessels, while the transgenics with lignin suppression in fibres displayed vigorous growth with normal vessels under phytotron, glasshouse and field conditions. In-depth lignin structural analyses revealed that such cell-type-specific downregulation of lignin biosynthesis led to the alteration of overall lignin composition in xylem tissues reflecting the population of distinctive lignin polymers produced in vessel and fibre cells. This study demonstrates that fibre-specific suppression of lignin biosynthesis resulted in the improvement of wood biomass quality and saccharification efficiency and presents an effective strategy to precisely regulate lignin biosynthesis with desired growth performance.
Collapse
Affiliation(s)
- Jinshan Gui
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Pui Ying Lam
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiKyoto611‐0011Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiKyoto611‐0011Japan
| | - Jiayan Sun
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Cheng Huang
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Shumin Cao
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Yu Zhong
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Toshiaki Umezawa
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiKyoto611‐0011Japan
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| |
Collapse
|
61
|
Rawal TB, Zahran M, Dhital B, Akbilgic O, Petridis L. The relation between lignin sequence and its 3D structure. Biochim Biophys Acta Gen Subj 2020; 1864:129547. [DOI: 10.1016/j.bbagen.2020.129547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/03/2020] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
|
62
|
Antúnez-Argüelles E, Herrera-Bulnes M, Torres-Ariño A, Mirón-Enríquez C, Soriano-García M, Robles-Gómez E. Enzymatic-assisted polymerization of the lignin obtained from a macroalgae consortium, using an extracellular laccase-like enzyme (Tg-laccase) from Tetraselmis gracilis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:739-747. [PMID: 32181694 DOI: 10.1080/10934529.2020.1738171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
In the past decade, Mexican coasts have received an enormous influx of macroalgae species, producing serious environmental and public health concerns. Here, we developed a green methodology to generate a new polymer from the lignin contained in the macroalgae. The methodology consists in lignin extraction-by-boiling and its subsequent polymerization with a laccase-like enzyme from the green algae Tetraselmis gracilis (Tg-laccase). Mass spectrometry revealed the presence of guaiacyl (G), p-hydroxyphenyl (H), and sinapyl alcohol as the main monolignols in the lignin from Sargassum sp. On the other hand, MALDI-TOF spectra shows an increase in the size of the lignin chain after enzymatic polymerization process with Tg-laccase. Besides, the characterization of the novel polymer -using 1H NMR, FTIR, SEC-FPLC, and UV/Vis- allowed establishing that during the polymerization process there is a decrease in the number of phenolic groups as well as loss of aromatic protons, which allowed proposing a polimerizacion mechanism. This methodology could be promising in the development of a new lignin-based polymer and would open a new direction for the environmental management of the macroalgae on the Mexican beaches.
Collapse
Affiliation(s)
- Erika Antúnez-Argüelles
- Laboratorio de química orgánica, Ingeniería ambiental, Universidad del Mar, Puerto Ángel, Oaxaca, México
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City, México
| | - Marlo Herrera-Bulnes
- Laboratorio de química orgánica, Ingeniería ambiental, Universidad del Mar, Puerto Ángel, Oaxaca, México
| | - Alejandra Torres-Ariño
- Laboratorio de Biotecnología de Microalgas, Instituto de Industrias, Universidad del Mar, campus Puerto Ángel, Puerto Ángel, Oaxaca, México
| | - Coral Mirón-Enríquez
- Laboratorio de química orgánica, Ingeniería ambiental, Universidad del Mar, Puerto Ángel, Oaxaca, México
| | - Manuel Soriano-García
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City, México
| | - Edson Robles-Gómez
- Laboratorio de química orgánica, Ingeniería ambiental, Universidad del Mar, Puerto Ángel, Oaxaca, México
| |
Collapse
|
63
|
Renard J, Martínez-Almonacid I, Sonntag A, Molina I, Moya-Cuevas J, Bissoli G, Muñoz-Bertomeu J, Faus I, Niñoles R, Shigeto J, Tsutsumi Y, Gadea J, Serrano R, Bueso E. PRX2 and PRX25, peroxidases regulated by COG1, are involved in seed longevity in Arabidopsis. PLANT, CELL & ENVIRONMENT 2020; 43:315-326. [PMID: 31600827 DOI: 10.1111/pce.13656] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Permeability is a crucial trait that affects seed longevity and is regulated by different polymers including proanthocyanidins, suberin, cutin and lignin located in the seed coat. By testing mutants in suberin transport and biosynthesis, we demonstrate the importance of this biopolymer to cope with seed deterioration. Transcriptomic analysis of cog1-2D, a gain-of-function mutant with increased seed longevity, revealed the upregulation of several peroxidase genes. Reverse genetics analysing seed longevity uncovered redundancy within the seed coat peroxidase gene family; however, after controlled deterioration treatment, seeds from the prx2 prx25 double and prx2 prx25 prx71 triple mutant plants presented lower germination than wild-type plants. Transmission electron microscopy analysis of the seed coat of these mutants showed a thinner palisade layer, but no changes were observed in proanthocyanidin accumulation or in the cuticle layer. Spectrophotometric quantification of acetyl bromide-soluble lignin components indicated changes in the amount of total polyphenolics derived from suberin and/or lignin in the mutant seeds. Finally, the increased seed coat permeability to tetrazolium salts observed in the prx2 prx25 and prx2 prx25 prx71 mutant lines suggested that the lower permeability of the seed coats caused by altered polyphenolics is likely to be the main reason explaining their reduced seed longevity.
Collapse
Affiliation(s)
- Joan Renard
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022, València, Spain
| | - Irene Martínez-Almonacid
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022, València, Spain
| | - Annika Sonntag
- Department of Biology, Algoma University, Sault Ste Marie, ON, Canada, P6A 2G4
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste Marie, ON, Canada, P6A 2G4
| | - José Moya-Cuevas
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022, València, Spain
| | - Gaetano Bissoli
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022, València, Spain
| | - Jesús Muñoz-Bertomeu
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022, València, Spain
| | - Isabel Faus
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022, València, Spain
| | - Regina Niñoles
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022, València, Spain
| | - Jun Shigeto
- Incubation Center for Advanced Medical Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yuji Tsutsumi
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - José Gadea
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022, València, Spain
| | - Ramón Serrano
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022, València, Spain
| | - Eduardo Bueso
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022, València, Spain
| |
Collapse
|
64
|
Zhang S, Jia T, Zhang Z, Zou X, Fan S, Lei K, Jiang X, Niu D, Yuan Y, Shang H. Insight into the relationship between S-lignin and fiber quality based on multiple research methods. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:251-261. [PMID: 31884241 DOI: 10.1016/j.plaphy.2019.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/18/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Cotton (Gossypium hirsutum) is an important cash crop, providing people with high quality natural fiber. Lignin is the main component of cotton fiber, second only to cellulose. As a main substance filled in the cellulose framework during the secondary wall thickening process, lignin plays a key role in the formation of cotton fiber quality. However, the mechanism behind it is still unclear. In this research, we screened candidate genes involved in lignin biosynthesis based on analysis of cotton genome and transcriptome sequence data. The authenticity of the transcriptome data was verified by qRT-PCR assay. Total 62 genes were identified from nine gene families. In the process, we found the key gene GhCAD7 that affects the biosynthesis of S-lignin and the ratio of syringyl/guaiacyl (S/G). In addition, in combination with the metabolites and transcriptome profiles of the line 0-153 with high fiber quality and the line sGK9708 with low fiber quality during cotton fiber development, we speculate that the ratio of syringyl/guaiacyl (S/G) is inseparable from the quality of cotton fiber. Finally, the S-type lignin synthesis branch may play a more important role in the formation of high-quality fiber. This work provides insights into the synthesis of lignin in cotton and lays the foundation for future research into improving fiber quality.
Collapse
Affiliation(s)
- Shuya Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Tingting Jia
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xianyan Zou
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Senmiao Fan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Kang Lei
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiao Jiang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Doudou Niu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
65
|
Dixon RA, Barros J. Lignin biosynthesis: old roads revisited and new roads explored. Open Biol 2019; 9:190215. [PMID: 31795915 PMCID: PMC6936255 DOI: 10.1098/rsob.190215] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022] Open
Abstract
Lignin is a major component of secondarily thickened plant cell walls and is considered to be the second most abundant biopolymer on the planet. At one point believed to be the product of a highly controlled polymerization procedure involving just three potential monomeric components (monolignols), it is becoming increasingly clear that the composition of lignin is quite flexible. Furthermore, the biosynthetic pathways to the major monolignols also appear to exhibit flexibility, particularly as regards the early reactions leading to the formation of caffeic acid from coumaric acid. The operation of parallel pathways to caffeic acid occurring at the level of shikimate esters or free acids may help provide robustness to the pathway under different physiological conditions. Several features of the pathway also appear to link monolignol biosynthesis to both generation and detoxification of hydrogen peroxide, one of the oxidants responsible for creating monolignol radicals for polymerization in the apoplast. Monolignol transport to the apoplast is not well understood. It may involve passive diffusion, although this may be targeted to sites of lignin initiation/polymerization by ordered complexes of both biosynthetic enzymes on the cytosolic side of the plasma membrane and structural anchoring of proteins for monolignol oxidation and polymerization on the apoplastic side. We present several hypothetical models to illustrate these ideas and stimulate further research. These are based primarily on studies in model systems, which may or may not reflect the major lignification process in forest trees.
Collapse
Affiliation(s)
- Richard A. Dixon
- Hagler Institute for Advanced Studies and Department of Biological Sciences, Texas A&M University, College Station, TX, USA
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX 76203-5017, USA
| | - Jaime Barros
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX 76203-5017, USA
| |
Collapse
|
66
|
Altered lignocellulose chemical structure and molecular assembly in CINNAMYL ALCOHOL DEHYDROGENASE-deficient rice. Sci Rep 2019; 9:17153. [PMID: 31748605 PMCID: PMC6868246 DOI: 10.1038/s41598-019-53156-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/29/2019] [Indexed: 12/31/2022] Open
Abstract
Lignin is a complex phenylpropanoid polymer deposited in plant cell walls. Lignin has long been recognized as an important limiting factor for the polysaccharide-oriented biomass utilizations. To mitigate lignin-associated biomass recalcitrance, numerous mutants and transgenic plants that produce lignocellulose with reduced lignin contents and/or lignins with altered chemical structures have been produced and characterised. However, it is not fully understood how altered lignin chemistry affects the supramolecular structure of lignocellulose, and consequently, its utilization properties. Herein, we conducted comprehensive chemical and supramolecular structural analyses of lignocellulose produced by a rice cad2 mutant deficient in CINNAMYL ALCOHOL DEHYDROGENASE (CAD), which encodes a key enzyme in lignin biosynthesis. By using a solution-state two-dimensional NMR approach and complementary chemical methods, we elucidated the structural details of the altered lignins enriched with unusual hydroxycinnamaldehyde-derived substructures produced by the cad2 mutant. In parallel, polysaccharide assembly and the molecular mobility of lignocellulose were investigated by solid-state 13C MAS NMR, nuclear magnetic relaxation, X-ray diffraction, and Simon's staining analyses. Possible links between CAD-associated lignin modifications (in terms of total content and chemical structures) and changes to the lignocellulose supramolecular structure are discussed in the context of the improved biomass saccharification efficiency of the cad2 rice mutant.
Collapse
|
67
|
Rajesh Banu J, Kavitha S, Yukesh Kannah R, Poornima Devi T, Gunasekaran M, Kim SH, Kumar G. A review on biopolymer production via lignin valorization. BIORESOURCE TECHNOLOGY 2019; 290:121790. [PMID: 31350071 DOI: 10.1016/j.biortech.2019.121790] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 05/22/2023]
Abstract
Lignin based biopolymer (value added products) production is the most promising technology in the perspective of lignin valorization and sustainable development. Valorization of lignin gain the potentials to produce biopolymers such as polyhydroxyalkanoates, polyhydroxybutyrates, polyurethane etc. However, lignin valorization processes still needs development due to the recalcitrant nature of lignin which restricts its potential to produce valuable products. Many novel extraction strategies have been developed to fragment the lignin structure and make ease the recovery of valuable products. Achieving in depth insights on lignin characteristics and structure will help to understand the metabolic and catalytic degradative pathways needed for lignin valorization. In the view of multipurpose characteristics of lignin for biopolymer production, this review will spot light the potential applications of lignin and lignin based derivatives on biopolymer production, various lignin separation technologies, lignin depolymerization process, biopolymers production strategies and the challenges in lignin valorization will be addressed and discussed.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - T Poornima Devi
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
68
|
Budisa N, Schneider T. Expanding the DOPA Universe with Genetically Encoded, Mussel-Inspired Bioadhesives for Material Sciences and Medicine. Chembiochem 2019; 20:2163-2190. [PMID: 30830997 DOI: 10.1002/cbic.201900030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 12/21/2022]
Abstract
Catechols are a biologically relevant group of aromatic diols that have attracted much attention as mediators of adhesion of "bio-glue" proteins in mussels of the genus Mytilus. These organisms use catechols in the form of the noncanonical amino acid l-3,4-dihydroxyphenylalanine (DOPA) as a building block for adhesion proteins. The DOPA is generated post-translationally from tyrosine. Herein, we review the properties, natural occurrence, and reactivity of catechols in the design of bioinspired materials. We also provide a basic description of the mussel's attachment apparatus, the interplay between its different molecules that play a crucial role in adhesion, and the role of post-translational modifications (PTMs) of these proteins. Our focus is on the microbial production of mussel foot proteins with the aid of orthogonal translation systems (OTSs) and the use of genetic code engineering to solve some fundamental problems in the bioproduction of these bioadhesives and to expand their chemical space. The major limitation of bacterial expression systems is their intrinsic inability to introduce PTMs. OTSs have the potential to overcome these challenges by replacing canonical amino acids with noncanonical ones. In this way, PTM steps are circumvented while the genetically programmed precision of protein sequences is preserved. In addition, OTSs should enable spatiotemporal control over the complex adhesion process, because the catechol function can be masked by suitable chemical protection. Such caged residues can then be noninvasively unmasked by, for example, UV irradiation or thermal treatment. All of these features make OTSs based on genetic code engineering in reprogrammed microbial strains new and promising tools in bioinspired materials science.
Collapse
Affiliation(s)
- Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin, 10623, Germany.,Chair of Chemical Synthetic Biology, Department of Chemistry, University of Manitoba, 144 Dysart Road, R3T 2N2, Winnipeg, MB, Canada
| | - Tobias Schneider
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin, 10623, Germany
| |
Collapse
|
69
|
Hao N, Alper K, Tekin K, Karagoz S, Ragauskas AJ. One-pot transformation of lignocellulosic biomass into crude bio-oil with metal chlorides via hydrothermal and supercritical ethanol processing. BIORESOURCE TECHNOLOGY 2019; 288:121500. [PMID: 31150971 DOI: 10.1016/j.biortech.2019.121500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Grape seeds were deconstructed in both hydrothermal and supercritical ethanol media with a combination of two metal chlorides (TiCl4:MgCl2) to produce bio-oils. The use of metal chloride additives in supercritical ethanol achieved the highest bio-oil yield of 49.2 wt% (300 °C, 30 min). Both the hydrothermal and supercritical ethanol deconstruction with the additives (TiCl4:MgCl2 = 4 mmol:4mmol) produced the bio-oils with a higher heating value (HHV) of 35 MJ/Kg. Gas chromatography-mass spectrometry (GC-MS) analysis of the bio-oils showed that the major products in bio-oils from the hydrothermal deconstruction were acids while the majority products in bio-oils form the supercritical ethanol deconstruction were esters. Nuclear magnetic resonance (NMR) data of the bio-oils suggested that both hydrothermal and supercritical ethanol deconstruction with metal chlorides significantly reduced the non-condensed OH and oxygenated lignin sub-units in bio-oils; while only supercritical ethanol deconstruction with metal chlorides reduced the aliphatic OH and O-alkylated structures in bio-oils.
Collapse
Affiliation(s)
- Naijia Hao
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States
| | - Koray Alper
- Department of Chemistry, Karabük University, Karabük 78050, Turkey
| | - Kubilay Tekin
- Department of Environmental Engineering, Karabük University, Karabük 78050, Turkey
| | - Selhan Karagoz
- Department of Chemistry, Karabük University, Karabük 78050, Turkey
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, United States.
| |
Collapse
|
70
|
OsCAldOMT1 is a bifunctional O-methyltransferase involved in the biosynthesis of tricin-lignins in rice cell walls. Sci Rep 2019; 9:11597. [PMID: 31406182 PMCID: PMC6690965 DOI: 10.1038/s41598-019-47957-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/26/2019] [Indexed: 01/26/2023] Open
Abstract
Lignin is a phenylpropanoid polymer produced in the secondary cell walls of vascular plants. Although most eudicot and gymnosperm species generate lignins solely via polymerization of p-hydroxycinnamyl alcohols (monolignols), grasses additionally use a flavone, tricin, as a natural lignin monomer to generate tricin-incorporated lignin polymers in cell walls. We previously found that disruption of a rice 5-HYDROXYCONIFERALDEHYDE O-METHYLTRANSFERASE (OsCAldOMT1) reduced extractable tricin-type metabolites in rice vegetative tissues. This same enzyme has also been implicated in the biosynthesis of sinapyl alcohol, a monolignol that constitutes syringyl lignin polymer units. Here, we further demonstrate through in-depth cell wall structural analyses that OsCAldOMT1-deficient rice plants produce altered lignins largely depleted in both syringyl and tricin units. We also show that recombinant OsCAldOMT1 displayed comparable substrate specificities towards both 5-hydroxyconiferaldehyde and selgin intermediates in the monolignol and tricin biosynthetic pathways, respectively. These data establish OsCAldOMT1 as a bifunctional O-methyltransferase predominantly involved in the two parallel metabolic pathways both dedicated to the biosynthesis of tricin-lignins in rice cell walls. Given that cell wall digestibility was greatly enhanced in the OsCAldOMT1-deficient rice plants, genetic manipulation of CAldOMTs conserved in grasses may serve as a potent strategy to improve biorefinery applications of grass biomass.
Collapse
|
71
|
Zhuo C, Rao X, Azad R, Pandey R, Xiao X, Harkelroad A, Wang X, Chen F, Dixon RA. Enzymatic basis for C-lignin monomer biosynthesis in the seed coat of Cleome hassleriana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:506-520. [PMID: 31002459 DOI: 10.1111/tpj.14340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/05/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
C-lignin is a linear polymer of caffeyl alcohol, found in the seed coats of several exotic plant species, with promising properties for generation of carbon fibers and high value chemicals. In the ornamental plant Cleome hassleriana, guaiacyl (G) lignin is deposited in the seed coat for the first 6-12 days after pollination, after which G-lignin deposition ceases and C-lignin accumulates, providing an excellent model system to study C-lignin biosynthesis. We performed RNA sequencing of seed coats harvested at 2-day intervals throughout development. Bioinformatic analysis identified a complete set of lignin biosynthesis genes for Cleome. Transcript analysis coupled with kinetic analysis of recombinant enzymes in Escherichia coli revealed that the switch to C-lignin formation was accompanied by down-regulation of transcripts encoding functional caffeoyl CoA- and caffeic acid 3-O-methyltransferases (CCoAOMT and COMT) and a form of cinnamyl alcohol dehydrogenase (ChCAD4) with preference for coniferaldehyde as substrate, and up-regulation of a form of CAD (ChCAD5) with preference for caffealdehyde. Based on these analyses, blockage of lignin monomer methylation by down-regulation of both O-methyltransferases (OMTs) and methionine synthase (for provision of C1 units) appears to be the major factor in diversion of flux to C-lignin in the Cleome seed coat, although the change in CAD specificity also contributes based on the reduction of C-lignin levels in transgenic Cleome with down-regulation of ChCAD5. Structure modeling and mutational analysis identified amino acid residues important for the preference of ChCAD5 for caffealdehyde.
Collapse
Affiliation(s)
- Chunliu Zhuo
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
- Department of Biological Science, University of North Texas, Denton, TX, USA
| | - Xiaolan Rao
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
- Department of Biological Science, University of North Texas, Denton, TX, USA
| | - Rajeev Azad
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
- Department of Biological Science, University of North Texas, Denton, TX, USA
- Department of Mathematics, University of North Texas, Denton, TX, USA
| | - Ravi Pandey
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
- Department of Biological Science, University of North Texas, Denton, TX, USA
| | - Xirong Xiao
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
- Department of Biological Science, University of North Texas, Denton, TX, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TX, USA
| | - Aaron Harkelroad
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
- Department of Biological Science, University of North Texas, Denton, TX, USA
| | - Xiaoqiang Wang
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
- Department of Biological Science, University of North Texas, Denton, TX, USA
| | - Fang Chen
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
- Department of Biological Science, University of North Texas, Denton, TX, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TX, USA
| | - Richard A Dixon
- BioDiscovery Institute, University of North Texas, Denton, TX, USA
- Department of Biological Science, University of North Texas, Denton, TX, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TX, USA
| |
Collapse
|
72
|
Lam PY, Lui ACW, Yamamura M, Wang L, Takeda Y, Suzuki S, Liu H, Zhu FY, Chen MX, Zhang J, Umezawa T, Tobimatsu Y, Lo C. Recruitment of specific flavonoid B-ring hydroxylases for two independent biosynthesis pathways of flavone-derived metabolites in grasses. THE NEW PHYTOLOGIST 2019; 223:204-219. [PMID: 30883799 DOI: 10.1111/nph.15795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/08/2019] [Indexed: 05/19/2023]
Abstract
In rice (Oryza sativa), OsF2H and OsFNSII direct flavanones to independent pathways that form soluble flavone C-glycosides and tricin-type metabolites (both soluble and lignin-bound), respectively. Production of soluble tricin metabolites requires CYP75B4 as a chrysoeriol 5'-hydroxylase. Meanwhile, the close homologue CYP75B3 is a canonical flavonoid 3'-hydroxylase (F3'H). However, their precise roles in the biosynthesis of soluble flavone C-glycosides and tricin-lignins in cell walls remain unknown. We examined CYP75B3 and CYP75B4 expression in vegetative tissues, analyzed extractable flavonoid profiles, cell wall structure and digestibility of their mutants, and investigated catalytic activities of CYP75B4 orthologues in grasses. CYP75B3 and CYP75B4 showed co-expression patterns with OsF2H and OsFNSII, respectively. CYP75B3 is the sole F3'H in flavone C-glycosides biosynthesis, whereas CYP75B4 alone provides sufficient 3',5'-hydroxylation for tricin-lignin deposition. CYP75B4 mutation results in production of apigenin-incorporated lignin and enhancement of cell wall digestibility. Moreover, tricin pathway-specific 3',5'-hydroxylation activities are conserved in sorghum CYP75B97 and switchgrass CYP75B11. CYP75B3 and CYP75B4 represent two different pathway-specific enzymes recruited together with OsF2H and OsFNSII, respectively. Interestingly, the OsF2H-CYP75B3 and OsFNSII-CYP75B4 pairs appear to be conserved in grasses. Finally, manipulation of tricin biosynthesis through CYP75B4 orthologues can be a promising strategy to improve digestibility of grass biomass for biofuel and biomaterial production.
Collapse
Affiliation(s)
- Pui Ying Lam
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Andy C W Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Lanxiang Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yuri Takeda
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Shiro Suzuki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Hongjia Liu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Mo-Xian Chen
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Research Unit for Global Sustainability Studies, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
73
|
Rencoret J, Neiva D, Marques G, Gutiérrez A, Kim H, Gominho J, Pereira H, Ralph J, Del Río JC. Hydroxystilbene Glucosides Are Incorporated into Norway Spruce Bark Lignin. PLANT PHYSIOLOGY 2019; 180:1310-1321. [PMID: 31023874 PMCID: PMC6752895 DOI: 10.1104/pp.19.00344] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/17/2019] [Indexed: 05/19/2023]
Abstract
Recent investigations have revealed that, in addition to monolignols, some phenolic compounds derived from the flavonoid and hydroxystilbene biosynthetic pathways can also function as true lignin monomers in some plants. In this study, we found that the hydroxystilbene glucosides isorhapontin (isorhapontigenin-O-glucoside) and, at lower levels, astringin (piceatannol-O-glucoside) and piceid (resveratrol-O-glucoside) are incorporated into the lignin polymer in Norway spruce (Picea abies) bark. The corresponding aglycones isorhapontigenin, piceatannol, and resveratrol, along with glucose, were released by derivatization followed by reductive cleavage, a chemical degradative method that cleaves β-ether bonds in lignin, indicating that the hydroxystilbene glucosides are (partially) incorporated into the lignin structure through β-ether bonds. Two-dimensional NMR analysis confirmed the occurrence of hydroxystilbene glucosides in this lignin, and provided additional information regarding their modes of incorporation into the polymer. The hydroxystilbene glucosides, particularly isorhapontin and astringin, can therefore be considered genuine lignin monomers that participate in coupling and cross-coupling reactions during lignification in Norway spruce bark.
Collapse
Affiliation(s)
- Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avda. Reina Mercedes, 10, 41012-Seville, Spain
| | - Duarte Neiva
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Gisela Marques
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avda. Reina Mercedes, 10, 41012-Seville, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avda. Reina Mercedes, 10, 41012-Seville, Spain
| | - Hoon Kim
- Department of Energy Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Jorge Gominho
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Helena Pereira
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avda. Reina Mercedes, 10, 41012-Seville, Spain
| |
Collapse
|
74
|
Miyamoto T, Takada R, Tobimatsu Y, Takeda Y, Suzuki S, Yamamura M, Osakabe K, Osakabe Y, Sakamoto M, Umezawa T. OsMYB108 loss-of-function enriches p-coumaroylated and tricin lignin units in rice cell walls. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:975-987. [PMID: 30773774 DOI: 10.1111/tpj.14290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 05/23/2023]
Abstract
Breeding approaches to enrich lignins in biomass could be beneficial to improving the biorefinery process because lignins increase biomass heating value and represent a potent source of valuable aromatic chemicals. However, despite the fact that grasses are promising lignocellulose feedstocks, limited information is yet available for molecular-breeding approaches to upregulate lignin biosynthesis in grass species. In this study, we generated lignin-enriched transgenic rice (Oryza sativa), a model grass species, via targeted mutagenesis of the transcriptional repressor OsMYB108 using CRISPR/Cas9-mediated genome editing. The OsMYB108-knockout rice mutants displayed increased expressions of lignin biosynthetic genes and enhanced lignin deposition in culm cell walls. Chemical and two-dimensional nuclear magnetic resonance (NMR) analyses revealed that the mutant cell walls were preferentially enriched in γ-p-coumaroylated and tricin lignin units, both of which are typical and unique components in grass lignins. NMR analysis also showed that the relative abundances of major lignin linkage types were altered in the OsMYB108 mutants.
Collapse
Affiliation(s)
- Takuji Miyamoto
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Rie Takada
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yuri Takeda
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shiro Suzuki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuriko Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
- Research Unit for Development of Global Sustainability, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
75
|
Pazhany AS, Henry RJ. Genetic Modification of Biomass to Alter Lignin Content and Structure. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Adhini S. Pazhany
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, 4072 Queensland, Australia
- ICAR - Sugarcane Breeding Institute, Coimbatore, 641 007 Tamil Nadu, India
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, 4072 Queensland, Australia
| |
Collapse
|
76
|
Pierce S, Spada A, Caporali E, Ceriani RM, Buffa G. Enzymatic scarification of Anacamptis morio (Orchidaceae) seed facilitates lignin degradation, water uptake and germination. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:409-414. [PMID: 29350478 DOI: 10.1111/plb.12694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/12/2018] [Indexed: 06/07/2023]
Abstract
The seed coat of many species contains hydrophobic lignins, and in soil the action of microbial ligninases may contribute to release from dormancy. Laboratory use of ligninases to stimulate germination is promising because of the specific action on the seed coat, whereas chemical scarification agents may also corrode the embryo. We hypothesised that exposure of Anacamptis morio (Orchidaceae) seeds to fungal laccase would stimulate germination, and that the mechanism involves lignin degradation and increased imbibition. Germination capacity in vitro was quantified with 1 U filter-sterilised laccase added to agar medium following autoclaving, compared to a 10% bleach solution (standard bleach surface sterilisation/scarification method used in orchid seed sowing). Lignin degradation was quantified using an optical method (phloroglucinol-HCl staining) combined with image analysis, following experimental pre-treatments involving immersion in laccase solution, distilled water (negative control) or bleach (positive control). Water uptake after experimental treatments was quantified as the proportion of seeds exhibiting visible uptake of an aqueous fluorochrome under UV excitation. Laccase stimulated a doubling of germination in vitro with respect to bleach surface sterilisation/scarification alone, from 23.7 to 49.8% (P = 0.007). Laccase and bleach methods both significantly decreased the optical signal of phloroglucinol (for laccase, to 79.9 ± 1.3% of controls; anova: F = 10.333, P = 0.002). Laccase resulted in a modest but highly significant (P < 0.0001) increase in water uptake with respect to the control (11.7%; cf 99.4% for bleach). Laccase scarification can stimulate germination of A. morio through a mechanism of targeted seed coat degradation. The results demonstrate the potential of this relatively non-invasive enzymatic scarification technique.
Collapse
Affiliation(s)
- S Pierce
- Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Milan, Italy
| | - A Spada
- Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Milan, Italy
| | - E Caporali
- Department of Biosciences, University of Milan, Milano, Italy
| | - R M Ceriani
- The Native Flora Centre (Centro Flora Autoctona; CFA), c/o Parco Monte Barro, Galbiate, Italy
| | - G Buffa
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Venice, Italy
| |
Collapse
|
77
|
Perkins M, Smith RA, Samuels L. The transport of monomers during lignification in plants: anything goes but how? Curr Opin Biotechnol 2019; 56:69-74. [DOI: 10.1016/j.copbio.2018.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 11/24/2022]
|
78
|
Mutuku JM, Cui S, Hori C, Takeda Y, Tobimatsu Y, Nakabayashi R, Mori T, Saito K, Demura T, Umezawa T, Yoshida S, Shirasu K. The Structural Integrity of Lignin Is Crucial for Resistance against Striga hermonthica Parasitism in Rice. PLANT PHYSIOLOGY 2019; 179:1796-1809. [PMID: 30670602 PMCID: PMC6446757 DOI: 10.1104/pp.18.01133] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/13/2019] [Indexed: 05/22/2023]
Abstract
Striga species are parasitic weeds that seriously constrain the productivity of food staples, including cereals and legumes, in Sub-Saharan Africa and Asia. In eastern and central Africa, Striga spp. infest as much as 40 million hectares of smallholder farmland causing total crop failure during severe infestation. As the molecular mechanisms underlying resistance are yet to be elucidated, we undertook a comparative metabolome study using the Striga-resistant rice (Oryza sativa) cultivar 'Nipponbare' and the susceptible cultivar 'Koshihikari'. We found that a number of metabolites accumulated preferentially in the Striga-resistant cultivar upon Striga hermonthica infection. Most apparent was increased deposition of lignin, a phenylpropanoid polymer mainly composed of p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) aromatic units, around the site of interaction in Nipponbare. The increased deposition of lignin was accompanied by induction of the expression of corresponding enzyme-encoding genes in the phenylpropanoid pathway. In addition, perturbing normal lignin composition by knocking down or overexpressing the genes that regulate lignin composition, i.e. p-COUMARATE 3-HYDROXYLASE or FERULATE 5-HYDROXYLASE, enhanced susceptibility of Nipponbare to S hermonthica infection. These results demonstrate that enhanced lignin deposition and maintenance of the structural integrity of lignin polymers deposited at the infection site are crucial for postattachment resistance against S hermonthica.
Collapse
Affiliation(s)
- J Musembi Mutuku
- Biosciences Eastern and Central Africa - International Livestock Research Institute (BecA-ILRI) Hub, 00100 Nairobi, Kenya
| | - Songkui Cui
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Chiaki Hori
- Research Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Yuri Takeda
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba 260-8675, Japan
| | - Taku Demura
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
- Research Unit for Development and Global Sustainability, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Satoko Yoshida
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Biological Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
79
|
Albishi T, Mikhael A, Shahidi F, Fridgen TD, Delmas M, Banoub J. Top-down lignomic matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry analysis of lignin oligomers extracted from date palm wood. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:539-560. [PMID: 30506948 DOI: 10.1002/rcm.8368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
RATIONALE We report for the first time the top-down lignomic analysis of the virgin released lignin (VRL) oligomers obtained from the Saudi date palm wood (SDPW), using a matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) instrument. In addition, we are proposing new collision-induced dissociation tandem mass spectrometry (CID-MS/MS) fragmentation routes for this series of unreported VRL oligomers. METHODS We have used direct MALDI-TOF-MS analysis of the mixture of lignin oligomers without any chromatographic pre-separation. High-energy CID-MS/MS analyses were used to confirm the precursor ion structures. RESULTS Six protonated lignin oligomer molecules were identified: [C19 H24 O8 + H]+ as H(8-O-4')G; [C50 H52 O19 + H]+ as H(8-O-4')H(8-O-4'')S(8-O-4''')S(8-O-4'''')G; [C58 H54 O18 + H]+ as H(8-O-4')H(8-O-4'')H(8-O-4''')G(8-O-4'''')S(8-O-4''''')G; [C58 H54 O19 + H]+ as H(8-O-4')H(8-O-4'')H(8-O-4''')S(8-O-4'''')S(8-O-4''''')G; [C61 H68 O25 + H]+ as H(8-O-4')G(8-O-4'')G(8-O-4''')S(8-O-4'''')S(8-O-4''''')G; and [C61 H68 O26 + H]+ as C(8-O-4')G(8-O-4'')G(8-O-4''')S(8-O-4'''')S(8-O-4''''')G units (H = coniferyl, S = sinapyl, and G = p-coumaryl). Two distonic cations were identified as [C39 H43 O15 + H]+• and [C40 H43 O16 + H]+• deriving from two tetrameric lignin oligomers. The high-energy MS/MS analyses allowed the confirmation of the proposed structures of this series of lignin oligomers. CONCLUSIONS To our knowledge, this is the first elucidation of the lignin structure of the Saudi seedling date palm wood that was accomplished using a top-down lignomic strategy that has not previously been published. The complex high-energy CID-MS/MS fragmentations presented herein are novel and have never been described before.
Collapse
Affiliation(s)
- Tasahil Albishi
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Newfoundland, A1C 5X1, Canada
| | - Abanoub Mikhael
- Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland, A1C 5X1, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Newfoundland, A1C 5X1, Canada
| | - Travis D Fridgen
- Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland, A1C 5X1, Canada
| | - Michel Delmas
- Inp-Ensiacet, Chemical Engineering Laboratory 4, University of Toulouse, Allée Emile Monso, 31432, Toulouse, France
| | - Joseph Banoub
- Department of Biochemistry, Memorial University of Newfoundland, St John's, Newfoundland, A1C 5X1, Canada
- Department of Chemistry, Memorial University of Newfoundland, St John's, Newfoundland, A1C 5X1, Canada
- Science Branch, Special Projects, Fisheries and Oceans Canada, St John's, NL, A1C 5X1, Canada
| |
Collapse
|
80
|
Ralph J, Lapierre C, Boerjan W. Lignin structure and its engineering. Curr Opin Biotechnol 2019; 56:240-249. [PMID: 30921563 DOI: 10.1016/j.copbio.2019.02.019] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/02/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023]
Abstract
Studies on lignin structure and its engineering are inextricably and bidirectionally linked. Perturbations of genes on the lignin biosynthetic pathway may result in striking compositional and structural changes that in turn suggest novel approaches for altering lignin and even 'designing' the polymer to enhance its value or with a view toward its simpler removal from the cell wall polysaccharides. Basic structural studies on various native lignins increasingly refine our knowledge of lignin structure, and examining lignins in different species reveals the extent to which evolution and natural variation have resulted in the incorporation of 'non-traditional' phenolic monomers, including phenolics from beyond the monolignol biosynthetic pathway. As a result, the very definition of lignin continues to be expanded and refined.
Collapse
Affiliation(s)
- John Ralph
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA; Department of Energy Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, WI 53726, USA.
| | - Catherine Lapierre
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, B-9052, Gent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 927, B-9052, Gent, Belgium
| |
Collapse
|
81
|
Yu A, Wang Z, Zhang Y, Li F, Liu A. Global Gene Expression of Seed Coat Tissues Reveals a Potential Mechanism of Regulating Seed Size Formation in Castor Bean. Int J Mol Sci 2019; 20:E1282. [PMID: 30875738 PMCID: PMC6471003 DOI: 10.3390/ijms20061282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 01/19/2023] Open
Abstract
The physiological and molecular basis of seed size formation is complex, and the development of seed coat (derived from integument cells) might be a critical factor that determines seed size formation for many endospermic seeds. Castor bean (Ricinus communis L.), a model system of studying seed biology, has large and persistent endosperm with a hard seed coat at maturity. Here, we investigated the potential molecular mechanisms underlying seed size formation in castor bean by comparing the difference between global gene expression within developing seed coat tissues between the large-seed ZB107 and small-seed ZB306. First, we observed the cell size of seed coat and concluded that the large seed coat area of ZB107 resulted from more cell numbers (rather than cell size). Furthermore, we found that the lignin proportion of seed coat was higher in ZB306. An investigation into global gene expression of developing seed coat tissues revealed that 815 genes were up-regulated and 813 were down-regulated in ZB306 relative to ZB107. Interestingly, we found that many genes involved in regulating cell division were up-regulated in ZB107, whereas many genes involved in regulating lignin biosynthesis (including several NAC members, as well as MYB46/83 and MYB58/63) and in mediating programmed cell death (such as CysEP1 and βVPE) were up-regulated in ZB306. Furthermore, the expression patterns of the genes mentioned above indicated that the lignification of seed coat tissues was enhanced and occurred earlier in the developing seeds of ZB306. Taken together, we tentatively proposed a potential scenario for explaining the molecular mechanisms of seed coat governing seed size formation in castor bean by increasing the cell number and delaying the onset of lignification in seed coat tissues in large-seed ZB107. This study not only presents new information for possible modulation of seed coat related genes to improve castor seed yield, but also provides new insights into understanding the molecular basis of seed size formation in endospermic seeds with hard seed coat.
Collapse
Affiliation(s)
- Anmin Yu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Zaiqing Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Yang Zhang
- Jiangxi Province Key Laboratory of Oil Crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China.
| | - Fei Li
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
82
|
Takeda Y, Suzuki S, Tobimatsu Y, Osakabe K, Osakabe Y, Ragamustari SK, Sakamoto M, Umezawa T. Lignin characterization of rice CONIFERALDEHYDE 5-HYDROXYLASE loss-of-function mutants generated with the CRISPR/Cas9 system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:543-554. [PMID: 30375064 DOI: 10.1111/tpj.14141] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 05/22/2023]
Abstract
The aromatic composition of lignin is an important trait that greatly affects the usability of lignocellulosic biomass. We previously identified a rice (Oryza sativa) gene encoding coniferaldehyde 5-hydroxylase (OsCAld5H1), which was effective in modulating syringyl (S)/guaiacyl (G) lignin composition ratio in rice, a model grass species. Previously characterized OsCAld5H1-knockdown rice lines, which were produced via an RNA-interference approach, showed augmented G lignin units yet contained considerable amounts of residual S lignin units. In this study, to further investigate the effect of suppression of OsCAld5H1 on rice lignin structure, we generated loss-of-function mutants of OsCAld5H1 using the CRISPR/Cas9-mediated genome editing system. Homozygous OsCAld5H1-knockout lines harboring anticipated frame-shift mutations in OsCAld5H1 were successfully obtained. A series of wet-chemical and two-dimensional NMR analyses on cell walls demonstrated that although lignins in the mutant were predictably enriched in G units all the tested mutant lines produced considerable numbers of S units. Intriguingly, lignin γ-p-coumaroylation analysis by the derivatization followed by reductive cleavage method revealed that enrichment of G units in lignins of the mutants was limited to the non-γ-p-coumaroylated units, whereas grass-specific γ-p-coumaroylated lignin units were almost unaffected. Gene expression analysis indicated that no homologous genes of OsCAld5H1 were overexpressed in the mutants. These data suggested that CAld5H is mainly involved in the production of non-γ-p-coumaroylated S lignin units, common in both eudicots and grasses, but not in the production of grass-specific γ-p-coumaroylated S units in rice.
Collapse
Affiliation(s)
- Yuri Takeda
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shiro Suzuki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuriko Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Safendrri K Ragamustari
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
- Research Unit for Development of Global Sustainability, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
- Research Unit for Development of Global Sustainability, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
83
|
Renault H, Werck-Reichhart D, Weng JK. Harnessing lignin evolution for biotechnological applications. Curr Opin Biotechnol 2018; 56:105-111. [PMID: 30439673 DOI: 10.1016/j.copbio.2018.10.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
Abstract
Lignin evolved concomitantly with the rise of vascular plants on planet earth ∼450 million years ago. Several iterations of exploiting ancestral phenylpropanoid metabolism for biopolymers occurred prior to lignin that facilitated early plants' adaptation to terrestrial environments. The first true lignin was constructed via oxidative coupling of a number of simple phenylpropanoid alcohols to form a sturdy polymer that supports long-distance water transport. This invention has directly contributed to the dominance of vascular plants in the Earth's flora, and has had a profound impact on the establishment of the rich terrestrial ecosystems as we know them today. Within vascular plants, new lignin traits continued to emerge with expanded biological functions pertinent to host fitness under complex environmental niches. Understanding the chemical and biochemical basis for lignin's evolution in diverse plants therefore offers new opportunities and tools for engineering desirable lignin traits in crops with economic significance.
Collapse
Affiliation(s)
- Hugues Renault
- Institute of Plant Molecular Biology, CNRS UPR 2357, University of Strasbourg, F-67000 Strasbourg, France.
| | - Danièle Werck-Reichhart
- Institute of Plant Molecular Biology, CNRS UPR 2357, University of Strasbourg, F-67000 Strasbourg, France.
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
84
|
Saito Y, Tsuchida H, Matsumoto T, Makita Y, Kawashima M, Kikuchi J, Matsui M. Screening of fungi for decomposition of lignin-derived products from Japanese cedar. J Biosci Bioeng 2018; 126:573-579. [DOI: 10.1016/j.jbiosc.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 04/23/2018] [Accepted: 05/04/2018] [Indexed: 11/24/2022]
|
85
|
Lignin polymerization: how do plants manage the chemistry so well? Curr Opin Biotechnol 2018; 56:75-81. [PMID: 30359808 DOI: 10.1016/j.copbio.2018.10.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/05/2018] [Accepted: 10/03/2018] [Indexed: 11/22/2022]
Abstract
The final step of lignin biosynthesis is the polymerization of monolignols in apoplastic cell wall domains. In this process, monolignols secreted by lignifying cells, or occasionally neighboring non-lignifying and/or other lignifying cells, are activated by cell-wall-localized oxidation systems, such as laccase/O2 and/or peroxidase/H2O2, for combinatorial radical coupling to make the final lignin polymers. Plants can precisely control when, where, and which types of lignin polymers are assembled at tissue and cellular levels, but do not control the polymers' exact chemical structures per se. Recent studies have begun to identify specific laccase and peroxidase proteins responsible for lignin polymerization in specific cell types and during different developmental stages. The coordination of polymerization machinery localization and monolignol supply is likely critical for the spatio-temporal patterning of lignin polymerization. Further advancement in this research area will continue to increase our capacity to manipulate lignin content/structure in biomass to meet our own biotechnological purposes.
Collapse
|
86
|
Xie M, Zhang J, Tschaplinski TJ, Tuskan GA, Chen JG, Muchero W. Regulation of Lignin Biosynthesis and Its Role in Growth-Defense Tradeoffs. FRONTIERS IN PLANT SCIENCE 2018; 9:1427. [PMID: 30323825 PMCID: PMC6172325 DOI: 10.3389/fpls.2018.01427] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/07/2018] [Indexed: 05/20/2023]
Abstract
Plant growth-defense tradeoffs are fundamental for optimizing plant performance and fitness in a changing biotic/abiotic environment. This process is thought to involve readjusting resource allocation to different pathways. It has been frequently observed that among secondary cell wall components, alteration in lignin biosynthesis results in changes in both growth and defense. How this process is regulated, leading to growth or defense, remains largely elusive. In this article, we review the canonical lignin biosynthesis pathway, the recently discovered tyrosine shortcut pathway, and the biosynthesis of unconventional C-lignin. We summarize the current model of the hierarchical transcriptional regulation of lignin biosynthesis. Moreover, the interface between recently identified transcription factors and the hierarchical model are also discussed. We propose the existence of a transcriptional co-regulation mechanism coordinating energy allowance among growth, defense and lignin biosynthesis.
Collapse
Affiliation(s)
- Meng Xie
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Plant Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
87
|
Li Y, Shuai L, Kim H, Motagamwala AH, Mobley JK, Yue F, Tobimatsu Y, Havkin-Frenkel D, Chen F, Dixon RA, Luterbacher JS, Dumesic JA, Ralph J. An "ideal lignin" facilitates full biomass utilization. SCIENCE ADVANCES 2018; 4:eaau2968. [PMID: 30276267 PMCID: PMC6162077 DOI: 10.1126/sciadv.aau2968] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/22/2018] [Indexed: 05/18/2023]
Abstract
Lignin, a major component of lignocellulosic biomass, is crucial to plant growth and development but is a major impediment to efficient biomass utilization in various processes. Valorizing lignin is increasingly realized as being essential. However, rapid condensation of lignin during acidic extraction leads to the formation of recalcitrant condensed units that, along with similar units and structural heterogeneity in native lignin, drastically limits product yield and selectivity. Catechyl lignin (C-lignin), which is essentially a benzodioxane homopolymer without condensed units, might represent an ideal lignin for valorization, as it circumvents these issues. We discovered that C-lignin is highly acid-resistant. Hydrogenolysis of C-lignin resulted in the cleavage of all benzodioxane structures to produce catechyl-type monomers in near-quantitative yield with a selectivity of 90% to a single monomer.
Collapse
Affiliation(s)
- Yanding Li
- U.S. Department of Energy Great Lakes Bioenergy Research Center, and Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI 53726, USA
- Department of Biological Systems Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Li Shuai
- U.S. Department of Energy Great Lakes Bioenergy Research Center, and Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI 53726, USA
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, USA
| | - Hoon Kim
- U.S. Department of Energy Great Lakes Bioenergy Research Center, and Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI 53726, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Ali Hussain Motagamwala
- U.S. Department of Energy Great Lakes Bioenergy Research Center, and Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI 53726, USA
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Justin K. Mobley
- U.S. Department of Energy Great Lakes Bioenergy Research Center, and Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI 53726, USA
| | - Fengxia Yue
- U.S. Department of Energy Great Lakes Bioenergy Research Center, and Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI 53726, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Yuki Tobimatsu
- U.S. Department of Energy Great Lakes Bioenergy Research Center, and Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI 53726, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Daphna Havkin-Frenkel
- Department of Plant Biology and Pathology, Rutgers, State University of New Jersey, New Brunswick, NJ 08901, USA
- Bakto Flavors LLC, 772 Cranbury Crossroad, North Brunswick, NJ 08092, USA
| | - Fang Chen
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jeremy S. Luterbacher
- Laboratory of Sustainable and Catalytic Processing, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - James A. Dumesic
- U.S. Department of Energy Great Lakes Bioenergy Research Center, and Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI 53726, USA
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - John Ralph
- U.S. Department of Energy Great Lakes Bioenergy Research Center, and Wisconsin Energy Institute, University of Wisconsin–Madison, Madison, WI 53726, USA
- Department of Biological Systems Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
88
|
Francoz E, Lepiniec L, North HM. Seed coats as an alternative molecular factory: thinking outside the box. PLANT REPRODUCTION 2018; 31:327-342. [PMID: 30056618 DOI: 10.1007/s00497-018-0345-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/13/2018] [Indexed: 05/15/2023]
Abstract
Seed coats as commodities. Seed coats play important roles in the protection of the embryo from biological attack and physical damage by the environment as well as dispersion strategies. A significant part of the energy devoted by the mother plant to seed production is channeled into the production of the cell layers and metabolites that surround the embryo. Nevertheless, in crop species these are often discarded post-harvest and are a wasted resource that could be processed to yield co-products. The production of novel compounds from existing metabolites is also a possibility. A number of macromolecules are already accumulated in these maternal layers that could be exploited in industrial applications either directly or via green chemistry, notably flavonoids, lignin, lignan, polysaccharides, lipid polyesters and waxes. Here, we summarize our knowledge of the in planta biosynthesis pathways of these macromolecules and their molecular regulation as well as potential applications. We also outline recent work aimed at providing further tools for increasing yields of existing molecules or the development of novel biotech approaches, as well as trial studies aimed at exploiting this underused resource.
Collapse
Affiliation(s)
- Edith Francoz
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Helen M North
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
89
|
Lancefield CS, Wienk HLJ, Boelens R, Weckhuysen BM, Bruijnincx PCA. Identification of a diagnostic structural motif reveals a new reaction intermediate and condensation pathway in kraft lignin formation. Chem Sci 2018; 9:6348-6360. [PMID: 30310563 PMCID: PMC6115679 DOI: 10.1039/c8sc02000k] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/02/2018] [Indexed: 01/25/2023] Open
Abstract
Kraft lignin, the main by-product of the pulping industry, is an abundant, yet highly underutilized renewable aromatic polymer. During kraft pulping, the lignin undergoes extensive structural modification, with many labile native bonds being replaced by new, more recalcitrant ones. Currently little is known about the nature of those bonds and linkages in kraft lignin, information that is essential for its efficient valorization to renewable fuels, materials or chemicals. Here, we provide detailed new insights into the structure of softwood kraft lignin, identifying and quantifying the major native as well as kraft pulping-derived units as a function of molecular weight. De novo synthetic kraft lignins, generated from (isotope labelled) dimeric and advanced polymeric models, provided key mechanistic understanding of kraft lignin formation, revealing different process dependent reaction pathways to be operating. The discovery of a novel kraft-derived lactone condensation product proved diagnostic for the identification of a previously unknown homovanillin based condensation pathway. The lactone marker is found in various different soft- and hardwood kraft lignins, suggesting the general pertinence of this new condensation mechanism for kraft pulping. These novel structural and mechanistic insights will aid the development of future biomass and lignin valorization technologies.
Collapse
Affiliation(s)
- Christopher S Lancefield
- Inorganic Chemistry and Catalysis , Debye Institute for Nanomaterials Science , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands .
| | - Hans L J Wienk
- NMR Spectroscopy , Bijvoet Center for Biomolecular Research , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Rolf Boelens
- NMR Spectroscopy , Bijvoet Center for Biomolecular Research , Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis , Debye Institute for Nanomaterials Science , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands .
| | - Pieter C A Bruijnincx
- Inorganic Chemistry and Catalysis , Debye Institute for Nanomaterials Science , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands .
- Organic Chemistry and Catalysis , Debye Institute for Nanomaterials Science , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands
| |
Collapse
|
90
|
Prejanò M, Marino T, Russo N. QM Cluster or QM/MM in Computational Enzymology: The Test Case of LigW-Decarboxylase. Front Chem 2018; 6:249. [PMID: 30003076 PMCID: PMC6031855 DOI: 10.3389/fchem.2018.00249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
The catalytic mechanism of the decarboxylation of 5-carboxyvanillate by LigW producing vanillic acid has been studied by using QM cluster and hybrid QM/MM methodologies. In the QM cluster model, the environment of a small QM model is treated with a bulky potential while two QM/MM models studies include partial and full protein with and without explicitly treated water solvent. The studied reaction involves two sequential steps: the protonation of the carbon of the 5-carboxy-vanillate substrate and the decarboxylation of the intermediate from which results deprotonated vanillic acid as product. The structures and energetics obtained by using three structural models and two density functionals are quite consistent to each other. This indicates that the small QM cluster model of the presently considered enzymatic reaction is appropriate enough and the reaction is mainly influenced by the active site.
Collapse
Affiliation(s)
- Mario Prejanò
- Dipartimento Di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Italy
| | - Tiziana Marino
- Dipartimento Di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Italy
| | - Nino Russo
- Dipartimento Di Chimica e Tecnologie Chimiche, Università della Calabria, Rende, Italy
| |
Collapse
|
91
|
Takeda Y, Tobimatsu Y, Karlen SD, Koshiba T, Suzuki S, Yamamura M, Murakami S, Mukai M, Hattori T, Osakabe K, Ralph J, Sakamoto M, Umezawa T. Downregulation of p-COUMAROYL ESTER 3-HYDROXYLASE in rice leads to altered cell wall structures and improves biomass saccharification. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:796-811. [PMID: 29890017 DOI: 10.1111/tpj.13988] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 05/02/2023]
Abstract
p-Coumaroyl ester 3-hydroxylase (C3'H) is a key enzyme involved in the biosynthesis of lignin, a phenylpropanoid polymer that is the major constituent of secondary cell walls in vascular plants. Although the crucial role of C3'H in lignification and its manipulation to upgrade lignocellulose have been investigated in eudicots, limited information is available in monocotyledonous grass species, despite their potential as biomass feedstocks. Here we address the pronounced impacts of C3'H deficiency on the structure and properties of grass cell walls. C3'H-knockdown lines generated via RNA interference (RNAi)-mediated gene silencing, with about 0.5% of the residual expression levels, reached maturity and set seeds. In contrast, C3'H-knockout rice mutants generated via CRISPR/Cas9-mediated mutagenesis were severely dwarfed and sterile. Cell wall analysis of the mature C3'H-knockdown RNAi lines revealed that their lignins were largely enriched in p-hydroxyphenyl (H) units while being substantially reduced in the normally dominant guaiacyl (G) and syringyl (S) units. Interestingly, however, the enrichment of H units was limited to within the non-acylated lignin units, with grass-specific γ-p-coumaroylated lignin units remaining apparently unchanged. Suppression of C3'H also resulted in relative augmentation in tricin residues in lignin as well as a substantial reduction in wall cross-linking ferulates. Collectively, our data demonstrate that C3'H expression is an important determinant not only of lignin content and composition but also of the degree of cell wall cross-linking. We also demonstrated that C3'H-suppressed rice displays enhanced biomass saccharification.
Collapse
Affiliation(s)
- Yuri Takeda
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Steven D Karlen
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Taichi Koshiba
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Shiro Suzuki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Shinya Murakami
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Mai Mukai
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takefumi Hattori
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Keishi Osakabe
- Faculty of Bioscience and Bioindustry, Tokushima University, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - John Ralph
- US Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Research Unit for Development of Global Sustainability, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
92
|
Regner M, Bartuce A, Padmakshan D, Ralph J, Karlen SD. Reductive Cleavage Method for Quantitation of Monolignols and Low-Abundance Monolignol Conjugates. CHEMSUSCHEM 2018; 11:1600-1605. [PMID: 29603658 DOI: 10.1002/cssc.201800958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Indexed: 05/25/2023]
Abstract
As interest in biomass utilization has grown, the manipulation of lignin biosynthesis has received significant attention, such that recent work has demanded more robust lignin analytical methods. As the derivatization followed by reductive cleavage (DFRC) method is particularly effective for structurally characterizing natively acylated lignins, we used an array of synthetic β-ether γ-acylated model compounds to determine theoretical yields for all monolignol conjugates currently known to exist in lignin, and we synthesized a new set of deuterated analogs as internal standards for quantification using GC-MS/MS. Yields of the saturated ester conjugates ranged from 40 to 90 %, and NMR analysis revealed the presence of residual unsaturated conjugates in yields of 20 to 35 %. In contrast to traditional selected-ion-monitoring, we demonstrated the superior sensitivity and accuracy of multiple-reaction-monitoring detection methods, and further highlighted the inadequacy of traditional standards relative to isotopically labeled analogs.
Collapse
Affiliation(s)
- Matt Regner
- DOE Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Allison Bartuce
- DOE Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Dharshana Padmakshan
- DOE Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - John Ralph
- DOE Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Steven D Karlen
- DOE Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53726, USA
| |
Collapse
|
93
|
Regner M, Bartuce A, Padmakshan D, Ralph J, Karlen SD. Reductive Cleavage Method for Quantitation of Monolignols and Low-Abundance Monolignol Conjugates. CHEMSUSCHEM 2018; 11:1600-1605. [PMID: 29603658 PMCID: PMC6001451 DOI: 10.1002/cssc.201800617] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Indexed: 05/03/2023]
Abstract
As interest in biomass utilization has grown, the manipulation of lignin biosynthesis has received significant attention, such that recent work has demanded more robust lignin analytical methods. As the derivatization followed by reductive cleavage (DFRC) method is particularly effective for structurally characterizing natively acylated lignins, we used an array of synthetic β-ether γ-acylated model compounds to determine theoretical yields for all monolignol conjugates currently known to exist in lignin, and we synthesized a new set of deuterated analogs as internal standards for quantification using GC-MS/MS. Yields of the saturated ester conjugates ranged from 40 to 90 %, and NMR analysis revealed the presence of residual unsaturated conjugates in yields of 20 to 35 %. In contrast to traditional selected-ion-monitoring, we demonstrated the superior sensitivity and accuracy of multiple-reaction-monitoring detection methods, and further highlighted the inadequacy of traditional standards relative to isotopically labeled analogs.
Collapse
Affiliation(s)
- Matt Regner
- DOE Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Allison Bartuce
- DOE Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Dharshana Padmakshan
- DOE Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - John Ralph
- DOE Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Steven D Karlen
- DOE Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53726, USA
| |
Collapse
|
94
|
Cui S, Wada S, Tobimatsu Y, Takeda Y, Saucet SB, Takano T, Umezawa T, Shirasu K, Yoshida S. Host lignin composition affects haustorium induction in the parasitic plants Phtheirospermum japonicum and Striga hermonthica. THE NEW PHYTOLOGIST 2018; 218:710-723. [PMID: 29498051 DOI: 10.1111/nph.15033] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/08/2018] [Indexed: 05/24/2023]
Abstract
Parasitic plants in the family Orobanchaceae are destructive weeds of agriculture worldwide. The haustorium, an essential parasitic organ used by these plants to penetrate host tissues, is induced by host-derived phenolic compounds called haustorium-inducing factors (HIFs). The origin of HIFs remains unknown, although the structures of lignin monomers resemble that of HIFs. Lignin is a natural phenylpropanoid polymer, commonly found in secondary cell walls of vascular plants. We therefore investigated the possibility that HIFs are derived from host lignin. Various lignin-related phenolics, quinones and lignin polymers, together with nonhost and host plants that have different lignin compositions, were tested for their haustorium-inducing activity in two Orobanchaceae species, a facultative parasite, Phtheirospermum japonicum, and an obligate parasite, Striga hermonthica. Lignin-related compounds induced haustoria in P. japonicum and S. hermonthica with different specificities. High concentrations of lignin polymers induced haustorium formation. Treatment with laccase, a lignin degradation enzyme, promoted haustorium formation at low concentrations. The distinct lignin compositions of the host and nonhost plants affected haustorium induction, correlating with the response of the different parasitic plants to specific types of lignin-related compounds. Our study provides valuable insights into the important roles of lignin biosynthesis and degradation in the production of HIFs.
Collapse
Affiliation(s)
- Songkui Cui
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, 230-0045, Japan
| | - Syogo Wada
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yuri Takeda
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Simon B Saucet
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, 230-0045, Japan
| | - Toshiyuki Takano
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Research Unit for Development and Global Sustainability, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Satoko Yoshida
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
- Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, 230-0045, Japan
| |
Collapse
|
95
|
Miyamoto T, Yamamura M, Tobimatsu Y, Suzuki S, Kojima M, Takabe K, Terajima Y, Mihashi A, Kobayashi Y, Umezawa T. A comparative study of the biomass properties of Erianthus and sugarcane: lignocellulose structure, alkaline delignification rate, and enzymatic saccharification efficiency. Biosci Biotechnol Biochem 2018; 82:1143-1152. [PMID: 29558856 DOI: 10.1080/09168451.2018.1447358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A comprehensive understanding of the structure and properties of gramineous lignocelluloses is needed to facilitate their uses in biorefinery. In this study, lignocelluloses from fractionated internode tissues of two taxonomically close species, Erianthus arundinaceus and sugarcane (Saccharum spp.), were characterized. Our analyses determined that syringyl (S) lignins were predominant over guaiacyl (G) or p-hydroxyphenyl (H) lignins in sugarcane tissues; on the other hand, S lignin levels were similar to those of G lignin in Erianthus tissues. In addition, tricin units were detected in sugarcane tissues, but not in Erianthus tissues. Distributions of lignin inter-monomeric linkage types were also different in Erianthus and sugarcane tissues. Alkaline treatment removed lignins from sugarcane tissues more efficiently than Erianthus tissues, resulting in a higher enzymatic digestibility of sugarcane tissues compared with Erianthus tissues. Our data indicate that Erianthus biomass displayed resistance to alkaline delignification and enzymatic digestion.
Collapse
Affiliation(s)
- Takuji Miyamoto
- a Research Institute for Sustainable Humanosphere, Kyoto University , Uji, Kyoto , Japan
| | - Masaomi Yamamura
- a Research Institute for Sustainable Humanosphere, Kyoto University , Uji, Kyoto , Japan
| | - Yuki Tobimatsu
- a Research Institute for Sustainable Humanosphere, Kyoto University , Uji, Kyoto , Japan
| | - Shiro Suzuki
- a Research Institute for Sustainable Humanosphere, Kyoto University , Uji, Kyoto , Japan
| | - Miho Kojima
- b Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | - Keiji Takabe
- b Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | - Yoshifumi Terajima
- c Tropical Agricultural Research Front, Japan International Research Center for Agricultural Sciences , Ishigaki , Japan
| | - Asako Mihashi
- d Tsukuba Laboratory , AIST Tsukuba Central 6, Japan Bioindustry Association , Tsukuba , Japan
| | - Yoshinori Kobayashi
- d Tsukuba Laboratory , AIST Tsukuba Central 6, Japan Bioindustry Association , Tsukuba , Japan
| | - Toshiaki Umezawa
- a Research Institute for Sustainable Humanosphere, Kyoto University , Uji, Kyoto , Japan.,e Research Unit for Development of Global Sustainability , Kyoto University , Uji, Kyoto , Japan
| |
Collapse
|
96
|
Tarmadi D, Tobimatsu Y, Yamamura M, Miyamoto T, Miyagawa Y, Umezawa T, Yoshimura T. NMR studies on lignocellulose deconstructions in the digestive system of the lower termite Coptotermes formosanus Shiraki. Sci Rep 2018; 8:1290. [PMID: 29358744 PMCID: PMC5778066 DOI: 10.1038/s41598-018-19562-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/03/2018] [Indexed: 11/09/2022] Open
Abstract
Termites represent one of the most efficient lignocellulose decomposers on earth. The mechanism by which termites overcome the recalcitrant lignin barrier to gain access to embedded polysaccharides for assimilation and energy remains largely unknown. In the present study, softwood, hardwood, and grass lignocellulose diets were fed to Coptotermes formosanus workers, and structural differences between the original lignocellulose diets and the resulting feces were examined by solution-state multidimensional nuclear magnetic resonance (NMR) techniques as well as by complementary wet-chemical methods. Overall, our data support the view that lignin polymers are partially decomposed during their passage through the termite gut digestive system, although polysaccharide decomposition clearly dominates the overall lignocellulose deconstruction process and the majority of lignin polymers remain intact in the digestive residues. High-resolution NMR structural data suggested preferential removal of syringyl aromatic units in hardwood lignins, but non-acylated guaiacyl units as well as tricin end-units in grass lignins. In addition, our data suggest that termites and/or their gut symbionts may favor degradation of C-C-bonded β-5 and resinol-type β-β lignin inter-monomeric units over degradation of ether-bonded β-O-4 units, which is in contrast to what has been observed in typical lignin biodegradation undertaken by wood-decaying fungi.
Collapse
Affiliation(s)
- Didi Tarmadi
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan.,Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor KM.46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan.
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Takuji Miyamoto
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Yasuyuki Miyagawa
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan.,Research Unit for Development and Global Sustainability, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Tsuyoshi Yoshimura
- Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
97
|
Liu C, Ha CM, Dixon RA. Functional Genomics in the Study of Metabolic Pathways in Medicago truncatula: An Overview. Methods Mol Biol 2018; 1822:315-337. [PMID: 30043312 DOI: 10.1007/978-1-4939-8633-0_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In addition to its value as a model system for studies on symbiotic nitrogen fixation, Medicago truncatula has recently become an organism of choice for dissection of complex pathways of secondary metabolism. This work has been driven by two main reasons, both with practical implications. First Medicago species possess a wide range of flavonoid and terpenoid natural products, many of which, for example, the isoflavonoids and triterpene saponins, have important biological activities impacting both plant and animal (including human) health. Second, M. truncatula serves as an excellent model for alfalfa, the world's major forage legume, and forage quality is determined in large part by the concentrations of products of secondary metabolism, particularly lignin and condensed tannins. We here review recent progress in understanding the pathways leading to flavonoids, lignin, and triterpene saponins through utilization of genetic resources in M. truncatula.
Collapse
Affiliation(s)
- Chenggang Liu
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Chan Man Ha
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA.
| |
Collapse
|
98
|
Takeda Y, Koshiba T, Tobimatsu Y, Suzuki S, Murakami S, Yamamura M, Rahman MM, Takano T, Hattori T, Sakamoto M, Umezawa T. Regulation of CONIFERALDEHYDE 5-HYDROXYLASE expression to modulate cell wall lignin structure in rice. PLANTA 2017; 246:337-349. [PMID: 28421330 DOI: 10.1007/s00425-017-2692-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/11/2017] [Indexed: 05/22/2023]
Abstract
Regulation of a gene encoding coniferaldehyde 5-hydroxylase leads to substantial alterations in lignin structure in rice cell walls, identifying a promising genetic engineering target for improving grass biomass utilization. The aromatic composition of lignin greatly affects utilization characteristics of lignocellulosic biomass and, therefore, has been one of the primary targets of cell wall engineering studies. Limited information is, however, available regarding lignin modifications in monocotyledonous grasses, despite the fact that grass lignocelluloses have a great potential for feedstocks of biofuel production and various biorefinery applications. Here, we report that manipulation of a gene encoding coniferaldehyde 5-hydroxylase (CAld5H, or ferulate 5-hydroxylase, F5H) leads to substantial alterations in syringyl (S)/guaiacyl (G) lignin aromatic composition in rice (Oryza sativa), a major model grass and commercially important crop. Among three CAld5H genes identified in rice, OsCAld5H1 (CYP84A5) appeared to be predominantly expressed in lignin-producing rice vegetative tissues. Down-regulation of OsCAld5H1 produced altered lignins largely enriched in G units, whereas up-regulation of OsCAld5H1 resulted in lignins enriched in S units, as revealed by a series of wet-chemical and NMR structural analyses. Our data collectively demonstrate that OsCAld5H1 expression is a major factor controlling S/G lignin composition in rice cell walls. Given that S/G lignin composition affects various biomass properties, we contemplate that manipulation of CAld5H gene expression represents a promising strategy to upgrade grass biomass for biorefinery applications.
Collapse
Affiliation(s)
- Yuri Takeda
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Taichi Koshiba
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
- EARTHNOTE Co. Ltd., Nago, Okinawa, 905-1152, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shiro Suzuki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Shinya Murakami
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Md Mahabubur Rahman
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Toshiyuki Takano
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takefumi Hattori
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
- Faculty of Bioscience and Bioindustry, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, 770-8513, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan.
- Research Unit for Global Sustainability Studies, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
99
|
Lam PY, Tobimatsu Y, Takeda Y, Suzuki S, Yamamura M, Umezawa T, Lo C. Disrupting Flavone Synthase II Alters Lignin and Improves Biomass Digestibility. PLANT PHYSIOLOGY 2017; 174:972-985. [PMID: 28385728 PMCID: PMC5462022 DOI: 10.1104/pp.16.01973] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/30/2017] [Indexed: 05/02/2023]
Abstract
Lignin, a ubiquitous phenylpropanoid polymer in vascular plant cell walls, is derived primarily from oxidative couplings of monolignols (p-hydroxycinnamyl alcohols). It was discovered recently that a wide range of grasses, including cereals, utilize a member of the flavonoids, tricin (3',5'-dimethoxyflavone), as a natural comonomer with monolignols for cell wall lignification. Previously, we established that cytochrome P450 93G1 is a flavone synthase II (OsFNSII) indispensable for the biosynthesis of soluble tricin-derived metabolites in rice (Oryza sativa). Here, our tricin-deficient fnsII mutant was analyzed further with an emphasis on its cell wall structure and properties. The mutant is similar in growth to wild-type control plants with normal vascular morphology. Chemical and nuclear magnetic resonance structural analyses demonstrated that the mutant lignin is completely devoid of tricin, indicating that FNSII activity is essential for the deposition of tricin-bound lignin in rice cell walls. The mutant also showed substantially reduced lignin content with decreased syringyl/guaiacyl lignin unit composition. Interestingly, the loss of tricin in the mutant lignin appears to be partially compensated by incorporating naringenin, which is a preferred substrate of OsFNSII. The fnsII mutant was further revealed to have enhanced enzymatic saccharification efficiency, suggesting that the cell wall recalcitrance of grass biomass may be reduced through the manipulation of the flavonoid monomer supply for lignification.
Collapse
Affiliation(s)
- Pui Ying Lam
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yuki Tobimatsu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yuri Takeda
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Shiro Suzuki
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masaomi Yamamura
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Toshiaki Umezawa
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China (P.Y.L., C.L.); and
- Research Institute for Sustainable Humanosphere (Y.To., Y.Ta., S.S., M.Y., T.U.) and Research Unit for Global Sustainability Studies (T.U.), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
100
|
Wang X, Guo Y, Zhou J, Sun G. Structural changes of poplar wood lignin after supercritical pretreatment using carbon dioxide and ethanol–water as co-solvents. RSC Adv 2017. [DOI: 10.1039/c6ra26122a] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To delineate structural changes of lignin after SCEP, enzymatic hydrolysis lignin (EHL) in poplar chips, lignin in pretreated residues (SCEP-RL), lignin in liquors (SCEP-DL) were isolated and analyzed by GPC, 13C-, 31P-, 2D-HSQC-NMR and TGA.
Collapse
Affiliation(s)
- Xing Wang
- Liaoning Key Laboratory of Pulp and Papermaking Engineering
- Dalian Polytechnic University
- Dalian
- China
| | - Yanzhu Guo
- Liaoning Key Laboratory of Pulp and Papermaking Engineering
- Dalian Polytechnic University
- Dalian
- China
| | - Jinghui Zhou
- Liaoning Key Laboratory of Pulp and Papermaking Engineering
- Dalian Polytechnic University
- Dalian
- China
| | - Guangwei Sun
- Liaoning Key Laboratory of Pulp and Papermaking Engineering
- Dalian Polytechnic University
- Dalian
- China
| |
Collapse
|