51
|
Tyerman SD, McGaughey SA, Qiu J, Yool AJ, Byrt CS. Adaptable and Multifunctional Ion-Conducting Aquaporins. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:703-736. [PMID: 33577345 DOI: 10.1146/annurev-arplant-081720-013608] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Aquaporins function as water and neutral solute channels, signaling hubs, disease virulence factors, and metabolon components. We consider plant aquaporins that transport ions compared to some animal counterparts. These are candidates for important, as yet unidentified, cation and anion channels in plasma, tonoplast, and symbiotic membranes. For those individual isoforms that transport ions, water, and gases, the permeability spans 12 orders of magnitude. This requires tight regulation of selectivity via protein interactions and posttranslational modifications. A phosphorylation-dependent switch between ion and water permeation in AtPIP2;1 might be explained by coupling between the gates of the four monomer water channels and the central pore of the tetramer. We consider the potential for coupling between ion and water fluxes that could form the basis of an electroosmotic transducer. A grand challenge in understanding the roles of ion transporting aquaporins is their multifunctional modes that are dependent on location, stress, time, and development.
Collapse
Affiliation(s)
- Stephen D Tyerman
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia; ,
| | - Samantha A McGaughey
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australian Capital Territory 0200, Australia; ,
| | - Jiaen Qiu
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia; ,
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5005, Australia;
| | - Caitlin S Byrt
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, Australian National University, Acton, Australian Capital Territory 0200, Australia; ,
| |
Collapse
|
52
|
Ai G, Xia Q, Song T, Li T, Zhu H, Peng H, Liu J, Fu X, Zhang M, Jing M, Xia A, Dou D. A Phytophthora sojae CRN effector mediates phosphorylation and degradation of plant aquaporin proteins to suppress host immune signaling. PLoS Pathog 2021; 17:e1009388. [PMID: 33711077 PMCID: PMC7990189 DOI: 10.1371/journal.ppat.1009388] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 03/24/2021] [Accepted: 02/15/2021] [Indexed: 12/31/2022] Open
Abstract
Phytophthora genomes encode a myriad of Crinkler (CRN) effectors, some of which contain putative kinase domains. Little is known about the host targets of these kinase-domain-containing CRNs and their infection-promoting mechanisms. Here, we report the host target and functional mechanism of a conserved kinase CRN effector named CRN78 in a notorious oomycete pathogen, Phytophthora sojae. CRN78 promotes Phytophthora capsici infection in Nicotiana benthamiana and enhances P. sojae virulence on the host plant Glycine max by inhibiting plant H2O2 accumulation and immunity-related gene expression. Further investigation reveals that CRN78 interacts with PIP2-family aquaporin proteins including NbPIP2;2 from N. benthamiana and GmPIP2-13 from soybean on the plant plasma membrane, and membrane localization is necessary for virulence of CRN78. Next, CRN78 promotes phosphorylation of NbPIP2;2 or GmPIP2-13 using its kinase domain in vivo, leading to their subsequent protein degradation in a 26S-dependent pathway. Our data also demonstrates that NbPIP2;2 acts as a H2O2 transporter to positively regulate plant immunity and reactive oxygen species (ROS) accumulation. Phylogenetic analysis suggests that the phosphorylation sites of PIP2 proteins and the kinase domains of CRN78 homologs are highly conserved among higher plants and oomycete pathogens, respectively. Therefore, this study elucidates a conserved and novel pathway used by effector proteins to inhibit host cellular defenses by targeting and hijacking phosphorylation of plant aquaporin proteins. CRN effectors are conserved in diverse pathogens of plants, animals, and insects, and highly expanded in Phytophthora species. Nevertheless, little is known about their functions, targets, and action mechanisms. Here, we characterized a kinase-domain-containing CRN effector (CRN78) in a notorious oomycete pathogen, P. sojae. CRN78 is a virulence-essential effector of P. sojae infection, and acts via suppression of plant H2O2 accumulation and defense gene expressions. We demonstrated that CRN78 might interact with plant PIP2-family aquaporin proteins, including N. benthamiana NbPIP2;2 and soybean GmPIP2-13, and regulate their phosphorylation, resulting in subsequent 26S-dependent protein degradation. Furthermore, we revealed that NbPIP2;2 was an apoplast-to-cytoplast H2O2 transporter and positively regulated plant immunity and ROS accumulation. Importantly, this phosphorylation may be highly conserved in many plant aquaporin proteins. Thus, this study identifies a virulence-related effector from P. sojae and a novel plant immunity-related gene, and reveals a detailed mechanism of effector-mediated phosphorylation and degradation of plant aquaporin proteins.
Collapse
Affiliation(s)
- Gan Ai
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qingyue Xia
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Tianqiao Song
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of plant protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianli Li
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hai Zhu
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, United States of America
| | - Jin Liu
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaowei Fu
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ming Zhang
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Maofeng Jing
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ai Xia
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Daolong Dou
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
53
|
Lu C, Yuan F, Guo J, Han G, Wang C, Chen M, Wang B. Current Understanding of Role of Vesicular Transport in Salt Secretion by Salt Glands in Recretohalophytes. Int J Mol Sci 2021; 22:2203. [PMID: 33672188 PMCID: PMC7926375 DOI: 10.3390/ijms22042203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Soil salinization is a serious and growing problem around the world. Some plants, recognized as the recretohalophytes, can normally grow on saline-alkali soil without adverse effects by secreting excessive salt out of the body. The elucidation of the salt secretion process is of great significance for understanding the salt tolerance mechanism adopted by the recretohalophytes. Between the 1950s and the 1970s, three hypotheses, including the osmotic potential hypothesis, the transfer system similar to liquid flow in animals, and vesicle-mediated exocytosis, were proposed to explain the salt secretion process of plant salt glands. More recently, increasing evidence has indicated that vesicular transport plays vital roles in salt secretion of recretohalophytes. Here, we summarize recent findings, especially regarding the molecular evidence on the functional roles of vesicular trafficking in the salt secretion process of plant salt glands. A model of salt secretion in salt gland is also proposed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (C.L.); (F.Y.); (J.G.); (G.H.); (C.W.); (M.C.)
| |
Collapse
|
54
|
Sun X, Cai X, Yin K, Gu L, Shen Y, Hu B, Wang Y, Chen Y, Zhu Y, Jia B, Sun M. Wild soybean SNARE proteins BET1s mediate the subcellular localization of the cytoplasmic receptor-like kinases CRCK1s to modulate salt stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:771-785. [PMID: 33160290 DOI: 10.1111/tpj.15072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 05/27/2023]
Abstract
Plants have evolved numerous receptor-like kinases (RLKs) that modulate environmental stress responses. However, little is known regarding soybean (Glycine max) RLKs. We have previously identified that Glycine soja Ca2+ /CAM-binding RLK (GsCBRLK) is involved in salt tolerance. Here, we report that soluble NSF attachment protein receptor proteins BET1s mediate subcellular localization of calmodulin-binding receptor-like cytoplasmic kinases CRCK1s to modulate salt stress responses. Direct interaction between GsCBRLK and GsBET11a was initially identified via yeast two-hybrid and bimolecular fluorescence complementation assays. Further analysis demonstrated conserved interaction between BET1s and CRCK1s. GsCBRLK interacted with all BET1 proteins in wild soybean (Glycine soja) and Arabidopsis, and GsBET11a strongly associated with GsCRCK1a-1d, but slightly with AtCRCK1. In addition, GsBET11a interacted with GsCBRLK via its C-terminal transmembrane domain (TMD), where the entire TMD, not the sequence, was critical for the interaction. Moreover, the N-terminal variable domain (VD) of GsCBRLK was responsible for interacting with GsBET11a, and the intensity of interaction between GsCBRLK/AtCRCK1 and GsBET11a was dependent on VD. Furthermore, GsBET11a was able to mediate the GsCBRLK subcellular localization via direct interaction with VD. Additionally, knockout of AtBET11 or AtBET12 individually did not alter GsCBRLK localization, while GsBET11a expression caused partial internalization of GsCBRLK from the plasma membrane (PM). We further suggest the necessity of GsCBRLK VD for its PM localization via N-terminal truncation assays. Finally, GsBET11a was shown to confer enhanced salt stress tolerance when overexpressed in Arabidopsis and soybean. These results revealed the conserved and direct interaction between BET1s and CRCK1s, and suggested their involvement in salt stress responses.
Collapse
Affiliation(s)
- Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Kuide Yin
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Liwei Gu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bingshuang Hu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yan Wang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yue Chen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yanming Zhu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| |
Collapse
|
55
|
Laloux T, Matyjaszczyk I, Beaudelot S, Hachez C, Chaumont F. Interaction Between the SNARE SYP121 and the Plasma Membrane Aquaporin PIP2;7 Involves Different Protein Domains. FRONTIERS IN PLANT SCIENCE 2021; 11:631643. [PMID: 33537055 PMCID: PMC7847993 DOI: 10.3389/fpls.2020.631643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/29/2020] [Indexed: 05/27/2023]
Abstract
Plasma membrane intrinsic proteins (PIPs) are channels facilitating the passive diffusion of water and small solutes. Arabidopsis PIP2;7 trafficking occurs through physical interaction with SNARE proteins including the syntaxin SYP121, a plasma membrane Qa-SNARE involved in membrane fusion. To better understand the interaction mechanism, we aimed at identifying the interaction motifs in SYP121 and PIP2;7 using ratiometric bimolecular fluorescence complementation assays in Nicotiana benthamiana. SYP121 consists of four regions, N, H, Q, and C, and sequential deletions revealed that the C region, containing the transmembrane domain, as well as the H and Q regions, containing the Habc and Qa-SNARE functional domains, interact with PIP2;7. Neither the linker between the Habc and the Qa-SNARE domains nor the H or Q regions alone could fully restore the interaction with PIP2;7, suggesting that the interacting motif depends on the conformation taken by the HQ region. When investigating the interacting motif(s) in PIP2;7, we observed that deletion of the cytosolic N- and/or C- terminus led to a significant decrease in the interaction with SYP121. Shorter deletions revealed that at the N-terminal amino acid residues 18-26 were involved in the interaction. Domain swapping experiments between PIP2;7 and PIP2;6, a PIP isoform that does not interact with SYP121, showed that PIP2;7 N-terminal part up to the loop C was required to restore the full interaction signal, suggesting that, as it is the case for SYP121, the interaction motif(s) in PIP2;7 depend on the protein conformation. Finally, we also showed that PIP2;7 physically interacted with other Arabidopsis SYP1s and SYP121 orthologs.
Collapse
|
56
|
Yepes-Molina L, Bárzana G, Carvajal M. Controversial Regulation of Gene Expression and Protein Transduction of Aquaporins under Drought and Salinity Stress. PLANTS 2020; 9:plants9121662. [PMID: 33261103 PMCID: PMC7761296 DOI: 10.3390/plants9121662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/31/2022]
Abstract
Enhancement of the passage of water through membranes is one of the main mechanisms via which cells can maintain their homeostasis under stress conditions, and aquaporins are the main participants in this process. However, in the last few years, a number of studies have reported discrepancies between aquaporin messenger RNA (mRNA) expression and the number of aquaporin proteins synthesised in response to abiotic stress. These observations suggest the existence of post-transcriptional mechanisms which regulate plasma membrane intrinsic protein (PIP) trafficking to the plasma membrane. This indicates that the mRNA synthesis of some aquaporins could be modulated by the accumulation of the corresponding encoded protein, in relation to the turnover of the membranes. This aspect is discussed in terms of the results obtained: on the one hand, with isolated vesicles, in which the level of proteins present provides the membranes with important characteristics such as resistance and stability and, on the other, with isolated proteins reconstituted in artificial liposomes as an in vitro method to address the in vivo physiology of the entire plant.
Collapse
|
57
|
Fox AR, Scochera F, Laloux T, Filik K, Degand H, Morsomme P, Alleva K, Chaumont F. Plasma membrane aquaporins interact with the endoplasmic reticulum resident VAP27 proteins at ER-PM contact sites and endocytic structures. THE NEW PHYTOLOGIST 2020; 228:973-988. [PMID: 33410187 PMCID: PMC7586982 DOI: 10.1111/nph.16743] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/01/2020] [Indexed: 05/24/2023]
Abstract
Plasma membrane (PM) intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water and small solutes. The functional importance of the PM organisation of PIPs in the interaction with other cellular structures is not completely understood. We performed a pull-down assay using maize (Zea mays) suspension cells expressing YFP-ZmPIP2;5 and validated the protein interactions by yeast split-ubiquitin and bimolecular fluorescence complementation assays. We expressed interacting proteins tagged with fluorescent proteins in Nicotiana benthamiana leaves and performed water transport assays in oocytes. Finally, a phylogenetic analysis was conducted. The PM-located ZmPIP2;5 physically interacts with the endoplasmic reticulum (ER) resident ZmVAP27-1. This interaction requires the ZmVAP27-1 cytoplasmic major sperm domain. ZmPIP2;5 and ZmVAP27-1 localise in close vicinity in ER-PM contact sites (EPCSs) and endocytic structures upon exposure to salt stress conditions. This interaction enhances PM water permeability in oocytes. Similarly, the Arabidopsis ZmVAP27-1 paralogue, AtVAP27-1, interacts with the AtPIP2;7 aquaporin. Together, these data indicate that the PIP2-VAP27 interaction in EPCSs is evolutionarily conserved, and suggest that VAP27 might stabilise the aquaporins and guide their endocytosis in response to salt stress.
Collapse
Affiliation(s)
- Ana Romina Fox
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológica (IQUIFIB)CONICETUniversidad de Buenos AiresBuenos Aires1113Argentina
| | - Florencia Scochera
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológica (IQUIFIB)CONICETUniversidad de Buenos AiresBuenos Aires1113Argentina
- Facultad de Farmacia y BioquímicaDepartamento de FisicomatemáticaUniversidad de Buenos AiresBuenos Aires1113Argentina
| | - Timothée Laloux
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| | - Karolina Filik
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| | - Hervé Degand
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| | - Karina Alleva
- Facultad de Farmacia y BioquímicaInstituto de Química y Fisicoquímica Biológica (IQUIFIB)CONICETUniversidad de Buenos AiresBuenos Aires1113Argentina
- Facultad de Farmacia y BioquímicaDepartamento de FisicomatemáticaUniversidad de Buenos AiresBuenos Aires1113Argentina
| | - François Chaumont
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐Neuve1348Belgium
| |
Collapse
|
58
|
Martín-Barranco A, Spielmann J, Dubeaux G, Vert G, Zelazny E. Dynamic Control of the High-Affinity Iron Uptake Complex in Root Epidermal Cells. PLANT PHYSIOLOGY 2020; 184:1236-1250. [PMID: 32873629 PMCID: PMC7608170 DOI: 10.1104/pp.20.00234] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/20/2020] [Indexed: 05/05/2023]
Abstract
In plants, iron uptake from the soil is tightly regulated to ensure optimal growth and development. Iron absorption in Arabidopsis root epidermal cells requires the IRT1 transporter that also allows the entry of certain non-iron metals, such as Zn, Mn, and Co. Recent work demonstrated that IRT1 endocytosis and degradation are controlled by IRT1 non-iron metal substrates in a ubiquitin-dependent manner. To better understand how metal uptake is regulated, we identified IRT1-interacting proteins in Arabidopsis roots by mass spectrometry and established an interactome of IRT1. Interestingly, the AHA2 proton pump and the FRO2 reductase, both of which work in concert with IRT1 in the acidification-reduction-transport strategy of iron uptake, were part of this interactome. We confirmed that IRT1, FRO2, and AHA2 associate through co-immunopurification and split-ubiquitin analyses, and uncovered that they form tripartite direct interactions. We characterized the dynamics of the iron uptake complex and showed that FRO2 and AHA2 ubiquitination is independent of the non-iron metal substrates transported by IRT1. In addition, FRO2 and AHA2 are not largely endocytosed in response to non-iron metal excess, unlike IRT1. Indeed, we provide evidence that the phosphorylation of IRT1 in response to high levels of non-iron metals likely triggers dissociation of the complex. Overall, we propose that a dedicated iron-acquisition protein complex exists at the cell surface of Arabidopsis root epidermal cells to optimize iron uptake.
Collapse
Affiliation(s)
- Amanda Martín-Barranco
- Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Paris Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Julien Spielmann
- Plant Science Research Laboratory, Unité Mixte de Recherche 5546, Centre National de la Recherche Scientifique/University of Toulouse 3, 31320 Auzeville Tolosane, France
| | - Guillaume Dubeaux
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093
| | - Grégory Vert
- Plant Science Research Laboratory, Unité Mixte de Recherche 5546, Centre National de la Recherche Scientifique/University of Toulouse 3, 31320 Auzeville Tolosane, France
| | - Enric Zelazny
- Institute for Integrative Biology of the Cell, Unité Mixte de Recherche 9198, Centre National de la Recherche Scientifique/Commissariat à l'Énergie Atomique et aux Énergies Alternatives/Université Paris Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
59
|
Rajagopal D, Mathew MK. Role of Arabidopsis RAB5 GEF vps9a in maintaining potassium levels under sodium chloride stress. PLANT DIRECT 2020; 4:e00273. [PMID: 33103044 PMCID: PMC7576885 DOI: 10.1002/pld3.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 05/07/2023]
Abstract
Salt stress is one of the major factors impacting crop productivity worldwide. Through a variety of effector and signaling pathways, plants achieve survival under salinity stress by maintaining high cytosolic potassium/sodium ion (K+/Na+) ratios, preventing Na+ cytotoxicity, and retaining osmotic balance. Ras-related protein 5 (Rab5) members are involved in the trafficking of endosomes to the vacuole or plasma membrane (PM). The vacuolar protein sorting- associated protein 9 (vps9a) encodes the single guanine nucleotide exchange factor (GEF) that activates all three known Rab5 proteins in Arabidopsis thaliana. Previous work from our group has reported the critical function of vps9a for the operation of salt-induced endocytic pathway, as well as the expansion of endomembrane compartments under saline stress conditions. Here we show an additional role of vps9a in plant response to salt stress via maintenance of K+ status of the cell rather than Na+ homeostasis. Our results show that roots from vps9a-2 mutant, subjected to 100 mM NaCl, display alterations in transcript levels of genes involved in the K+ homeostasis pathway. Concurrent with the observed sensitivity of vps9a-2 mutant under NaCl stress, exposure to low K+ environments resulted in growth retardation, and reduced rate of endocytosis. Furthermore, vps9a-2 mutant displays reduced expression of auxin reporter, Direct Repeat-5 (DR5), and alterations in polarity and abundance of auxin efflux carrier PIN- FORMED2 (PIN2). Imposition of NaCl stress was found to be restrictive to the elongation capacity of cells in the root elongation zone of vps9a-2 mutant. Together our results indicate that alterations in K+ homeostasis and associated cellular changes causing increased cell wall pH, contribute to diminished root growth and compromised survival of vps9a-2 mutant under salt stress conditions.
Collapse
Affiliation(s)
- Divya Rajagopal
- National Centre for Biological SciencesTIFRBangaloreKarnatakaIndia
| | - M. K. Mathew
- National Centre for Biological SciencesTIFRBangaloreKarnatakaIndia
| |
Collapse
|
60
|
MARTINIÈRE A, MOREAU P. Complex roles of Rabs and SNAREs in the secretory pathway and plant development: a never‐ending story. J Microsc 2020; 280:140-157. [DOI: 10.1111/jmi.12952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Affiliation(s)
- A. MARTINIÈRE
- Univ Montpellier, CNRS, INRAE, Montpellier SupAgro BPMP Montpellier France
| | - P. MOREAU
- UMR 5200 Membrane Biogenesis Laboratory CNRS and University of Bordeaux, INRAE Bordeaux Villenave d'Ornon France
| |
Collapse
|
61
|
Kwon C, Lee JH, Yun HS. SNAREs in Plant Biotic and Abiotic Stress Responses. Mol Cells 2020; 43:501-508. [PMID: 32597393 PMCID: PMC7332363 DOI: 10.14348/molcells.2020.0007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
In eukaryotes, membraneous cellular compartmentation essentially requires vesicle trafficking for communications among distinct organelles. A donor organelle-generated vesicle releases its cargo into a target compartment by fusing two distinct vesicle and target membranes. Vesicle fusion, the final step of vesicle trafficking, is driven intrinsically by complex formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Although SNAREs are well-conserved across eukaryotes, genomic studies revealed that plants have dramatically increased the number of SNARE genes than other eukaryotes. This increase is attributed to the sessile nature of plants, likely for more sensitive and harmonized responses to environmental stresses. In this review, we therefore try to summarize and discuss the current understanding of plant SNAREs function in responses to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Chian Kwon
- Department of Molecular Biology, Dankook University, Cheonan 36, Korea
- These authors contributed equally to this work.
| | - Jae-Hoon Lee
- Department of Biology Education, Pusan National University, Busan 4641, Korea
- These authors contributed equally to this work.
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
62
|
Won KH, Kim H. Functions of the Plant Qbc SNARE SNAP25 in Cytokinesis and Biotic and Abiotic Stress Responses. Mol Cells 2020; 43:313-322. [PMID: 32274918 PMCID: PMC7191049 DOI: 10.14348/molcells.2020.2245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 12/29/2022] Open
Abstract
Eukaryotes transport biomolecules between intracellular organelles and between cells and the environment via vesicle trafficking. Soluble N -ethylmaleimide-sensitive factor attachment protein receptors (SNARE proteins) play pivotal roles in vesicle and membrane trafficking. These proteins are categorized as Qa, Qb, Qc, and R SNAREs and form a complex that induces vesicle fusion for targeting of vesicle cargos. As the core components of the SNARE complex, the SNAP25 Qbc SNAREs perform various functions related to cellular homeostasis. The Arabidopsis thaliana SNAP25 homolog AtSNAP33 interacts with Qa and R SNAREs and plays a key role in cytokinesis and in triggering innate immune responses. However, other Arabidopsis SNAP25 homologs, such as AtSNAP29 and AtSNAP30, are not well studied; this includes their localization, interactions, structures, and functions. Here, we discuss three biological functions of plant SNAP25 orthologs in the context of AtSNAP33 and highlight recent findings on SNAP25 orthologs in various plants. We propose future directions for determining the roles of the less well-characterized AtSNAP29 and AtSNAP30 proteins.
Collapse
Affiliation(s)
- Kang-Hee Won
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hyeran Kim
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
63
|
Ding L, Chaumont F. Are Aquaporins Expressed in Stomatal Complexes Promising Targets to Enhance Stomatal Dynamics? FRONTIERS IN PLANT SCIENCE 2020; 11:458. [PMID: 32373147 PMCID: PMC7186399 DOI: 10.3389/fpls.2020.00458] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/27/2020] [Indexed: 05/27/2023]
Abstract
The opening and closure of stomata depend on the turgor pressure adjustment by the influx or efflux of ions and water in guard cells. In this process, aquaporins may play important roles by facilitating the transport of water and other small molecules. In this perspective, we consider the potential roles of aquaporins in the membrane diffusion of different molecules (H2O, CO2, and H2O2), processes dependent on abscisic acid and CO2 signaling in guard cells. While the limited data already available emphasizes the roles of aquaporins in stomatal movement, we propose additional approaches to elucidate the specific roles of single or several aquaporin isoforms in the stomata and evaluate the perspectives aquaporins might offer to improve stomatal dynamics.
Collapse
|
64
|
Singh RK, Deshmukh R, Muthamilarasan M, Rani R, Prasad M. Versatile roles of aquaporin in physiological processes and stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:178-189. [PMID: 32078896 DOI: 10.1016/j.plaphy.2020.02.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 05/21/2023]
Abstract
Aquaporins are pore-forming transmembrane proteins that facilitate the movement of water and many other small neutral solutes across the cells and intracellular compartments. Plants exhibits high diversity in aquaporin isoforms and broadly classified into five different subfamilies on the basis of phylogenetic distribution and subcellular occurrence: plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin 26-like proteins (NIPs), small basic intrinsic proteins (SIPs) and uncharacterized intrinsic proteins (XIPs). The gating mechanism of aquaporin channels is tightly regulated by post-translational modifications such as phosphorylation, methylation, acetylation, glycosylation, and deamination. Aquaporin expression and transport functions are also modulated by the various phytohormones-mediated signalling in plants. Combined physiology and transcriptome analysis revealed the role of aquaporins in regulating hydraulic conductance in roots and leaves. The present review mainly focused on aquaporin functional activity during solute transport, plant development, abiotic stress response, and plant-microbe symbiosis. Genetically modified plants overexpressing aquaporin-encoding genes display improved agronomic and abiotic stress tolerance.
Collapse
Affiliation(s)
- Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Mohali, 140306, Chandigarh, India
| | | | - Rekha Rani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
65
|
He D, Li M, Damaris RN, Bu C, Xue J, Yang P. Quantitative ubiquitylomics approach for characterizing the dynamic change and extensive modulation of ubiquitylation in rice seed germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1430-1447. [PMID: 31677306 DOI: 10.1111/tpj.14593] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/26/2019] [Accepted: 10/16/2019] [Indexed: 05/22/2023]
Abstract
During seed germination, cells embark on extensive post-transcriptional and post-translational modifications (PTM), providing a perfect platform to study these events in embryo rebooting from relative quiescenct to highly active state. PR-619, a deubiquitylase inhibitor, delayed the rice seed germination and resulted in the accumulation of ubiquitylated proteins, which indicated the protein ubiquitylation is involved in this process. Using the K-Ɛ-GG antibody enrichment method integrated with high-resolution mass spectrometry, a list of 2576 lysine ubiquitylated (Kub) sites in 1171 proteins was compiled for rice embryos at 0, 12 and 24 h after imbibition (HAI). Of these, the abundance of 1419 Kub sites in 777 proteins changed significantly. Most of them substantially increased within the first 12 HAI, which is similar to the dynamic state previously observed for protein phosphorylation, implying that the first 12 HAI are essential for subsequent switch during rice seed germination. We also quantitatively analyzed the embryo proteome in these samples. Generally, a specific protein's abundance in the ubiquitylome was uncorrelated to that in the proteome. The differentially ubiquitinated proteins were greatly enriched in the categories of protein processing, DNA and RNA processing/regulation related, signaling, and transport. The DiGly footprint of the Kub sites was significantly reduced on K48, a linkage typically associated with proteasome-mediated degradation. These observations suggest ubiquitylation may modulate the protein function more than providing 26S degradation signals in the early stage of rice seed germination. Revealing this comprehensive ubiquitylome greatly increases our understanding of this critical PTM during seed germination.
Collapse
Affiliation(s)
- Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Rebecca N Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chen Bu
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou, 310018, China
| | - Jianyou Xue
- Jingjie PTM BioLab (Hangzhou) Co. Ltd, Hangzhou, 310018, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| |
Collapse
|
66
|
Wang X, Xu M, Gao C, Zeng Y, Cui Y, Shen W, Jiang L. The roles of endomembrane trafficking in plant abiotic stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:55-69. [PMID: 31829507 DOI: 10.1111/jipb.12895] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/10/2019] [Indexed: 05/18/2023]
Abstract
Endomembrane trafficking is a fundamental cellular process in all eukaryotic cells and its regulatory mechanisms have been extensively studied. In plants, the endomembrane trafficking system needs to be constantly adjusted to adapt to the ever-changing environment. Evidence has accumulated supporting the idea that endomembrane trafficking is tightly linked to stress signaling pathways to meet the demands of rapid changes in cellular processes and to ensure the correct delivery of stress-related cargo molecules. However, the underlying mechanisms remain unknown. In this review, we summarize the recent findings on the functional roles of both secretory trafficking and endocytic trafficking in different types of abiotic stresses. We also highlight and discuss the unique properties of specific regulatory molecules beyond their conventional functions in endosomal trafficking during plant growth under stress conditions.
Collapse
Affiliation(s)
- Xiangfeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Min Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, 510631, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, 510631, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yong Cui
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, 510631, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
67
|
OsmiR528 regulates rice-pollen intine formation by targeting an uclacyanin to influence flavonoid metabolism. Proc Natl Acad Sci U S A 2019; 117:727-732. [PMID: 31871204 PMCID: PMC6955233 DOI: 10.1073/pnas.1810968117] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The intine layer of pollen is essential for pollen grain maturation and pollen tube germination. Abnormal intine development causes pollen sterility and affects seed-setting; therefore, the identification of regulators of intine formation is important for elucidating the mechanisms of pollen formation and function, especially for crop breeding. Here, we report a microRNA, OsmiR528, which regulates pollen intine formation and male fertility in rice (Oryza sativa). OsmiR528 directly targets the uclacyanin family member OsUCL23 to regulate flavonoid metabolism and pollen intine development. This study revealed the function of OsmiR528 and an uclacyanin in pollen development. The intine, the inner layer of the pollen wall, is essential for the normal development and germination of pollen. However, the composition and developmental regulation of the intine in rice (Oryza sativa) remain largely unknown. Here, we identify a microRNA, OsmiR528, which regulates the formation of the pollen intine and thus male fertility in rice. The mir528 knockout mutant aborted pollen development at the late binucleate pollen stage, significantly decreasing the seed-setting rate. We further demonstrated that OsmiR528 affects pollen development by directly targeting the uclacyanin gene OsUCL23 (encoding a member of the plant-specific blue copper protein family of phytocyanins) and regulating intine deposition. OsUCL23 overexpression phenocopied the mir528 mutant. The OsUCL23 protein localized in the prevacuolar compartments (PVCs) and multivesicular bodies (MVBs). We further revealed that OsUCL23 interacts with a member of the proton-dependent oligopeptide transport (POT) family of transporters to regulate various metabolic components, especially flavonoids. We propose a model in which OsmiR528 regulates pollen intine formation by directly targeting OsUCL23 and in which OsUCL23 interacts with the POT protein on the PVCs and MVBs to regulate the production of metabolites during pollen development. The study thus reveals the functions of OsmiR528 and an uclacyanin during pollen development.
Collapse
|
68
|
Zhang L, Xing J, Lin J. At the intersection of exocytosis and endocytosis in plants. THE NEW PHYTOLOGIST 2019; 224:1479-1489. [PMID: 31230354 DOI: 10.1111/nph.16018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/03/2019] [Indexed: 05/18/2023]
Abstract
Vesicle exocytosis and endocytosis control the activities and turnover of plasma membrane proteins required for signaling triggering or attenuating at the cell surface. In recent years, the diverse exocytic and endocytic trafficking pathways have been uncovered in plants. The balance between conventional and unconventional protein secretion provides an efficient strategy to respond to stress conditions. Similarly, clathrin-dependent and -independent endocytosis cooperatively regulate the dynamics of membrane proteins in response to environmental cues. In fact, many aspects of plant growth and development, such as tip growth, immune response, and protein polarity establishment, involve the tight deployment of exo-endocytic trafficking. However, our understanding of their intersection is limited. Here, we discuss recent advances in the molecular factors coupling plant exo-endocytic trafficking and the biological significance of balance between exocytosis and endocytosis in plants.
Collapse
Affiliation(s)
- Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jingjing Xing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 457001, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
69
|
Rodriguez-Furlan C, Minina EA, Hicks GR. Remove, Recycle, Degrade: Regulating Plasma Membrane Protein Accumulation. THE PLANT CELL 2019; 31:2833-2854. [PMID: 31628169 PMCID: PMC6925004 DOI: 10.1105/tpc.19.00433] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 05/21/2023]
Abstract
Interactions between plant cells and the environment rely on modulation of protein receptors, transporters, channels, and lipids at the plasma membrane (PM) to facilitate intercellular communication, nutrient uptake, environmental sensing, and directional growth. These functions are fine-tuned by cellular pathways maintaining or reducing particular proteins at the PM. Proteins are endocytosed, and their fate is decided between recycling and degradation to modulate localization, abundance, and activity. Selective autophagy is another pathway regulating PM protein accumulation in response to specific conditions or developmental signals. The mechanisms regulating recycling, degradation, and autophagy have been studied extensively, yet we are just now addressing their regulation and coordination. Here, we (1) provide context concerning regulation of protein accumulation, recycling, or degradation by overviewing endomembrane trafficking; (2) discuss pathways regulating recycling and degradation in terms of cellular roles and cargoes; (3) review plant selective autophagy and its physiological significance; (4) focus on two decision-making mechanisms: regulation of recycling versus degradation of PM proteins and coordination between autophagy and vacuolar degradation; and (5) identify future challenges.
Collapse
Affiliation(s)
- Cecilia Rodriguez-Furlan
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92506
| | - Elena A Minina
- Uppsala Bio Center, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Glenn R Hicks
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92506
- Uppsala Bio Center, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| |
Collapse
|
70
|
Sustr M, Soukup A, Tylova E. Potassium in Root Growth and Development. PLANTS (BASEL, SWITZERLAND) 2019; 8:E435. [PMID: 31652570 PMCID: PMC6843428 DOI: 10.3390/plants8100435] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023]
Abstract
Potassium is an essential macronutrient that has been partly overshadowed in root science by nitrogen and phosphorus. The current boom in potassium-related studies coincides with an emerging awareness of its importance in plant growth, metabolic functions, stress tolerance, and efficient agriculture. In this review, we summarized recent progress in understanding the role of K+ in root growth, development of root system architecture, cellular functions, and specific plant responses to K+ shortage. K+ transport is crucial for its physiological role. A wide range of K+ transport proteins has developed during evolution and acquired specific functions in plants. There is evidence linking K+ transport with cell expansion, membrane trafficking, auxin homeostasis, cell signaling, and phloem transport. This places K+ among important general regulatory factors of root growth. K+ is a rather mobile element in soil, so the absence of systemic and localized root growth response has been accepted. However, recent research confirms both systemic and localized growth response in Arabidopsis thaliana and highlights K+ uptake as a crucial mechanism for plant stress response. K+-related regulatory mechanisms, K+ transporters, K+ acquisition efficiency, and phenotyping for selection of K+ efficient plants/cultivars are highlighted in this review.
Collapse
Affiliation(s)
- Marek Sustr
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| | - Ales Soukup
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| | - Edita Tylova
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44 Prague 2, Czech Republic.
| |
Collapse
|
71
|
Rosquete MR, Worden N, Drakakaki G. AtTRAPPC11 is involved in TRAPPIII mediated control of post-Golgi protein trafficking. PLANT SIGNALING & BEHAVIOR 2019; 14:1676631. [PMID: 31610744 PMCID: PMC6867184 DOI: 10.1080/15592324.2019.1676631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
The plant trans-Golgi Network/Early Endosome (TGN/EE), as an organizer of vesicle trafficking, fulfills a crucial role for plant development and adaptation. Because it coordinates the transport of cell material along different routes, it is expected that a number of TGN/EE associated factors function in the rapid organization of post-Golgi trafficking to ensure that proteins reach their destination. The roles of Transport Protein Particle (TRAPP) complexes in the regulation of plant post-Golgi trafficking start to emerge. We previously demonstrated that the plant TRAPPIII complex is involved in maintenance of TGN organization and function and has a role in endocytic trafficking mediated by the SYP61 TGN/EE compartment. Here we show that attrappc11 mutants display accumulation of the plasma membrane resident proteins CESA6, BRI1 and PIP1;4 in aberrant intracellular compartments. This adds further insights into the functions of TRAPPIII as a regulators of post-Golgi/endosomal traffic.
Collapse
Affiliation(s)
| | - Natasha Worden
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
72
|
Liu L, Li C, Teo ZWN, Zhang B, Yu H. The MCTP-SNARE Complex Regulates Florigen Transport in Arabidopsis. THE PLANT CELL 2019; 31:2475-2490. [PMID: 31439803 PMCID: PMC6790074 DOI: 10.1105/tpc.18.00960] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/07/2019] [Accepted: 08/20/2019] [Indexed: 05/16/2023]
Abstract
Multiple flowering pathways in Arabidopsis (Arabidopsis thaliana) converge on the transcriptional regulation of FLOWERING LOCUS T (FT), encoding a mobile floral stimulus that moves from leaves to the shoot apex. Despite our progress in understanding FT movement, the mechanisms underlying its transport along the endoplasmic reticulum-plasmalemma pathway in phloem companion cells remain largely unclear. Here, we show that the plasma membrane-resident syntaxin-like glutamine-soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor (Q-SNARE), SYNTAXIN OF PLANTS121 (SYP121), interacts with QUIRKY (QKY), a member of the family of multiple C2 domain and transmembrane region proteins (MCTPs), to mediate FT transport in Arabidopsis. QKY and SYP121 coordinately regulate FT movement to the plasmalemma through the endosomal trafficking pathway and are required for FT export from companion cells to sieve elements, thus affecting FT transport through the phloem to the shoot apical meristem. These findings suggest that MCTP-SNARE complex-mediated endosomal trafficking is essential for the export of florigen from phloem companion cells to sieve elements to induce flowering.plantcell;31/10/2475/FX1F1fx1.
Collapse
Affiliation(s)
- Lu Liu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543, Singapore
| | - Chunying Li
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543, Singapore
| | - Zhi Wei Norman Teo
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543, Singapore
| | - Bin Zhang
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543, Singapore
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543, Singapore
| |
Collapse
|
73
|
Qian W, Yang X, Li J, Luo R, Yan X, Pang Q. Genome-wide characterization and expression analysis of aquaporins in salt cress ( Eutrema salsugineum). PeerJ 2019; 7:e7664. [PMID: 31565576 PMCID: PMC6745184 DOI: 10.7717/peerj.7664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 08/13/2019] [Indexed: 01/24/2023] Open
Abstract
Aquaporins (AQPs) serve as water channel proteins and belong to major intrinsic proteins (MIPs) family, functioning in rapidly and selectively transporting water and other small solutes across biological membranes. Importantly, AQPs have been shown to play a critical role in abiotic stress response pathways of plants. As a species closely related to Arabidopsis thaliana, Eutrema salsugineum has been proposed as a model for studying salt resistance in plants. Here we surveyed 35 full-length AQP genes in E. salsugineum, which could be grouped into four subfamilies including 12 plasma membrane intrinsic proteins (PIPs), 11 tonoplast intrinsic proteins (TIPs), nine NOD-like intrinsic proteins (NIPs), and three small basic intrinsic proteins (SIPs) by phylogenetic analysis. EsAQPs were comprised of 237-323 amino acids, with a theoretical molecular weight (MW) of 24.31-31.80 kDa and an isoelectric point (pI) value of 4.73-10.49. Functional prediction based on the NPA motif, aromatic/arginine (ar/R) selectivity filter, Froger's position and specificity-determining position suggested quite differences in substrate specificities of EsAQPs. EsAQPs exhibited global expressions in all organs as shown by gene expression profiles and should be play important roles in response to salt, cold and drought stresses. This study provides comprehensive bioinformation on AQPs in E. salsugineum, which would be helpful for gene function analysis for further studies.
Collapse
Affiliation(s)
- Weiguo Qian
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Xiaomin Yang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Jiawen Li
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Rui Luo
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Xiufeng Yan
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Qiuying Pang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| |
Collapse
|
74
|
Zhang H, Cheng G, Yang Z, Wang T, Xu J. Identification of Sugarcane Host Factors Interacting with the 6K2 Protein of the Sugarcane Mosaic Virus. Int J Mol Sci 2019; 20:ijms20163867. [PMID: 31398864 PMCID: PMC6719097 DOI: 10.3390/ijms20163867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
The 6K2 protein of potyviruses plays a key role in the viral infection in plants. In the present study, the coding sequence of 6K2 was cloned from Sugarcane mosaic virus (SCMV) strain FZ1 into pBT3-STE to generate the plasmid pBT3-STE-6K2, which was used as bait to screen a cDNA library prepared from sugarcane plants infected with SCMV based on the DUALmembrane system. One hundred and fifty-seven positive colonies were screened and sequenced, and the corresponding full-length genes were cloned from sugarcane cultivar ROC22. Then, 24 genes with annotations were obtained, and the deduced proteins were classified into three groups, in which eight proteins were involved in the stress response, 12 proteins were involved in transport, and four proteins were involved in photosynthesis based on their biological functions. Of the 24 proteins, 20 proteins were verified to interact with SCMV-6K2 by yeast two-hybrid assays. The possible roles of these proteins in SCMV infection on sugarcane are analyzed and discussed. This is the first report on the interaction of SCMV-6K2 with host factors from sugarcane, and will improve knowledge on the mechanism of SCMV infection in sugarcane.
Collapse
Affiliation(s)
- Hai Zhang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guangyuan Cheng
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zongtao Yang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tong Wang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingsheng Xu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- State Key Laboratory for Protection and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China.
| |
Collapse
|
75
|
Butsayawarapat P, Juntawong P, Khamsuk O, Somta P. Comparative Transcriptome Analysis of Waterlogging-Sensitive and Tolerant Zombi Pea ( Vigna Vexillata) Reveals Energy Conservation and Root Plasticity Controlling Waterlogging Tolerance. PLANTS 2019; 8:plants8080264. [PMID: 31382508 PMCID: PMC6724125 DOI: 10.3390/plants8080264] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 11/16/2022]
Abstract
Vigna vexillata (zombi pea) is an underutilized legume crop considered to be a potential gene source in breeding for abiotic stress tolerance. This study focuses on the molecular characterization of mechanisms controlling waterlogging tolerance using two zombi pea varieties with contrasting waterlogging tolerance. Morphological examination revealed that in contrast to the sensitive variety, the tolerant variety was able to grow, maintain chlorophyll, form lateral roots, and develop aerenchyma in hypocotyl and taproots under waterlogging. To find the mechanism controlling waterlogging tolerance in zombi pea, comparative transcriptome analysis was performed using roots subjected to short-term waterlogging. Functional analysis indicated that glycolysis and fermentative genes were strongly upregulated in the sensitive variety, but not in the tolerant one. In contrast, the genes involved in auxin-regulated lateral root initiation and formation were expressed only in the tolerant variety. In addition, cell wall modification, aquaporin, and peroxidase genes were highly induced in the tolerant variety under waterlogging. Our findings suggest that energy management and root plasticity play important roles in mitigating the impact of waterlogging in zombi pea. The basic knowledge obtained from this study can be used in the molecular breeding of waterlogging-tolerant legume crops in the future.
Collapse
Affiliation(s)
| | - Piyada Juntawong
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Bangkok 10900, Thailand.
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand.
| | - Ornusa Khamsuk
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| |
Collapse
|
76
|
Zhang L, Liu Y, Zhu XF, Jung JH, Sun Q, Li TY, Chen LJ, Duan YX, Xuan YH. SYP22 and VAMP727 regulate BRI1 plasma membrane targeting to control plant growth in Arabidopsis. THE NEW PHYTOLOGIST 2019; 223:1059-1065. [PMID: 30802967 DOI: 10.1111/nph.15759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/18/2019] [Indexed: 05/15/2023]
Affiliation(s)
- Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yang Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiao Feng Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jin Hee Jung
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qian Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tian Ya Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Li Jie Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yu Xi Duan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
77
|
Uraguchi S, Sone Y, Yoshikawa A, Tanabe M, Sato H, Otsuka Y, Nakamura R, Takanezawa Y, Kiyono M. SCARECROW promoter-driven expression of a bacterial mercury transporter MerC in root endodermal cells enhances mercury accumulation in Arabidopsis shoots. PLANTA 2019; 250:667-674. [PMID: 31104129 DOI: 10.1007/s00425-019-03186-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/10/2019] [Indexed: 05/27/2023]
Abstract
Mercury accumulation in Arabidopsis shoots is accelerated by endodermis specific expression of fusion proteins of a bacterial mercury transporter MerC and a plant SNARE SYP121 under control of SCARECROW promoter. We previously demonstrated that the CaMV 35S RNA promoter (p35S)-driven ubiquitous expression of a bacterial mercury transporter MerC, fused with SYP121, an Arabidopsis SNARE protein increases mercury accumulation of Arabidopsis. To establish an improved fine-tuned mercury transport system in plants for phytoremediation, the present study generated and characterized transgenic Arabidopsis plants expressing MerC-SYP121 specifically in the root endodermis, which is a crucial cell type for root element uptake. We generated four independent transgenic Arabidopsis lines expressing a transgene encoding mCherry-MerC-SYP121 under the control of the endodermis-specific SCARECROW promoter (hereafter pSCR lines). Quantitative real-time PCR analysis showed that expression levels of the transgene in roots of the pSCR lines were 3-23% of the p35S driven-overexpressing line. Confocal microscopy analysis showed that mCherry-MerC-SYP121 was dominantly expressed in the endodermis of the meristematic zone as well as in the mature zone of the pSCR roots. Mercury accumulation in shoots of the pSCR lines exposed to inorganic mercury was overall higher than the wild-type and comparable to the p35S over-expressing line. These results suggest that endodermis-specific expression of the MerC-SYP121 fusion proteins in plant roots sufficiently enhances mercury uptake and accumulation into shoots, which would be an ideal phenotype for phytoremediation of mercury-contaminated environments.
Collapse
Affiliation(s)
- Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuka Sone
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Aino Yoshikawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Michi Tanabe
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Haruka Sato
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yuto Otsuka
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yasukazu Takanezawa
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
78
|
Li X, Liu Q, Feng H, Deng J, Zhang R, Wen J, Dong J, Wang T. Dehydrin MtCAS31 promotes autophagic degradation under drought stress. Autophagy 2019; 16:862-877. [PMID: 31362589 PMCID: PMC7144882 DOI: 10.1080/15548627.2019.1643656] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Drought stress seriously affects crop yield, and the mechanism underlying plant resistance to drought stress via macroautophagy/autophagy is not clear. Here, we show that a dehydrin, Medicago truncatula MtCAS31 (cold acclimation-specific 31), a positive regulator of drought response, plays a key role in autophagic degradation. A GFP cleavage assay and treatment with an autophagy-specific inhibitor indicated that MtCAS31 participates in the autophagic degradation pathway and that overexpressing MtCAS31 promotes autophagy under drought stress. Furthermore, we discovered that MtCAS31 interacts with the autophagy-related protein ATG8a in the AIM-like motif YXXXI, supporting its function in autophagic degradation. In addition, we identified a cargo protein of MtCAS31, the aquaporin MtPIP2;7, by screening an M. truncatula cDNA library. We found that MtPIP2;7 functions as a negative regulator of drought response. Under drought stress, MtCAS31 facilitated the autophagic degradation of MtPIP2;7 and reduced root hydraulic conductivity, thus reducing water loss and improving drought tolerance. Taken together, our results reveal a novel function of dehydrins in promoting the autophagic degradation of proteins, which extends our knowledge of the function of dehydrins.Abbreviations: AIM: ATG8-interacting motif; ATG: autophagy-related; ATI1: ATG8-interacting protein1; BiFC: Biomolecular fluorescence complementation; CAS31: cold acclimation-specific 31; ConcA: concanamycin A; DSK2: dominant suppressor of KAR2; ER: endoplasmic reticulum; ERAD: ER-associated degradation; NBR1: next to BRCA1 gene 1; PM: plasma membrane; PIPs: plasma membrane intrinsic proteins; TALEN: transcription activator-like effector nuclease; TSPO: tryptophan-rich sensory protein/translocator; UPR: unfolded protein response; VC: vector control.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianwen Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Rongxue Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Research Institute, Ardmore, OK, USA
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
79
|
Bapaume L, Laukamm S, Darbon G, Monney C, Meyenhofer F, Feddermann N, Chen M, Reinhardt D. VAPYRIN Marks an Endosomal Trafficking Compartment Involved in Arbuscular Mycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2019; 10:666. [PMID: 31231402 PMCID: PMC6558636 DOI: 10.3389/fpls.2019.00666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/02/2019] [Indexed: 05/08/2023]
Abstract
Arbuscular mycorrhiza (AM) is a symbiosis between plants and AM fungi that requires the intracellular accommodation of the fungal partner in the host. For reciprocal nutrient exchange, AM fungi form intracellular arbuscules that are surrounded by the peri-arbuscular membrane. This membrane, together with the fungal plasma membrane, and the space in between, constitute the symbiotic interface, over which nutrients are exchanged. Intracellular establishment of AM fungi requires the VAPYRIN protein which is induced in colonized cells, and which localizes to numerous small mobile structures of unknown identity (Vapyrin-bodies). In order to characterize the identity and function of the Vapyrin-bodies we pursued a dual strategy. First, we co-expressed fluorescently tagged VAPYRIN with a range of subcellular marker proteins, and secondly, we employed biochemical tools to identify interacting partner proteins of VAPYRIN. As an important tool for the quantitative analysis of confocal microscopic data sets from co-expression of fluorescent proteins, we developed a semi-automated image analysis pipeline that allows for precise spatio-temporal quantification of protein co-localization and of the dynamics of organelle association from movies. Taken together, these experiments revealed that Vapyrin-bodies have an endosomal identity with trans-Golgi features, and that VAPYRIN interacts with a symbiotic R-SNARE of the VAMP721 family, that localizes to the same compartment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
80
|
Champeyroux C, Bellati J, Barberon M, Rofidal V, Maurel C, Santoni V. Regulation of a plant aquaporin by a Casparian strip membrane domain protein-like. PLANT, CELL & ENVIRONMENT 2019; 42:1788-1801. [PMID: 30767240 DOI: 10.1111/pce.13537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 02/11/2019] [Indexed: 05/11/2023]
Abstract
The absorption of soil water by roots allows plants to maintain their water status. At the endodermis, water transport can be affected by initial formation of a Casparian strip and further deposition of suberin lamellas and regulated by the function of aquaporins. Four Casparian strip membrane domain protein-like (CASPL; CASPL1B1, CASPL1B2, CASPL1D1, and CASPL1D2) were previously shown to interact with PIP2;1. The present work shows that CASPL1B1, CASPL1B2, and CASPL1D2 are exclusively expressed in suberized endodermal cells, suggesting a cell-specific role in suberization and/or water transport regulation. When compared with wild-type plants, and by contrast to caspl1b1*caspl1b2 double loss of function, caspl1d1*caspl1d2 double mutants showed, in some control or NaCl stress experiments and not upon abscisic acid (ABA) treatment, a weak enlargement of the continuous suberization zone. None of the mutants showed root hydraulic conductivity (Lpr ) phenotype, whether in control, NaCl, or ABA treatment conditions. The data suggest a slight negative role for CASPL1D1 and CASPL1D2 in suberization under control or salt stress conditions, with no major impact on whole root transport functions. At the molecular level, CASPL1B1 was able to physically interact with PIP2;1 and potentially could influence the regulation of aquaporins by acting on their phosphorylated form.
Collapse
Affiliation(s)
- Chloé Champeyroux
- BPMP, Univ Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
| | - Jorge Bellati
- BPMP, Univ Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
| | - Marie Barberon
- Department of Botany and Plant Biology, Université de Genève, Geneva, Switzerland
| | - Valérie Rofidal
- BPMP, Univ Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
| | - Christophe Maurel
- BPMP, Univ Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
| | - Véronique Santoni
- BPMP, Univ Montpellier, CNRS, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
81
|
Tao K, Waletich JR, Arredondo F, Tyler BM. Manipulating Endoplasmic Reticulum-Plasma Membrane Tethering in Plants Through Fluorescent Protein Complementation. FRONTIERS IN PLANT SCIENCE 2019; 10:635. [PMID: 31191568 PMCID: PMC6547045 DOI: 10.3389/fpls.2019.00635] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/26/2019] [Indexed: 05/21/2023]
Abstract
The bimolecular fluorescence complementation (BiFC) assay has been widely used to examine interactions between integral and peripheral proteins within putative plasma membrane (PM) microdomains. In the course of using BiFC assays to examine the co-localization of plasma membrane (PM) targeted receptor-like kinases (RLKs), such as FLS2, with PM micro-domain proteins such as remorins, we unexpectedly observed heterogeneous distribution patterns of fluorescence on the PM of Nicotiana benthamiana leaf cortical cells. These patterns appeared to co-localize with the endoplasmic reticulum (ER) and with ER-PM contact sites, and closely resembled patterns caused by over-expression of the ER-PM tether protein Synaptotagmin1 (SYT1). Using domain swap experiments with SYT1, we inferred that non-specific dimerization between FLS2-VenusN and VenusC-StRem1.3 could create artificial ER-PM tether proteins analogous to SYT1. The same patterns of ER-PM tethering were produced when a representative set of integral membrane proteins were partnered in BiFC complexes with PM-targeted peripheral membrane proteins, including PtdIns(4)P-binding proteins. We inferred that spontaneous formation of mature fluorescent proteins caused the BiFC complexes to trap the integral membrane proteins in the ER during delivery to the PM, producing a PM-ER tether. This phenomenon could be a useful tool to deliberately manipulate ER-PM tethering or to test protein membrane localization. However, this study also highlights the risk of using the BiFC assay to study membrane protein interactions in plants, due to the possibility of alterations in cellular structures and membrane organization, or misinterpretation of protein-protein interactions. A number of published studies using this approach may therefore need to be revisited.
Collapse
Affiliation(s)
- Kai Tao
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Justin R. Waletich
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Felipe Arredondo
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Brett M. Tyler
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, United States
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
82
|
Chen LM, Fang YS, Zhang CJ, Hao QN, Cao D, Yuan SL, Chen HF, Yang ZL, Chen SL, Shan ZH, Liu BH, Jing-Wang, Zhan Y, Zhang XJ, Qiu DZ, Li WB, Zhou XA. GmSYP24, a putative syntaxin gene, confers osmotic/drought, salt stress tolerances and ABA signal pathway. Sci Rep 2019; 9:5990. [PMID: 30979945 PMCID: PMC6461667 DOI: 10.1038/s41598-019-42332-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/24/2019] [Indexed: 12/11/2022] Open
Abstract
As major environment factors, drought or high salinity affect crop growth, development and yield. Transgenic approach is an effective way to improve abiotic stress tolerance of crops. In this study, we comparatively analyzed gene structures, genome location, and the evolution of syntaxin proteins containing late embryogenesis abundant (LEA2) domain. GmSYP24 was identified as a dehydration-responsive gene. Our study showed that the GmSYP24 protein was located on the cell membrane. The overexpression of GmSYP24 (GmSYP24ox) in soybean and heteroexpression of GmSYP24 (GmSYP24hx) in Arabidopsis exhibited insensitivity to osmotic/drought and high salinity. However, wild type soybean, Arabidopsis, and the mutant of GmSYP24 homologous gene of Arabidopsis were sensitive to the stresses. Under the abiotic stresses, transgenic soybean plants had greater water content and higher activities of POD, SOD compared with non-transgenic controls. And the leaf stomatal density and opening were reduced in transgenic Arabidopsis. The sensitivity to ABA was decreased during seed germination of GmSYP24ox and GmSYP24hx. GmSYP24hx induced up-regulation of ABA-responsive genes. GmSYP24ox alters the expression of some aquaporins under osmotic/drought, salt, or ABA treatment. These results demonstrated that GmSYP24 played an important role in osmotic/drought or salt tolerance in ABA signal pathway.
Collapse
Affiliation(s)
- Li-Miao Chen
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Yi-Sheng Fang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Chan-Juan Zhang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Qing-Nan Hao
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Dong Cao
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Song-Li Yuan
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Hai-Feng Chen
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Zhong-Lu Yang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Shui-Lian Chen
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Zhi-Hui Shan
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Bao-Hong Liu
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Jing-Wang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Yong Zhan
- Crop Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Key Lab of Cereal Quality Research and Genetic Improvement, Xinjiang Production and Construction Crops, 832000, Shihezi, China
| | - Xiao-Juan Zhang
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - De-Zhen Qiu
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China
| | - Wen-Bin Li
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
- Division of Soybean Breeding and Seed, Soybean Research & Development Center, CARS (Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture), Harbin, 150030, China.
| | - Xin-An Zhou
- Key Laboratory of Oil Crop Biology, Ministry of Agriculture, Wuhan, 430062, China.
- Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, 430062, China.
| |
Collapse
|
83
|
Kumar MN, Bau YC, Longkumer T, Verslues PE. Low Water Potential and At14a-Like1 (AFL1) Effects on Endocytosis and Actin Filament Organization. PLANT PHYSIOLOGY 2019; 179:1594-1607. [PMID: 30728274 PMCID: PMC6446769 DOI: 10.1104/pp.18.01314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/31/2019] [Indexed: 05/20/2023]
Abstract
At14a-Like1 (AFL1) is a stress-induced protein of unknown function that promotes growth during low water potential stress and drought. Previous analysis indicated that AFL1 may have functions related to endocytosis and regulation of actin filament organization, processes for which the effects of low water potential are little known. We found that low water potential led to a decrease in endocytosis, as measured by uptake of the membrane-impermeable dye FM4-64. Ectopic expression of AFL1 reversed the decrease in FM4-64 uptake seen in wild type, while reduced AFL1 expression led to further inhibition of FM4-64 uptake. Increased AFL1 also made FM4-64 uptake less sensitive to the actin filament disruptor Latrunculin B (LatB). LatB decreased AFL1-Clathrin Light Chain colocalization, further indicating that effects of AFL1 on endocytosis may be related to actin filament organization or stability. Consistent with this hypothesis, ectopic AFL1 expression made actin filaments less sensitive to disruption by LatB or Cytochalasin D and led to increased actin filament skewness and decreased occupancy, indicative of more bundled actin filaments. This latter effect could be partially mimicked by the actin filament stabilizer Jasplakinolide (JASP). However, AFL1 did not substantially inhibit actin filament dynamics, indicating that AFL1 acts via a different mechanism than JASP-induced stabilization. AFL1 partially colocalized with actin filaments but not with microtubules, further indicating actin-filament-related function of AFL1. These data provide insight into endocytosis and actin filament responses to low water potential stress and demonstrate an involvement of AFL1 in these key cellular processes.
Collapse
Affiliation(s)
- M Nagaraj Kumar
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chiuan Bau
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | | | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
84
|
Zhang C, Guo X, Xie H, Li J, Liu X, Zhu B, Liu S, Li H, Li M, He M, Chen P. Quantitative phosphoproteomics of lectin receptor-like kinase VI.4 dependent abscisic acid response in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2019; 165:728-745. [PMID: 29797451 DOI: 10.1111/ppl.12763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Lectin receptor-like kinases (LecRKs) play important roles in the responses to adverse environment stress. Abscisic acid (ABA) is a plant hormone involved in plant growth, development and adverse environmental stress responses. Although some studies of ABA response LecRK genes have been reported, the molecular mechanisms of LecRKs regulation of downstream pathways under ABA induction are not well understood. The present study showed that LecRK-VI.4 responded to ABA and negatively regulated stomatal closure. Here, a quantitative phosphoproteomics approach based on mass spectrometry was employed to study the roles of LecRK-VI.4 in the ABA signaling pathway. Metal oxide affinity beads and C18 chromatography were used for phosphopeptide enrichment and separation. The isobaric tags for relative and absolute quantitation were used for profiling the phosphoproteome of mutant lecrk-vi.4-1 and wild-type Col-0 Arabidopsis under normal growth conditions or ABA treatments. In total, 475 unique phosphopeptides were quantified, including 81 phosphopeptides related to LecRK-VI.4 regulation. Gene ontology, protein-protein interaction and motif analysis were performed. The bioinformatics data showed that phosphorylated proteins regulated by LecRK-VI.4 had close relations with factors of stomatal function, which included aquaporin activity, H+ pump activity and the Ca2+ concentration in the cytoplasm. These data have expanded our understanding of how LecRK-VI.4 regulates ABA-mediated stomatal movements.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Life Sciences, Hunan University, Changsha, 410082, China
| | - Xinhong Guo
- College of Life Sciences, Hunan University, Changsha, 410082, China
| | - Huali Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Jinyan Li
- College of Life Sciences, Hunan University, Changsha, 410082, China
| | - Xiaoqian Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Baode Zhu
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Shucan Liu
- College of Life Sciences, Hunan University, Changsha, 410082, China
| | - Huili Li
- College of Life Sciences, Hunan University, Changsha, 410082, China
| | - Meiling Li
- College of Life Sciences, Hunan University, Changsha, 410082, China
| | - Mingqi He
- College of Life Sciences, Hunan University, Changsha, 410082, China
| | - Ping Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
85
|
Ectopic expression of a bacterial mercury transporter MerC in root epidermis for efficient mercury accumulation in shoots of Arabidopsis plants. Sci Rep 2019; 9:4347. [PMID: 30867467 PMCID: PMC6416403 DOI: 10.1038/s41598-019-40671-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/19/2019] [Indexed: 01/27/2023] Open
Abstract
For mercury phytoextraction, we previously demonstrated in Arabidopsis thaliana that a constitutive and ubiquitous promoter-driven expression of a bacterial mercury transporter MerC fused with SYP121, a plant SNARE for plasma membrane protein trafficking increases plant mercury accumulation. To advance regulation of ectopic expression of the bacterial transporter in the plant system, the present study examined whether merC-SYP121 expression driven by a root epidermis specific promoter (pEpi) is sufficient to enhance mercury accumulation in plant tissues. We generated five independent transgenic Arabidopsis plant lines (hereafter pEpi lines) expressing a transgene encoding MerC-SYP121 N-terminally tagged with a fluorescent protein mTRQ2 under the control of pEpi, a root epidermal promoter. Confocal microscopy analysis of the pEpi lines showed that mTRQ2-MerC-SYP121 was preferentially expressed in lateral root cap in the root meristematic zone and epidermal cells in the elongation zone of the roots. Mercury accumulation in shoots of the pEpi lines exposed to inorganic mercury was overall higher than the wild-type and comparable to the over-expressing line. The results suggest that cell-type specific expression of the bacterial transporter MerC in plant roots sufficiently enhances mercury accumulation in shoots, which could be a useful phenotype for improving efficiency of mercury phytoremediation.
Collapse
|
86
|
Wilkop T, Pattathil S, Ren G, Davis DJ, Bao W, Duan D, Peralta AG, Domozych DS, Hahn MG, Drakakaki G. A Hybrid Approach Enabling Large-Scale Glycomic Analysis of Post-Golgi Vesicles Reveals a Transport Route for Polysaccharides. THE PLANT CELL 2019; 31:627-644. [PMID: 30760563 PMCID: PMC6482635 DOI: 10.1105/tpc.18.00854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/22/2019] [Accepted: 02/12/2019] [Indexed: 05/10/2023]
Abstract
The plant endomembrane system facilitates the transport of polysaccharides, associated enzymes, and glycoproteins through its dynamic pathways. Although enzymes involved in cell wall biosynthesis have been identified, little is known about the endomembrane-based transport of glycan components. This is partially attributed to technical challenges in biochemically determining polysaccharide cargo in specific vesicles. Here, we introduce a hybrid approach addressing this limitation. By combining vesicle isolation with a large-scale carbohydrate antibody arraying technique, we charted an initial large-scale map describing the glycome profile of the SYNTAXIN OF PLANTS61 (SYP61) trans-Golgi network compartment in Arabidopsis (Arabidopsis thaliana). A library of antibodies recognizing specific noncellulosic carbohydrate epitopes allowed us to identify a range of diverse glycans, including pectins, xyloglucans (XyGs), and arabinogalactan proteins in isolated vesicles. Changes in XyG- and pectin-specific epitopes in the cell wall of an Arabidopsis SYP61 mutant corroborate our findings. Our data provide evidence that SYP61 vesicles are involved in the transport and deposition of structural polysaccharides and glycoproteins. Adaptation of our methodology can enable studies characterizing the glycome profiles of various vesicle populations in plant and animal systems and their respective roles in glycan transport defined by subcellular markers, developmental stages, or environmental stimuli.
Collapse
Affiliation(s)
- Thomas Wilkop
- Department of Plant Sciences, University of California, Davis, California 95616
- Light Microscopy Core, University of Kentucky, Lexington, Kentucky 40536
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
| | - Guangxi Ren
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Destiny J Davis
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Wenlong Bao
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Dechao Duan
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Angelo G Peralta
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
| | - David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602-7271
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|
87
|
Ariani A, Barozzi F, Sebastiani L, di Toppi LS, di Sansebastiano GP, Andreucci A. AQUA1 is a mercury sensitive poplar aquaporin regulated at transcriptional and post-translational levels by Zn stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:588-600. [PMID: 30424909 DOI: 10.1016/j.plaphy.2018.10.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 05/19/2023]
Abstract
Aquaporins are water channel proteins that regulate plant development, growth, and response to environmental stresses. Populus trichocarpa is one of the plants with the highest number of aquaporins in its genome, but only few of them have been characterized at the whole plant functional level. Here we analyzed a putative aquaporin gene, aqua1, a gene that encodes for a protein of 257 amino acid with the typical NPA (Asp-Pro-Ala) signature motif of the aquaporin gene family. aqua1 was down-regulated of ∼10 fold under excess Zn in both leaves and roots, and conferred Zn tolerance when expressed in yeast Zn hypersensitive strain. In vivo localization of AQUA1-GFP in Arabidopsis protoplast showed a heterogeneous distribution of this protein on different membranes destined to form aggregates related to autophagic multivesicular bodies. Zn-dependent AQUA1-GFP re-localization was perturbed by phosphatases' and kinases' inhibitors that could affect both intracellular trafficking and aquaporins' activity. Exposed to high concentration of Zn, AQUA1 also co-localized with AtTIP1;1, a well-known Arabidopsis vacuolar marker, probably in pro-vacuolar multivesicular bodies. These findings suggest that high concentration of Zn down-regulates aqua1 and causes its re-localization in new forming pro-vacuoles. This Zn-dependent re-localization appears to be mediated by mechanisms regulating intracellular trafficking and aquaporins' post-translational modifications. This functional characterization of a poplar aquaporin in response to excess Zn will be a useful reference for understanding aquaporins' roles and regulation in response to high concentration of Zn in poplar.
Collapse
Affiliation(s)
- Andrea Ariani
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Fabrizio Barozzi
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov. le Lecce - Monteroni, 73100, Lecce, Italy
| | - Luca Sebastiani
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Gian Pietro di Sansebastiano
- DISTEBA, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov. le Lecce - Monteroni, 73100, Lecce, Italy
| | - Andrea Andreucci
- Department of Biology, Università degli Studi di Pisa, I-56126, Pisa, Italy.
| |
Collapse
|
88
|
Wang H, Zhang L, Tao Y, Wang Z, Shen D, Dong H. Transmembrane Helices 2 and 3 Determine the Localization of Plasma Membrane Intrinsic Proteins in Eukaryotic Cells. FRONTIERS IN PLANT SCIENCE 2019; 10:1671. [PMID: 31998350 PMCID: PMC6966961 DOI: 10.3389/fpls.2019.01671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/27/2019] [Indexed: 05/12/2023]
Abstract
In plants, plasma membrane intrinsic protein (PIP) PIP1s and PIP2s mediate the transport of disparate substrates across plasma membranes (PMs), with a prerequisite that the proteins correctly localize to the PMs. While PIP2s can take correct localization by themselves in plant cells, PIP1s cannot unless aided by a specific PIP2. Here, we analyzed the localization of the Arabidopsis aquaporins, AtPIP1s, AtPIP2;4, and their mutants in yeast, Xenopus oocytes, and protoplasts of Arabidopsis. Most of AtPIP2;4 localized in the PM when expressed alone, whereas AtPIP1;1 failed to realize it in yeast and Xenopus oocytes. Switch of the transmembrane helix 2 (TM2) or TM3 from AtPIP1;1 to AtPIP2;4 disabled the latter's PM targeting activity. Surprisingly, a replacement of TM2 and TM3 of AtPIP1;1 with those of AtPIP2;4 created a PM-localized AtPIP1;1 mutant, 1;1Δ(TM2+TM3)/2;4(TM2+TM3), which could act as a water and hydrogen peroxide channel just like AtPIP2;4. A localization and function analysis on mutants of AtPIP1;2, AtPIP1;3, AtPIP1;4, and AtPIP1;5, with the same replaced TM2 and TM3 from AtPIP2;4, showed that these AtPIP1 variants could also localize in the PM spontaneously, thus playing an inherent role in transporting solutes. Sequential and structural analysis suggested that a hydrophilic residue and a defective LxxxA motif are modulators of PM localization of AtPIP1s. These results indicate that TM2 and TM3 are necessary and, more importantly, sufficient in AtPIP2 for its PM localization.
Collapse
Affiliation(s)
- Hao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Liyuan Zhang
- Department of Plant Pathology, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Taian, China
| | - Yuan Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Zuodong Wang
- Department of Plant Pathology, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Taian, China
| | - Dan Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Dan Shen, ; Hansong Dong,
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Department of Plant Pathology, Shandong Agricultural University, Taian, China
- State Key Laboratory of Crop Biology, Taian, China
- *Correspondence: Dan Shen, ; Hansong Dong,
| |
Collapse
|
89
|
Mishra P, Jain A, Takabe T, Tanaka Y, Negi M, Singh N, Jain N, Mishra V, Maniraj R, Krishnamurthy SL, Sreevathsa R, Singh NK, Rai V. Heterologous Expression of Serine Hydroxymethyltransferase-3 From Rice Confers Tolerance to Salinity Stress in E. coli and Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:217. [PMID: 30941150 PMCID: PMC6433796 DOI: 10.3389/fpls.2019.00217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/08/2019] [Indexed: 05/17/2023]
Abstract
UNLABELLED Among abiotic stresses, salt stress adversely affects growth and development in rice. Contrasting salt tolerant (CSR27), and salt sensitive (MI48) rice varieties provided information on an array of genes that may contribute for salt tolerance of rice. Earlier studies on transcriptome and proteome profiling led to the identification of salt stress-induced serine hydroxymethyltransferase-3 (SHMT3) gene. In the present study, the SHMT3 gene was isolated from salt-tolerant (CSR27) rice. OsSHMT3 exhibited salinity-stress induced accentuated and differential expression levels in different tissues of rice. OsSHMT3 was overexpressed in Escherichia coli and assayed for enzymatic activity and modeling protein structure. Further, Arabidopsis transgenic plants overexpressing OsSHMT3 exhibited tolerance toward salt stress. Comparative analyses of OsSHMT3 vis a vis wild type by ionomic, transcriptomic, and metabolic profiling, protein expression and analysis of various traits revealed a pivotal role of OsSHMT3 in conferring tolerance toward salt stress. The gene can further be used in developing gene-based markers for salt stress to be employed in marker assisted breeding programs. HIGHLIGHTS - The study provides information on mechanistic details of serine hydroxymethyl transferase gene for its salt tolerance in rice.
Collapse
Affiliation(s)
- Pragya Mishra
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- Banasthali Vidyapith, Jaipur, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University, Jaipur, India
| | - Teruhiro Takabe
- Plant Biotechnology Research Centre, Meijo University, Nagoya, Japan
| | - Yoshito Tanaka
- Plant Biotechnology Research Centre, Meijo University, Nagoya, Japan
| | - Manisha Negi
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Nisha Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Neha Jain
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Vagish Mishra
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - R. Maniraj
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - Rohini Sreevathsa
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Nagendra K. Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Vandna Rai
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- *Correspondence: Vandna Rai,
| |
Collapse
|
90
|
Rosquete MR, Drakakaki G. Plant TGN in the stress response: a compartmentalized overview. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:122-129. [PMID: 30316189 DOI: 10.1016/j.pbi.2018.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 05/10/2023]
Abstract
The cellular responses to abiotic and biotic stress rely on the regulation of vesicle trafficking to ensure the correct localization of proteins specialized in sensing stress stimuli and effecting the response. Several studies have implicated the plant trans-Golgi network (TGN)-mediated trafficking in different types of biotic and abiotic stress responses; however, the underlying molecular mechanisms are poorly understood. Further, the identity, specialization and stress-relevant cargo transported by the TGN subcompartments involved in stress responses await more in depth characterization. This review presents TGN trafficking players implicated in stress and discusses potential avenues to understand the role of this dynamic network under such extreme circumstances.
Collapse
Affiliation(s)
- Michel Ruiz Rosquete
- Department of Plant Sciences, University of California, Davis, CA 95616, United States.
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, CA 95616, United States.
| |
Collapse
|
91
|
The Expanding Role of Vesicles Containing Aquaporins. Cells 2018; 7:cells7100179. [PMID: 30360436 PMCID: PMC6210599 DOI: 10.3390/cells7100179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 12/11/2022] Open
Abstract
In animals and plants, membrane vesicles containing proteins have been defined as key for biological systems involving different processes such as trafficking or intercellular communication. Docking and fusion of vesicles to the plasma membrane occur in living cells in response to different stimuli, such as environmental changes or hormones, and therefore play an important role in cell homeostasis as vehicles for certain proteins or other substances. Because aquaporins enhance the water permeability of membranes, their role as proteins immersed in vesicles formed of natural membranes is a recent topic of study. They regulate numerous physiological processes and could hence serve new biotechnological purposes. Thus, in this review, we have explored the physiological implications of the trafficking of aquaporins, the mechanisms that control their transit, and the proteins that coregulate the migration. In addition, the importance of exosomes containing aquaporins in the cell-to-cell communication processes in animals and plants have been analyzed, together with their potential uses in biomedicine or biotechnology. The properties of aquaporins make them suitable for use as biomarkers of different aquaporin-related diseases when they are included in exosomes. Finally, the fact that these proteins could be immersed in biomimetic membranes opens future perspectives for new biotechnological applications.
Collapse
|
92
|
Zhang B, Karnik R, Donald N, Blatt MR. A GPI Signal Peptide-Anchored Split-Ubiquitin (GPS) System for Detecting Soluble Bait Protein Interactions at the Membrane. PLANT PHYSIOLOGY 2018; 178:13-17. [PMID: 30037807 PMCID: PMC6130019 DOI: 10.1104/pp.18.00577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/12/2018] [Indexed: 05/20/2023]
Abstract
Bait fusion proteins with a glycosyl-phosphatidylinositol signal sequence anchor enable effective split ubiquitin screening for interactions with otherwise soluble membrane proteins.
Collapse
Affiliation(s)
- Ben Zhang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Naomi Donald
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
93
|
Laloux T, Junqueira B, Maistriaux LC, Ahmed J, Jurkiewicz A, Chaumont F. Plant and Mammal Aquaporins: Same but Different. Int J Mol Sci 2018; 19:E521. [PMID: 29419811 PMCID: PMC5855743 DOI: 10.3390/ijms19020521] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
Aquaporins (AQPs) constitute an ancient and diverse protein family present in all living organisms, indicating a common ancient ancestor. However, during evolution, these organisms appear and evolve differently, leading to different cell organizations and physiological processes. Amongst the eukaryotes, an important distinction between plants and animals is evident, the most conspicuous difference being that plants are sessile organisms facing ever-changing environmental conditions. In addition, plants are mostly autotrophic, being able to synthesize carbohydrates molecules from the carbon dioxide in the air during the process of photosynthesis, using sunlight as an energy source. It is therefore interesting to analyze how, in these different contexts specific to both kingdoms of life, AQP function and regulation evolved. This review aims at highlighting similarities and differences between plant and mammal AQPs. Emphasis is given to the comparison of isoform numbers, their substrate selectivity, the regulation of the subcellular localization, and the channel activity.
Collapse
Affiliation(s)
- Timothée Laloux
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Bruna Junqueira
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Laurie C Maistriaux
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Jahed Ahmed
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - Agnieszka Jurkiewicz
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la Neuve, Belgium.
| |
Collapse
|
94
|
Chung KP, Zeng Y, Li Y, Ji C, Xia Y, Jiang L. Signal motif-dependent ER export of the Qc-SNARE BET12 interacts with MEMB12 and affects PR1 trafficking in Arabidopsis. J Cell Sci 2018; 131:jcs.202838. [PMID: 28546447 DOI: 10.1242/jcs.202838] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/23/2017] [Indexed: 12/27/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) are well-known for their role in controlling membrane fusion, the final, but crucial step, in vesicular transport in eukaryotes. SNARE proteins contribute to various biological processes including pathogen defense and channel activity regulation, as well as plant growth and development. Precise targeting of SNARE proteins to destined compartments is a prerequisite for their proper functioning. However, the underlying mechanism(s) for SNARE targeting in plants remains obscure. Here, we investigate the targeting mechanism of the Arabidopsis thaliana Qc-SNARE BET12, which is involved in protein trafficking in the early secretory pathway. Two distinct signal motifs that are required for efficient BET12 ER export were identified. Pulldown assays and in vivo imaging implicated that both the COPI and COPII pathways were required for BET12 targeting. Further studies using an ER-export-defective form of BET12 revealed that the Golgi-localized Qb-SNARE MEMB12, a negative regulator of pathogenesis-related protein 1 (PR1; At2g14610) secretion, was its interacting partner. Ectopic expression of BET12 caused no inhibition in the general ER-Golgi anterograde transport but caused intracellular accumulation of PR1, suggesting that BET12 has a regulatory role in PR1 trafficking in A. thaliana.
Collapse
Affiliation(s)
- Kin Pan Chung
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yimin Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Changyang Ji
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China .,The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
95
|
Sinclair R, Rosquete MR, Drakakaki G. Post-Golgi Trafficking and Transport of Cell Wall Components. FRONTIERS IN PLANT SCIENCE 2018; 9:1784. [PMID: 30581448 PMCID: PMC6292943 DOI: 10.3389/fpls.2018.01784] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/16/2018] [Indexed: 05/13/2023]
Abstract
The cell wall, a complex macromolecular composite structure surrounding and protecting plant cells, is essential for development, signal transduction, and disease resistance. This structure is also integral to cell expansion, as its tensile resistance is the primary balancing mechanism against internal turgor pressure. Throughout these processes, the biosynthesis, transport, deposition, and assembly of cell wall polymers are tightly regulated. The plant endomembrane system facilitates transport of polysaccharides, polysaccharide biosynthetic and modifying enzymes and glycoproteins through vesicle trafficking pathways. Although a number of enzymes involved in cell wall biosynthesis have been identified, comparatively little is known about the transport of cell wall polysaccharides and glycoproteins by the endomembrane system. This review summarizes our current understanding of trafficking of cell wall components during cell growth and cell division. Emerging technologies, such as vesicle glycomics, are also discussed as promising avenues to gain insights into the trafficking of structural polysaccharides to the apoplast.
Collapse
|
96
|
Barozzi F, Papadia P, Stefano G, Renna L, Brandizzi F, Migoni D, Fanizzi FP, Piro G, Di Sansebastiano GP. Variation in Membrane Trafficking Linked to SNARE AtSYP51 Interaction With Aquaporin NIP1;1. FRONTIERS IN PLANT SCIENCE 2018; 9:1949. [PMID: 30687352 PMCID: PMC6334215 DOI: 10.3389/fpls.2018.01949] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/14/2018] [Indexed: 05/20/2023]
Abstract
SYP51 and 52 are the two members of the SYP5 Qc-SNARE gene family in Arabidopsis thaliana. These two proteins, besides their high level of sequence identity (85%), have shown to have differential functional specificity and possess a different interactome. Here we describe a unique and specific interaction of SYP51 with an ER aquaporin, AtNIP1;1 (also known as NLM1) indicated to be able to transport arsenite [As(III)] and previously localized on PM. In the present work we investigate in detail such localization in vivo and characterize the interaction with SYP51. We suggest that this interaction may reveal a new mechanism regulating tonoplast invagination and recycling. We propose this interaction to be part of a regulatory mechanism associated with direct membrane transport from ER to tonoplast and Golgi mediated vesicle trafficking. We also demonstrate that NIP1;1 is important for plant tolerance to arsenite but does not alter its uptake or translocation. To explain such phenomenon the hypothesis that SYP51/NIP1;1 interaction modifies ER and vacuole ability to accumulate arsenite is discussed.
Collapse
Affiliation(s)
- Fabrizio Barozzi
- Laboratory of Botany, DISTEBA (Diartimento di Scienze e Tecnologie Biologiche e Ambientali), University of Salento, Lecce, Italy
| | - Paride Papadia
- Laboratory of General and Inorganic Chemistry, DISTEBA (Dipartimento di Scienze e Tecnologie Biologiche e Ambientali), University of Salento, Lecce, Italy
- *Correspondence: Paride Papadia
| | - Giovanni Stefano
- MSU DOE-Plant Biology Lab, Michigan State University, East Lansing, MI, United States
| | - Luciana Renna
- MSU DOE-Plant Biology Lab, Michigan State University, East Lansing, MI, United States
| | - Federica Brandizzi
- MSU DOE-Plant Biology Lab, Michigan State University, East Lansing, MI, United States
| | - Danilo Migoni
- Laboratory of General and Inorganic Chemistry, DISTEBA (Dipartimento di Scienze e Tecnologie Biologiche e Ambientali), University of Salento, Lecce, Italy
| | - Francesco Paolo Fanizzi
- Laboratory of General and Inorganic Chemistry, DISTEBA (Dipartimento di Scienze e Tecnologie Biologiche e Ambientali), University of Salento, Lecce, Italy
| | - Gabriella Piro
- Laboratory of Botany, DISTEBA (Diartimento di Scienze e Tecnologie Biologiche e Ambientali), University of Salento, Lecce, Italy
| | - Gian-Pietro Di Sansebastiano
- Laboratory of Botany, DISTEBA (Diartimento di Scienze e Tecnologie Biologiche e Ambientali), University of Salento, Lecce, Italy
- Gian-Pietro Di Sansebastiano
| |
Collapse
|
97
|
Junková P, Daněk M, Kocourková D, Brouzdová J, Kroumanová K, Zelazny E, Janda M, Hynek R, Martinec J, Valentová O. Mapping of Plasma Membrane Proteins Interacting With Arabidopsis thaliana Flotillin 2. FRONTIERS IN PLANT SCIENCE 2018; 9:991. [PMID: 30050548 PMCID: PMC6052134 DOI: 10.3389/fpls.2018.00991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/19/2018] [Indexed: 05/08/2023]
Abstract
Arabidopsis flotillin 2 (At5g25260) belongs to the group of plant flotillins, which are not well characterized. In contrast, metazoan flotillins are well known as plasma membrane proteins associated with membrane microdomains that act as a signaling hub. The similarity of plant and metazoan flotillins, whose functions most likely consist of affecting other proteins via protein-protein interactions, determines the necessity of detecting their interacting partners in plants. Nevertheless, identifying the proteins that form complexes on the plasma membrane is a challenging task due to their low abundance and hydrophobic character. Here we present an approach for mapping Arabidopsis thaliana flotillin 2 plasma membrane interactors, based on the immunoaffinity purification of crosslinked and enriched plasma membrane proteins with mass spectrometry detection. Using this approach, 61 proteins were enriched in the AtFlot-GFP plasma membrane fraction, and 19 of them were proposed to be flotillin 2 interaction partners. Among our proposed partners of Flot2, proteins playing a role in the plant response to various biotic and abiotic stresses were detected. Additionally, the use of the split-ubiquitin yeast system helped us to confirm that plasma-membrane ATPase 1, early-responsive to dehydration stress protein 4, syntaxin-71, harpin-induced protein-like 3, hypersensitive-induced response protein 2 and two aquaporin isoforms interact with flotillin 2 directly. Based on the results of our study and the reported properties of Flot2 interactors, we propose that Flot2 complexes may be involved in plant-pathogen interactions, water transport and intracellular trafficking.
Collapse
Affiliation(s)
- Petra Junková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
- *Correspondence: Petra Junková, ;
| | - Michal Daněk
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Daniela Kocourková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jitka Brouzdová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Kristýna Kroumanová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Enric Zelazny
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS–CEA–Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Martin Janda
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Radovan Hynek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Olga Valentová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| |
Collapse
|
98
|
Wang P, Sun Y, Pei Y, Li X, Zhang X, Li F, Hou Y. GhSNAP33, a t-SNARE Protein From Gossypium hirsutum, Mediates Resistance to Verticillium dahliae Infection and Tolerance to Drought Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:896. [PMID: 30018623 PMCID: PMC6038728 DOI: 10.3389/fpls.2018.00896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/07/2018] [Indexed: 05/06/2023]
Abstract
Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins mediate membrane fusion and deliver cargo to specific cellular locations through vesicle trafficking. Synaptosome-associated protein of 25 kDa (SNAP25) is a target membrane SNARE that drives exocytosis by fusing plasma and vesicular membranes. In this study, we isolated GhSNAP33, a gene from cotton (Gossypium hirsutum), encoding a SNAP25-type protein containing glutamine (Q)b- and Qc-SNARE motifs connected by a linker. GhSNAP33 expression was induced by H2O2, salicylic acid, abscisic acid, and polyethylene glycol 6000 treatment and Verticillium dahliae inoculation. Ectopic expression of GhSNAP33 enhanced the tolerance of yeast cells to oxidative and osmotic stresses. Virus-induced gene silencing of GhSNAP33 induced spontaneous cell death and reactive oxygen species accumulation in true leaves at a later stage of cotton development. GhSNAP33-deficient cotton was susceptible to V. dahliae infection, which resulted in severe wilt on leaves, an elevated disease index, enhanced vascular browning and thylose accumulation. Conversely, Arabidopsis plants overexpressing GhSNAP33 showed significant resistance to V. dahliae, with reduced disease index and fungal biomass and elevated expression of PR1 and PR5. Leaves from GhSNAP33-transgenic plants showed increased callose deposition and reduced mycelia growth. Moreover, GhSNAP33 overexpression enhanced drought tolerance in Arabidopsis, accompanied with reduced water loss rate and enhanced expression of DERB2A and RD29A during dehydration. Thus, GhSNAP33 positively mediates plant defense against stress conditions and V. dahliae infection, rendering it a candidate for the generation of stress-resistant engineered cotton.
Collapse
Affiliation(s)
- Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Yun Sun
- College of Science, China Agricultural University, Beijing, China
| | - Yakun Pei
- College of Science, China Agricultural University, Beijing, China
| | - Xiancai Li
- College of Science, China Agricultural University, Beijing, China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of The Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of The Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Fuguang Li, Yuxia Hou,
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
- *Correspondence: Fuguang Li, Yuxia Hou,
| |
Collapse
|
99
|
Fox AR, Maistriaux LC, Chaumont F. Toward understanding of the high number of plant aquaporin isoforms and multiple regulation mechanisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:179-187. [PMID: 28969798 DOI: 10.1016/j.plantsci.2017.07.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 05/20/2023]
Abstract
Since the discovery of the first plant aquaporin (AQP) in 1993, our conception of the way plants control cell water homeostasis as well as their global water balance has been revisited. Plant AQPs constitute a large family of evolutionarily related channels that, in addition to water, can also facilitate the membrane diffusion of a number of small solutes, such as urea, CO2, H2O2, ammonia, metalloids, and even ions, indicating a wide range of cellular functions. At the cellular level, AQPs are subject to various regulation mechanisms leading to active/inactive channels in their target membranes. In this review, we discuss several specific questions that need to be addressed in future research. Why are so many different AQPs simultaneously expressed in specific cellular types? How is their selectivity to different solutes controlled (in particular in the case of multiple permeation properties)? What does the molecular interaction between AQPs and other molecules tell us about their regulation and their involvement in specific cellular and physiological processes? Resolving these questions will definitely help us better understand the physiological advantages that plants have to express and regulate so many AQP isoforms.
Collapse
Affiliation(s)
- Ana Romina Fox
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| | - Laurie C Maistriaux
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
100
|
Sutka M, Amodeo G, Ozu M. Plant and animal aquaporins crosstalk: what can be revealed from distinct perspectives. Biophys Rev 2017; 9:545-562. [PMID: 28871493 DOI: 10.1007/s12551-017-0313-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/02/2017] [Indexed: 01/03/2023] Open
Abstract
Aquaporins (AQPs) can be revisited from a distinct and complementary perspective: the outcome from analyzing them from both plant and animal studies. (1) The approach in the study. Diversity found in both kingdoms contrasts with the limited number of crystal structures determined within each group. While the structure of almost half of mammal AQPs was resolved, only a few were resolved in plants. Strikingly, the animal structures resolved are mainly derived from the AQP2-lineage, due to their important roles in water homeostasis regulation in humans. The difference could be attributed to the approach: relevance in animal research is emphasized on pathology and in consequence drug screening that can lead to potential inhibitors, enhancers and/or regulators. By contrast, studies on plants have been mainly focused on the physiological role that AQPs play in growth, development and stress tolerance. (2) The transport capacity. Besides the well-described AQPs with high water transport capacity, large amount of evidence confirms that certain plant AQPs can carry a large list of small solutes. So far, animal AQP list is more restricted. In both kingdoms, there is a great amount of evidence on gas transport, although there is still an unsolved controversy around gas translocation as well as the role of the central pore of the tetramer. (3) More roles than expected. We found it remarkable that the view of AQPs as specific channels has evolved first toward simple transporters to molecules that can experience conformational changes triggered by biochemical and/or mechanical signals, turning them also into signaling components and/or behave as osmosensor molecules.
Collapse
Affiliation(s)
- Moira Sutka
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Gabriela Amodeo
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Marcelo Ozu
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Biodiversidad y Biología Experimental, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|