51
|
Fuchs I, Philippar K, Ljung K, Sandberg G, Hedrich R. Blue light regulates an auxin-induced K+-channel gene in the maize coleoptile. Proc Natl Acad Sci U S A 2003; 100:11795-800. [PMID: 14500901 PMCID: PMC208837 DOI: 10.1073/pnas.2032704100] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Indexed: 11/18/2022] Open
Abstract
Auxin redistribution along gravistimulated maize coleoptiles causes differential expression of the auxin-induced K+-channel gene ZMK1 (Zea mays K+ channel 1) and precedes the curvature response. To evaluate the role of ZMK1 during phototropism, we here investigated blue light-stimulated coleoptiles. Four hours of blue light stimulation resulted in phototropic bending (23 degrees ). Rotation on a clinostat, at nominally "zero" gravity, and simultaneous stimulation with unidirectional blue light, however, resulted in up to 51 degrees bending toward the light. Differential ZMK1 transcription reached a maximum after 90 min of blue light stimulation under gravity, whereas ZMK1 expression remained asymmetric for at least 180 min in photostimulated coleoptiles on a clinostat. We therefore conclude that the stronger phototropic bending under nominally "zero" gravity results from prolonged differential expression of ZMK1. Under both conditions, asymmetric expression of ZMK1 could be superimposed on the lateral auxin gradient across the coleoptile tip, whereas the gene for the blue light receptor phototropin 1 (PHOT1), expressed in the tip only, was not differentially regulated in response to blue light. The activation of the two different receptors eliciting the photo- and gravitropic response of the coleoptile thus feeds into a common signaling pathway, resulting in auxin redistribution in the coleoptile tip and finally in differential transcription of ZMK1. In the process of signal integration, gravity transduction restricts the magnitude of the blue light-inducible ZMK1 gradient. The spatial and temporal distribution of ZMK1 transcripts and thus differential K+ uptake in both flanks of the coleoptile seem to limit the stimulus-induced bending of this sensory organ.
Collapse
Affiliation(s)
- I Fuchs
- Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | | | | | | | | |
Collapse
|
52
|
Rober-Kleber N, Albrechtová JTP, Fleig S, Huck N, Michalke W, Wagner E, Speth V, Neuhaus G, Fischer-Iglesias C. Plasma membrane H+-ATPase is involved in auxin-mediated cell elongation during wheat embryo development. PLANT PHYSIOLOGY 2003; 131:1302-12. [PMID: 12644680 PMCID: PMC166890 DOI: 10.1104/pp.013466] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2002] [Revised: 10/03/2002] [Accepted: 12/11/2002] [Indexed: 05/18/2023]
Abstract
Previous investigations suggested that specific auxin spatial distribution due to auxin movements to particular embryonic regions was important for normal embryonic pattern formation. To gain information on the molecular mechanism(s) by which auxin acts to direct pattern formation in specific embryonic regions, the role of a plasma membrane (PM) ATPase was evaluated as downstream target of auxin in the present study. Western-blot analysis revealed that the PM H(+)-ATPase expression level was significantly increased by auxin in wheat (Triticum aestivum) embryos (two-three times increase). In bilaterally symmetrical embryos, the spatial expression pattern of the PM H(+)-ATPase correlates with the distribution pattern of the auxin analog, tritiated 5-azidoindole-3-acetic acid. A strong immunosignal was observed in the abaxial epidermis of the scutellum and in the epidermal cells at the distal tip of this organ. Pseudoratiometric analysis using a fluorescent pH indicator showed that the pH in the apoplast of the cells expressing the PM H(+)-ATPase was in average more acidic than the apoplastic pH of nonexpressing cells. Cellulose staining of living embryos revealed that cells of the scutellum abaxial epidermis expressing the ATPase were longer than the scutellum adaxial epidermal cells, where the protein was not expressed. Our data indicate that auxin activates the proton pump resulting in apoplastic acidification, a process contributing to cell wall loosening and elongation of the scutellum. Therefore, we suggest that the PM H(+)-ATPase is a component of the auxin-signaling cascade that may direct pattern formation in embryos.
Collapse
Affiliation(s)
- Nicole Rober-Kleber
- Institute for Biology II, Department of Cell Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Canellas LP, Olivares FL, Okorokova-Façanha AL, Façanha AR. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. PLANT PHYSIOLOGY 2002; 130:1951-7. [PMID: 12481077 PMCID: PMC166705 DOI: 10.1104/pp.007088] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2002] [Revised: 06/16/2002] [Accepted: 08/05/2002] [Indexed: 05/17/2023]
Abstract
Earthworms (Eisenia foetida) produce humic substances that can influence plant growth by mechanisms that are not yet clear. In this work, we investigated the effects of humic acids (HAs) isolated from cattle manure earthworm compost on the earliest stages of lateral root development and on the plasma membrane H(+)-ATPase activity. These HAs enhance the root growth of maize (Zea mays) seedlings in conjunction with a marked proliferation of sites of lateral root emergence. They also stimulate the plasma membrane H(+)-ATPase activity, apparently associated with an ability to promote expression of this enzyme. In addition, structural analysis reveals the presence of exchangeable auxin groups in the macrostructure of the earthworm compost HA. These results may shed light on the hormonal activity that has been postulated for these humic substances.
Collapse
Affiliation(s)
- Luciano Pasqualoto Canellas
- Centro de Ciências Tecnologias Agropecuárias, Laboratório de Solos, Universidade Estadual do Norte Fluminense, Avenida Alberto Lamego, 2000, CEP 28015-620, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
54
|
Façanha AR, Okorokova-Façanha AL. Inhibition of phosphate uptake in corn roots by aluminum-fluoride complexes. PLANT PHYSIOLOGY 2002; 129:1763-1772. [PMID: 12177489 PMCID: PMC166764 DOI: 10.1104/pp.001651] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2001] [Revised: 02/06/2002] [Accepted: 04/04/2002] [Indexed: 05/25/2023]
Abstract
F forms stable complexes with Al at conditions found in the soil. Fluoroaluminate complexes (AlF(x)) have been widely described as effective analogs of inorganic phosphate (Pi) in Pi-binding sites of several proteins. In this work, we explored the possibility that the phytotoxicity of AlF(x) reflects their activity as Pi analogs. For this purpose, (32)P-labeled phosphate uptake by excised roots and plasma membrane H(+)-ATPase activity were investigated in an Al-tolerant variety of maize (Zea mays L. var. dwarf hybrid), either treated or not with AlF(x). In vitro, AlF(x) competitively inhibited the rate of root phosphate uptake as well as the H(+)-ATPase activity. Conversely, pretreatment of seedlings with AlF(x) in vivo promoted no effect on the H(+)-ATPase activity, whereas a biphasic effect on Pi uptake by roots was observed. Although the initial rate of phosphate uptake by roots was inhibited by AlF(x) pretreatment, this situation changed over the following minutes as the rate of uptake increased and a pronounced stimulation in subsequent (32)Pi uptake was observed. This kinetic behavior suggests a reversible and competitive inhibition of the phosphate transporter by fluoroaluminates. The stimulation of root (32)Pi uptake induced by AlF(x) pretreatment was tentatively interpreted as a phosphate starvation response. This report places AlF(3) and AlF(4)(-) among Al-phytotoxic species and suggests a mechanism of action where the accumulation of Pi-mimicking fluoroaluminates in the soil may affect the phosphate absorption by plants. The biochemical, physiological, and environmental significance of these findings is discussed.
Collapse
Affiliation(s)
- Arnoldo Rocha Façanha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes-RJ, CEP 28015-620, Brazil
| | | |
Collapse
|
55
|
Façanha AR, Okorokova-Façanha AL. Inhibition of phosphate uptake in corn roots by aluminum-fluoride complexes. PLANT PHYSIOLOGY 2002; 129:1763-1772. [PMID: 12177489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
F forms stable complexes with Al at conditions found in the soil. Fluoroaluminate complexes (AlF(x)) have been widely described as effective analogs of inorganic phosphate (Pi) in Pi-binding sites of several proteins. In this work, we explored the possibility that the phytotoxicity of AlF(x) reflects their activity as Pi analogs. For this purpose, (32)P-labeled phosphate uptake by excised roots and plasma membrane H(+)-ATPase activity were investigated in an Al-tolerant variety of maize (Zea mays L. var. dwarf hybrid), either treated or not with AlF(x). In vitro, AlF(x) competitively inhibited the rate of root phosphate uptake as well as the H(+)-ATPase activity. Conversely, pretreatment of seedlings with AlF(x) in vivo promoted no effect on the H(+)-ATPase activity, whereas a biphasic effect on Pi uptake by roots was observed. Although the initial rate of phosphate uptake by roots was inhibited by AlF(x) pretreatment, this situation changed over the following minutes as the rate of uptake increased and a pronounced stimulation in subsequent (32)Pi uptake was observed. This kinetic behavior suggests a reversible and competitive inhibition of the phosphate transporter by fluoroaluminates. The stimulation of root (32)Pi uptake induced by AlF(x) pretreatment was tentatively interpreted as a phosphate starvation response. This report places AlF(3) and AlF(4)(-) among Al-phytotoxic species and suggests a mechanism of action where the accumulation of Pi-mimicking fluoroaluminates in the soil may affect the phosphate absorption by plants. The biochemical, physiological, and environmental significance of these findings is discussed.
Collapse
Affiliation(s)
- Arnoldo Rocha Façanha
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes-RJ, CEP 28015-620, Brazil
| | | |
Collapse
|
56
|
Arend M, Weisenseel MH, Brummer M, Osswald W, Fromm JH. Seasonal changes of plasma membrane H(+)-ATPase and endogenous ion current during cambial growth in poplar plants. PLANT PHYSIOLOGY 2002; 129:1651-63. [PMID: 12177478 PMCID: PMC166753 DOI: 10.1104/pp.003905] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2002] [Revised: 03/12/2002] [Accepted: 05/03/2002] [Indexed: 05/18/2023]
Abstract
The plasma membrane H(+)-ATPase (PM H(+)-ATPase), potassium ions, and endogenous ion currents might play a fundamental role in the physiology of cambial growth. Seasonal changes of these parameters were studied in twigs of Populus nigra and Populus trichocarpa. Monoclonal and polyclonal antibodies against the PM H(+)-ATPase, x-ray analysis for K(+) localization and a vibrating electrode for measurement of endogenous ion currents were used as probes. In dormant plants during autumn and winter, only a slight immunoreactivity against the PM H(+)-ATPase was found in cross sections and tissue homogenates, K(+) was distributed evenly, and the density of endogenous current was low. In spring during cambial growth, strong immunoreactivity against a PM H(+)-ATPase was observed in cambial cells and expanding xylem cells using the monoclonal antibody 46 E5 B11 F6 for fluorescence microscopy and transmission electron microscopy. At the same time, K(+) accumulated in cells of the cambial region, and strong endogenous current was measured in the cambial and immature xylem zone. Addition of auxin to dormant twigs induced the formation of this PM H(+)-ATPase in the dormant cambial region within a few days and an increase in density of endogenous current in shoot cuttings within a few hours. The increase in PM H(+)-ATPase abundance and in current density by auxin indicates that auxin mediates a rise in number and activity of an H(+)-ATPase in the plasma membrane of cambial cells and their derivatives. This PM H(+)-ATPase generates the necessary H(+)-gradient (proton-motive force) for the uptake of K(+) and nutrients into cambial and expanding xylem cells.
Collapse
Affiliation(s)
- Matthias Arend
- Fachgebeit Angewandte Holzbiologie, Technische Universität München, Munich, Germany.
| | | | | | | | | |
Collapse
|
57
|
Becker D, Hedrich R. Channelling auxin action: modulation of ion transport by indole-3-acetic acid. PLANT MOLECULAR BIOLOGY 2002; 49:349-356. [PMID: 12036259 DOI: 10.1023/a:1015211231864] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The growth hormone auxin is a key regulator of plant cell division and elongation. Since plants lack muscles, processes involved in growth and movements rely on turgor formation, and thus on the transport of solutes and water. Modern electrophysiological techniques and molecular genetics have shed new light on the regulation of plant ion transporters in response to auxin. Guard cells, hypocotyls and coleoptiles have advanced to major model systems in studying auxin action. This review will therefore focus on the molecular mechanism by which auxin modulates ion transport and cell expansion in these model cell types.
Collapse
Affiliation(s)
- Dirk Becker
- Biocenter, Julius-von-Sachs-Institut for Biosciences, Department of Plant Molecular Physiology and Biophysics, Würzburg, Germany.
| | | |
Collapse
|
58
|
Scherer GFE. Secondary messengers and phospholipase A2 in auxin signal transduction. PLANT MOLECULAR BIOLOGY 2002; 49:357-372. [PMID: 12036260 DOI: 10.1023/a:1015290510483] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Despite recent progress auxin signal transduction remains largely scetchy and enigmatic. A good body of evidence supports the notion that the ABP1 could be a functional receptor or part of a receptor, respectively, but this is not generally accepted. Evidence for other functional receptors is lacking, as is any clearcut evidence for a function of G proteins. Protons may serve as second messengers in guard cells but the existing evidence for a role of calcium remains to be clearified. Phospholipases C and D seem not to have a function in auxin signal transduction whereas the indications for a role of phospholipase A2 in auxin signal transduction accumulated recently. Mitogen-activated protein kinase (MAPK) is modulated by auxin and the protein kinase PINOID has a role in auxin transport modulation even though their functional linkage to other signalling molecules is ill-defined. It is hypothesized that signal transduction precedes activation of early genes such as IAA genes and that ubiquitination and the proteasome are a mechanism to integrate signal duration and signal strength in plants and act as major regulators of hormone sensitivity.
Collapse
Affiliation(s)
- Günther F E Scherer
- Universität Hannover, Institut für Zierpflanzenbau, Baumschule und Pflanzenzüchtung, Hannover, Germany.
| |
Collapse
|
59
|
Palmgren MG. PLANT PLASMA MEMBRANE H+-ATPases: Powerhouses for Nutrient Uptake. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:817-845. [PMID: 11337417 DOI: 10.1146/annurev.arplant.52.1.817] [Citation(s) in RCA: 497] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most transport proteins in plant cells are energized by electrochemical gradients of protons across the plasma membrane. The formation of these gradients is due to the action of plasma membrane H+ pumps fuelled by ATP. The plasma membrane H+-ATPases share a membrane topography and general mechanism of action with other P-type ATPases, but differ in regulatory properties. Recent advances in the field include the identification of the complete H+-ATPase gene family in Arabidopsis, analysis of H+-ATPase function by the methods of reverse genetics, an improved understanding of the posttranslational regulation of pump activity by 14-3-3 proteins, novel insights into the H+ transport mechanism, and progress in structural biology. Furthermore, the elucidation of the three-dimensional structure of a related Ca2+ pump has implications for understanding of structure-function relationships for the plant plasma membrane H+-ATPase.
Collapse
Affiliation(s)
- Michael G Palmgren
- Department of Plant Biology, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, Frederiksberg C, DK-1871 Denmark; e-mail:
| |
Collapse
|
60
|
Portillo F. Regulation of plasma membrane H(+)-ATPase in fungi and plants. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1469:31-42. [PMID: 10692636 DOI: 10.1016/s0304-4157(99)00011-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The plasma membrane H+-ATPase from fungi and plants is a proton pump which plays a key role in the physiology of these organisms controlling essential functions such as nutrient uptake and intracellular pH regulation. In fungal and plant cells the activity of the proton pump is regulated by a large number of environmental factors at both transcriptional and post-translational levels. During the last years the powerful tools of molecular biology have been successfully used in fungi and plants allowing the cloning of a wide diversity of H+-ATPase genes and rapid progress on the molecular basis of reaction mechanism and regulation of the proton pump. This review focuses on recent results on regulation of plasma membrane H+-ATPase obtained by molecular approaches.
Collapse
Affiliation(s)
- F Portillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier, 4, E-28029, Madrid, Spain.
| |
Collapse
|
61
|
Abstract
The enlargement of plant cell walls is a key determinant of plant morphogenesis. Current models of the cell wall are reviewed with respect to their ability to account for the mechanism of cell wall enlargement. The concept of primary and secondary wall loosening agents is presented, and the possible roles of expansins, xyloglucan endotransglycosylase, endo-1,4-beta-D-glucanase, and wall synthesis in the process of cell wall enlargement are reviewed and critically evaluated. Experimental results indicate that cell wall enlargement may be regulated at many levels.
Collapse
Affiliation(s)
- D J Cosgrove
- Department of Biology, Pennsylvania State University, University Park 16802, USA.
| |
Collapse
|
62
|
Goetz M, Roitsch T. The different pH optima and substrate specificities of extracellular and vacuolar invertases from plants are determined by a single amino-acid substitution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 20:707-11. [PMID: 10652142 DOI: 10.1046/j.1365-313x.1999.00628.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Different plant invertase isoenzymes are characterized by a single amino-acid difference in a conserved sequence, the WEC-P/V-D box. A proline residue is present in this sequence motif of extracellular invertase sequences, whereas a valine is found at the same position of vacuolar invertase sequences. The role of this distinct difference was studied by substituting the proline residue of extracellular invertase CIN1 from Chenopodium rubrum with a valine residue, by site-directed mutagenesis. The mutated gene was heterologously expressed in an invertase-deficient Saccharomyces cerevisiae strain. The single amino-acid difference was shown to be the molecular basis for two enzymatic properties of invertase isoenzymes, for both the pH optimum and the substrate specificity. A proline in the WEC-P/V-D box determines the more acidic pH optimum and the higher cleavage rate of raffinose of extracellular invertases, compared to vacuolar invertases that have a valine residue at this position.
Collapse
Affiliation(s)
- M Goetz
- Institut für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, 93040 Regensburg, Germany
| | | |
Collapse
|
63
|
Moriau L, Michelet B, Bogaerts P, Lambert L, Michel A, Oufattole M, Boutry M. Expression analysis of two gene subfamilies encoding the plasma membrane H+-ATPase in Nicotiana plumbaginifolia reveals the major transport functions of this enzyme. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 19:31-41. [PMID: 10417724 DOI: 10.1046/j.1365-313x.1999.00495.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The plasma membrane H+-ATPase couples ATP hydrolysis to proton transport, thereby establishing the driving force for solute transport across the plasma membrane. In Nicotiana plumbaginifolia, this enzyme is encoded by at least nine pma (plasma membrane H+-ATPase) genes. Four of these are classified into two gene subfamilies, pma1-2-3 and pma4, which are the most highly expressed in plant species. We have isolated genomic clones for pma2 and pma4. Mapping of their transcript 5' end revealed the presence of a long leader that contained small open reading frames, regulatory features typical of other pma genes. The gusA reporter gene was then used to determine the expression of pma2, pma3 and pma4 in N. tabacum. These data, together with those obtained previously for pma1, led to the following conclusions. (i) The four pma-gusA genes were all expressed in root, stem, leaf and flower organs, but each in a cell-type specific manner. Expression in these organs was confirmed at the protein level, using subfamily-specific antibodies. (ii) pma4-gusA was expressed in many cell types and notably in root hair and epidermis, in companion cells, and in guard cells, indicating that in N. plumbaginifolia the same H+-ATPase isoform might be involved in mineral nutrition, phloem loading and control of stomata aperture. (iii) The second gene subfamily is composed, in N. plumbaginifolia, of a single gene (pma4) with a wide expression pattern and, in Arabidopsis thaliana, of three genes (aha1, aha2, aha3), at least two of them having a more restrictive expression pattern. (iv) Some cell types expressed pma2 and pma4 at the same time, which encode H+-ATPases with different enzymatic properties.
Collapse
Affiliation(s)
- L Moriau
- Unité de Biochimie Physiologique, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | |
Collapse
|
64
|
Sze H, Li X, Palmgren MG. Energization of plant cell membranes by H+-pumping ATPases. Regulation and biosynthesis. THE PLANT CELL 1999; 11:677-90. [PMID: 10213786 PMCID: PMC144215 DOI: 10.1105/tpc.11.4.677] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Affiliation(s)
- H Sze
- Department of Cell Biology and Molecular Genetics, H.J. Patterson Hall, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
65
|
Bogoslavsky L, Neumann PM. Rapid regulation by acid pH of cell wall adjustment and leaf growth in maize plants responding to reversal of water stress. PLANT PHYSIOLOGY 1998; 118:701-9. [PMID: 9765556 PMCID: PMC34846 DOI: 10.1104/pp.118.2.701] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/1998] [Accepted: 06/15/1998] [Indexed: 05/21/2023]
Abstract
The role of acid secretion in regulating short-term changes in growth rate and wall extensibility was investigated in emerging first leaves of intact, water-stressed maize (Zea mays L.) seedlings. A novel approach was used to measure leaf responses to injection of water or solutions containing potential regulators of growth. Both leaf elongation and wall extensibility, as measured with a whole-plant creep extensiometer, increased dramatically within minutes of injecting water, 0.5 mM phosphate, or strong (50 mM) buffer solutions with pH </= 5.0 into the cell-elongation zone of water-stressed leaves. In contrast, injecting buffer solutions at pH >/= 5.5 inhibited these fast responses. Solutions containing 0.5 mM orthovanadate or erythrosin B to inhibit wall acidification by plasma membrane H+-ATPases were also inhibitory. Thus, cell wall extensibility and leaf growth in water-stressed plants remained inhibited, despite the increased availability of (injected) water when accompanying increases in acid-induced wall loosening were prevented. However, growth was stimulated when pH 4.5 buffers were included with the vanadate injections. These findings suggest that increasing the availability of water to expanding cells in water-stressed leaves signals rapid increases in outward proton pumping by plasma membrane H+-ATPases. Resultant increases in cell wall extensibility participate in the regulation of water uptake, cell expansion, and leaf growth.
Collapse
Affiliation(s)
- L Bogoslavsky
- Plant Physiology Laboratory, Lowdermilk Faculty of Agricultural Engineering, Technion Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
66
|
Abstract
Biochemical dissection of the "acid-growth" process of plant cell walls led to the isolation of a new class of wall loosening proteins, called expansins. These proteins affect the rheology of growing walls by permitting the microfibril matrix network to slide, thereby enabling the wall to expand. Molecular sequence analysis suggests that expansins might have a cryptic glycosyl transferase activity, but biochemical results suggest that expansins disrupt noncovalent bonding between microfibrils and the matrix. Recent discoveries of a new expansin family and gene expression in fruit meristems and cotton fibers have enlarged our view of the developmental functions of this group of wall loosening proteins.
Collapse
Affiliation(s)
- M W Shieh
- Department of Biology, Pennsylvania State University, University Park 16802, USA
| | | |
Collapse
|
67
|
Abstract
Growing plant cells are shaped by an extensible wall that is a complex amalgam of cellulose microfibrils bonded noncovalently to a matrix of hemicelluloses, pectins, and structural proteins. Cellulose is synthesized by complexes in the plasma membrane and is extruded as a self-assembling microfibril, whereas the matrix polymers are secreted by the Golgi apparatus and become integrated into the wall network by poorly understood mechanisms. The growing wall is under high tensile stress from cell turgor and is able to enlarge by a combination of stress relaxation and polymer creep. A pH-dependent mechanism of wall loosening, known as acid growth, is characteristic of growing walls and is mediated by a group of unusual wall proteins called expansins. Expansins appear to disrupt the noncovalent bonding of matrix hemicelluloses to the microfibril, thereby allowing the wall to yield to the mechanical forces generated by cell turgor. Other wall enzymes, such as (1-->4) beta-glucanases and pectinases, may make the wall more responsive to expansin-mediated wall creep whereas pectin methylesterases and peroxidases may alter the wall so as to make it resistant to expansin-mediated creep.
Collapse
Affiliation(s)
- D J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
68
|
Cosgrove DJ. Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. THE PLANT CELL 1997; 9:1031-41. [PMID: 9254929 PMCID: PMC156977 DOI: 10.1105/tpc.9.7.1031] [Citation(s) in RCA: 263] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- D J Cosgrove
- Department of Biology, Pennsylvania State University, University Park 16802, USA.
| |
Collapse
|