51
|
Detection of protein persulfidation in plants by the dimedone switch method. Methods Enzymol 2022; 676:385-402. [DOI: 10.1016/bs.mie.2022.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
52
|
Srivastava V, Chowdhary AA, Verma PK, Mehrotra S, Mishra S. Hydrogen sulfide-mediated mitigation and its integrated signaling crosstalk during salinity stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13633. [PMID: 35060139 DOI: 10.1111/ppl.13633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/16/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Environmental stresses negatively affect plant development and significantly influence global agricultural productivity. The growth suppression due to soil salinity involves osmotic stress, which is accompanied by ion toxicity, nutritional imbalance, and oxidative stress. The amelioration of salinity stress is one of the fundamental goals to be achieved to ensure food security and better meet the issues related to global hunger. The application of exogenous chemicals is the imperative and efficient choice to alleviate stress in the agricultural field. Among them, hydrogen sulfide (H2 S, a gasotransmitter) is known for its efficient role in stress mitigation, including salinity stress, along with other biological features related to growth and development in plants. H2 S plays a role in improving photosynthesis and ROS homeostasis, and interacts with other signaling components in a cascade fashion. The current review gives a comprehensive view of the participation of H2 S in salinity stress alleviation in plants. Further, its crosstalk with other stress ameliorating signaling component or supplement (e.g., NO, H2 O2 , melatonin) is also covered and discussed. Finally, we discuss the possible prospects to meet with success in agricultural fields.
Collapse
Affiliation(s)
- Vikas Srivastava
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Aksar Ali Chowdhary
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shakti Mehrotra
- Department of Biotechnology, Institute of Engineering and Technology, Lucknow, Uttar Pradesh, India
| | - Sonal Mishra
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| |
Collapse
|
53
|
Tang J, Bassham DC. Autophagy during drought: function, regulation, and potential application. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:390-401. [PMID: 34469611 DOI: 10.1111/tpj.15481] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Drought is a major challenge for agricultural production since it causes substantial yield reduction and economic loss. Autophagy is a subcellular degradation and recycling pathway that functions in plant development and responses to many stresses, including drought. In this review, we summarize the current understanding of the function of autophagy and how autophagy is upregulated during drought stress. Autophagy helps plants to survive drought stress, and the mechanistic basis for this is beginning to be elucidated. Autophagy can selectively degrade aquaporins to adjust water permeability, and also degrades excess heme and damaged proteins to reduce their toxicity. In addition, autophagy can degrade regulators or components of hormone signaling pathways to promote stress responses. During drought recovery, autophagy degrades drought-induced proteins to reset the cell status. Autophagy is activated by multiple mechanisms during drought stress. Several transcription factors are induced by drought to upregulate autophagy-related gene expression, and autophagy is also regulated post-translationally through protein modification and stability. Based on these observations, manipulation of autophagy activity may be a promising approach for conferring drought tolerance in plants.
Collapse
Affiliation(s)
- Jie Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
54
|
Autophagy Is Involved in the Viability of Overexpressing Thioredoxin o1 Tobacco BY-2 Cells under Oxidative Conditions. Antioxidants (Basel) 2021; 10:antiox10121884. [PMID: 34942987 PMCID: PMC8698322 DOI: 10.3390/antiox10121884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 01/06/2023] Open
Abstract
Autophagy is an essential process for the degradation of non-useful components, although the mechanism involved in its regulation is less known in plants than in animal systems. Redox regulation of autophagy components is emerging as a possible key mechanism with thioredoxins (TRXs) proposed as involved candidates. In this work, using overexpressing PsTRXo1 tobacco cells (OEX), which present higher viability than non-overexpressing cells after H2O2 treatment, we examine the functional interaction of autophagy and PsTRXo1 in a collaborative response. OEX cells present higher gene expression of the ATG (Autophagy related) marker ATG4 and higher protein content of ATG4, ATG8, and lipidated ATG8 as well as higher ATG4 activity than control cells, supporting the involvement of autophagy in their response to H2O2. In this oxidative situation, autophagy occurs in OEX cells as is evident from an accumulation of autolysosomes and ATG8 immunolocalization when the E-64d autophagy inhibitor is used. Interestingly, cell viability decreases in the presence of the inhibitor, pointing to autophagy as being involved in cell survival. The in vitro interaction of ATG4 and PsTRXo1 proteins is confirmed by dot-blot and co-immunoprecipitation assays as well as the redox regulation of ATG4 activity by PsTRXo1. These findings extend the role of TRXs in mediating the redox regulation of the autophagy process in plant cells.
Collapse
|
55
|
Zeng X, Chen W, Liu C, Yin J, Yang GF. Fluorescence Probes for Reactive Sulfur Species in Agricultural Chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13700-13712. [PMID: 34752105 DOI: 10.1021/acs.jafc.1c05249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sulfur is an element that is indispensable throughout the growth of plants. In plant cells, reactive sulfur species (RSS) play a vital role in maintaining cellular redox homeostasis and signal transduction. There is demand accordingly for a simple, highly selective, and sensitive method of RSS detection and imaging for monitoring dynamic changes and clarifying the biological functions of RSS in plant systems. Fluorescent analysis based on organic small-molecule fluorescent probes is an effective and specific approach to tracking plant RSS characteristics. This perspective summarizes the recent progress regarding organic small-molecule fluorescent probes for RSS monitoring, including small-molecule biological thiols, hydrogen sulfide, and sulfane sulfurs, in plants; it also discusses their response mechanism toward RSS and their imaging applications in plants across the agricultural chemistry field.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Weijie Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
56
|
Chen S, Wang X, Jia H, Li F, Ma Y, Liesche J, Liao M, Ding X, Liu C, Chen Y, Li N, Li J. Persulfidation-induced structural change in SnRK2.6 establishes intramolecular interaction between phosphorylation and persulfidation. MOLECULAR PLANT 2021; 14:1814-1830. [PMID: 34242849 DOI: 10.1016/j.molp.2021.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2021] [Accepted: 07/04/2021] [Indexed: 05/22/2023]
Abstract
Post-translational modifications (PTMs), including phosphorylation and persulfidation, regulate the activity of SNF1-RELATED PROTEIN KINASE2.6 (SnRK2.6). Here, we report how persulfidations and phosphorylations of SnRK2.6 influence each other. The persulfidation of cysteine C131/C137 alters SnRK2.6 structure and brings the serine S175 residue closer to the aspartic acid D140 that acts as ATP-γ-phosphate proton acceptor, thereby improving the transfer efficiency of phosphate groups to S175 to enhance the phosphorylation level of S175. Interestingly, we predicted that S267 and C137 were predicted to lie in close proximity on the protein surface and found that the phosphorylation status of S267 positively regulates the persulfidation level at C137. Analyses of the responses of dephosphorylated and depersulfidated mutants to abscisic acid and the H2S-donor NaHS during stomatal closure, water loss, gas exchange, Ca2+ influx, and drought stress revealed that S175/S267-associated phosphorylation and C131/137-associated persulfidation are essential for SnRK2.6 function in vivo. In light of these findings, we propose a mechanistic model in which certain phosphorylations facilitate persulfidation, thereby changing the structure of SnRK2.6 and increasing its activity.
Collapse
Affiliation(s)
- Sisi Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaofeng Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Viva Biotech (Shanghai) Ltd., Shanghai 201203, China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Fali Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Johannes Liesche
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingzhi Liao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xueting Ding
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cuixia Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Chen
- Viva Biotech (Shanghai) Ltd., Shanghai 201203, China
| | - Na Li
- Viva Biotech (Shanghai) Ltd., Shanghai 201203, China
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
57
|
The Modus Operandi of Hydrogen Sulfide(H 2S)-Dependent Protein Persulfidation in Higher Plants. Antioxidants (Basel) 2021; 10:antiox10111686. [PMID: 34829557 PMCID: PMC8614790 DOI: 10.3390/antiox10111686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Protein persulfidation is a post-translational modification (PTM) mediated by hydrogen sulfide (H2S), which affects the thiol group of cysteine residues from target proteins and can have a positive, negative or zero impact on protein function. Due to advances in proteomic techniques, the number of potential protein targets identified in higher plants, which are affected by this PTM, has increased considerably. However, its precise impact on biological function needs to be evaluated at the experimental level in purified proteins in order to identify the specific cysteine(s) residue(s) affected. It also needs to be evaluated at the cellular redox level given the potential interactions among different oxidative post-translational modifications (oxiPTMs), such as S-nitrosation, glutathionylation, sulfenylation, S-cyanylation and S-acylation, which also affect thiol groups. This review aims to provide an updated and comprehensive overview of the important physiological role exerted by persulfidation in higher plants, which acts as a cellular mechanism of protein protection against irreversible oxidation.
Collapse
|
58
|
Wang P, Fang H, Gao R, Liao W. Protein Persulfidation in Plants: Function and Mechanism. Antioxidants (Basel) 2021; 10:1631. [PMID: 34679765 PMCID: PMC8533255 DOI: 10.3390/antiox10101631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
As an endogenous gaseous transmitter, the function of hydrogen sulfide (H2S) has been extensively studied in plants. Once synthesized, H2S may be involved in almost all life processes of plants. Among them, a key route for H2S bioactivity occurs via protein persulfidation, in which process oxidizes cysteine thiol (R-SH) groups into persulfide (R-SSH) groups. This process is thought to underpin a myriad of cellular processes in plants linked to growth, development, stress responses, and phytohormone signaling. Multiple lines of emerging evidence suggest that this redox-based reversible post-translational modification can not only serve as a protective mechanism for H2S in oxidative stress, but also control a variety of biochemical processes through the allosteric effect of proteins. Here, we collate emerging evidence showing that H2S-mediated persulfidation modification involves some important biochemical processes such as growth and development, oxidative stress, phytohormone and autophagy. Additionally, the interaction between persulfidation and S-nitrosylation is also discussed. In this work, we provide beneficial clues for further exploration of the molecular mechanism and function of protein persulfidation in plants in the future.
Collapse
Affiliation(s)
| | | | | | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China; (P.W.); (H.F.); (R.G.)
| |
Collapse
|
59
|
Aroca A, Zhang J, Xie Y, Romero LC, Gotor C. Hydrogen sulfide signaling in plant adaptations to adverse conditions: molecular mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5893-5904. [PMID: 34077530 PMCID: PMC8355753 DOI: 10.1093/jxb/erab239] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/24/2021] [Indexed: 05/16/2023]
Abstract
Hydrogen sulfide (H2S) is a signaling molecule that regulates critical processes and allows plants to adapt to adverse conditions. The molecular mechanism underlying H2S action relies on its chemical reactivity, and the most-well characterized mechanism is persulfidation, which involves the modification of protein thiol groups, resulting in the formation of persulfide groups. This modification causes a change of protein function, altering catalytic activity or intracellular location and inducing important physiological effects. H2S cannot react directly with thiols but instead can react with oxidized cysteine residues; therefore, H2O2 signaling through sulfenylation is required for persulfidation. A comparative study performed in this review reveals 82% identity between sulfenylome and persulfidome. With regard to abscisic acid (ABA) signaling, widespread evidence shows an interconnection between H2S and ABA in the plant response to environmental stress. Proteomic analyses have revealed persulfidation of several proteins involved in the ABA signaling network and have shown that persulfidation is triggered in response to ABA. In guard cells, a complex interaction of H2S and ABA signaling has also been described, and the persulfidation of specific signaling components seems to be the underlying mechanism.
Collapse
Affiliation(s)
- Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - Jing Zhang
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Seville, Spain
| |
Collapse
|
60
|
Heinemann B, Hildebrandt TM. The role of amino acid metabolism in signaling and metabolic adaptation to stress-induced energy deficiency in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4634-4645. [PMID: 33993299 DOI: 10.1093/jxb/erab182] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/26/2021] [Indexed: 05/26/2023]
Abstract
The adaptation of plant metabolism to stress-induced energy deficiency involves profound changes in amino acid metabolism. Anabolic reactions are suppressed, whereas respiratory pathways that use amino acids as alternative substrates are activated. This review highlights recent progress in unraveling the stress-induced amino acid oxidation pathways, their regulation, and the role of amino acids as signaling molecules. We present an updated map of the degradation pathways for lysine and the branched-chain amino acids. The regulation of amino acid metabolism during energy deprivation, including the coordinated induction of several catabolic pathways, is mediated by the balance between TOR and SnRK signaling. Recent findings indicate that some amino acids might act as nutrient signals in TOR activation and thus promote a shift from catabolic to anabolic pathways. The metabolism of the sulfur-containing amino acid cysteine is highly interconnected with TOR and SnRK signaling. Mechanistic details have recently been elucidated for cysteine signaling during the abscisic acid-dependent drought response. Local cysteine synthesis triggers abscisic acid production and, in addition, cysteine degradation produces the gaseous messenger hydrogen sulfide, which promotes stomatal closure via protein persulfidation. Amino acid signaling in plants is still an emerging topic with potential for fundamental discoveries.
Collapse
Affiliation(s)
- Björn Heinemann
- Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover, Herrenhäuser Straße, Hannover, Germany
| | - Tatjana M Hildebrandt
- Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover, Herrenhäuser Straße, Hannover, Germany
| |
Collapse
|
61
|
Abstract
In this commentary, we highlight the findings described in a recent paper regarding the mechanism of H2S regulation of macroautophagy/autophagy in mammalian cells and discuss the similarities/divergencies with plant cells. The main outcome is that the posttranslational modification of thiol groups of cysteine residues to form persulfides is a conserved molecular mechanism.
Collapse
Affiliation(s)
- Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
62
|
Liu H, Xue S. Interplay between hydrogen sulfide and other signaling molecules in the regulation of guard cell signaling and abiotic/biotic stress response. PLANT COMMUNICATIONS 2021; 2:100179. [PMID: 34027393 PMCID: PMC8132131 DOI: 10.1016/j.xplc.2021.100179] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 05/05/2023]
Abstract
Stomatal aperture controls the balance between transpirational water loss and photosynthetic carbon dioxide (CO2) uptake. Stomata are surrounded by pairs of guard cells that sense and transduce environmental or stress signals to induce diverse endogenous responses for adaptation to environmental changes. In a recent decade, hydrogen sulfide (H2S) has been recognized as a signaling molecule that regulates stomatal movement. In this review, we summarize recent progress in research on the regulatory role of H2S in stomatal movement, including the dynamic regulation of phytohormones, ion homeostasis, and cell structural components. We focus especially on the cross talk among H2S, nitric oxide (NO), and hydrogen peroxide (H2O2) in guard cells, as well as on H2S-mediated post-translational protein modification (cysteine thiol persulfidation). Finally, we summarize the mechanisms by which H2S interacts with other signaling molecules in plants under abiotic or biotic stress. Based on evidence and clues from existing research, we propose some issues that need to be addressed in the future.
Collapse
Affiliation(s)
- Hai Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaowu Xue
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
63
|
Sirko A, Wawrzyńska A, Brzywczy J, Sieńko M. Control of ABA Signaling and Crosstalk with Other Hormones by the Selective Degradation of Pathway Components. Int J Mol Sci 2021; 22:4638. [PMID: 33924944 PMCID: PMC8125534 DOI: 10.3390/ijms22094638] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
A rapid and appropriate genetic and metabolic acclimation, which is crucial for plants' survival in a changing environment, is maintained due to the coordinated action of plant hormones and cellular degradation mechanisms influencing proteostasis. The plant hormone abscisic acid (ABA) rapidly accumulates in plants in response to environmental stress and plays a pivotal role in the reaction to various stimuli. Increasing evidence demonstrates a significant role of autophagy in controlling ABA signaling. This field has been extensively investigated and new discoveries are constantly being provided. We present updated information on the components of the ABA signaling pathway, particularly on transcription factors modified by different E3 ligases. Then, we focus on the role of selective autophagy in ABA pathway control and review novel evidence on the involvement of autophagy in different parts of the ABA signaling pathway that are important for crosstalk with other hormones, particularly cytokinins and brassinosteroids.
Collapse
Affiliation(s)
- Agnieszka Sirko
- Laboratory of Plant Protein Homeostasis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland; (J.B.); (M.S.)
| | - Anna Wawrzyńska
- Laboratory of Plant Protein Homeostasis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland; (J.B.); (M.S.)
| | | | | |
Collapse
|
64
|
Pérez-Pérez ME, Lemaire SD, Crespo JL. The ATG4 protease integrates redox and stress signals to regulate autophagy. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3340-3351. [PMID: 33587749 DOI: 10.1093/jxb/erab063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Autophagy is a highly conserved degradative pathway that ensures cellular homeostasis through the removal of damaged or useless intracellular components including proteins, membranes, or even entire organelles. A main hallmark of autophagy is the biogenesis of autophagosomes, double-membrane vesicles that engulf and transport to the vacuole the material to be degraded and recycled. The formation of autophagosomes responds to integrated signals produced as a consequence of metabolic reactions or different types of stress and is mediated by the coordinated action of core autophagy-related (ATG) proteins. ATG4 is a key Cys-protease with a dual function in both ATG8 lipidation and free ATG8 recycling whose balance is crucial for proper biogenesis of the autophagosome. ATG4 is conserved in the green lineage, and its regulation by different post-translational modifications has been reported in the model systems Chlamydomonas reinhardtii and Arabidopsis. In this review, we discuss the major role of ATG4 in the integration of stress and redox signals that regulate autophagy in algae and plants.
Collapse
Affiliation(s)
- María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Avda. Américo Vespucio, Sevilla, Spain
| | - Stéphane D Lemaire
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Sevilla, Avda. Américo Vespucio, Sevilla, Spain
| |
Collapse
|
65
|
Jurado-Flores A, Romero LC, Gotor C. Label-Free Quantitative Proteomic Analysis of Nitrogen Starvation in Arabidopsis Root Reveals New Aspects of H 2S Signaling by Protein Persulfidation. Antioxidants (Basel) 2021; 10:508. [PMID: 33805243 PMCID: PMC8064375 DOI: 10.3390/antiox10040508] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 01/18/2023] Open
Abstract
Hydrogen sulfide (H2S)-mediated signaling pathways regulate many physiological and pathophysiological processes in mammalian and plant systems. The molecular mechanism by which hydrogen sulfide exerts its action involves the posttranslational modification of cysteine residues to form a persulfidated thiol motif. We developed a comparative and label-free quantitative proteomic analysis approach for the detection of endogenous persulfidated proteins in N-starved Arabidopsis thaliana roots by using the tag-switch method. In this work, we identified 5214 unique proteins from root tissue that were persulfidated, 1674 of which were quantitatively analyzed and found to show altered persulfidation levels in vivo under N deprivation. These proteins represented almost 13% of the entire annotated proteome in Arabidopsis. Bioinformatic analysis revealed that persulfidated proteins were involved in a wide range of biological functions, regulating important processes such as primary metabolism, plant responses to stresses, growth and development, RNA translation and protein degradation. Quantitative mass spectrometry analysis allowed us to obtain a comprehensive view of hydrogen sulfide signaling via changes in the persulfidation levels of key protein targets involved in ubiquitin-dependent protein degradation and autophagy, among others.
Collapse
Affiliation(s)
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain;
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Sevilla, Spain;
| |
Collapse
|
66
|
Hydrogen sulfide (H 2S) signaling in plant development and stress responses. ABIOTECH 2021; 2:32-63. [PMID: 34377579 PMCID: PMC7917380 DOI: 10.1007/s42994-021-00035-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT Hydrogen sulfide (H2S) was initially recognized as a toxic gas and its biological functions in mammalian cells have been gradually discovered during the past decades. In the latest decade, numerous studies have revealed that H2S has versatile functions in plants as well. In this review, we summarize H2S-mediated sulfur metabolic pathways, as well as the progress in the recognition of its biological functions in plant growth and development, particularly its physiological functions in biotic and abiotic stress responses. Besides direct chemical reactions, nitric oxide (NO) and hydrogen peroxide (H2O2) have complex relationships with H2S in plant signaling, both of which mediate protein post-translational modification (PTM) to attack the cysteine residues. We also discuss recent progress in the research on the three types of PTMs and their biological functions in plants. Finally, we propose the relevant issues that need to be addressed in the future research. GRAPHIC ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42994-021-00035-4.
Collapse
|
67
|
Cao JJ, Liu CX, Shao SJ, Zhou J. Molecular Mechanisms of Autophagy Regulation in Plants and Their Applications in Agriculture. FRONTIERS IN PLANT SCIENCE 2020; 11:618944. [PMID: 33664753 PMCID: PMC7921839 DOI: 10.3389/fpls.2020.618944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/28/2020] [Indexed: 05/03/2023]
Abstract
Autophagy is a highly conserved cellular process for the degradation and recycling of unnecessary cytoplasmic components in eukaryotes. Various studies have shown that autophagy plays a crucial role in plant growth, productivity, and survival. The extensive functions of plant autophagy have been revealed in numerous frontier studies, particularly those regarding growth adjustment, stress tolerance, the identification of related genes, and the involvement of metabolic pathways. However, elucidation of the molecular regulation of plant autophagy, particularly the upstream signaling elements, is still lagging. In this review, we summarize recent progress in research on the molecular mechanisms of autophagy regulation, including the roles of protein kinases, phytohormones, second messengers, and transcriptional and epigenetic control, as well as the relationship between autophagy and the 26S proteasome in model plants and crop species. We also discuss future research directions for the potential application of autophagy in agriculture.
Collapse
Affiliation(s)
- Jia-Jian Cao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Chen-Xu Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Shu-Jun Shao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| | - Jie Zhou
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
- *Correspondence: Jie Zhou,
| |
Collapse
|