51
|
Shi Q, Mao Z, Zhang X, Ling J, Lin R, Zhang X, Liu R, Wang Y, Yang Y, Cheng X, Xie B. The Novel Secreted Meloidogyne incognita Effector MiISE6 Targets the Host Nucleus and Facilitates Parasitism in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:252. [PMID: 29628931 PMCID: PMC5876317 DOI: 10.3389/fpls.2018.00252] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/12/2018] [Indexed: 05/16/2023]
Abstract
Meloidogyne incognita is highly specialized parasite that interacts with host plants using a range of strategies. The effectors are synthesized in the esophageal glands and secreted into plant cells through a needle-like stylet during parasitism. In this study, based on RNA-seq and bioinformatics analysis, we predicted 110 putative Meloidogyne incognita effectors that contain nuclear localization signals (NLSs). Combining the Burkholderia glumae-pEDV based screening system with subcellular localization, from 20 randomly selected NLS effector candidates, we identified an effector MiISE6 that can effectively suppress B. glumae-induced cell death in Nicotiana benthamiana, targets to the nuclei of plant cells, and is highly expressed in early parasitic J2 stage. Sequence analysis showed that MiISE6 is a 157-amino acid peptide, with an OGFr_N domain and two NLS motifs. Hybridization in situ verified that MiISE6 is expressed in the subventral esophageal glands. Yeast invertase secretion assay validated the function of the signal peptide harbored in MiISE6. Transgenic Arabidopsis thaliana plants expressing MiISE6 become more susceptible to M. incognita. Inversely, the host-derived RNAi of MiISE6 of the nematode can decrease its parasitism on host. Based on transcriptome analysis of the MiISE6 transgenic Arabidopsis samples and the wild-type samples, we obtained 852 differentially expressed genes (DEGs). Integrating Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, we found that expression of MiISE6 in Arabidopsis can suppress jasmonate signaling pathway. In addition, the expression of genes related to cell wall modification and the ubiquitination proteasome pathway also have detectable changes in the transgenic plants. Results from the present study suggest that MiISE6 is involved in interaction between nematode-plant, and plays an important role during the early stages of parasitism by interfering multiple signaling pathways of plant. Moreover, we found homologs of MiISE6 in other sedentary nematodes, Meloidogyne hapla and Globodera pallida. Our experimental results provide evidence to decipher the molecular mechanisms underlying the manipulation of host immune defense responses by plant parasitic nematodes, and transcriptome data also provide useful information for further study nematode-plant interactions.
Collapse
Affiliation(s)
- Qianqian Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Pathology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, China
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoping Zhang
- School of Medical Science, Chifeng University, Chifeng, China
| | - Jian Ling
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xi Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Rui Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunsheng Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinyue Cheng
- College of Life Sciences, Beijing Normal University, Beijing, China
- *Correspondence: Bingyan Xie, Xinyue Cheng,
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Bingyan Xie, Xinyue Cheng,
| |
Collapse
|
52
|
Xu W, Huang W. Calcium-Dependent Protein Kinases in Phytohormone Signaling Pathways. Int J Mol Sci 2017; 18:ijms18112436. [PMID: 29156607 PMCID: PMC5713403 DOI: 10.3390/ijms18112436] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/07/2017] [Accepted: 11/12/2017] [Indexed: 02/06/2023] Open
Abstract
Calcium-dependent protein kinases (CPKs/CDPKs) are Ca2+-sensors that decode Ca2+ signals into specific physiological responses. Research has reported that CDPKs constitute a large multigene family in various plant species, and play diverse roles in plant growth, development, and stress responses. Although numerous CDPKs have been exhaustively studied, and many of them have been found to be involved in plant hormone biosynthesis and response mechanisms, a comprehensive overview of the manner in which CDPKs participate in phytohormone signaling pathways, regulating nearly all aspects of plant growth, has not yet been undertaken. In this article, we reviewed the structure of CDPKs and the mechanism of their subcellular localization. Some CDPKs were elucidated to influence the intracellular localization of their substrates. Since little work has been done on the interaction between CDPKs and cytokinin signaling pathways, or on newly defined phytohormones such as brassinosteroids, strigolactones and salicylic acid, this paper mainly focused on discussing the integral associations between CDPKs and five plant hormones: auxins, gibberellins, ethylene, jasmonates, and abscisic acid. A perspective on future work is provided at the end.
Collapse
Affiliation(s)
- Wuwu Xu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration & Innovation Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration & Innovation Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
53
|
Yuan P, Jauregui E, Du L, Tanaka K, Poovaiah BW. Calcium signatures and signaling events orchestrate plant-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2017; 38:173-183. [PMID: 28692858 DOI: 10.1016/j.pbi.2017.06.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 05/20/2023]
Abstract
Calcium (Ca2+) acts as an essential second messenger connecting the perception of microbe signals to the establishment of appropriate immune and symbiotic responses in plants. Accumulating evidence suggests that plants distinguish different microorganisms through plasma membrane-localized pattern recognition receptors. The particular recognition events are encoded into Ca2+ signatures, which are sensed by diverse intracellular Ca2+ binding proteins. The Ca2+ signatures are eventually decoded to distinct downstream responses through transcriptional reprogramming of the defense or symbiosis-related genes. Recent observations further reveal that Ca2+-mediated signaling is also involved in negative regulation of plant immunity. This review is intended as an overview of Ca2+ signaling during immunity and symbiosis, including Ca2+ responses in the nucleus and cytosol.
Collapse
Affiliation(s)
- Peiguo Yuan
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Edgard Jauregui
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | - Liqun Du
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China.
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - B W Poovaiah
- Laboratory of Molecular Plant Science, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA.
| |
Collapse
|
54
|
Li Y, Meng J, Yang S, Guo F, Zhang J, Geng Y, Cui L, Wan S, Li X. Transcriptome Analysis of Calcium- and Hormone-Related Gene Expressions during Different Stages of Peanut Pod Development. FRONTIERS IN PLANT SCIENCE 2017; 8:1241. [PMID: 28769950 PMCID: PMC5510571 DOI: 10.3389/fpls.2017.01241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/30/2017] [Indexed: 05/22/2023]
Abstract
Peanut is one of the calciphilous plants. Calcium serves as a ubiquitous central hub in a large number of signaling pathways. In the field, free calcium ion (Ca2+)-deficient soil can result in unfilled pods. Four pod stages were analyzed to determine the relationship between Ca2+ excretion and pod development. Peanut shells showed Ca2+ excretion at all four stages; however, both the embryo of Stage 4 (S4) and the red skin of Stage 3 (S3) showed Ca2+ absorbance. These results showed that embryo and red skin of peanut need Ca2+ during development. In order to survey the relationship among calcium, hormone and seed development from gene perspective, we further analyzed the seed transcriptome at Stage 2 (S2), S3, and S4. About 70 million high quality clean reads were generated, which were assembled into 58,147 unigenes. By comparing these three stages, total 4,457 differentially expressed genes were identified. In these genes, 53 Ca2+ related genes, 40 auxin related genes, 15 gibberellin genes, 20 ethylene related genes, 2 abscisic acid related genes, and 7 cytokinin related genes were identified. Additionally, a part of them were validated by qRT-PCR. Most of their expressions changed during the pod development. Since some reports showed that Ca2+ signal transduction pathway is involved in hormone regulation pathway, these results implied that peanut seed development might be regulated by the collaboration of Ca2+ signal transduction pathway and hormone regulation pathway.
Collapse
Affiliation(s)
- Yan Li
- Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Jingjing Meng
- Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Sha Yang
- Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Feng Guo
- Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Jialei Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Yun Geng
- Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Li Cui
- Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| | - Shubo Wan
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural SciencesJinan, China
| | - Xinguo Li
- Biotechnology Research Center, Shandong Academy of Agricultural SciencesJinan, China
| |
Collapse
|
55
|
Jin Y, Ye N, Zhu F, Li H, Wang J, Jiang L, Zhang J. Calcium-dependent protein kinase CPK28 targets the methionine adenosyltransferases for degradation by the 26S proteasome and affects ethylene biosynthesis and lignin deposition in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:304-318. [PMID: 28112445 DOI: 10.1111/tpj.13493] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 12/30/2016] [Accepted: 01/11/2017] [Indexed: 05/26/2023]
Abstract
S-adenosylmethionine (AdoMet) is synthesized by methionine adenosyltransferase (MAT), and plays an essential role in ethylene biosynthesis and other methylation reactions. Despite increasing knowledge of MAT regulation at transcriptional levels, how MAT is post-translationally regulated remains unknown in plant cells. Phosphorylation is an important post-translational modification for regulating the activity of enzymes, protein function and signaling transduction. Using molecular and biochemical approaches, we have identified the phosphorylation of MAT proteins by calcium-dependent protein kinase (CPK28). Phenotypically, both MAT2-overexpressing transgenic plants and cpk28 mutants display short hypocotyls and ectopic lignifications. Their shortened hypocotyl phenotypes are caused by ethylene overproduction and rescued by ethylene biosynthesis inhibitor aminoethoxyvinylglycine treatment. Genetic evidence reveals that MAT2 mutation restores the phenotype of ectopic lignification in CPK28-deficient plants. We find that total MAT proteins and AdoMet are increased in cpk28 mutants, but decreased in CPK28-overexpressing seedlings. We also find that MATs in OE::CPK28 are degraded through the 26S proteasome pathway. Our work suggests that CPK28 targets MATs (MAT1, MAT2 and MAT3) for degradation by the 26S proteasome pathway, and thus affects ethylene biosynthesis and lignin deposition in Arabidopsis.
Collapse
Affiliation(s)
- Yu Jin
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Nenghui Ye
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuyuan Zhu
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Haoxuan Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Juan Wang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
56
|
A salivary EF-hand calcium-binding protein of the brown planthopper Nilaparvata lugens functions as an effector for defense responses in rice. Sci Rep 2017; 7:40498. [PMID: 28098179 PMCID: PMC5241783 DOI: 10.1038/srep40498] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), a major pest of rice in Asia, is able to successfully puncture sieve tubes in rice with its piercing stylet and then to ingest phloem sap. How BPH manages to continuously feed on rice remains unclear. Here, we cloned the gene NlSEF1, which is highly expressed in the salivary glands of BPH. The NlSEF1 protein has EF-hand Ca2+-binding activity and can be secreted into rice plants when BPH feed. Infestation of rice by BPH nymphs whose NlSEF1 was knocked down elicited higher levels of Ca2+ and H2O2 but not jasmonic acid, jasmonoyl-isoleucine (JA-Ile) and SA in rice than did infestation by control nymphs; Consistently, wounding plus the recombination protein NlSEF1 suppressed the production of H2O2 in rice. Bioassays revealed that NlSEF1-knockdown BPH nymphs had a higher mortality rate and lower feeding capacity on rice than control nymphs. These results indicate that the salivary protein in BPH, NlSEF1, functions as an effector and plays important roles in interactions between BPH and rice by mediating the plant’s defense responses.
Collapse
|
57
|
Cosme M, Lu J, Erb M, Stout MJ, Franken P, Wurst S. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling. THE NEW PHYTOLOGIST 2016; 211:1065-76. [PMID: 27061745 PMCID: PMC5071772 DOI: 10.1111/nph.13957] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 02/25/2016] [Indexed: 05/02/2023]
Abstract
Plant-microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water weevil (RWW; Lissorhoptrus oryzophilus), and how plant jasmonic acid (JA) and GA regulate this tripartite interaction. Glasshouse experiments with wild-type rice and coi1-18 and Eui1-OX mutants combined with nutrient, jasmonate and gene expression analyses were used to test: whether RWW adult herbivory above ground influences subsequent damage caused by larval herbivory below ground; whether P. indica protects plants against RWW; and whether GA and JA signaling mediate these interactions. The endophyte induced plant tolerance to root herbivory. RWW adults and larvae acted synergistically via JA signaling to reduce root growth, while endophyte-elicited GA biosynthesis suppressed the herbivore-induced JA in roots and recovered plant growth. Our study shows for the first time the impact of a root endophyte on plant defense against below-ground herbivores, adds to growing evidence that induced tolerance may be an important root defense, and implicates GA as a signal component of inducible plant tolerance against biotic stress.
Collapse
Affiliation(s)
- Marco Cosme
- Functional BiodiversityDahlem Center of Plant SciencesInstitute of BiologyFreie Universität BerlinKönigin‐Luise‐Straße 1–314195BerlinGermany
- Department of Plant PropagationLeibniz‐Institute of Vegetable and Ornamental CropsKühnhäuser Straße 10199090Erfurt‐KühnhausenGermany
- Plant–Microbe InteractionsDepartment of BiologyFaculty of ScienceUtrecht UniversityPO Box 800.563508 TBUtrechtthe Netherlands
| | - Jing Lu
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knoell‐Str. 807745JenaGermany
- Institute of Insect ScienceZijingang CampusZhejiang UniversityYuhangtang Road 866Hangzhou310058China
| | - Matthias Erb
- Department of BiochemistryMax Planck Institute for Chemical EcologyHans‐Knoell‐Str. 807745JenaGermany
- Institute of Plant SciencesUniversity of BernAltenbergrain 213013BernSwitzerland
| | - Michael Joseph Stout
- Department of EntomologyLouisiana State University Agricultural Center404 Life Sciences BuildingBaton RougeLA70803USA
| | - Philipp Franken
- Department of Plant PropagationLeibniz‐Institute of Vegetable and Ornamental CropsKühnhäuser Straße 10199090Erfurt‐KühnhausenGermany
- Department of Plant PhysiologyHumboldt Universität zu BerlinPhilippstrasse 1310115BerlinGermany
| | - Susanne Wurst
- Functional BiodiversityDahlem Center of Plant SciencesInstitute of BiologyFreie Universität BerlinKönigin‐Luise‐Straße 1–314195BerlinGermany
| |
Collapse
|
58
|
Berriri S, Gangappa SN, Kumar SV. SWR1 Chromatin-Remodeling Complex Subunits and H2A.Z Have Non-overlapping Functions in Immunity and Gene Regulation in Arabidopsis. MOLECULAR PLANT 2016; 9:1051-65. [PMID: 27131447 PMCID: PMC4938710 DOI: 10.1016/j.molp.2016.04.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/28/2016] [Accepted: 04/10/2016] [Indexed: 05/17/2023]
Abstract
Incorporation of the histone variant H2A.Z into nucleosomes by the SWR1 chromatin remodeling complex is a critical step in eukaryotic gene regulation. In Arabidopsis, SWR1c and H2A.Z have been shown to control gene expression underlying development and environmental responses. Although they have been implicated in defense, the specific roles of the complex subunits and H2A.Z in immunity are not well understood. In this study, we analyzed the roles of the SWR1c subunits, PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 (PIE1), ACTIN-RELATED PROTEIN6 (ARP6), and SWR1 COMPLEX 6 (SWC6), as well as H2A.Z, in defense and gene regulation. We found that SWR1c components play different roles in resistance to different pathogens. Loss of PIE1 and SWC6 function as well as depletion of H2A.Z led to reduced basal resistance, while loss of ARP6 fucntion resulted in enhanced resistance. We found that mutations in PIE1 and SWC6 resulted in impaired effector-triggered immunity. Mutation in SWR1c components and H2A.Z also resulted in compromised jasmonic acid/ethylene-mediated immunity. Genome-wide expression analyses similarly reveal distinct roles for H2A.Z and SWR1c components in gene regulation, and suggest a potential role for PIE1 in the regulation of the cross talk between defense signaling pathways. Our data show that although they are part of the same complex, Arabidopsis SWR1c components could have non-redundant functions in plant immunity and gene regulation.
Collapse
Affiliation(s)
- Souha Berriri
- Cell and Developmental Biology Department, John Innes Centre, Norwich NR4 7UH, UK
| | | | - S Vinod Kumar
- Cell and Developmental Biology Department, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
59
|
Simeunovic A, Mair A, Wurzinger B, Teige M. Know where your clients are: subcellular localization and targets of calcium-dependent protein kinases. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3855-72. [PMID: 27117335 DOI: 10.1093/jxb/erw157] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are at the forefront of decoding transient Ca(2+) signals into physiological responses. They play a pivotal role in many aspects of plant life starting from pollen tube growth, during plant development, and in stress response to senescence and cell death. At the cellular level, Ca(2+) signals have a distinct, narrow distribution, thus requiring a conjoined localization of the decoders. Accordingly, most CDPKs have a distinct subcellular distribution which enables them to 'sense' the local Ca(2+) concentration and to interact specifically with their targets. Here we present a comprehensive overview of identified CDPK targets and discuss them in the context of kinase-substrate specificity and subcellular distribution of the CDPKs. This is particularly relevant for calcium-mediated phosphorylation where different CDPKs, as well as other kinases, were frequently reported to be involved in the regulation of the same target. However, often these studies were not performed in an in situ context. Thus, considering the specific expression patterns, distinct subcellular distribution, and different Ca(2+) affinities of CDPKs will narrow down the number of potential CDPKs for one given target. A number of aspects still remain unresolved, giving rise to pending questions for future research.
Collapse
Affiliation(s)
- Andrea Simeunovic
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Andrea Mair
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Bernhard Wurzinger
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| |
Collapse
|
60
|
Lu M, Zhang Y, Tang S, Pan J, Yu Y, Han J, Li Y, Du X, Nan Z, Sun Q. AtCNGC2 is involved in jasmonic acid-induced calcium mobilization. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:809-19. [PMID: 26608645 DOI: 10.1093/jxb/erv500] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Calcium (Ca(2+)) mobilization is a central theme in various plant signal transduction pathways. We demonstrate that Arabidopsis thaliana cyclic nucleotide-gated channel 2 (AtCNGC2) is involved in jasmonic acid (JA)-induced apoplastic Ca(2+) influx in Arabidopsis epidermal cells. Ca(2+) imaging results showed that JA can induce an elevation in the cytosolic cAMP concentration ([cAMP]cyt), reaching a maximum within 3 min. Dibutyryl cAMP (db-cAMP), a cell membrane-permeable analogue of cAMP, induced an increase in the cytosolic Ca(2+) concentration ([Ca(2+)]cyt), with a peak at 4 min. This [Ca(2+)]cyt increase was triggered by the JA-induced increase in [cAMP]cyt. W-7[N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide], an antagonist of calmodulin, positively modulated the JA-induced increase in [Ca(2+)]cyt, while W-5[N-(6-aminohexyl)-1-naphthalenesulfonamide], an inactive antagonist of calmodulin, had no apparent effect. db-cAMP and JA positively induced the expression of primary (i.e. JAZ1 and MYC2) and secondary (i.e. VSP1) response genes in the JA signalling pathway in wild-type Arabidopsis thaliana, whereas they had no significant effect in the AtCNGC2 mutant 'defense, no death (dnd1) plants. These data provide evidence that JA first induces the elevation of cAMP, and cAMP, as an activating ligand, activates the AtCNGC2 channel, resulting in apoplastic Ca(2+) influx through AtCNGC2.
Collapse
Affiliation(s)
- Min Lu
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yanyan Zhang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Shikun Tang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Jinbao Pan
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yongkun Yu
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Jun Han
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yangyang Li
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China School of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xihua Du
- School of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhangjie Nan
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Qingpeng Sun
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
61
|
Lin YT, Chen LJ, Herrfurth C, Feussner I, Li HM. Reduced Biosynthesis of Digalactosyldiacylglycerol, a Major Chloroplast Membrane Lipid, Leads to Oxylipin Overproduction and Phloem Cap Lignification in Arabidopsis. THE PLANT CELL 2016; 28:219-32. [PMID: 26721860 PMCID: PMC4746690 DOI: 10.1105/tpc.15.01002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 05/20/2023]
Abstract
DIGALACTOSYLDIACYLGLYCEROL SYNTHASE1 (DGD1) is a chloroplast outer membrane protein responsible for the biosynthesis of the lipid digalactosyldiacylglycerol (DGDG) from monogalactosyldiacylglycerol (MGDG). The Arabidopsis thaliana dgd1 mutants have a greater than 90% reduction in DGDG content, reduced photosynthesis, and altered chloroplast morphology. However, the most pronounced visible phenotype is the extremely short inflorescence stem, but how deficient DGDG biosynthesis causes this phenotype is unclear. We found that, in dgd1 mutants, phloem cap cells were lignified and jasmonic acid (JA)-responsive genes were highly upregulated under normal growth conditions. The coronative insensitive1 dgd1 and allene oxide synthase dgd1 double mutants no longer exhibited the short inflorescence stem and lignification phenotypes but still had the same lipid profile and reduced photosynthesis as dgd1 single mutants. Hormone and lipidomics analyses showed higher levels of JA, JA-isoleucine, 12-oxo-phytodienoic acid, and arabidopsides in dgd1 mutants. Transcript and protein level analyses further suggest that JA biosynthesis in dgd1 is initially activated through the increased expression of genes encoding 13-lipoxygenases (LOXs) and phospholipase A-Iγ3 (At1g51440), a plastid lipase with a high substrate preference for MGDG, and is sustained by further increases in LOX and allene oxide cyclase mRNA and protein levels. Our results demonstrate a link between the biosynthesis of DGDG and JA.
Collapse
Affiliation(s)
- Yang-Tsung Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Lih-Jen Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Cornelia Herrfurth
- Georg-August-University Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany
| | - Ivo Feussner
- Georg-August-University Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany Georg-August-University Goettingen, Goettingen Center for Molecular Biosciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany
| | - Hsou-Min Li
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
62
|
Hu Z, Lv X, Xia X, Zhou J, Shi K, Yu J, Zhou Y. Genome-Wide Identification and Expression Analysis of Calcium-dependent Protein Kinase in Tomato. FRONTIERS IN PLANT SCIENCE 2016; 7:469. [PMID: 27092168 PMCID: PMC4824780 DOI: 10.3389/fpls.2016.00469] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/24/2016] [Indexed: 05/04/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) play critical roles in regulating growth, development and stress response in plants. Information about CDPKs in tomato, however, remains obscure although it is one of the most important model crops in the world. In this study, we performed a bioinformatics analysis of the entire tomato genome and identified 29 CDPK genes. These CDPK genes are found to be located in 12 chromosomes, and could be divided into four groups. Analysis of the gene structure and splicing site reflected high structure conservation within different CDPK gene groups both in the exon-intron pattern and mRNA splicing. Transcripts of most CDPK genes varied with plant organs and developmental stages and their transcripts could be differentially induced by abscisic acid (ABA), brassinosteroids (BRs), methyl jasmonate (MeJA), and salicylic acid (SA), as well as after exposure to heat, cold, and drought, respectively. To our knowledge, this is the first report about the genome-wide analysis of the CDPK gene family in tomato, and the findings obtained offer a clue to the elaborated regulatory role of CDPKs in plant growth, development and stress response in tomato.
Collapse
Affiliation(s)
- Zhangjian Hu
- Department of Horticulture, Zhejiang University Hangzhou, China
| | - Xiangzhang Lv
- Department of Horticulture, Zhejiang University Hangzhou, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang University Hangzhou, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University Hangzhou, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang UniversityHangzhou, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang UniversityHangzhou, China; Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhou, China
| |
Collapse
|
63
|
Tamaki H, Reguera M, Abdel-Tawab YM, Takebayashi Y, Kasahara H, Blumwald E. Targeting Hormone-Related Pathways to Improve Grain Yield in Rice: A Chemical Approach. PLoS One 2015; 10:e0131213. [PMID: 26098557 PMCID: PMC4476611 DOI: 10.1371/journal.pone.0131213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/29/2015] [Indexed: 01/18/2023] Open
Abstract
Sink/source relationships, regulating the mobilization of stored carbohydrates from the vegetative tissues to the grains, are of key importance for grain filling and grain yield. We used different inhibitors of plant hormone action to assess their effects on grain yield and on the expression of hormone-associated genes. Among the tested chemicals, 2-indol-3-yl-4-oxo-4-phenylbutanoic acid (PEO-IAA; antagonist of auxin receptor), nordihydroguaiaretic acid (NDGA; abscisic acid (ABA) biosynthesis inhibitor), and 2-aminoisobutyric acid (AIB; ethylene biosynthesis inhibitor) improved grain yield in a concentration dependent manner. These effects were also dependent on the plant developmental stage. NDGA and AIB treatments induced an increase in photosynthesis in flag leaves concomitant to the increments of starch content in flag leaves and grains. NDGA inhibited the expression of ABA-responsive gene, but did not significantly decrease ABA content. Instead, NDGA significantly decreased jasmonic acid and jasmonic acid-isoleucine. Our results support the notion that the specific inhibition of jasmonic acid and ethylene biosynthesis resulted in grain yield increase in rice.
Collapse
Affiliation(s)
- Hiroaki Tamaki
- Department of Plant Sciences, University of California Davis, Davis, California 95616, United States of America
- Health and Crop Sciences Research Laboratory, Sumitomo Chemical Co. Ltd., Hyogo 665–8555, Japan
| | - Maria Reguera
- Department of Plant Sciences, University of California Davis, Davis, California 95616, United States of America
| | - Yasser M. Abdel-Tawab
- Department of Plant Sciences, University of California Davis, Davis, California 95616, United States of America
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230–0045, Japan
| | - Hiroyuki Kasahara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230–0045, Japan
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California Davis, Davis, California 95616, United States of America
- * E-mail:
| |
Collapse
|