51
|
Abstract
Our understanding of the detailed molecular mechanisms underpinning adaptation is still poor. One example for which mechanistic understanding of regulation has converged with studies of life history variation is Arabidopsis thaliana FLOWERING LOCUS C (FLC). FLC determines the need for plants to overwinter and their ability to respond to prolonged cold in a process termed vernalization. This review highlights how molecular analysis of vernalization pathways has revealed important insight into antisense-mediated chromatin silencing mechanisms that regulate FLC. In turn, such insight has enabled molecular dissection of the diversity in vernalization across natural populations of A. thaliana. Changes in both cotranscriptional regulation and epigenetic silencing of FLC are caused by noncoding polymorphisms at FLC. The FLC locus is therefore providing important concepts for how noncoding transcription and chromatin regulation influence gene expression and how these mechanisms can vary to underpin adaptation in natural populations.
Collapse
Affiliation(s)
- Charles Whittaker
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom;
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom;
| |
Collapse
|
52
|
Yang Y, Wang W, Chu Z, Zhu JK, Zhang H. Roles of Nuclear Pores and Nucleo-cytoplasmic Trafficking in Plant Stress Responses. FRONTIERS IN PLANT SCIENCE 2017; 8:574. [PMID: 28446921 PMCID: PMC5388774 DOI: 10.3389/fpls.2017.00574] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/30/2017] [Indexed: 05/29/2023]
Abstract
The nuclear pore complex (NPC) is a large protein complex that controls the exchange of components between the nucleus and the cytoplasm. In plants, the NPC family components play critical roles not only in essential growth and developmental processes, but also in plant responses to various environmental stress conditions. The involvement of NPC components in plant stress responses is mainly attributed to different mechanisms including control of mRNA/protein nucleo-cytoplasmic trafficking and transcriptional gene regulation. This mini review summarizes current knowledge of the NPC-mediated plant stress responses and provides an overview of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yu Yang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Wei Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical GardenShanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of SciencesShanghai, China
| | - Zhaoqing Chu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical GardenShanghai, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of SciencesShanghai, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West LafayetteIN, USA
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| |
Collapse
|
53
|
Kim JH, Lee HJ, Jung JH, Lee S, Park CM. HOS1 Facilitates the Phytochrome B-Mediated Inhibition of PIF4 Function during Hypocotyl Growth in Arabidopsis. MOLECULAR PLANT 2017; 10:274-284. [PMID: 27890635 DOI: 10.1016/j.molp.2016.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 05/06/2023]
Abstract
Upon exposure to light, developing seedlings undergo photomorphogenesis, as illustrated by inhibition of hypocotyl elongation, cotyledon opening, and leaf greening. During hypocotyl photomorphogenesis, light signals are sensed by multiple photoreceptors, among which the red/far-red light-sensing phytochromes have been extensively studied. However, it is not fully understood how the phytochromes modulate hypocotyl growth. Here, we demonstrated that HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1), which is known to either act as E3 ubiquitin ligase or affect chromatin organization, inhibits the transcriptional activation activity of PHYTOCHROME INTERACTING FACTOR 4 (PIF4), a key transcription factor that promotes hypocotyl growth. Consistent with the negative regulatory role of HOS1 in hypocotyl growth, HOS1-defective mutants exhibited elongated hypocotyls in the light. Notably, phyB induces HOS1 activity in inhibiting PIF4 function. Taken together, these observations provide a molecular basis for the phyB-mediated suppression of hypocotyl growth in Arabidopsis.
Collapse
Affiliation(s)
- Ju-Heon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jae-Hoon Jung
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Sangmin Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
54
|
Banerjee A, Wani SH, Roychoudhury A. Epigenetic Control of Plant Cold Responses. FRONTIERS IN PLANT SCIENCE 2017; 8:1643. [PMID: 28983309 PMCID: PMC5613158 DOI: 10.3389/fpls.2017.01643] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/07/2017] [Indexed: 05/19/2023]
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College-AutonomousKolkata, India
| | - Shabir H. Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of KashmirSrinagar, India
- Department of Plant Soil and Microbial Sciences, Michigan State UniversityEast Lansing, MI, United States
- *Correspondence: Shabir H. Wani
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College-AutonomousKolkata, India
- Aryadeep Roychoudhury
| |
Collapse
|
55
|
Luo M, Cheng K, Xu Y, Yang S, Wu K. Plant Responses to Abiotic Stress Regulated by Histone Deacetylases. FRONTIERS IN PLANT SCIENCE 2017; 8:2147. [PMID: 29326743 PMCID: PMC5737090 DOI: 10.3389/fpls.2017.02147] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
In eukaryotic cells, histone acetylation and deacetylation play an important role in the regulation of gene expression. Histone acetylation levels are modulated by histone acetyltransferases and histone deacetylases (HDACs). Recent studies indicate that HDACs play essential roles in the regulation of gene expression in plant response to environmental stress. In this review, we discussed the recent advance regarding the plant HDACs and their functions in the regulation of abiotic stress responses. The role of HDACs in autophagy was also discussed.
Collapse
Affiliation(s)
- Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Ming Luo, Keqiang Wu,
| | - Kai Cheng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yingchao Xu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Songguang Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Keqiang Wu
- College of Life Science, Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- *Correspondence: Ming Luo, Keqiang Wu,
| |
Collapse
|
56
|
Abstract
Light is a major environmental factor regulating flowering time, thus ensuring reproductive success of higher plants. In contrast to our detailed understanding of light quality and photoperiod mechanisms involved, the molecular basis underlying high light-promoted flowering remains elusive. Here we show that, in Arabidopsis, a chloroplast-derived signal is critical for high light-regulated flowering mediated by the FLOWERING LOCUS C (FLC). We also demonstrate that PTM, a PHD transcription factor involved in chloroplast retrograde signaling, perceives such a signal and mediates transcriptional repression of FLC through recruitment of FVE, a component of the histone deacetylase complex. Thus, our data suggest that chloroplasts function as essential sensors of high light to regulate flowering and adaptive responses by triggering nuclear transcriptional changes at the chromatin level.
Collapse
|
57
|
Park H, Kim WY, Pardo J, Yun DJ. Molecular Interactions Between Flowering Time and Abiotic Stress Pathways. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:371-412. [DOI: 10.1016/bs.ircmb.2016.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
58
|
Kazan K, Lyons R. The link between flowering time and stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:47-60. [PMID: 26428061 DOI: 10.1093/jxb/erv441] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Evolutionary success in plants is largely dependent on the successful transition from vegetative to reproductive growth. In the lifetime of a plant, flowering is not only an essential part of the reproductive process but also a critical developmental stage that can be vulnerable to environmental stresses. Exposure to stress during this period can cause substantial yield losses in seed-producing plants. However, it is becoming increasingly evident that altering flowering time is an evolutionary strategy adopted by plants to maximize the chances of reproduction under diverse stress conditions, ranging from pathogen infection to heat, salinity, and drought. Here, recent studies that have revealed new insights into how biotic and abiotic stress signals can be integrated into floral pathways are reviewed. A better understanding of how complex environmental variables affect plant phenology is important for future genetic manipulation of crops to increase productivity under the changing climate.
Collapse
Affiliation(s)
- Kemal Kazan
- CSIRO Agriculture, Queensland Bioscience Precinct, Brisbane, Queensland, Australia Queensland Alliance for Agriculture & Food Innovation (QAAFI), The University of Queensland, St Lucia, Brisbane, Queensland 4067, Australia
| | - Rebecca Lyons
- CSIRO Agriculture, Queensland Bioscience Precinct, Brisbane, Queensland, Australia
| |
Collapse
|
59
|
Liu XR, Pan T, Liang WQ, Gao L, Wang XJ, Li HQ, Liang S. Overexpression of an Orchid (Dendrobium nobile) SOC1/TM3-Like Ortholog, DnAGL19, in Arabidopsis Regulates HOS1-FT Expression. FRONTIERS IN PLANT SCIENCE 2016; 7:99. [PMID: 26904066 PMCID: PMC4746357 DOI: 10.3389/fpls.2016.00099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/19/2016] [Indexed: 05/18/2023]
Abstract
Flowering in the appropriate season is critical for successful reproduction in angiosperms. The orchid species, Dendrobium nobile, requires vernalization to achieve flowering in the spring, but the underlying regulatory network has not been identified to date. The MADS-box transcription factor DnAGL19 was previously identified in a study of low-temperature treated D. nobile buds and was suggested to regulate vernalization-induced flowering. In this study, phylogenetic analysis of DnAGL9 and the MADS-box containing proteins showed that DnAGL19 is phylogenetically closely related to the SOC1-like protein from orchid Dendrobium Chao Parya Smile, DOSOC1. The orchid clade closed to but is not included into the SOC1-1/TM3 clades associated with either eudicots or monocots, suggesting that DnAGL19 is an SOC1-1/TM3-like ortholog. DnAGL19 was found to be highly expressed in pseudobulbs, leaves, roots, and axillary buds but rarely in flowers, and to be substantially upregulated in axillary buds by prolonged low-temperature treatments. Overexpression of DnAGL19 in Arabidopsis thaliana resulted in a small but significantly reduced time to bolting, suggesting that flowering time was slightly accelerated under normal growth conditions. Consistent with this, the A. thaliana APETELA1 (AP1) gene was expressed at an earlier stage in transgenic lines than in wild type plants, while the FLOWERING LOCUS T (FT) gene was suppressed, suggesting that altered regulations on these transcription factors caused the weak promotion of flowering. HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 1 (HOS1) was slightly activated under the same conditions, suggesting that the HOS1-FT module may be involved in the DnAGL19-related network. Under vernalization conditions, FT expression was significantly upregulated, whereas HOS1 expression in the transgenic A. thaliana has a level similar to that in wild type. Taken together, these results suggest that DnAGL19 controls the action of the HOS1-FT module depending on temperature cues, which could contribute to regulation of D. nobile flowering time. These data provide insights into how flowering is fine-tuned in D. nobile to acclimate the plant to seasonal changes in temperature.
Collapse
|
60
|
Quantification and Gene Expression Analysis of Histone Deacetylases in Common Bean during Rust Fungal Inoculation. Int J Genomics 2015; 2015:153243. [PMID: 26824033 PMCID: PMC4707378 DOI: 10.1155/2015/153243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/27/2015] [Indexed: 11/17/2022] Open
Abstract
Histone deacetylases (HDACs) play an important role in plant growth, development, and defense processes and are one of the primary causes of epigenetic modifications in a genome. There was only one study reported on epigenetic modifications of the important legume crop, common bean, and its interaction with the fungal rust pathogen Uromyces appendiculatus prior to this project. We measured the total active HDACs levels in leaf tissues and observed expression patterns for the selected HDAC genes at 0, 12, and 84 hours after inoculation in mock inoculated and inoculated plants. Colorimetric analysis showed that the total amount of HDACs present in the leaf tissue decreased at 12 hours in inoculated plants compared to mock inoculated control plants. Gene expression analyses indicated that the expression pattern of gene PvSRT1 is similar to the trend of total active HDACs in this time course experiment. Gene PvHDA6 showed increased expression in the inoculated plants during the time points measured. This is one of the first attempts to study expression levels of HDACs in economically important legumes in the context of plant pathogen interactions. Findings from our study will be helpful to understand trends of total active HDACs and expression patterns of these genes under study during biotic stress.
Collapse
|
61
|
Li L, Li X, Liu Y, Liu H. Flowering responses to light and temperature. SCIENCE CHINA-LIFE SCIENCES 2015; 59:403-8. [PMID: 26687726 DOI: 10.1007/s11427-015-4910-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/20/2015] [Indexed: 11/27/2022]
Abstract
Light and temperature signals are the most important environmental cues regulating plant growth and development. Plants have evolved various strategies to prepare for, and adapt to environmental changes. Plants integrate environmental cues with endogenous signals to regulate various physiological processes, including flowering time. There are at least five distinct pathways controlling flowering in the model plant Arabidopsis thaliana: the photoperiod pathway, the vernalization/thermosensory pathway, the autonomous floral initiation, the gibberellins pathway, and the age pathway. The photoperiod and temperature/ vernalization pathways mainly perceive external signals from the environment, while the autonomous and age pathways transmit endogenous cues within plants. In many plant species, floral transition is precisely controlled by light signals (photoperiod) and temperature to optimize seed production in specific environments. The molecular mechanisms by which light and temperature control flowering responses have been revealed using forward and reverse genetic approaches. Here we focus on the recent advances in research on flowering responses to light and temperature.
Collapse
Affiliation(s)
- Li Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xu Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yawen Liu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
62
|
Nguyen KT, Park J, Park E, Lee I, Choi G. The Arabidopsis RING Domain Protein BOI Inhibits Flowering via CO-dependent and CO-independent Mechanisms. MOLECULAR PLANT 2015; 8:1725-36. [PMID: 26298008 DOI: 10.1016/j.molp.2015.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/24/2015] [Accepted: 08/12/2015] [Indexed: 05/25/2023]
Abstract
BOTRYTIS SUSCEPTIBLE1 INTERACTOR (BOI) and its three homologs (BOIs) are RING domain-containing proteins that repress flowering. Here, we investigated how BOIs repress flowering. Genetic analysis of the boiQ quadruple mutant indicates that BOIs repress flowering mainly through FLOWERING LOCUS T (FT). BOIs repress the expression of FT by CONSTANS (CO)-dependent and -independent mechanisms: in the CO-dependent mechanism, BOIs bind to CO, inhibit the targeting of CO to the FT locus, and thus repress the expression of FT; in the CO-independent mechanism, BOIs target the FT locus via a mechanism that requires DELLAs but not CO. This dual repression of FT makes BOIs strong repressors of flowering in both CO-dependent and CO-independent pathways in Arabidopsis thaliana. Our finding that BOIs inhibit CO targeting further suggests that, in addition to modulating CO mRNA expression and CO protein stability, flowering regulation can also modulate the targeting of CO to FT.
Collapse
Affiliation(s)
- Khoa Thi Nguyen
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Jeongmoo Park
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Eunae Park
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea.
| |
Collapse
|
63
|
Lee JH, Jung JH, Park CM. INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C-mediated flowering pathways in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:29-40. [PMID: 26248809 DOI: 10.1111/tpj.12956] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/05/2015] [Accepted: 07/23/2015] [Indexed: 05/04/2023]
Abstract
Plants constantly monitor changes in photoperiod and temperature throughout the year to synchronize flowering with optimal environmental conditions. In the temperate zones, both photoperiod and temperature fluctuate in a somewhat predictable manner through the seasons, although a transient shift to low temperature is also encountered during changing seasons, such as early spring. Although low temperatures are known to delay flowering by inducing the floral repressor FLOWERING LOCUS C (FLC), it is not fully understood how temperature signals are coordinated with photoperiodic signals in the timing of seasonal flowering. Here, we show that the cold signaling activator INDUCER OF CBF EXPRESSION 1 (ICE1), FLC and the floral promoter SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) constitute an elaborate signaling network that integrates cold signals into flowering pathways. The cold-activated ICE1 directly induces the gene encoding FLC, which represses SOC1 expression, resulting in delayed flowering. In contrast, under floral promotive conditions, SOC1 inhibits the binding of ICE1 to the promoters of the FLC gene, inducing flowering with a reduction of freezing tolerance. These observations indicate that the ICE1-FLC-SOC1 signaling network contributes to the fine-tuning of flowering during changing seasons.
Collapse
Affiliation(s)
- Jae-Hyung Lee
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Jae-Hoon Jung
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
- Sainsbury Laboratory, Cambridge University, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
- PGBI, Seoul National University, Seoul, 151-742, Korea
| |
Collapse
|
64
|
Lazaro A, Mouriz A, Piñeiro M, Jarillo JA. Red Light-Mediated Degradation of CONSTANS by the E3 Ubiquitin Ligase HOS1 Regulates Photoperiodic Flowering in Arabidopsis. THE PLANT CELL 2015; 27:2437-54. [PMID: 26373454 PMCID: PMC4815090 DOI: 10.1105/tpc.15.00529] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/12/2015] [Accepted: 08/22/2015] [Indexed: 05/18/2023]
Abstract
The regulation of CONSTANS (CO) gene expression is crucial to accurately measure changes in daylength, which influences flowering time in Arabidopsis thaliana. CO expression is under both transcriptional and posttranslational control mechanisms. We previously showed that the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES1 (HOS1) physically interacts with CO in Arabidopsis. This interaction is required to precisely modulate the timing of CO accumulation and, consequently, to maintain low levels of FLOWERING LOCUS T expression during the first part of the day. The data presented here demonstrate that HOS1 is involved in the red light-mediated degradation of CO that takes place in the early stages of the daylight period. Our results show that phytochrome B (phyB) is able to regulate flowering time, acting in the phloem companion cells, as previously described for CO and HOS1. Moreover, we reveal that phyB physically interacts with HOS1 and CO, indicating that the three proteins may be present in a complex in planta that is required to coordinate a correct photoperiodic response in Arabidopsis.
Collapse
Affiliation(s)
- Ana Lazaro
- Centro de Biotecnología y Genómica de Plantas, INIA-UPM, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Madrid, Spain
| | - Alfonso Mouriz
- Centro de Biotecnología y Genómica de Plantas, INIA-UPM, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Madrid, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, INIA-UPM, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Madrid, Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, INIA-UPM, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Madrid, Spain
| |
Collapse
|
65
|
Kim YS, Lee M, Lee JH, Lee HJ, Park CM. The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis. PLANT MOLECULAR BIOLOGY 2015; 89:187-201. [PMID: 26311645 DOI: 10.1007/s11103-015-0365-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/21/2015] [Indexed: 05/18/2023]
Abstract
During cold acclimation, C-repeat binding factors (CBFs) activate downstream targets, such as cold-regulated genes, leading to the acquisition of freezing tolerance in plants. Inducer of CBF expression 1 (ICE1) plays a key role by activating CBF3 expression in shaping the cold-induced transcriptome. While the ICE1-CBF3 regulon constitutes a major cold acclimation pathway, gene regulatory networks governing the CBF signaling are poorly understood. Here, we demonstrated that ICE1 and its paralog ICE2 induce CBF1, CBF2, and CBF3 by binding to the gene promoters. ICE2, like ICE1, was ubiquitinated by the high expression of osmotically responsive gene 1 (HOS1) E3 ubiquitin ligase. Whereas ICE2-defective ice2-2 mutant did not exhibit any discernible freezing-sensitive phenotypes, ice1-2 ice2-2/+ plant, which is defective in ICE1 and has a heterozygotic ice2 mutation, exhibited significantly reduced freezing tolerance. Accordingly, all three CBF genes were markedly down-regulated in the ice1-2 ice2-2/+ plant, indicating that ICE1 and ICE2 are functionally redundant with different implementations in inducing CBF genes. Together with the negative regulation of CBF3 by CBF2, we propose that the unified ICE-CBF pathway provides a transcriptional feedback of freezing tolerance to sustain plant development and survival during cold acclimation.
Collapse
Affiliation(s)
- Ye Seul Kim
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Minyoung Lee
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Jae-Hyung Lee
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea
| | - Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea.
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 151-742, Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-742, Korea.
| |
Collapse
|
66
|
Hepworth J, Dean C. Flowering Locus C's Lessons: Conserved Chromatin Switches Underpinning Developmental Timing and Adaptation. PLANT PHYSIOLOGY 2015; 168:1237-45. [PMID: 26149571 PMCID: PMC4528751 DOI: 10.1104/pp.15.00496] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/03/2015] [Indexed: 05/18/2023]
Abstract
Analysis of how seasonal cues influence the timing of the floral transition has revealed many important principles for how epigenetic regulation can integrate a variety of environmental cues with developmental signals. The study of the pathways that necessitate overwintering in plants and their ability to respond to prolonged cold (the vernalization requirement and response pathways) has elaborated different chromatin regulatory pathways and the involvement of noncoding RNAs. The major target of these vernalization pathways in Arabidopsis (Arabidopsis thaliana) is Flowering Locus C (FLC). A relatively simple picture of FLC regulation is emerging of a few core complexes and mechanisms that antagonize each other's actions. This balance provides a fine degree of control that has nevertheless permitted evolution of a wide range of natural variation in vernalization in Arabidopsis. Similar simple routes of adaptation may underlie life history variation between species.
Collapse
Affiliation(s)
- Jo Hepworth
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
67
|
Avramova Z. Transcriptional 'memory' of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:149-59. [PMID: 25788029 DOI: 10.1111/tpj.12832] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 05/17/2023]
Abstract
Drought, salinity, extreme temperature variations, pathogen and herbivory attacks are recurring environmental stresses experienced by plants throughout their life. To survive repeated stresses, plants provide responses that may be different from their response during the first encounter with the stress. A different response to a similar stress represents the concept of 'stress memory'. A coordinated reaction at the organismal, cellular and gene/genome levels is thought to increase survival chances by improving the plant's tolerance/avoidance abilities. Ultimately, stress memory may provide a mechanism for acclimation and adaptation. At the molecular level, the concept of stress memory indicates that the mechanisms responsible for memory-type transcription during repeated stresses are not based on repetitive activation of the same response pathways activated by the first stress. Some recent advances in the search for transcription 'memory factors' are discussed with an emphasis on super-induced dehydration stress memory response genes in Arabidopsis.
Collapse
Affiliation(s)
- Zoya Avramova
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
68
|
Negative regulatory roles of DE-ETIOLATED1 in flowering time in Arabidopsis. Sci Rep 2015; 5:9728. [PMID: 25962685 PMCID: PMC4428065 DOI: 10.1038/srep09728] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/17/2015] [Indexed: 12/13/2022] Open
Abstract
Arabidopsis flowers early under long days (LD) and late under short days (SD). The repressor of photomorphogenesis DE-ETIOLATED1 (DET1) delays flowering; det1-1 mutants flower early, especially under SD, but the molecular mechanism of DET1 regulation remains unknown. Here we examine the regulatory function of DET1 in repression of flowering. Under SD, the det1-1 mutation causes daytime expression of FKF1 and CO; however, their altered expression has only a small effect on early flowering in det1-1 mutants. Notably, DET1 interacts with GI and binding of GI to the FT promoter increases in det1-1 mutants, suggesting that DET1 mainly restricts GI function, directly promoting FT expression independent of CO expression. Moreover, DET1 interacts with MSI4/FVE, which epigenetically inhibits FLC expression, indicating that the lack of FLC expression in det1-1 mutants likely involves altered histone modifications at the FLC locus. These data demonstrate that DET1 acts in both photoperiod and autonomous pathways to inhibit expression of FT and SOC1. Consistent with this, the early flowering of det1-1 mutants disappears completely in the ft-1 soc1-2 double mutant background. Thus, we propose that DET1 is a strong repressor of flowering and has a pivotal role in maintaining photoperiod sensitivity in the regulation of flowering time.
Collapse
|
69
|
Kenzior A, Folk WR. Arabidopsis thaliana MSI4/FVE associates with members of a novel family of plant specific PWWP/RRM domain proteins. PLANT MOLECULAR BIOLOGY 2015; 87:329-339. [PMID: 25600937 DOI: 10.1007/s11103-014-0280-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 12/30/2014] [Indexed: 06/04/2023]
Abstract
AtMSI4/FVE/ACG1, one of five Arabidopsis thaliana genes encoding MSI1-like proteins, helps determine plant growth and development (including control of flowering), as well as responses to certain biotic and abiotic stresses. We reasoned that the product of this gene, AtMSI4, acts through protein partners, which we have co-immunopurified with AtMSI4 from A. thaliana suspension culture cells and identified by liquid chromatography-mass spectrometry (LC-MS). Many of the proteins associated with AtMSI4 have distinct RNA recognition motif (RRM) domains, which we determined to be responsible for association with AtMSI4; and most of the associated RRM domain proteins also contain PWWP domains that are specific to plants. We propose these novel ATMSI4-associated proteins help form nucleoprotein complexes that determine pleiotropic functional properties of AtMSI4/FVE/ACG1 involving plant development and responses to stress.
Collapse
Affiliation(s)
- Alexander Kenzior
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA,
| | | |
Collapse
|
70
|
Parry G. The plant nuclear envelope and regulation of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1673-85. [PMID: 25680795 DOI: 10.1093/jxb/erv023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The nuclear envelope (NE) separates the key mechanisms of transcription and translation, and as such is a critical control point in all eukaryotic cells. In plants, the proteins of the NE influence a number of processes including the control of nucleo-cytoplasmic transport of RNA and protein, chromatin localization to the nuclear periphery, and direct chromatin binding by members of the nuclear pore complex (NPC). In this review I attempt to bring these roles under the umbrella of their effect on gene expression, even though the complex nature of this cellular environment means there is considerable overlap of effects. Although the volume of research in plant cells has greatly improved over recent years, it is clear that our understanding of how the components of the NE either directly or indirectly influence gene expression is still in its infancy.
Collapse
Affiliation(s)
- Geraint Parry
- University of Liverpool, Institute of Integrative Biology, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
71
|
Wang B, Duan CG, Wang X, Hou YJ, Yan J, Gao C, Kim JH, Zhang H, Zhu JK. HOS1 regulates Argonaute1 by promoting transcription of the microRNA gene MIR168b in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:861-70. [PMID: 25619693 PMCID: PMC4355216 DOI: 10.1111/tpj.12772] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/29/2014] [Accepted: 01/09/2015] [Indexed: 05/22/2023]
Abstract
Proper accumulation and function of miRNAs is essential for plant growth and development. While core components of the miRNA biogenesis pathway and miRNA-induced silencing complex have been well characterized, cellular regulators of miRNAs remain to be fully explored. Here we report that High Expression Of Osmotically Responsive Genes1 (HOS1) is a regulator of an important miRNA, mi168a/b, that targets the Argonaute1 (AGO1) gene in Arabidopsis. HOS1 functions as an ubiquitin E3 ligase to regulate plant cold-stress responses, associates with the nuclear pores to regulate mRNA export, and regulates the circadian clock and flowering time by binding to chromatin of the flowering regulator gene Flowering Locus C (FLC). In a genetic screen for enhancers of sic-1, we isolated a loss-of-function Arabidopsis mutant of HOS1 that is defective in miRNA biogenesis. Like other hos1 mutant alleles, the hos1-7 mutant flowered early and was smaller in stature than the wild-type. Dysfunction in HOS1 reduced the abundance of miR168a/b but not of other miRNAs. In hos1 mutants, pri-MIR168b and pre-MIR168b levels were decreased, and RNA polymerase II occupancy was reduced at the promoter of MIR168b but not that of MIR168a. Chromatin immunoprecipitation assays revealed that HOS1 protein is enriched at the chromatin of the MIR168b promoter. The reduced miR168a/b level in hos1 mutants results in an increase in the mRNA and protein levels of its target gene, AGO1. Our results reveal that HOS1 regulates miR168a/b and AGO1 levels in Arabidopsis by maintaining proper transcription of MIR168b.
Collapse
Affiliation(s)
- Bangshing Wang
- Department of Horticulture and landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Cheng-Guo Duan
- Department of Horticulture and landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Xingang Wang
- Department of Horticulture and landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Yueh-Ju Hou
- Department of Horticulture and landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Jun Yan
- Department of Horticulture and landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Caiqiu Gao
- Department of Horticulture and landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jin-Hong Kim
- Department of Horticulture and landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Genmgu-gil, Jeongeup-si, Jeollabuk-do 580-185, Republic of Korea
| | - Huiming Zhang
- Department of Horticulture and landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Jian-Kang Zhu
- Department of Horticulture and landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Corresponding author:
| |
Collapse
|
72
|
Abstract
Understanding of the roles that HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 1 (HOS1) plays in the plant's ability to sense and respond to environmental signals has grown dramatically. Mechanisms through which HOS1 affects plant development have been uncovered, and the broader consequences of hos1 on the plant's ability to perceive and respond to its environment have been investigated. As such, it has been possible to place HOS1 as a key integrator of temperature information in response to both acute signals and cues that indicate time of year into developmental processes that are essential for plant survival. This review summarizes knowledge of HOS1's form and function, and contextualizes this information so that it is relevant for better understanding the processes of cold signalling, flowering time, and nuclear pore complex function more broadly.
Collapse
Affiliation(s)
- Dana R MacGregor
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Colney Lane, Norwich, Norfolk NR4 7UH, UK
| | - Steven Penfield
- John Innes Centre, Department of Crop Genetics, Norwich Research Park, Colney Lane, Norwich, Norfolk NR4 7UH, UK
| |
Collapse
|
73
|
Kim JM, Sasaki T, Ueda M, Sako K, Seki M. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:114. [PMID: 25784920 PMCID: PMC4345800 DOI: 10.3389/fpls.2015.00114] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/11/2015] [Indexed: 05/11/2023]
Abstract
Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation) in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.
Collapse
Affiliation(s)
- Jong-Myong Kim
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Taku Sasaki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
| | - Minoru Ueda
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
| | - Kaori Sako
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, Kawaguchi, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- *Correspondence: Motoaki Seki, Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan e-mail:
| |
Collapse
|
74
|
Lee JH, Park CM. Integration of photoperiod and cold temperature signals into flowering genetic pathways in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2015; 10:e1089373. [PMID: 26430754 PMCID: PMC4883899 DOI: 10.1080/15592324.2015.1089373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Appropriate timing of flowering is critical for propagation and reproductive success in plants. Therefore, flowering time is coordinately regulated by endogenous developmental programs and external signals, such as changes in photoperiod and temperature. Flowering is delayed by a transient shift to cold temperatures that frequently occurs during early spring in the temperate zones. It is known that the delayed flowering by short-term cold stress is mediated primarily by the floral repressor FLOWERING LOCUS C (FLC). However, how the FLC-mediated cold signals are integrated into flowering genetic pathways is not fully understood. We have recently reported that the INDUCER OF CBF EXPRESSION 1 (ICE1), which is a master regulator of cold responses, FLC, and the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) constitute an elaborated feedforward-feedback loop that integrates photoperiod and cold temperature signals to regulate seasonal flowering in Arabidopsis. Cold temperatures promote the binding of ICE1 to FLC promoter to induce its expression, resulting in delayed flowering. However, under floral inductive conditions, SOC1 induces flowering by blocking the ICE1 activity. We propose that the ICE1-FLC-SOC1 signaling network fine-tunes the timing of photoperiodic flowering during changing seasons.
Collapse
Affiliation(s)
- Jae-Hyung Lee
- Department of Chemistry; Seoul National University, Seoul, Korea
| | - Chung-Mo Park
- Department of Chemistry; Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute; Seoul National University; Seoul, Korea
- Correspondence to: Chung-Mo Park;
| |
Collapse
|
75
|
Parry G. Components of the Arabidopsis nuclear pore complex play multiple diverse roles in control of plant growth. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6057-67. [PMID: 25165147 PMCID: PMC4203139 DOI: 10.1093/jxb/eru346] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The nuclear pore complex (NPC) is a multisubunit protein conglomerate that facilitates movement of RNA and protein between the nucleus and cytoplasm. Relatively little is known regarding the influence of the Arabidopsis NPC on growth and development. Seedling development, flowering time, nuclear morphology, mRNA accumulation, and gene expression changes in Arabidopsis nucleoporin mutants were investigated. Nuclear export of mRNA is differentially affected in plants with defects in nucleoporins that lie in different NPC subcomplexes. This study reveals differences in the manner by which nucleoporins alter molecular and plant growth phenotypes, suggesting that nuclear pore subcomplexes play distinct roles in nuclear transport and reveal a possible feedback relationship between the expression of genes involved in nuclear transport.
Collapse
Affiliation(s)
- Geraint Parry
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
76
|
Jung JH, Lee HJ, Park MJ, Park CM. Beyond ubiquitination: proteolytic and nonproteolytic roles of HOS1. TRENDS IN PLANT SCIENCE 2014; 19:538-45. [PMID: 24768209 DOI: 10.1016/j.tplants.2014.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/18/2014] [Accepted: 03/28/2014] [Indexed: 05/09/2023]
Abstract
The E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1) functions as a cold signaling attenuator by degrading the INDUCER OF CBF EXPRESSION 1 transcription factor, which is a key regulator of the cold-induced transcriptome and freezing tolerance in plants. Recent studies demonstrate that HOS1 also plays nonproteolytic roles in gene expression regulation. HOS1 acts as a chromatin remodeling factor that modulates FLOWERING LOCUS C chromatin in cold regulation of flowering time. It associates with the nuclear pore complex to facilitate nucleocytoplasmic mRNA export to maintain circadian periodicity over a range of light and temperature conditions. In this review, we summarize recent advances in molecular mechanisms underlying HOS1 function during plant development in response to fluctuating environmental conditions.
Collapse
Affiliation(s)
- Jae-Hoon Jung
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Hyo-Jun Lee
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Mi-Jeong Park
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea.
| |
Collapse
|
77
|
Stress induces cell dedifferentiation in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:378-84. [PMID: 25086338 DOI: 10.1016/j.bbagrm.2014.07.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 12/14/2022]
Abstract
Accumulating evidence lends support to the proposal that a major theme in plant responses to stresses is dedifferentiation, whereby mature cells acquire stem cell features (e.g. open chromatin conformation) prior to acquisition of a new cell fate. In this review, we discuss data addressing plant cell plasticity and provide evidence linking stress, dedifferentiation and a switch in cell fate. We emphasize the epigenetic modifications associated with stress-induced global changes in chromatin structure and conclude with the implications for genetic variation and for induced pluripotent stem cells in animals. It appears that stress is perceived as a signal that directs plant cells to undergo reprogramming (dedifferentiation) as a means for adaptation and in preparation for a stimulus-based acquisition of a new cell fate. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.
Collapse
|
78
|
Liu X, Yang S, Zhao M, Luo M, Yu CW, Chen CY, Tai R, Wu K. Transcriptional repression by histone deacetylases in plants. MOLECULAR PLANT 2014; 7:764-72. [PMID: 24658416 DOI: 10.1093/mp/ssu033] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Reversible histone acetylation and deacetylation at the N-terminus of histone tails play crucial roles in regulation of eukaryotic gene activity. Acetylation of core histones usually induces an 'open' chromatin structure and is associated with gene activation, whereas deacetylation of histone is often correlated with 'closed' chromatin and gene repression. Histone deacetylation is catalyzed by histone deacetylases (HDACs). A growing number of studies have demonstrated the importance of histone deacetylation/acetylation on genome stability, transcriptional regulation, and development in plants. Furthermore, HDACs were shown to interact with various chromatin remolding factors and transcription factors involved in transcriptional repression in multiple developmental processes. In this review, we summarized recent findings on the transcriptional repression mediated by HDACs in plants.
Collapse
Affiliation(s)
- Xuncheng Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Tamura K, Hara-Nishimura I. Functional insights of nucleocytoplasmic transport in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:118. [PMID: 24765097 PMCID: PMC3980095 DOI: 10.3389/fpls.2014.00118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/12/2014] [Indexed: 05/19/2023]
Abstract
Plant nucleocytoplasmic transport beyond the nuclear envelope is important not only for basic cellular functions but also for growth, development, hormonal signaling, and responses to environmental stimuli. Key components of this transport system include nuclear transport receptors and nucleoporins. The functional and physical interactions between receptors and the nuclear pore in the nuclear membrane are indispensable for nucleocytoplasmic transport. Recently, several groups have reported various plant mutants that are deficient in factors involved in nucleocytoplasmic transport. Here, we summarize the current state of knowledge about nucleocytoplasmic transport in plants, and we review the plant-specific regulation and roles of this process in plants.
Collapse
Affiliation(s)
| | - Ikuko Hara-Nishimura
- *Correspondence: Ikuko Hara-Nishimura, Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan e-mail:
| |
Collapse
|
80
|
Jung JH, Park CM. HOS1-mediated activation of FLC via chromatin remodeling under cold stress. PLANT SIGNALING & BEHAVIOR 2013; 8:e27342. [PMID: 24390058 PMCID: PMC4091338 DOI: 10.4161/psb.27342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The Arabidopsis E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 1 (HOS1) has been shown to act as a negative regulator of cold responses by degrading the INDUCER OF CBF EXPRESSION 1 (ICE1) transcription factor through the ubiquitin/proteasome pathway. Notably, loss-of-function hos1 mutants exhibit early flowering, and the transcript level of the floral repressor FLOWERING LOCUS C (FLC) is downregulated in the mutants. However, it is largely unknown how HOS1 regulates FLC transcription. We found that HOS1 activates FLC transcription by inhibiting the activity of histone deacetylase 6 (HDA6) under cold stress. Cold temperatures induce the binding of HOS1 to FLC chromatin in an FVE-dependent manner. Cold-activated HOS1 promotes the dissociation of HDA6 from FLC chromatin, and the cold effects disappear in both hos1 and fve mutants. It is therefore clear that HOS1 regulates FLC transcription via chromatin remodeling, providing new insights into the signaling crosstalks between cold response and flowering time control.
Collapse
Affiliation(s)
- Jae-Hoon Jung
- The Sainsbury Laboratory; University of Cambridge; Cambridge, UK
| | - Chung-Mo Park
- Department of Chemistry; Seoul National University; Seoul, Korea
- Plant Genomics and Breeding Institute; Seoul National University; Seoul, Korea
- Correspondence to: Chung-Mo Park,
| |
Collapse
|