51
|
Chang Z, Jin M, Yan W, Chen H, Qiu S, Fu S, Xia J, Liu Y, Chen Z, Wu J, Tang X. The ATP-binding cassette (ABC) transporter OsABCG3 is essential for pollen development in rice. RICE (NEW YORK, N.Y.) 2018; 11:58. [PMID: 30311098 PMCID: PMC6181869 DOI: 10.1186/s12284-018-0248-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/14/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND The pollen wall, which protects male gametophyte against various stresses and facilitates pollination, is essential for successful reproduction in flowering plants. The pollen wall consists of gametophyte-derived intine and sporophyte-derived exine. From outside to inside of exine are tectum, bacula, nexine I and nexine II layers. How these structural layers are formed has been under extensive studies, but the molecular mechanisms remain obscure. RESULTS Here we identified two osabcg3 allelic mutants and demonstrated that OsABCG3 was required for pollen development in rice. OsABCG3 encodes a half-size ABCG transporter localized on the plasma membrane. It was mainly expressed in anther when exine started to form. Loss-function of OsABCG3 caused abnormal degradation of the tapetum. The mutant pollen lacked the nexine II and intine layers, and shriveled without cytoplasm. The expression of some genes required for pollen wall formation was examined in osabcg3 mutants. The mutation did not alter the expression of the regulatory genes and lipid metabolism genes, but altered the expression of lipid transport genes. CONCLUSIONS Base on the genetic and cytological analyses, OsABCG3 was proposed to transport the tapetum-produced materials essential for pollen wall formation. This study provided a new perspective to the genetic regulation of pollen wall development.
Collapse
Affiliation(s)
- Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| | - Mingna Jin
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
- School of Life Sciences, Capital Normal University, Beijing, 10048 China
| | - Hui Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| | - Shijun Qiu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| | - Shan Fu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 53004 China
| | - Jixing Xia
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 53004 China
| | - Yuchen Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| |
Collapse
|
52
|
Zhang J, Chen J, Wang L, Zhao S, Li J, Liu B, Li H, Qi X, Zheng H, Lu M. AtBET5 is essential for exine pattern formation and apical meristem organization in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:231-241. [PMID: 30080609 DOI: 10.1016/j.plantsci.2018.05.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
BET5 is a component of trafficking protein particle (TRAPP) which has been studied extensively in non-plant organisms where they are involved in membrane trafficking within Golgi and between Golgi and early endosomes. Recent analysis of TRAPP in different classes of organisms indicates that TRAPP function might exhibit differences among organisms. A single copy of the BET5 gene named AtBET5 was found in the Arabidopsis genome based on sequence similarity. Developmental phenotype and the underlying mechanisms have been characterized upon transcriptional knock-down lines generated by both T-DNA insertion and RNAi. Pollen grains of the T-DNA insertional line present reduced fertility and pilate exine instead of tectate exine. Perturbation of the AtBET5 expression by RNAi leads to apical meristematic organization defects and reduced fertility as well. The reduced fertility was due to the pollination barrier caused by an altered composition and structure of pollen walls. Auxin response in root tip cells is altered and there is a severe disruption in polar localization of PIN1-GFP, but to a less extent of PIN2-GFP in the root tips, which causes the apical meristematic organization defects and might also be responsible for the secretion of sporopollenin precursor or polar targeting of sporopollenin precursor transporters.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100 091, China
| | - Jun Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100 091, China; Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, QC, H3A 1B1, Canada
| | - Lijuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100 091, China
| | - Shutang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100 091, China
| | - Jianbo Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100 091, China
| | - Bobin Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100 091, China
| | - Hongying Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100 091, China
| | - Xingyun Qi
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, QC, H3A 1B1, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, QC, H3A 1B1, Canada.
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100 091, China.
| |
Collapse
|
53
|
Lefèvre F, Boutry M. Towards Identification of the Substrates of ATP-Binding Cassette Transporters. PLANT PHYSIOLOGY 2018; 178:18-39. [PMID: 29987003 PMCID: PMC6130012 DOI: 10.1104/pp.18.00325] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/08/2018] [Indexed: 05/05/2023]
Abstract
Most ATP-binding cassette (ABC) proteins function in transmembrane transport, and plant genomes encode a large number of ABC transporters compared with animal or fungal genomes. These transporters have been classified into eight subfamilies according to their topology and phylogenetic relationships. Transgenic plants and mutants with altered ABC transporter expression or function have contributed to deciphering the physiological roles of these proteins, such as in plant development, responses to biotic and abiotic stress, or detoxification activities within the cell. In agreement with the diversity of these functions, a large range of substrates (e.g. hormones and primary and secondary metabolites) have been identified. We review in detail transporters for which substrates have been unambiguously identified. However, some cases are far from clear, because some ABC transporters have the ability to transport several structurally unrelated substrates or because the identification of their substrates was performed indirectly without any flux measurement. Various heterologous or homologous expression systems have been used to better characterize the transport activity and other biochemical properties of ABC transporters, opening the way to addressing new issues such as the particular structural features of plant ABC transporters, the bidirectionality of transport, or the role of posttranslational modifications.
Collapse
Affiliation(s)
- François Lefèvre
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Marc Boutry
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
54
|
Chen HW, Persson S, Grebe M, McFarlane HE. Cellulose synthesis during cell plate assembly. PHYSIOLOGIA PLANTARUM 2018; 164:17-26. [PMID: 29418000 DOI: 10.1111/ppl.12703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/12/2018] [Accepted: 02/04/2018] [Indexed: 05/07/2023]
Abstract
The plant cell wall surrounds and protects the cells. To divide, plant cells must synthesize a new cell wall to separate the two daughter cells. The cell plate is a transient polysaccharide-based compartment that grows between daughter cells and gives rise to the new cell wall. Cellulose constitutes a key component of the cell wall, and mutants with defects in cellulose synthesis commonly share phenotypes with cytokinesis-defective mutants. However, despite the importance of cellulose in the cell plate and the daughter cell wall, many open questions remain regarding the timing and regulation of cellulose synthesis during cell division. These questions represent a critical gap in our knowledge of cell plate assembly, cell division and growth. Here, we review what is known about cellulose synthesis at the cell plate and in the newly formed cross-wall and pose key questions about the molecular mechanisms that govern these processes. We further provide an outlook discussing outstanding questions and possible future directions for this field of research.
Collapse
Affiliation(s)
- Hsiang-Wen Chen
- School of Biosciences, University of Melbourne, Melbourne, Victoria 3010, Australia
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, Potsdam D-14476, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Markus Grebe
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, Potsdam D-14476, Germany
| | - Heather E McFarlane
- School of Biosciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
55
|
Li H, Yuan J, Wu M, Han Z, Li L, Jiang H, Jia Y, Han X, Liu M, Sun D, Chen C, Song W, Wang C. Transcriptome and DNA methylome reveal insights into yield heterosis in the curds of broccoli (Brassica oleracea L var. italic). BMC PLANT BIOLOGY 2018; 18:168. [PMID: 30103674 PMCID: PMC6090608 DOI: 10.1186/s12870-018-1384-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/01/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Curds are the main edible organs, which exhibit remarkable yield heterosis in F1 hybrid broccoli. However, the molecular basis underlying heterosis in broccoli remains elusive. RESULTS In the present study, transcriptome profiles revealed that the hybridization made most genes show additive expression patterns in hybrid broccoli. The differentially expressed genes including the non-additively expressed genes detected in the hybrid broccoli and its parents were mainly involved in light, hormone and hydrogen peroxide-mediated signaling pathways, responses to stresses, and regulation of floral development, which suggested that these biological processes should play crucial roles in the yield heterosis of broccoli. Among them, light and hydrogen peroxide-mediated signaling pathways represent two novel classes of regulatory processes that could function in yield or biomass heterosis of plants. Totally, 53 candidate genes closely involved in curd yield heterosis were identified. Methylome data indicated that the DNA methylation ratio of the hybrids was higher than that of their parents. However, the DNA methylation levels of most sites also displayed additive expression patterns. These sites with differential methylation levels were predominant in the intergenic regions. In most cases, the changes of DNA methylation levels in gene regions did not significantly affect their expression levels. CONCLUSIONS The differentially expressed genes, the regulatory processes and the possible roles of DNA methylation modification in the formation of curd yield heterotic trait were discovered. These findings provided comprehensive insights into the curd yield heterosis in broccoli, and were significant for breeding high-yield broccoli varieties.
Collapse
Affiliation(s)
- Hui Li
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Jiye Yuan
- College of Life Sciences, Nankai University, Tianjin, China
| | - Mei Wu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Zhanpin Han
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Lihong Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hanmin Jiang
- Tianjin Kernel Vegetable Research Institute, Tianjin, China
| | - Yinglan Jia
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xue Han
- College of Life Sciences, Nankai University, Tianjin, China
| | - Min Liu
- College of Life Sciences, Shandong Normal University, Jinan, Shandong China
| | - Deling Sun
- Tianjin Kernel Vegetable Research Institute, Tianjin, China
| | - Chengbin Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wenqin Song
- College of Life Sciences, Nankai University, Tianjin, China
| | - Chunguo Wang
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
56
|
Ji J, Yang L, Fang Z, Zhuang M, Zhang Y, Lv H, Liu Y, Li Z. Complementary transcriptome and proteome profiling in cabbage buds of a recessive male sterile mutant provides new insights into male reproductive development. J Proteomics 2018. [DOI: 10.1016/j.jprot.2018.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
57
|
Do THT, Martinoia E, Lee Y. Functions of ABC transporters in plant growth and development. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:32-38. [PMID: 28854397 DOI: 10.1016/j.pbi.2017.08.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/05/2017] [Accepted: 08/08/2017] [Indexed: 05/20/2023]
Abstract
ABC transporters are essential for plant development, playing roles in processes such as gametogenesis, seed development, seed germination, organ formation, and secondary growth. ABC transporters are directly energized by ATP and can transport complex organic materials against concentration gradients; thus, they are uniquely suited to provide the complex building blocks required for the development of specialized plant cells. We review recent progress in our understanding of the contribution ABC transporters make to the growth and development of plants, including their roles in protective layer formation and in transporting phytohormones.
Collapse
Affiliation(s)
- Thanh Ha Thi Do
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang 37673, Republic of Korea
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University Zurich, Zurich, 8008 Zurich, Switzerland
| | - Youngsook Lee
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang 37673, Republic of Korea.
| |
Collapse
|
58
|
Tian Y, Xiao S, Liu J, Somaratne Y, Zhang H, Wang M, Zhang H, Zhao L, Chen H. MALE STERILE6021 (MS6021) is required for the development of anther cuticle and pollen exine in maize. Sci Rep 2017; 7:16736. [PMID: 29196635 PMCID: PMC5711870 DOI: 10.1038/s41598-017-16930-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/21/2017] [Indexed: 11/23/2022] Open
Abstract
The anther cuticle and pollen wall function as physical barriers that protect genetic material from various environmental stresses. The anther cuticle is composed of wax and cutin, the pollen wall includes exine and intine, and the components of the outer exine are collectively called sporopollenin. Other than cuticle wax, cutin and sporopollenin are biopolymers compounds. The precise constituents and developmental mechanism of these biopolymeric are poorly understood. Here, we reported a complete male sterile mutant, male sterile6021, in maize. The mutant displayed a smooth anther surface and irregular pollen wall formation before anthesis, and its tapetum was degraded immaturely. Gas chromatography-mass spectrometry analysis revealed a severe reduction of lipid derivatives in the mutant anther. We cloned the gene by map based cloning. It encoded a fatty acyl carrier protein reductase that was localized in plastids. Expression analysis indicated that MS6021 was mainly expressed in the tapetum and microspore after the microspore was released from the tetrad. Functional complementation of the orthologous Arabidopsis mutant demonstrated that MS6021 is conserved between monocots and dicots and potentially even in flowering plants. MS6021 plays a conserved, essential role in the successful development of anther cuticle and pollen exine in maize.
Collapse
Affiliation(s)
- Youhui Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Senlin Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yamuna Somaratne
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hua Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mingming Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huairen Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
59
|
Kuromori T, Sugimoto E, Ohiraki H, Yamaguchi-Shinozaki K, Shinozaki K. Functional relationship of AtABCG21 and AtABCG22 in stomatal regulation. Sci Rep 2017; 7:12501. [PMID: 28970576 PMCID: PMC5624933 DOI: 10.1038/s41598-017-12643-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/13/2017] [Indexed: 01/27/2023] Open
Abstract
Stomatal regulation is important for water transpiration from plants. Stomatal opening and closing are controlled by many transporter proteins in guard cells. AtABCG22 is a member of the ATP-binding cassette (ABC) transporters and is a stomatal regulator; however, the function of AtABCG22 has not yet been determined fully, although a mutant phenotype included a significant effect on stomatal status. Here, we further investigated the function of the AtABCG22 gene and its functional relationships with other subfamily genes. Among close family members, we found a functional relationship of stomatal phenotypes with AtABCG21, which is also expressed specifically in guard cells. Based on an analysis of double mutants, adding the atabcg21 mutation to atabcg22 mutant partially suppressed the open-stomata phenotype of atabcg22. Multiple-mutant analyses indicated that this suppression was independent of abscisic acid signaling in guard cells. We also found that atabcg22 mutant showed a unique time course-dependent phenotype, being defective in maintenance of stomatal status after initial stomatal opening elicited by light signaling. The function of AtABCG22 and its relationship with AtABCG21 in stomatal regulation are considered.
Collapse
Affiliation(s)
- Takashi Kuromori
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan.
| | - Eriko Sugimoto
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Haruka Ohiraki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
60
|
Ji JL, Yang LM, Fang ZY, Zhuang M, Zhang YY, Lv HH, Liu YM, Li ZS. Recessive male sterility in cabbage (Brassica oleracea var. capitata) caused by loss of function of BoCYP704B1 due to the insertion of a LTR-retrotransposon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1441-1451. [PMID: 28405714 DOI: 10.1007/s00122-017-2899-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
The LTR-retrotransposon insertion in BoCYP704B1 is proved to be the primary cause of the male sterility in cabbage. Effective allele-specific markers were developed for marker-assisted selection of male sterile gene. 83121A is a spontaneous male sterile mutant identified from cabbage. Genetic analysis indicated that male sterility is controlled by a single recessive gene. Pollen wall formation in the 83121A mutant was severely defective, with a lack of sporopollenin or exine. To understand the mechanisms of male sterility in 83121A, transcription analysis using RNA-Seq was carried out in the buds of the male sterile line 83121A and the male fertile line 83121B, which are near-isogenic lines differing only in the fertility trait. Via expression analysis of differentially expressed genes involved in pollen exine development before the bicellular pollen stage, BoCYP704B1 was identified as a candidate gene, which was approximately downregulated 30-fold in 83121A. BoCYP704B1 is a member of the evolutionarily conserved CYP704B family, which is essential for sporopollenin formation. The BoCYP704B1 transcript is specifically detected in the developing anthers of wild-type cabbage. Further sequence analysis revealed that a 5424-bp long terminal repeat-retrotransposon (LTR-RT) was inserted into the first exon of BoCYP704B1 in 83121A, which is not found in wild-type plants. The insertion of LTR-RT not only reduced the expression of BoCYP704B1 but also altered structure of protein encoded by BoCYP704B1. Moreover, linkage analysis showed that the homozygotic mutational BoCYP704B1 always cosegregated with male sterility. These data suggest that the LTR-RT insertion in BoCYP704B1 hinders sporopollenin formation in 83121A leading to male sterility. The allele-specific markers developed in this study were effective for marker-assisted selection of the male sterile gene.
Collapse
Affiliation(s)
- Jia-Lei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Li-Mei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Zhi-Yuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yang-Yong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Hong-Hao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yu-Mei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Zhan-Sheng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture/Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| |
Collapse
|
61
|
Liu Z, Lin S, Shi J, Yu J, Zhu L, Yang X, Zhang D, Liang W. Rice No Pollen 1 (NP1) is required for anther cuticle formation and pollen exine patterning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:263-277. [PMID: 28378445 DOI: 10.1111/tpj.13561] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 05/28/2023]
Abstract
Angiosperm male reproductive organs (anthers and pollen grains) have complex and interesting morphological features, but mechanisms that underlie their patterning are poorly understood. Here we report the isolation and characterization of a male sterile mutant of No Pollen 1 (NP1) in rice (Oryza sativa). The np1-4 mutant exhibited smaller anthers with a smooth cuticle surface, abnormal Ubisch bodies, and aborted pollen grains covered with irregular exine. Wild-type exine has two continuous layers; but np1-4 exine showed a discontinuous structure with large granules of varying size. Chemical analysis revealed reduction in most of the cutin monomers in np1-4 anthers, and less cuticular wax. Map-based cloning suggested that NP1 encodes a putative glucose-methanol-choline oxidoreductase; and expression analyses found NP1 preferentially expressed in the tapetal layer from stage 8 to stage 10 of anther development. Additionally, the expression of several genes involved in biosynthesis and in the transport of lipid monomers of sporopollenin and cutin was decreased in np1-4 mutant anthers. Taken together, these observations suggest that NP1 is required for anther cuticle formation, and for patterning of Ubisch bodies and the exine. We propose that products of NP1 are likely important metabolites in the development of Ubisch bodies and pollen exine, necessary for polymerization, assembly, or both.
Collapse
Affiliation(s)
- Ze Liu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sen Lin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu Zhu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiujuan Yang
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, 5064, Australia
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, 5064, Australia
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
62
|
Somaratne Y, Tian Y, Zhang H, Wang M, Huo Y, Cao F, Zhao L, Chen H. ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:96-110. [PMID: 28078801 DOI: 10.1111/tpj.13476] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 05/22/2023]
Abstract
Anther cuticle and pollen exine are the major protective barriers against various stresses. The proper functioning of genes expressed in the tapetum is vital for the development of pollen exine and anther cuticle. In this study, we report a tapetum-specific gene, Abnormal Pollen Vacuolation1 (APV1), in maize that affects anther cuticle and pollen exine formation. The apv1 mutant was completely male sterile. Its microspores were swollen, less vacuolated, with a flat and empty anther locule. In the mutant, the anther epidermal surface was smooth, shiny, and plate-shaped compared with the three-dimensional crowded ridges and randomly formed wax crystals on the epidermal surface of the wild-type. The wild-type mature pollen had elaborate exine patterning, whereas the apv1 pollen surface was smooth. Only a few unevenly distributed Ubisch bodies were formed on the apv1 mutant, leading to a more apparent inner surface. A significant reduction in the cutin monomers was observed in the mutant. APV1 encodes a member of the P450 subfamily, CYP703A2-Zm, which contains 530 amino acids. APV1 appeared to be widely expressed in the tapetum at the vacuolation stage, and its protein signal co-localized with the endoplasmic reticulum (ER) signal. RNA-Seq data revealed that most of the genes in the fatty acid metabolism pathway were differentially expressed in the apv1 mutant. Altogether, we suggest that APV1 functions in the fatty acid hydroxylation pathway which is involved in forming sporopollenin precursors and cutin monomers that are essential for the development of pollen exine and anther cuticle in maize.
Collapse
Affiliation(s)
- Yamuna Somaratne
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Youhui Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hua Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mingming Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanqing Huo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengge Cao
- Heze Academy of Agricultural Sciences, Heze, Shandong, 274000, China
| | - Li Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
63
|
Kontturi J, Osama R, Deng X, Bashandy H, Albert VA, Teeri TH. Functional characterization and expression of GASCL1 and GASCL2, two anther-specific chalcone synthase like enzymes from Gerbera hybrida. PHYTOCHEMISTRY 2017; 134:38-45. [PMID: 27884449 DOI: 10.1016/j.phytochem.2016.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/28/2016] [Accepted: 11/08/2016] [Indexed: 05/22/2023]
Abstract
The chalcone synthase superfamily consists of type III polyketidesynthases (PKSs), enzymes responsible for producing plant secondary metabolites with various biological and pharmacological activities. Anther-specific chalcone synthase-like enzymes (ASCLs) represent an ancient group of type III PKSs involved in the biosynthesis of sporopollenin, the main component of the exine layer of moss spores and mature pollen grains of seed plants. In the latter, ASCL proteins are localized in the tapetal cells of the anther where they participate in sporopollenin biosynthesis and exine formation within the locule. It is thought that the enzymes responsible for sporopollenin biosynthesis are highly conserved, and thus far, each angiosperm species with a genome sequenced has possessed two ASCL genes, which in Arabidopsis thaliana are PKSA and PKSB. The Gerbera hybrida (gerbera) PKS protein family consists of three chalcone synthases (GCHS1, GCHS3 and GCHS4) and three 2-pyrone synthases (G2PS1, G2PS2 and G2PS3). In previous studies we have demonstrated the functions of chalcone synthases in flavonoid biosynthesis, and the involvement of 2-pyrone synthases in the biosynthesis of antimicrobial compounds found in gerbera. In this study we expanded the gerbera PKS-family by functionally characterizing two gerbera ASCL proteins. In vitro enzymatic studies using purified recombinant proteins showed that both GASCL1 and GASCL2 were able to use medium and long-chain acyl-CoA starters and perform two to three condensation reactions of malonyl-CoA to produce tri- and tetraketide 2-pyrones, usually referred to as alpha-pyrones in sporopollenin literature. Both GASCL1 and GASCL2 genes were expressed only in floral organs, with most expression observed in anthers. In the anthers, transcripts of both genes showed strict tapetum-specific localization.
Collapse
Affiliation(s)
- Juha Kontturi
- Department of Agricultural Sciences, Viikki Plant Science Centre, P.O. Box 27, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Raisa Osama
- Department of Agricultural Sciences, Viikki Plant Science Centre, P.O. Box 27, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Xianbao Deng
- Department of Agricultural Sciences, Viikki Plant Science Centre, P.O. Box 27, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Hany Bashandy
- Department of Agricultural Sciences, Viikki Plant Science Centre, P.O. Box 27, University of Helsinki, Helsinki, FIN-00014, Finland; Department of Genetics, Cairo University, 13 Gamaa St., Giza, 12619, Egypt
| | - Victor A Albert
- Department of Biological Sciences, University of Buffalo, USA
| | - Teemu H Teeri
- Department of Agricultural Sciences, Viikki Plant Science Centre, P.O. Box 27, University of Helsinki, Helsinki, FIN-00014, Finland.
| |
Collapse
|
64
|
Li WL, Liu Y, Douglas CJ. Role of Glycosyltransferases in Pollen Wall Primexine Formation and Exine Patterning. PLANT PHYSIOLOGY 2017; 173:167-182. [PMID: 27495941 PMCID: PMC5210704 DOI: 10.1104/pp.16.00471] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/30/2016] [Indexed: 05/18/2023]
Abstract
The pollen cell wall is important for protection of male sperm from physical stresses and consists of an inner gametophyte-derived intine layer and a sporophyte-derived exine layer. The polymeric constituents of the robust exine are termed sporopollenin. The mechanisms by which sporopollenin is anchored onto microspores and polymerized in specific patterns are unknown, but the primexine, a transient cell wall matrix formed on the surface of microspores at the late tetrad stage, is hypothesized to play a key role. Arabidopsis (Arabidopsis thaliana) spongy (spg) and uneven pattern of exine (upex) mutants exhibit defective and irregular exine patterns. SPG2 (synonymous with IRREGULAR XYLEM9-LIKE [IRX9L]) encodes a family GT43 glycosyltransferase involved in xylan backbone biosynthesis, while UPEX1 encodes a family GT31 glycosyltransferase likely involved in galactosylation of arabinogalactan proteins. Imaging of developing irx9l microspores showed that the earliest detectable defect was in primexine formation. Furthermore, wild-type microspores contained primexine-localized epitopes indicative of the presence of xylan, but these were absent in irx9l These data, together with the spg phenotype of a mutant in IRX14L, which also plays a role in xylan backbone elongation, indicate the presence of xylan in pollen wall primexine, which plays a role in exine patterning on the microspore surface. We observed an aberrant primexine and irregular patterns of incipient sporopollenin deposition in upex1, suggesting that primexine-localized arabinogalactan proteins could play roles in sporopollenin adhesion and patterning early in microspore wall development. Our data provide new insights into the biochemical and functional properties of the primexine component of the microspore cell wall.
Collapse
Affiliation(s)
- Wenhua L Li
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Yuanyuan Liu
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
65
|
Zhao B, Shi H, Wang W, Liu X, Gao H, Wang X, Zhang Y, Yang M, Li R, Guo Y. Secretory COPII Protein SEC31B Is Required for Pollen Wall Development. PLANT PHYSIOLOGY 2016; 172:1625-1642. [PMID: 27634427 PMCID: PMC5100771 DOI: 10.1104/pp.16.00967] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/13/2016] [Indexed: 05/03/2023]
Abstract
The pollen wall protects pollen grains from abiotic and biotic stresses. During pollen wall development, tapetal cells play a vital role by secreting proteins, signals, and pollen wall material to ensure microspore development. But the regulatory mechanism underlying the secretory pathway of the tapetum is largely unknown. Here, we characterize the essential role of the Arabidopsis (Arabidopsis thaliana) COPII protein SECRETORY31B (SEC31B) in pollen wall development and the secretory activity of tapetal cells. The sporophyte-controlled atsec31b mutant exhibits severe pollen and seed abortion. Transmission electron microscopy observation indicates that pollen exine formation in the atsec31b mutant is disrupted significantly. AtSEC31B is a functional COPII protein revealed by endoplasmic reticulum (ER) exit site localization, interaction with AtSEC13A, and retarded ER-Golgi protein trafficking in the atsec31b mutant. A genetic tapetum-specific rescue assay indicates that AtSEC31B functions primarily in the tapetum. Moreover, deletion of AtSEC31B interrupted the formation of the ER-derived tapetosome and altered the location of the ATP-BINDING CASSETTE TRANSPORTER9 protein in the tapetum. Therefore, this work demonstrates that AtSEC31B plays a vital role in pollen wall development by regulating the secretory pathway of the tapetal cells.
Collapse
Affiliation(s)
- Bingchun Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang 050024, People's Republic of China; and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang 050024, People's Republic of China
| | - Haidan Shi
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang 050024, People's Republic of China; and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang 050024, People's Republic of China
| | - Wanlei Wang
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang 050024, People's Republic of China; and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang 050024, People's Republic of China
| | - Xiaoyu Liu
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang 050024, People's Republic of China; and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang 050024, People's Republic of China
| | - Hui Gao
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang 050024, People's Republic of China; and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang 050024, People's Republic of China
| | - Xiaoxiao Wang
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang 050024, People's Republic of China; and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang 050024, People's Republic of China
| | - Yinghui Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang 050024, People's Republic of China; and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang 050024, People's Republic of China
| | - Meidi Yang
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang 050024, People's Republic of China; and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang 050024, People's Republic of China
| | - Rui Li
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang 050024, People's Republic of China; and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang 050024, People's Republic of China
| | - Yi Guo
- Hebei Key Laboratory of Molecular and Cellular Biology and Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Science, Hebei Normal University, Shijia Zhuang 050024, People's Republic of China; and
- Hebei Collaboration Innovation Center for Cell Signaling, Shijia Zhuang 050024, People's Republic of China
| |
Collapse
|
66
|
Deng Y, Srivastava R, Quilichini TD, Dong H, Bao Y, Horner HT, Howell SH. IRE1, a component of the unfolded protein response signaling pathway, protects pollen development in Arabidopsis from heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:193-204. [PMID: 27304577 DOI: 10.1111/tpj.13239] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 05/18/2023]
Abstract
The unfolded protein response (UPR) is activated by various stresses during vegetative development in Arabidopsis, but is constitutively active in anthers of unstressed plants. To understand the role of the UPR during reproductive development, we analyzed a double mutant, ire1a ire1b. The double mutant knocks out the RNA-splicing arm of the UPR signaling pathway. It is fertile at room temperature but male sterile at modestly elevated temperature (ET). The conditional male sterility in the mutant is a sporophytic trait, and when the double mutant was grown at ET, defects appeared in the structure of the tapetum. As a result, the tapetum in the double mutant failed to properly deposit the pollen coat at ET, which made pollen grains clump and prevented their normal dispersal. IRE1 is a dual protein kinase/ribonuclease involved in the splicing of bZIP60 mRNA, and through complementation analysis of various mutant forms of IRE1b it was demonstrated that the ribonuclease activity of IRE1 was required for protecting male fertility from ET. It was also found that overexpression of SEC31A rescued the conditional male sterility in the double mutant. SEC31A is involved in trafficking from the endoplasmic reticulum to Golgi and a major target of the IRE1-mediated UPR signaling in stressed seedlings. Thus, IRE1, a major component of the UPR, plays an important role in protecting pollen development from ET.
Collapse
Affiliation(s)
- Yan Deng
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA
| | - Renu Srivastava
- Plant Sciences Institute, Iowa State University, Ames, IA, 50011, USA
| | - Teagen D Quilichini
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Haili Dong
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Yan Bao
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Harry T Horner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
- Microscopy and NanoImaging Facility, Iowa State University, Ames, IA, 50011, USA
| | - Stephen H Howell
- Plant Sciences Institute, Iowa State University, Ames, IA, 50011, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
67
|
Yim S, Khare D, Kang J, Hwang JU, Liang W, Martinoia E, Zhang D, Kang B, Lee Y. Postmeiotic development of pollen surface layers requires two Arabidopsis ABCG-type transporters. PLANT CELL REPORTS 2016; 35:1863-73. [PMID: 27271688 DOI: 10.1007/s00299-016-2001-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/23/2016] [Indexed: 05/02/2023]
Abstract
Two Arabidopsis ABC transporters, ABCG1 and ABCG16, are expressed in the tapetal layer, specifically after postmeiotic microspore release, and play important roles in pollen surface development. The male gametophytic cells of terrestrial plants, the pollen grains, travel far before fertilization, and thus require strong protective layers, which take the form of a pollen coat and a pollen wall. The protective surface structures are generated by the tapetum, the tissue surrounding the developing gametophytes. Many ABC transporters, including Arabidopsis thaliana ABCG1 and ABCG16, have been shown to play essential roles in the development of such protective layers. However, the details of the mechanism of their function remain to be clarified. In this study, we show that ABCG1 and ABCG16 are localized at the plasma membrane of tapetal cells, specifically after postmeiotic microspore release, and play critical roles in the postmeiotic stages of male gametophyte development. Consistent with this stage-specific expression, the abcg1 abcg16 double knockout mutant exhibited defects in pollen development after postmeiotic microspore release; their microspores lacked intact nexine and intine layers, exhibited defects in pollen mitosis I, displayed ectopic deposits of arabinogalactan proteins, failed to complete cytokinesis, and lacked sperm cells. Interestingly, the double mutant exhibited abnormalities in the internal structures of tapetal cells, too; the storage organelles of tapetal cells, tapetosomes and elaioplasts, were morphologically altered. Thus, this work reveals that the lack of ABCG1 and ABCG16 at the tapetal cell membrane causes a broad range of defects in pollen, as well as in tapetal cells themselves. Furthermore, these results suggest that normal pollen surface development is necessary for normal development of the pollen cytoplasm.
Collapse
Affiliation(s)
- Sojeong Yim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Deepa Khare
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Joohyun Kang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Jae-Ung Hwang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Center for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University Zurich, 8008, Zurich, Switzerland
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Center for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Byungho Kang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Youngsook Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
- Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang, 37673, Korea.
| |
Collapse
|
68
|
Shitan N. Secondary metabolites in plants: transport and self-tolerance mechanisms. Biosci Biotechnol Biochem 2016; 80:1283-93. [DOI: 10.1080/09168451.2016.1151344] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Plants produce a host of secondary metabolites with a wide range of biological activities, including potential toxicity to eukaryotic cells. Plants generally manage these compounds by transport to the apoplast or specific organelles such as the vacuole, or other self-tolerance mechanisms. For efficient production of such bioactive compounds in plants or microbes, transport and self-tolerance mechanisms should function cooperatively with the corresponding biosynthetic enzymes. Intensive studies have identified and characterized the proteins responsible for transport and self-tolerance. In particular, many transporters have been isolated and their physiological functions have been proposed. This review describes recent progress in studies of transport and self-tolerance and provides an updated inventory of transporters according to their substrates. Application of such knowledge to synthetic biology might enable efficient production of valuable secondary metabolites in the future.
Collapse
Affiliation(s)
- Nobukazu Shitan
- Laboratory of Natural Medicinal Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
69
|
Mal C, Deb A, Aftabuddin M, Kundu S. A network analysis of miRNA mediated gene regulation of rice: crosstalk among biological processes. MOLECULAR BIOSYSTEMS 2016; 11:2273-80. [PMID: 26066638 DOI: 10.1039/c5mb00222b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To understand the network architecture of miRNA mediated regulations at the genomic and functional levels of rice, we have made an unambiguous annotation of the experimentally verified miRNAs, predicted their targets and the possible biological functions they can affect. Some functions, namely translational and protein modifications and photosynthesis are targeted by higher percentage of miRNA. Using transformation procedures, we constructed a genome scale miRNA-miRNA functional synergistic network (MFSN). The analysis of MFSN modules help to identify miRNAs co-regulating target genes having several interrelated biological processes. Some of these target genes are also co-expressed under particular conditions. For example, the genes co-expressed under drought conditions as well as those targeted by miRNAs present in a MFSN module have interdependent biological processes namely, photosynthesis, cell-wall biogenesis, root development and xylan synthesis. The stress-induced miRNAs and their distributions, and the presence of transcription factors in the target set of MFSN modules were also analyzed.
Collapse
Affiliation(s)
- Chittabrata Mal
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India.
| | | | | | | |
Collapse
|
70
|
Li N, Xu C, Li-Beisson Y, Philippar K. Fatty Acid and Lipid Transport in Plant Cells. TRENDS IN PLANT SCIENCE 2016; 21:145-158. [PMID: 26616197 DOI: 10.1016/j.tplants.2015.10.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/29/2015] [Accepted: 10/15/2015] [Indexed: 05/18/2023]
Abstract
Fatty acids (FAs) and lipids are essential - not only as membrane constituents but also for growth and development. In plants and algae, FAs are synthesized in plastids and to a large extent transported to the endoplasmic reticulum for modification and lipid assembly. Subsequently, lipophilic compounds are distributed within the cell, and thus are transported across most membrane systems. Membrane-intrinsic transporters and proteins for cellular FA/lipid transfer therefore represent key components for delivery and dissemination. In addition to highlighting their role in lipid homeostasis and plant performance, different transport mechanisms for land plants and green algae - in the model systems Arabidopsis thaliana, Chlamydomonas reinhardtii - are compared, thereby providing a current perspective on protein-mediated FA and lipid trafficking in photosynthetic cells.
Collapse
Affiliation(s)
- Nannan Li
- Research Center of Bioenergy and Bioremediation (RCBB), College of Resources and Environment, Southwest University, Beibei District, Chongqing, 400715, P.R. China
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973-5000, USA
| | - Yonghua Li-Beisson
- Institute of Environmental Biology and Biotechnology, The French Atomic and Alternative Energy Commission, Unité Mixte de Recherche 7265, Commissariat à l'Energie Atomique (CEA) Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Katrin Philippar
- Department of Biology I, Ludwig-Maximilians-University München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
71
|
Zhao G, Shi J, Liang W, Zhang D. ATP binding cassette G transporters and plant male reproduction. PLANT SIGNALING & BEHAVIOR 2016; 11:e1136764. [PMID: 26906115 PMCID: PMC4883977 DOI: 10.1080/15592324.2015.1136764] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 05/18/2023]
Abstract
The function of ATP Binding Cassette G (ABCG) transporters in the regulation of plant vegetative organs development has been well characterized in various plant species. In contrast, their function in reproductive development particularly male reproductive development received considerably less attention till some ABCG transporters was reported to be associated with anther and pollen wall development in Arabidopsis thaliana and rice (Oryza sativa) during the past decade. This mini-review summarizes current knowledge of ABCG transporters regarding to their roles in male reproduction and underlying genetic and biochemical mechanisms, which makes it evident that ABCG transporters represent one of those conserved and divergent components closely related to male reproduction in plants. This mini-review also discusses the current challenges and future perspectives in this particular field.
Collapse
Affiliation(s)
- Guochao Zhao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Center for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Center for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Center for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Center for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, South Australia, Australia
- Correspondence to: Guochao Zhao,
| |
Collapse
|
72
|
Aloisi I, Cai G, Serafini-Fracassini D, Del Duca S. Polyamines in Pollen: From Microsporogenesis to Fertilization. FRONTIERS IN PLANT SCIENCE 2016; 7:155. [PMID: 26925074 PMCID: PMC4757701 DOI: 10.3389/fpls.2016.00155] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/29/2016] [Indexed: 05/20/2023]
Abstract
The entire pollen life span is driven by polyamine (PA) homeostasis, achieved through fine regulation of their biosynthesis, oxidation, conjugation, compartmentalization, uptake, and release. The critical role of PAs, from microsporogenesis to pollen-pistil interaction during fertilization, is suggested by high and dynamic transcript levels of PA biosynthetic genes, as well as by the activities of the corresponding enzymes. Moreover, exogenous supply of PAs strongly affects pollen maturation and pollen tube elongation. A reduction of endogenous free PAs impacts pollen viability both in the early stages of pollen development and during fertilization. A number of studies have demonstrated that PAs largely function by modulating transcription, by structuring pollen cell wall, by modulating protein (mainly cytoskeletal) assembly as well as by modulating the level of reactive oxygen species. Both free low-molecular weight aliphatic PAs, and PAs conjugated to proteins and hydroxyl-cinnamic acids take part in these complex processes. Here, we review both historical and recent evidence regarding molecular events underlying the role of PAs during pollen development. In the concluding remarks, the outstanding issues and directions for future research that will further clarify our understanding of PA involvement during pollen life are outlined.
Collapse
Affiliation(s)
- Iris Aloisi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di BolognaBologna, Italia
| | - Giampiero Cai
- Dipartimento di Scienze della Vita, Università di SienaSiena, Italia
| | | | - Stefano Del Duca
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di BolognaBologna, Italia
- *Correspondence: Stefano Del Duca,
| |
Collapse
|
73
|
Shi J, Cui M, Yang L, Kim YJ, Zhang D. Genetic and Biochemical Mechanisms of Pollen Wall Development. TRENDS IN PLANT SCIENCE 2015; 20:741-753. [PMID: 26442683 DOI: 10.1016/j.tplants.2015.07.010] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/26/2015] [Accepted: 07/31/2015] [Indexed: 05/18/2023]
Abstract
The pollen wall is a specialized extracellular cell wall matrix that surrounds male gametophytes and plays an essential role in plant reproduction. Uncovering the mechanisms that control the synthesis and polymerization of the precursors of pollen wall components has been a major research focus in plant biology. We review current knowledge on the genetic and biochemical mechanisms underlying pollen wall development in eudicot model Arabidopsis thaliana and monocot model rice (Oryza sativa), focusing on the genes involved in the biosynthesis, transport, and assembly of various precursors of pollen wall components. The conserved and divergent aspects of the genes involved as well as their regulation are addressed. Current challenges and future perspectives are also highlighted.
Collapse
Affiliation(s)
- Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Meihua Cui
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Li Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yu-Jin Kim
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia.
| |
Collapse
|
74
|
Zhao G, Shi J, Liang W, Xue F, Luo Q, Zhu L, Qu G, Chen M, Schreiber L, Zhang D. Two ATP Binding Cassette G Transporters, Rice ATP Binding Cassette G26 and ATP Binding Cassette G15, Collaboratively Regulate Rice Male Reproduction. PLANT PHYSIOLOGY 2015; 169:2064-79. [PMID: 26392263 PMCID: PMC4634043 DOI: 10.1104/pp.15.00262] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 09/17/2015] [Indexed: 05/17/2023]
Abstract
Male reproduction in higher plants requires the support of various metabolites, including lipid molecules produced in the innermost anther wall layer (the tapetum), but how the molecules are allocated among different anther tissues remains largely unknown. Previously, rice (Oryza sativa) ATP binding cassette G15 (ABCG15) and its Arabidopsis (Arabidopsis thaliana) ortholog were shown to be required for pollen exine formation. Here, we report the significant role of OsABCG26 in regulating the development of anther cuticle and pollen exine together with OsABCG15 in rice. Cytological and chemical analyses indicate that osabcg26 shows reduced transport of lipidic molecules from tapetal cells for anther cuticle development. Supportively, the localization of OsABCG26 is on the plasma membrane of the anther wall layers. By contrast, OsABCG15 is polarly localized in tapetal plasma membrane facing anther locules. osabcg26 osabcg15 double mutant displays an almost complete absence of anther cuticle and pollen exine, similar to that of osabcg15 single mutant. Taken together, we propose that OsABCG26 and OsABCG15 collaboratively regulate rice male reproduction: OsABCG26 is mainly responsible for the transport of lipidic molecules from tapetal cells to anther wall layers, whereas OsABCG15 mainly is responsible for the export of lipidic molecules from the tapetal cells to anther locules for pollen exine development.
Collapse
Affiliation(s)
- Guochao Zhao
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Jianxin Shi
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Feiyang Xue
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Qian Luo
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Lu Zhu
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Guorun Qu
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Mingjiao Chen
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Lukas Schreiber
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| |
Collapse
|
75
|
Fellenberg C, Vogt T. Evolutionarily conserved phenylpropanoid pattern on angiosperm pollen. TRENDS IN PLANT SCIENCE 2015; 20:212-8. [PMID: 25739656 DOI: 10.1016/j.tplants.2015.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/27/2015] [Accepted: 01/31/2015] [Indexed: 05/22/2023]
Abstract
The male gametophyte of higher plants appears as a solid box containing the essentials to transmit genetic material to the next generation. These consist of haploid generative cells that are required for reproduction, and an invasive vegetative cell producing the pollen tube, both mechanically protected by a rigid polymer, the pollen wall, and surrounded by a hydrophobic pollen coat. This coat mediates the direct contact to the biotic and abiotic environments. It contains a mixture of compounds required not only for fertilization but also for protection against biotic and abiotic stressors. Among its metabolites, the structural characteristics of two types of phenylpropanoids, hydroxycinnamic acid amides and flavonol glycosides, are highly conserved in Angiosperm pollen. Structural and functional aspects of these compounds will be discussed.
Collapse
Affiliation(s)
- Christin Fellenberg
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, Weinberg 3, 06120 Halle (Saale), Germany; Department of Biology, Centre for Forest Biology, University of Victoria, Station CSC, Box 3020, Victoria, BC V8W 3N5, Canada
| | - Thomas Vogt
- Leibniz Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, Weinberg 3, 06120 Halle (Saale), Germany.
| |
Collapse
|