51
|
van Doan C, Züst T, Maurer C, Zhang X, Machado RAR, Mateo P, Ye M, Schimmel BCJ, Glauser G, Robert CAM. Herbivore-induced plant volatiles mediate defense regulation in maize leaves but not in maize roots. PLANT, CELL & ENVIRONMENT 2021; 44:2672-2686. [PMID: 33748996 PMCID: PMC8360093 DOI: 10.1111/pce.14052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 05/26/2023]
Abstract
Plant leaves that are exposed to herbivore-induced plant volatiles (HIPVs) respond by increasing their defenses, a phenomenon referred to as priming. Whether this phenomenon also occurs in the roots is unknown. Using maize plants, Zea mays, whose leaves respond strongly to leaf HIPVs, we measured the impact of belowground HIPVs, emanating from roots infested by the banded cucumber beetle, Diabrotica balteata, on constitutive and herbivore-induced levels of defense-related gene expression, phytohormones, volatile and non-volatile primary and secondary metabolites, growth and herbivore resistance in roots of neighbouring plants. HIPV exposure did not increase constitutive or induced levels of any of the measured root traits. Furthermore, HIPV exposure did not reduce the performance or survival of D. balteata on maize or its ancestor teosinte. Cross-exposure experiments between HIPVs from roots and leaves revealed that maize roots, in contrast to maize leaves, neither emit nor respond strongly to defense-regulating HIPVs. Together, these results demonstrate that volatile-mediated defense regulation is restricted to the leaves of maize. This finding is in line with the lower diffusibility of volatiles in the soil and the availability of other, potentially more efficient, information conduits below ground.
Collapse
Affiliation(s)
- Cong van Doan
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change Research (OCCR)University of BernBernSwitzerland
| | - Tobias Züst
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Corina Maurer
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Xi Zhang
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | | | - Pierre Mateo
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Meng Ye
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | | | - Gaétan Glauser
- Neuchâtel Platform of Analytical ChemistryUniversité de NeuchâtelNeuchâtelSwitzerland
| | - Christelle A. M. Robert
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change Research (OCCR)University of BernBernSwitzerland
| |
Collapse
|
52
|
Cadot S, Guan H, Bigalke M, Walser JC, Jander G, Erb M, van der Heijden MGA, Schlaeppi K. Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. MICROBIOME 2021; 9:103. [PMID: 33962687 DOI: 10.1101/2020.05.03.075135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/15/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plants influence their root and rhizosphere microbial communities through the secretion of root exudates. However, how specific classes of root exudate compounds impact the assembly of root-associated microbiotas is not well understood, especially not under realistic field conditions. Maize roots secrete benzoxazinoids (BXs), a class of indole-derived defense compounds, and thereby impact the assembly of their microbiota. Here, we investigated the broader impacts of BX exudation on root and rhizosphere microbiotas of adult maize plants grown under natural conditions at different field locations in Europe and the USA. We examined the microbiotas of BX-producing and multiple BX-defective lines in two genetic backgrounds across three soils with different properties. RESULTS Our analysis showed that BX secretion affected the community composition of the rhizosphere and root microbiota, with the most pronounced effects observed for root fungi. The impact of BX exudation was at least as strong as the genetic background, suggesting that BX exudation is a key trait by which maize structures its associated microbiota. BX-producing plants were not consistently enriching microbial lineages across the three field experiments. However, BX exudation consistently depleted Flavobacteriaceae and Comamonadaceae and enriched various potential plant pathogenic fungi in the roots across the different environments. CONCLUSIONS These findings reveal that BXs have a selective impact on root and rhizosphere microbiota composition across different conditions. Taken together, this study identifies the BX pathway as an interesting breeding target to manipulate plant-microbiome interactions. Video Abstract.
Collapse
Affiliation(s)
- Selma Cadot
- Division of Agroecology and Environment, Agroscope, Zurich, Switzerland
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, 4056, Basel, Switzerland
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Hang Guan
- Institute of Geography, University of Bern, Bern, Switzerland
| | - Moritz Bigalke
- Institute of Geography, University of Bern, Bern, Switzerland
| | | | | | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Marcel G A van der Heijden
- Division of Agroecology and Environment, Agroscope, Zurich, Switzerland
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Klaus Schlaeppi
- Division of Agroecology and Environment, Agroscope, Zurich, Switzerland.
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, 4056, Basel, Switzerland.
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
53
|
Cadot S, Guan H, Bigalke M, Walser JC, Jander G, Erb M, van der Heijden MGA, Schlaeppi K. Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. MICROBIOME 2021; 9:103. [PMID: 33962687 PMCID: PMC8106187 DOI: 10.1186/s40168-021-01049-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/15/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Plants influence their root and rhizosphere microbial communities through the secretion of root exudates. However, how specific classes of root exudate compounds impact the assembly of root-associated microbiotas is not well understood, especially not under realistic field conditions. Maize roots secrete benzoxazinoids (BXs), a class of indole-derived defense compounds, and thereby impact the assembly of their microbiota. Here, we investigated the broader impacts of BX exudation on root and rhizosphere microbiotas of adult maize plants grown under natural conditions at different field locations in Europe and the USA. We examined the microbiotas of BX-producing and multiple BX-defective lines in two genetic backgrounds across three soils with different properties. RESULTS Our analysis showed that BX secretion affected the community composition of the rhizosphere and root microbiota, with the most pronounced effects observed for root fungi. The impact of BX exudation was at least as strong as the genetic background, suggesting that BX exudation is a key trait by which maize structures its associated microbiota. BX-producing plants were not consistently enriching microbial lineages across the three field experiments. However, BX exudation consistently depleted Flavobacteriaceae and Comamonadaceae and enriched various potential plant pathogenic fungi in the roots across the different environments. CONCLUSIONS These findings reveal that BXs have a selective impact on root and rhizosphere microbiota composition across different conditions. Taken together, this study identifies the BX pathway as an interesting breeding target to manipulate plant-microbiome interactions. Video Abstract.
Collapse
Affiliation(s)
- Selma Cadot
- Division of Agroecology and Environment, Agroscope, Zurich, Switzerland
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, 4056, Basel, Switzerland
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Hang Guan
- Institute of Geography, University of Bern, Bern, Switzerland
| | - Moritz Bigalke
- Institute of Geography, University of Bern, Bern, Switzerland
| | | | | | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Marcel G A van der Heijden
- Division of Agroecology and Environment, Agroscope, Zurich, Switzerland
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Klaus Schlaeppi
- Division of Agroecology and Environment, Agroscope, Zurich, Switzerland.
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, 4056, Basel, Switzerland.
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
54
|
Malook SU, Xu Y, Qi J, Li J, Wang L, Wu J. Mythimna separata herbivory primes maize resistance in systemic leaves. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3792-3805. [PMID: 33647931 PMCID: PMC8096606 DOI: 10.1093/jxb/erab083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Biotic and abiotic cues can trigger priming in plants, which enables plants to respond to subsequent challenge with stronger and/or faster responses. It is well known that herbivory activates defense-related responses in systemic leaves. However, little is known about whether insect feeding activates priming in systemic leaves. To determine whether and how herbivory induces priming in maize systemic leaves, a combination of insect bioassays, phytohormone and defense metabolite quantification, and genetic and transcriptome analyses were performed. Actual and simulated Mythimna separata herbivory in maize local leaves primed the systemic leaves for enhanced accumulation of jasmonic acid and benzoxazinoids and increased resistance to M. separata. Activation of priming in maize systemic leaves depends on both the duration of simulated herbivory and perception of M. separata oral secretions in the local leaves, and genetic analysis indicated that jasmonic acid and benzoxazinoids mediate the primed defenses in systemic leaves. Consistently, in response to simulated herbivory, the primed systemic leaves exhibited a large number of genes that were uniquely regulated or showed further up- or down-regulation compared with the non-primed systemic leaves. This study provides new insight into the regulation and ecological function of priming in maize.
Collapse
Affiliation(s)
- Saif ul Malook
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
55
|
Sharifi R, Ryu C. Social networking in crop plants: Wired and wireless cross-plant communications. PLANT, CELL & ENVIRONMENT 2021; 44:1095-1110. [PMID: 33274469 PMCID: PMC8049059 DOI: 10.1111/pce.13966] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 05/03/2023]
Abstract
The plant-associated microbial community (microbiome) has an important role in plant-plant communications. Plants decipher their complex habitat situations by sensing the environmental stimuli and molecular patterns and associated with microbes, herbivores and dangers. Perception of these cues generates inter/intracellular signals that induce modifications of plant metabolism and physiology. Signals can also be transferred between plants via different mechanisms, which we classify as wired- and wireless communications. Wired communications involve direct signal transfers between plants mediated by mycorrhizal hyphae and parasitic plant stems. Wireless communications involve plant volatile emissions and root exudates elicited by microbes/insects, which enable inter-plant signalling without physical contact. These producer-plant signals induce microbiome adaptation in receiver plants via facilitative or competitive mechanisms. Receiver plants eavesdrop to anticipate responses to improve fitness against stresses. An emerging body of information in plant-plant communication can be leveraged to improve integrated crop management under field conditions.
Collapse
Affiliation(s)
- Rouhallah Sharifi
- Department of Plant ProtectionCollege of Agriculture and Natural Resources, Razi UniversityKermanshahIran
| | - Choong‐Min Ryu
- Molecular Phytobacteriology LaboratoryInfectious Disease Research Center, KRIBBDaejeonSouth Korea
- Biosystem and Bioengineering ProgramUniversity of Science and Technology (UST)DaejeonSouth Korea
| |
Collapse
|
56
|
Ye M, Liu M, Erb M, Glauser G, Zhang J, Li X, Sun X. Indole primes defence signalling and increases herbivore resistance in tea plants. PLANT, CELL & ENVIRONMENT 2021; 44:1165-1177. [PMID: 32996129 DOI: 10.1111/pce.13897] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 05/12/2023]
Abstract
Upon herbivore attack, plants emit herbivore-induced plant volatiles (HIPVs). HIPVs can prime defences and resistance of intact plants. However, how HIPVs are decoded and translated into functional defence responses is not well understood, especially in long-lived woody plants. Here, we investigated the impact of the aromatic HIPV indole on defence-related early signalling, phytohormone accumulation, secondary metabolite biosynthesis and herbivore resistance in tea plants. We find that tea plants infested with tea geometrid caterpillars release indole at concentrations >450 ng*hr-1 . Exposure to corresponding doses of synthetic indole primes the expression of early defence genes involved in calcium (Ca2+ ) signalling, MPK signalling and jasmonate biosynthesis. Indole exposure also primes the production of jasmonates and defence-related secondary metabolites. These changes are associated with higher herbivore resistance of indole-exposed tea plants. Chemical inhibition of Ca2+ and jasmonate signalling provides evidence that both are required for indole-mediated defence priming and herbivore resistance. Our systematic assessment of the impact of indole on defence signalling and deployment shows that indole acts by boosting Ca2+ signalling, resulting in enhanced jasmonate-dependent defence and resistance in a woody plant. Our work extends the molecular basis of HIPV-induced defence priming from annual plants to an economically important tree species.
Collapse
Affiliation(s)
- Meng Ye
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Miaomiao Liu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jin Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xiwang Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoling Sun
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
57
|
Hu L, Zhang K, Wu Z, Xu J, Erb M. Plant volatiles as regulators of plant defense and herbivore immunity: molecular mechanisms and unanswered questions. CURRENT OPINION IN INSECT SCIENCE 2021; 44:82-88. [PMID: 33894408 DOI: 10.1016/j.cois.2021.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Plants release distinct blends of herbivore-induced plant volatiles (HIPVs) upon herbivore attack. HIPVs have long been known to influence the behavior of herbivores and natural enemies. In addition, HIPVs can act as physiological regulators that induce or prime plant defenses. Recent work indicates that the regulatory capacity of HIPVs may extend to herbivore immunity: herbivores that are exposed to HIPVs can become more resistant or susceptible to parasitoids and pathogens. While the mechanisms of HIPV-mediated plant defense regulation are being unraveled, the mechanisms underlying the regulation of herbivore immunity are unclear. Evidence so far suggests a high degree of context dependency. Here, we review the mechanisms by which HIPVs regulate plant defense and herbivore immunity. We address major gaps of knowledge and discuss directions for future mechanistic research to facilitate efforts to use the regulatory capacity of HIPVs for the biological control of insect pests.
Collapse
Affiliation(s)
- Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Kaidi Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Zhenwei Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| |
Collapse
|
58
|
Zhang C, Li J, Li S, Ma C, Liu H, Wang L, Qi J, Wu J. ZmMPK6 and ethylene signalling negatively regulate the accumulation of anti-insect metabolites DIMBOA and DIMBOA-Glc in maize inbred line A188. THE NEW PHYTOLOGIST 2021; 229:2273-2287. [PMID: 32996127 DOI: 10.1111/nph.16974] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and DIMBOA-glucoside (DIMBOA-Glc) are anti-insect benzoxazinoids in maize, yet very little information is known about how they are regulated. Reverse genetics, kinase activity analysis, phytohormone and DIMBOA/DIMBOA-Glc quantification, bioassays and transcriptome analysis were employed to study the function of ZmMPK6, a mitogen-activated protein kinase, in maize response to herbivory. ZmMPK6 was rapidly activated by wounding and simulated herbivory. Silencing ZmMPK6 in maize A188 compromised simulated herbivory-induced ethylene levels but not those of jasmonic acid or salicylic acid, and the ZmMPK6-silenced plants exhibited elevated DIMBOA/DIMBOA-Glc and insect resistance. An ethylene complementation experiment revealed that ZmMPK6 repressed the accumulation of DIMBOA/DIMBOA-Glc in an ethylene-dependent manner. Transcriptome analysis revealed that ZmMPK6 might meditate the transcription of BX1 by controlling a MYB transcription factor that is likely to be located in the ethylene signalling pathway and, furthermore, ZmMPK6 and ethylene signalling also specifically and commonly regulate the transcription of other benzoxazinoid biosynthetic genes. We also show that different maize lines have very different responses to simulated herbivory in terms of ZmMPK6 activation, ethylene emission and benzoxazinoid levels. These results uncover that ZmMPK6 and ethylene pathway are novel repressors of DIMBOA/DIMBOA-Glc and provide new insight into the regulatory mechanisms underlying these two pathways.
Collapse
Affiliation(s)
- Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Sen Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Canrong Ma
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
59
|
Liu Y, Wang W, Li Y, Liu F, Han W, Li J. Transcriptomic and proteomic responses to brown plant hopper (Nilaparvata lugens) in cultivated and Bt-transgenic rice (Oryza sativa) and wild rice (O. rufipogon). J Proteomics 2020; 232:104051. [PMID: 33217583 DOI: 10.1016/j.jprot.2020.104051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 10/23/2022]
Abstract
Strategies are still employed to reduce insect damage in crop production, including conventional breeding with wild germplasm resources and transgenic technology with foreign genes' insertion. Cultivated and Bt-transgenic rice (Oryza sativa) and two ecotypes of wild rice (O. rufipogon) were treated by a 72 h feeding of brown plant hopper (Nilaparvata lugens). Under the feeding of N. lugens, compared with the cultivated rice (568 and 4), more differentially expressed genes (DEGs) and differentially accumulated proteins (DAPs) were identified in transgenic rice (2098 and 11) and two wild ecotypes (1990, 39 and 1932, 25, respectively). The iTRAQ analysis showed 79 DAPs and confirmed the results of RNA-seq, which showed the least GO terms and KEGG pathways responding to herbivory in the cultivated rice. DAPs significantly enriched two GO terms that are related with Bph14 and Bph33 genes in rice. Most of DEGs and DAPs were related to plant biological processes of plant-pathogen interaction and plant hormone signal transduction, and hormone signaling and transcription factors regulate the immune response of rice to BPH. Our results demonstrated the similarity in the wild rice and Bt-transgenic rice for their transcriptomic and proteomic response to herbivory, while cultivated rice lacked enough pathways in response to herbivory. STATEMENT OF SIGNIFICANCE OF THE STUDY: The iTRAQ analysis and RNA-seq were employed 39 to identify differentially expressed genes (DEGs) and differentially accumulated proteins (DAPs) in seedlings of cultivated, Bt-transgenic and two wild rice ecotypes under feeding of brown plant hopper. Wild rice showed DEGs and DAPs related to biochemical pathways of plant pathogen interactions and plant hormone signal transductions, while cultivated rice lacked enough pathways in response to herbivory. Crop domestication weakened the response of plants to herbivory, while the insertion of Bt gene might promote the response of plants to herbivory. Growing environment plays an important role in regulating gene networks of plant response to herbivory. Our results highlighted the importance of conservation of crop wild species. SIGNIFICANCE: Insect damage is one of main factors in reducing agricultural production, and technologies and methods were employed to control insect pests in agricultural systems. Transgenic technology is developed to produce insect-resistant crops, but receive concerns on biosafety risks. Alternatively, crop wild species are important genetic resource in crop breeding to produce trait-specific varieties. Here, we investigated the molecular mechanisms of plant response to herbivory in wild, Bt-transgenic and cultivated rice, and found crop domestication weakened the response of plants to herbivory. The insertion of foreign Bt gene may promote the expression of other genes. In addition, our results showed growing environment plays an important role in regulating gene networks of plant response to herbivory. These results highlight the importance of wild species conservation, with the strategy of in situ conservation.
Collapse
Affiliation(s)
- Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Weiqing Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, CAS, Beijing 100093, China
| | - Yonghua Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weijuan Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junsheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
60
|
van Doan C, Züst T, Maurer C, Zhang X, Machado RAR, Mateo P, Ye M, Schimmel BCJ, Glauser G, Robert CAM. Volatile-mediated defence regulation occurs in maize leaves but not in maize root. PLANT, CELL & ENVIRONMENT 2020:pce.13919. [PMID: 33073385 DOI: 10.1111/pce.13919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The above article was published in error by the publisher before a final editorial decision had been reached. It has therefore been removed temporarily while the editorial process concludes. The publisher apologizes for the inconvenience.
Collapse
|
61
|
Transcriptomic and Metabolomic Responses of Rice Plants to Cnaphalocrocis medinalis Caterpillar Infestation. INSECTS 2020; 11:insects11100705. [PMID: 33076419 PMCID: PMC7602657 DOI: 10.3390/insects11100705] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/01/2022]
Abstract
Simple Summary The transcriptomic and metabolomic differences in rice leaves after infestation by the rice leaf folder Cnaphalocrocis medinalis were investigated for better understanding of the mechanisms of rice defenses against this species. The results suggest that C. medinalis infestation can induce rapid and precise defense responses involved in many primary and secondary metabolic processes in rice leaves, and the jasmonic acid (JA)-dependent signaling pathway plays vital roles in the response of rice plants to this pest species. These results provide comprehensive insights into the defense system of rice to the rice leaf folder and may facilitate the development of insect-resistant rice varieties by identifying molecular targets for selection. Abstract Interactions between plants and insect herbivores are important determinants of plant productivity in cultivated and natural agricultural fields. The rice leaf folder (Cnaphalocrocis medinalis) causes tremendous damage to rice production in Asian countries. However, little information is available about how rice plants defend themselves against this destructive pest at molecular and biochemical levels. Here, we observed the transcriptomic and metabolomic differences in rice leaves after 0, 1, 6, 12, and 24 h of being fed by C. medinalis using RNA sequencing and metabolome profiling. Transcriptional analyses showed that gene expression responds rapidly to leaf folder infestation, with the most significant transcriptional changes occurring within 6 h after the initiation of feeding. Metabolite abundance changed more slowly than gene expression. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that the rice transcriptional response to infestation involved genes encoding protein kinases, transcription factors, biosynthesis of secondary metabolites, photosynthesis, and phytohormone signaling. Moreover, the jasmonic acid-dependent signaling pathway triggered by leaf folder herbivory played a vital role in rice defense against this pest. Taken together, our results provide comprehensive insights into the defense system of rice to this species and may inform the development of insect-resistant rice varieties.
Collapse
|
62
|
Lortzing T, Kunze R, Steppuhn A, Hilker M, Lortzing V. Arabidopsis, tobacco, nightshade and elm take insect eggs as herbivore alarm and show similar transcriptomic alarm responses. Sci Rep 2020; 10:16281. [PMID: 33004864 PMCID: PMC7530724 DOI: 10.1038/s41598-020-72955-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Plants respond to insect eggs with transcriptional changes, resulting in enhanced defence against hatching larvae. However, it is unknown whether phylogenetically distant plant species show conserved transcriptomic responses to insect eggs and subsequent larval feeding. We used Generally Applicable Gene set Enrichment (GAGE) on gene ontology terms to answer this question and analysed transcriptome data from Arabidopsis thaliana, wild tobacco (Nicotiana attenuata), bittersweet nightshade (Solanum dulcamara) and elm trees (Ulmus minor) infested by different insect species. The different plant-insect species combinations showed considerable overlap in their transcriptomic responses to both eggs and larval feeding. Within these conformable responses across the plant-insect combinations, the responses to eggs and feeding were largely analogous, and about one-fifth of these analogous responses were further enhanced when egg deposition preceded larval feeding. This conserved transcriptomic response to eggs and larval feeding comprised gene sets related to several phytohormones and to the phenylpropanoid biosynthesis pathway, of which specific branches were activated in different plant-insect combinations. Since insect eggs and larval feeding activate conserved sets of biological processes in different plant species, we conclude that plants with different lifestyles share common transcriptomic alarm responses to insect eggs, which likely enhance their defence against hatching larvae.
Collapse
Affiliation(s)
- Tobias Lortzing
- Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Molecular Botany, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Reinhard Kunze
- Applied Genetics, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Anke Steppuhn
- Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Molecular Botany, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Vivien Lortzing
- Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
63
|
Ye M, Kuai P, Hu L, Ye M, Sun H, Erb M, Lou Y. Suppression of a leucine-rich repeat receptor-like kinase enhances host plant resistance to a specialist herbivore. PLANT, CELL & ENVIRONMENT 2020; 43:2571-2585. [PMID: 32598036 DOI: 10.1111/pce.13834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 05/14/2023]
Abstract
The mechanisms by which herbivores induce plant defenses are well studied. However, how specialized herbivores suppress plant resistance is still poorly understood. Here, we discovered a rice (Oryza sativa) leucine-rich repeat receptor-like kinase, OsLRR-RLK2, which is induced upon attack by gravid females of a specialist piercing-sucking herbivore, the brown planthopper (BPH, Nilaparvata lugens). Silencing OsLRR-RLK2 decreases the constitutive activity of mitogen-activated protein kinase (OsMPK6) and alters BPH-induced transcript levels of several defense-related WRKY transcription factors. Moreover, silencing OsLRR-RLK2 reduces BPH-induction of jasmonic acid and ethylene but promotes the biosynthesis of both elicited salicylic acid and H2 O2 ; silencing also enhances the production of volatiles emitted from rice plants infested with gravid BPH females. These changes decrease BPH preference and performance in the glasshouse and the field. These findings suggest that OsLRR-RLK2, by regulating the plant's defense-related signaling profile, increases the susceptibility of rice to BPH, and that BPH infestation influences the expression of OsLRR-RLK2, suppressing the resistance of rice to BPH.
Collapse
Affiliation(s)
- Meng Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Peng Kuai
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Lingfei Hu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Miaofen Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hao Sun
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
64
|
Erb M, Kliebenstein DJ. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. PLANT PHYSIOLOGY 2020; 184:39-52. [PMID: 32636341 PMCID: PMC7479915 DOI: 10.1104/pp.20.00433] [Citation(s) in RCA: 546] [Impact Index Per Article: 109.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/15/2020] [Indexed: 05/10/2023]
Abstract
The plant kingdom produces hundreds of thousands of low molecular weight organic compounds. Based on the assumed functions of these compounds, the research community has classified them into three overarching groups: primary metabolites, which are directly required for plant growth; secondary (or specialized) metabolites, which mediate plant-environment interactions; and hormones, which regulate organismal processes and metabolism. For decades, this functional trichotomy of plant metabolism has shaped theory and experimentation in plant biology. However, exact biochemical boundaries between these different metabolite classes were never fully established. A new wave of genetic and chemical studies now further blurs these boundaries by demonstrating that secondary metabolites are multifunctional; they can function as potent regulators of plant growth and defense as well as primary metabolites sensu lato. Several adaptive scenarios may have favored this functional diversity for secondary metabolites, including signaling robustness and cost-effective storage and recycling. Secondary metabolite multifunctionality can provide new explanations for ontogenetic patterns of defense production and can refine our understanding of plant-herbivore interactions, in particular by accounting for the discovery that adapted herbivores misuse plant secondary metabolites for multiple purposes, some of which mirror their functions in plants. In conclusion, recent work unveils the limits of our current functional classification system for plant metabolites. Viewing secondary metabolites as integrated components of metabolic networks that are dynamically shaped by environmental selection pressures and transcend multiple trophic levels can improve our understanding of plant metabolism and plant-environment interactions.
Collapse
Affiliation(s)
- Matthias Erb
- Department of Plant Sciences, University of California, Davis, California 95616
| | | |
Collapse
|
65
|
Zhang PJ, Zhao C, Ye ZH, Yu XP. Trade-off between defense priming by herbivore-induced plant volatiles and constitutive defense in tomato. PEST MANAGEMENT SCIENCE 2020; 76:1893-1901. [PMID: 31855313 DOI: 10.1002/ps.5720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/28/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Herbivore-induced plant volatiles (HIPVs) can prime plant defenses and enhance herbivore resistance in neighboring plants. Although a trade-off between constitutive defense and HIPV emission has been documented in many plant species, little is known about the effect of HIPV variation on defense priming, and whether there is a trade-off between defense priming and constitutive defense in neighboring plants. RESULTS Using three tomato genotypes, including two wild types [Moneymaker (MM) and Castlemart (CM)] and one jasmonic acid (JA) overexpression 35S::prosys genotype, we investigated the effects of exposure to volatiles from plants infested by beet armyworm (Spodoptera exigua) caterpillars on the defenses and resistance of conspecific neighboring plants. We also analyzed the HIPV emissions from the three genotypes and their constitutive defense and resistance. Exposure to volatiles from S. exigua-infested MM plants primed an array of defensive responses (including the accumulation of JA and PI-II protein and the expression of the defense genes PI-I and PI-II), and enhanced plant resistance against the caterpillars. In contrast, exposure to volatiles from S. exigua-infested CM or 35S::prosys did not result in defense priming or an increase in plant resistance. Analyses of HIPVs and gene expression indicated that defense priming in MM was due to enhanced emission of β-ocimene and linalool. We further demonstrated that levels of constitutive defense and resistance are low in MM and high in CM and 35S::prosys, suggesting a negative correlation between defense priming and constitutive defense. CONCLUSION Our findings suggest that there is a trade-off between defense priming by HIPVs and constitutive defense in tomato. This suggests that defense priming should be used with caution in agriculture. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peng-Jun Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Chan Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zi-Hong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
66
|
Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, Xu G, Chao DY, Li J, Wang PY, Qin F, Li J, Ding Y, Shi Y, Wang Y, Yang Y, Guo Y, Zhu JK. Plant abiotic stress response and nutrient use efficiency. SCIENCE CHINA-LIFE SCIENCES 2020; 63:635-674. [PMID: 32246404 DOI: 10.1007/s11427-020-1683-x] [Citation(s) in RCA: 625] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022]
Abstract
Abiotic stresses and soil nutrient limitations are major environmental conditions that reduce plant growth, productivity and quality. Plants have evolved mechanisms to perceive these environmental challenges, transmit the stress signals within cells as well as between cells and tissues, and make appropriate adjustments in their growth and development in order to survive and reproduce. In recent years, significant progress has been made on many fronts of the stress signaling research, particularly in understanding the downstream signaling events that culminate at the activation of stress- and nutrient limitation-responsive genes, cellular ion homeostasis, and growth adjustment. However, the revelation of the early events of stress signaling, particularly the identification of primary stress sensors, still lags behind. In this review, we summarize recent work on the genetic and molecular mechanisms of plant abiotic stress and nutrient limitation sensing and signaling and discuss new directions for future studies.
Collapse
Affiliation(s)
- Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liming Xiong
- Department of Biology, Hong Kong Baptist University, Kowlong Tong, Hong Kong, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Luis R Herrera-Estrella
- Plant and Soil Science Department (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA.,Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, Irapuato, 36610, México.,College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dai-Yin Chao
- National Key laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jingrui Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Peng-Yun Wang
- School of Life Science, Henan University, Kaifeng, 457000, China
| | - Feng Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jijang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
67
|
Abstract
Acute and precise signal perception and transduction are essential for plant defense against insects. Insect elicitors-that is, the biologically active molecules from insects' oral secretion (which contains regurgitant and saliva), frass, ovipositional fluids, and the endosymbionts-are recognized by plants and subsequently induce a local or systematic defense response. On the other hand, insects secrete various types of effectors to interfere with plant defense at multiple levels for better adaptation. Jasmonate is a main regulator involved in plant defense against insects and integrates with multiple pathways to make up the intricate defense network. Jasmonate signaling is strictly regulated in plants to avoid the hypersensitive defense response and seems to be vulnerable to assault by insect effectors at the same time. Here, we summarize recently identified elicitors, effectors, and their target proteins in plants and discuss their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| | - Ying-Bo Mao
- Chinese Academy of Sciences (CAS) Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
68
|
Jasmonates-the Master Regulator of Rice Development, Adaptation and Defense. PLANTS 2019; 8:plants8090339. [PMID: 31505882 PMCID: PMC6784130 DOI: 10.3390/plants8090339] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022]
Abstract
Rice is one of the most important food crops worldwide, as well as the model plant in molecular studies on the cereals group. Many different biotic and abiotic agents often limit rice production and threaten food security. Understanding the molecular mechanism, by which the rice plant reacts and resists these constraints, is the key to improving rice production to meet the demand of an increasing population. The phytohormone jasmonic acid (JA) and related compounds, collectively called jasmonates, are key regulators in plant growth and development. They are also one of the central players in plant immunity against biotic attacks and adaptation to unfavorable environmental conditions. Here, we review the most recent knowledge about jasmonates signaling in the rice crop model. We highlight the functions of jasmonates signaling in many adaptive responses, and also in rice growth and development processes. We also draw special attention to different signaling modules that are controlled by jasmonates in rice.
Collapse
|
69
|
|
70
|
Dombrowski JE, Kronmiller BA, Hollenbeck VG, Rhodes AC, Henning JA, Martin RC. Transcriptome analysis of the model grass Lolium temulentum exposed to green leaf volatiles. BMC PLANT BIOLOGY 2019; 19:222. [PMID: 31138172 PMCID: PMC6540478 DOI: 10.1186/s12870-019-1799-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 04/25/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Forage and turf grasses are routinely cut and grazed upon throughout their lifecycle. When grasses are cut or damaged, they rapidly release a volatile chemical cocktail called green leaf volatiles (GLV). Previously we have shown that mechanical wounding or exposure to GLV released from cut grass, activated a Lt 46 kDa mitogen-activated protein kinase (MAPK) within 3 min and a 44 kDa MAPK within 15-20 min in the model grass species Lolium temulentum (Lt). Currently very little is known concerning the perception, signaling or molecular responses associated with wound stress in grasses. Since GLV are released during wounding, we wanted to investigate what genes and signaling pathways would be induced in undamaged plants exposed to GLV. RESULTS RNA-Seq generated transcriptome of Lolium plants exposed to GLV identified 4308 up- and 2794 down-regulated distinct differentially-expressed sequences (DES). Gene Ontology analysis revealed a strong emphasis on signaling, response to stimulus and stress related categories. Transcription factors and kinases comprise over 13% of the total DES found in the up-regulated dataset. The analysis showed a strong initial burst within the first hour of GLV exposure with over 60% of the up-regulated DES being induced. Specifically sequences annotated for enzymes involved in the biosynthesis of jasmonic acid and other plant hormones, mitogen-activated protein kinases and WRKY transcription factors were identified. Interestingly, eleven DES for ferric reductase oxidase, an enzyme involved in iron uptake and transport, were exclusively found in the down-regulated dataset. Twelve DES of interest were selected for qRT-PCR analysis; all displayed a rapid induction one hour after GLV exposure and were also strongly induced by mechanical wounding. CONCLUSION The information gained from the analysis of this transcriptome and previous studies suggests that GLV released from cut grasses transiently primes an undamaged plant's wound stress pathways for potential oncoming damage, and may have a dual role for inter- as well as intra-plant signaling.
Collapse
Affiliation(s)
- James E. Dombrowski
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, Oregon, 97331-7102 USA
| | - Brent A. Kronmiller
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331 USA
| | - Vicky G. Hollenbeck
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, Oregon, 97331-7102 USA
| | - Adelaide C. Rhodes
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331 USA
| | - John A. Henning
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, Oregon, 97331-7102 USA
| | - Ruth C. Martin
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, Oregon, 97331-7102 USA
| |
Collapse
|
71
|
Zhang X, Liu J, Wu L, Wang Z, Zhang S. GbWRKY1, a member of the WRKY transcription factor family identified from Gossypium barbadense, is involved in resistance to Verticillium wilt. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1667873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Xue Zhang
- Genetics Laboratory, College of Life Science, Hebei University, Baoding, PR China
| | - Jianfeng Liu
- Genetics Laboratory, College of Life Science, Hebei University, Baoding, PR China
| | - Lizhu Wu
- Laboratory of Biochemistry and Molecular Biology, College of Life Science, Agriculture University of Hebei, Baoding, PR China
| | - Zhaoyu Wang
- Genetics Laboratory, College of Life Science, Hebei University, Baoding, PR China
| | - Shuling Zhang
- Genetics Laboratory, College of Life Science, Hebei University, Baoding, PR China
| |
Collapse
|