51
|
Unal G, Bucher S, Carlier S, Slabaugh G, Fang T, Tanaka K. Shape-Driven Segmentation of the Arterial Wall in Intravascular Ultrasound Images. ACTA ACUST UNITED AC 2008; 12:335-47. [PMID: 18693501 DOI: 10.1109/titb.2008.920620] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gozde Unal
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
52
|
Unal G, Slabaugh G, Kakadiaris IA, Tannenbaum A. Introduction to the special section on computer vision for intravascular and intracardiac imaging. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE : A PUBLICATION OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY 2008; 12:273-6. [PMID: 18693494 PMCID: PMC3646520 DOI: 10.1109/titb.2008.920458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
53
|
A Robust 3-D IVUS Transducer Tracking Using Single-Plane Cineangiography. ACTA ACUST UNITED AC 2008; 12:307-14. [DOI: 10.1109/titb.2008.921043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
54
|
Chatzizisis YS, Giannoglou GD, Sianos G, Ziakas A, Tsikaderis D, Dardas P, Matakos A, Basdekidou C, Misirli G, Zamboulis C, Louridas GE, Parcharidis GE. In vivo comparative study of linear versus geometrically correct three-dimensional reconstruction of coronary arteries. Am J Cardiol 2008; 101:263-7. [PMID: 18178419 DOI: 10.1016/j.amjcard.2007.07.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 07/31/2007] [Accepted: 07/31/2007] [Indexed: 10/22/2022]
Abstract
Although conventional linear 3-dimensional (3D) reconstruction of coronary arteries by intravascular ultrasound has been widely used for the assessment of plaque volume and progression; the volumetric error (VE) that is produced has not been adequately studied. Linear and geometrically correct 3D reconstruction was applied in 16 coronary arterial segments from 9 patients. Using geometrically correct reconstruction as reference, VE was assessed in 1-mm-long arterial slices. Although for the entire length of the coronary arteries VEs for lumen, external elastic membrane (EEM), and intima-media volumes were minimal (lumen VE 0.4%, -0.8 to 1.8; EEM VE 0.3%, -0.9 to 1.9; intima-media VE 0.4%, -1.4 to 2.2), the VE in each arterial slice exhibited a large variation from -15.6% to 36.2% for lumen volume, from -12.9% to 33.1% for EEM volume, and from -17.2% to 46.7% for intima-media volume, suggesting that linear reconstruction over- or underestimates the true arterial volumes. Lumen VE, EEM VE, and intima-media VE were also significantly higher in curved arterial subsegments than in relatively straight arterial subsegments (p <0.05). In conclusion, in highly curved arterial subsegments, the VE that is produced by linearly stacking the intravascular ultrasound images may be not negligible. Geometrically correct reconstruction of coronary arteries provides more reliable arterial reconstructions and plaque volume measurements. It is anticipated that clinical application of this technique will contribute to more accurate follow-up of the progression of atherosclerosis and assessment of arterial remodeling.
Collapse
|
55
|
Sanz-Requena R, Moratal D, García-Sánchez DR, Bodí V, Rieta JJ, Sanchis JM. Automatic segmentation and 3D reconstruction of intravascular ultrasound images for a fast preliminar evaluation of vessel pathologies. Comput Med Imaging Graph 2007; 31:71-80. [PMID: 17215103 DOI: 10.1016/j.compmedimag.2006.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 02/17/2006] [Accepted: 11/06/2006] [Indexed: 10/23/2022]
Abstract
Intravascular ultrasound (IVUS) imaging is used along with X-ray coronary angiography to detect vessel pathologies. Manual analysis of IVUS images is slow and time-consuming and it is not feasible for clinical purposes. A semi-automated method is proposed to generate 3D reconstructions from IVUS video sequences, so that a fast diagnose can be easily done, quantifying plaque length and severity as well as plaque volume of the vessels under study. The methodology described in this work has four steps: a pre-processing of IVUS images, a segmentation of media-adventitia contour, a detection of intima and plaque and a 3D reconstruction of the vessel. Preprocessing is intended to remove noise from the images without blurring the edges. Segmentation of media-adventitia contour is achieved using active contours (snakes). In particular, we use the gradient vector flow (GVF) as external force for the snakes. The detection of lumen border is obtained taking into account gray-level information of the inner part of the previously detected contours. A knowledge-based approach is used to determine which level of gray corresponds statistically to the different regions of interest: intima, plaque and lumen. The catheter region is automatically discarded. An estimate of plaque type is also given. Finally, 3D reconstruction of all detected regions is made. The suitability of this methodology has been verified for the analysis and visualization of plaque length, stenosis severity, automatic detection of the most problematic regions, calculus of plaque volumes and a preliminary estimation of plaque type obtaining for automatic measures of lumen and vessel area an average error smaller than 1mm(2) (equivalent aproximately to 10% of the average measure), for calculus of plaque and lumen volume errors smaller than 0.5mm(3) (equivalent approximately to 20% of the average measure) and for plaque type estimates a mismatch of less than 8% in the analysed frames.
Collapse
Affiliation(s)
- Roberto Sanz-Requena
- Electronics Engineering Department, Universitat Politècnica de València, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
56
|
Giannoglou GD, Chatzizisis YS, Sianos G, Tsikaderis D, Matakos A, Koutkias V, Diamantopoulos P, Maglaveras N, Parcharidis GE, Louridas GE. In-vivo validation of spatially correct three-dimensional reconstruction of human coronary arteries by integrating intravascular ultrasound and biplane angiography. Coron Artery Dis 2006; 17:533-43. [PMID: 16905966 DOI: 10.1097/00019501-200609000-00007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The in-vivo validation of geometrically correct three-dimensional reconstruction of human coronary arteries by integrating intravascular ultrasound and biplane coronary angiography has not been adequately investigated. The purpose of this study was to describe the reconstruction method and investigate its in-vivo feasibility and accuracy. METHODS In 17 coronary arteries (mean length, 85.7+/-17.1 mm) from nine patients, an intravascular ultrasound procedure along with a biplane coronary angiography was performed. From each angiographic projection, a single end-diastolic frame was selected in order to reconstruct the intravascular ultrasound catheter trajectory in space. In each end-diastolic intravascular ultrasound image, the lumen and media-adventitia contours were detected semi-automatically by an active contour algorithm. Each pair of contours was located on the catheter trajectory appropriately and interpolated with the adjacent pairs creating a three-dimensional volume of the arterial lumen and wall. The reconstructed lumen was back-projected onto both angiographic planes and the agreement between the back-projected and the angiographic luminal outlines was calculated. RESULTS The angiogram-derived catheter length showed very high correlation (y=0.97 x + 1.8, P<0.001) and agreement with the corresponding pullback-derived values. Accordingly, the semi-automated segmentation of intravascular ultrasound images was also in significant correlation (r> or =0.96, P<0.001) and agreement with the reference manual tracing. The back-projected luminal borders showed good overall association with the corresponding angiographic ones (r=0.78, P<0.001) as well as remarkable agreement. CONCLUSIONS Spatially correct three-dimensional reconstruction of human coronary arteries constitutes an imaging method with considerably high in-vivo feasibility and accuracy.
Collapse
Affiliation(s)
- George D Giannoglou
- Cardiovascular Engineering and Atherosclerosis Laboratory, 1st Cardiology Department, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Chatzizisis YS, Giannoglou GD, Matakos A, Basdekidou C, Sianos G, Panagiotou A, Dimakis C, Parcharidis GE, Louridas GE. In-vivo accuracy of geometrically correct three-dimensional reconstruction of human coronary arteries: is it influenced by certain parameters? Coron Artery Dis 2006; 17:545-51. [PMID: 16905967 DOI: 10.1097/00019501-200609000-00008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The geometrically correct three-dimensional reconstruction of human coronary arteries by integrating intravascular ultrasound (IVUS) and biplane angiography constitutes a promising imaging method for coronaries with broad clinical potential. The determinants of the accuracy of the method, however, have not been investigated before. METHODS In total, 17 arterial segments (right coronary artery, n=7; left anterior descending, n=4; left circumflex, n=6) derived from nine patients were three-dimensionally reconstructed by applying three-dimensional intravascular ultrasound. The degree of matching between the reconstructed lumen back-projected onto each angiographic plane and the actual lumen in each plane was used as a measure of method's accuracy. The investigated factors that could potentially affect the reliability of the method included the type of the artery (left anterior descending, left circumflex, right coronary artery) and several geometrical and morphological characteristics of the reconstructed arteries. RESULTS The correlation between the back-projected reconstructed lumens and the actual angiographic ones was found to be high (r=0.78, P<0.001). Neither the category of the reconstructed arteries nor their particular geometrical and morphological characteristics influenced the accuracy of the reconstruction method significantly. Nonetheless, the method exhibited slightly less accuracy in the reconstruction of right coronary arteries, an observation that could be attributed to the more intense pulsatile motion that this artery experiences during the cardiac cycle compared to the left anterior descending and left circumflex artery. CONCLUSIONS The in-vivo accuracy of three-dimensional intravascular ultrasound (3D IVUS) is significantly high regardless of the type of the coronary arteries or their particular geometrical and morphological characteristics. This finding further supports the applicability of the method for either diagnostic or investigational purposes.
Collapse
Affiliation(s)
- Yiannis S Chatzizisis
- Cardiovascular Engineering and Atherosclerosis Laboratory, 1st Cardiology Department, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Ramaswamy SD, Vigmostad SC, Wahle A, Lai YG, Olszewski ME, Braddy KC, Brennan TMH, Rossen JD, Sonka M, Chandran KB. Comparison of left anterior descending coronary artery hemodynamics before and after angioplasty. J Biomech Eng 2006; 128:40-8. [PMID: 16532616 DOI: 10.1115/1.2132371] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Coronary artery disease (CAD) is characterized by the progression of atherosclerosis, a complex pathological process involving the initiation, deposition, development, and breakdown of the plaque. The blood flow mechanics in arteries play a critical role in the targeted locations and progression of atherosclerotic plaque. In coronary arteries with motion during the cardiac contraction and relaxation, the hemodynamic flow field is substantially different from the other arterial sites with predilection of atherosclerosis. In this study, our efforts focused on the effects of arterial motion and local geometry on the hemodynamics of a left anterior descending (LAD) coronary artery before and after clinical intervention to treat the disease. Three-dimensional (3D) arterial segments were reconstructed at 10 phases of the cardiac cycle for both pre- and postintervention based on the fusion of intravascular ultrasound (IVUS) and biplane angiographic images. An arbitrary Lagrangian-Eulerian formulation was used for the computational fluid dynamic analysis. The measured arterial translation was observed to be larger during systole after intervention and more out-of-plane motion was observed before intervention, indicating substantial alterations in the cardiac contraction after angioplasty. The time averaged axial wall shear stress ranged from -0.2 to 9.5 Pa before intervention compared to -0.02 to 3.53 Pa after intervention. Substantial oscillatory shear stress was present in the preintervention flow dynamics compared to that in the postintervention case.
Collapse
Affiliation(s)
- S D Ramaswamy
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Cardinal MHR, Meunier J, Soulez G, Maurice RL, Therasse E, Cloutier G. Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions. IEEE TRANSACTIONS ON MEDICAL IMAGING 2006; 25:590-601. [PMID: 16689263 DOI: 10.1109/tmi.2006.872142] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Intravascular ultrasound (IVUS) is a catheter based medical imaging technique particularly useful for studying atherosclerotic disease. It produces cross-sectional images of blood vessels that provide quantitative assessment of the vascular wall, information about the nature of atherosclerotic lesions as well as plaque shape and size. Automatic processing of large IVUS data sets represents an important challenge due to ultrasound speckle, catheter artifacts or calcification shadows. A new three-dimensional (3-D) IVUS segmentation model, that is based on the fast-marching method and uses gray level probability density functions (PDFs) of the vessel wall structures, was developed. The gray level distribution of the whole IVUS pullback was modeled with a mixture of Rayleigh PDFs. With multiple interface fast-marching segmentation, the lumen, intima plus plaque structure, and media layers of the vessel wall were computed simultaneously. The PDF-based fast-marching was applied to 9 in vivo IVUS pullbacks of superficial femoral arteries and to a simulated IVUS pullback. Accurate results were obtained on simulated data with average point to point distances between detected vessel wall borders and ground truth <0.072 mm. On in vivo IVUS, a good overall performance was obtained with average distance between segmentation results and manually traced contours <0.16 mm. Moreover, the worst point to point variation between detected and manually traced contours stayed low with Hausdorff distances <0.40 mm, indicating a good performance in regions lacking information or containing artifacts. In conclusion, segmentation results demonstrated the potential of gray level PDF and fast-marching methods in 3-D IVUS image processing.
Collapse
Affiliation(s)
- Marie-Hélène Roy Cardinal
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital's Research Center, 2099 Alexandre de Sève, Montreal, QC H2L 2W5, Canada.
| | | | | | | | | | | |
Collapse
|
60
|
Wahle A, Lopez JJ, Olszewski ME, Vigmostad SC, Chandran KB, Rossen JD, Sonka M. Plaque development, vessel curvature, and wall shear stress in coronary arteries assessed by X-ray angiography and intravascular ultrasound. Med Image Anal 2006; 10:615-31. [PMID: 16644262 PMCID: PMC2590653 DOI: 10.1016/j.media.2006.03.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Indexed: 11/22/2022]
Abstract
The relationships among vascular geometry, hemodynamics, and plaque development in the coronary arteries are complex and not yet well understood. This paper reports a methodology for the quantitative analysis of in vivo coronary morphology and hemodynamics, with particular emphasis placed on the critical issues of image segmentation and the automated classification of disease severity. We were motivated by the observation that plaque more often developed at the inner curvature of a vessel, presumably due to the relatively lower wall shear stress at these locations. The presented studies are based on our validated methodology for the three-dimensional fusion of intravascular ultrasound (IVUS) and X-ray angiography, introducing a novel approach for IVUS segmentation that incorporates a robust, knowledge-based cost function and a fully optimal, three-dimensional segmentation algorithm. Our first study shows that circumferential plaque distribution depends on local vessel curvature in the majority of vessels. The second study analyzes the correlation between plaque distribution and wall shear stress in a set of 48 in vivo vessel segments. The results were conclusive for both studies, with a stronger correlation of circumferential plaque thickness with local curvature than with wall shear stress. The inverse relationship between local wall shear stress and plaque thickness was significantly more pronounced (p<0.025) in vessel cross sections exhibiting compensatory enlargement (positive remodeling) without luminal narrowing than when the full spectrum of disease severity was considered. The inverse relationship was no longer observed in vessels where less than 35% of vessel cross sections remained without luminal narrowing. The findings of this study confirm, in vivo, the hypothesis that relatively lower wall shear stress is associated with early plaque development.
Collapse
Affiliation(s)
- Andreas Wahle
- Department of Electrical and Computer Engineering, The University of Iowa, 4016 Seamans Center, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
61
|
Guo D, Richardson P. Detection of cardiac cycle from intracoronary ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2006; 32:345-56. [PMID: 16530093 DOI: 10.1016/j.ultrasmedbio.2005.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 12/01/2005] [Accepted: 12/09/2005] [Indexed: 05/07/2023]
Abstract
In this paper, we describe a method automatically to determine the phase of a cardiac cycle for each video frame of an intravascular ultrasound (IVUS) video recorded in vivo. We first review the principle of IVUS video and demonstrate the general applicability of our method. We show that the pulsating heart leads to phasic changes in image content of an IVUS video. With an image processing method, we can reverse this process and reliably extract the heart-beat phase directly from IVUS video. With the phase information, we demonstrate that we can build 3-D (3D) time-variant shapes and measure lumen volume changes within a cardiac cycle. We may also measure the changes of IVUS imaging probe off-center vector within a cardiac cycle, which serves as an indicator of vessel center-line curvature. The cardiac cycle extraction algorithm requires one scan of the IVUS video frames and takes O(n) time to complete, n being the total number of the video frames. The advantage of this method is that it requires no user interaction and no hardware set-up and can be applied to coronary scans of live beating hearts. The extracted heart-beat rate, compared with clinical recordings, has less than 1% error.
Collapse
|
62
|
Identification of Luminal and Medial Adventitial Borders in Intravascular Ultrasound Images Using Level Sets. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/11902140_61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
63
|
Bourantas CV, Kourtis IC, Plissiti ME, Fotiadis DI, Katsouras CS, Papafaklis MI, Michalis LK. A method for 3D reconstruction of coronary arteries using biplane angiography and intravascular ultrasound images. Comput Med Imaging Graph 2005; 29:597-606. [PMID: 16278063 DOI: 10.1016/j.compmedimag.2005.07.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 04/12/2005] [Accepted: 07/25/2005] [Indexed: 11/17/2022]
Abstract
The aim of this study is to describe a new method for the three-dimensional reconstruction of coronary arteries and its quantitative validation. Our approach is based on the fusion of the data provided by intravascular ultrasound images (IVUS) and biplane angiographies. A specific segmentation algorithm is used for the detection of the regions of interest in intravascular ultrasound images. A new methodology is also introduced for the accurate extraction of the catheter path. In detail, a cubic B-spline is used for approximating the catheter path in each biplane projection. Each B-spline curve is swept along the normal direction of its X-ray angiographic plane forming a surface. The intersection of the two surfaces is a 3D curve, which represents the reconstructed path. The detected regions of interest in the IVUS images are placed perpendicularly onto the path and their relative axial twist is computed using the sequential triangulation algorithm. Then, an efficient algorithm is applied to estimate the absolute orientation of the first IVUS frame. In order to obtain 3D visualization the commercial package Geomagic Studio 4.0 is used. The performance of the proposed method is assessed using a validation methodology which addresses the separate validation of each step followed for obtaining the coronary reconstruction. The performance of the segmentation algorithm was examined in 80 IVUS images. The reliability of the path extraction method was studied in vitro using a metal wire model and in vivo in a dataset of 11 patients. The performance of the sequential triangulation algorithm was tested in two gutter models and in the coronary arteries (marked with metal clips) of six cadaveric sheep hearts. Finally, the accuracy in the estimation of the first IVUS frame absolute orientation was examined in the same set of cadaveric sheep hearts. The obtained results demonstrate that the proposed reconstruction method is reliable and capable of depicting the morphology of coronary arteries.
Collapse
Affiliation(s)
- Christos V Bourantas
- Department of Cardiology, Medical School, University of Ioannina, GR 45110 Ioannina, Greece
| | | | | | | | | | | | | |
Collapse
|
64
|
Lieber BB, Siebes M, Yamaguchi T. Correlation of Hemodynamic Events with Clinical and Pathological Observations. Ann Biomed Eng 2005; 33:1695-703. [PMID: 16389515 DOI: 10.1007/s10439-005-8760-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Accepted: 06/03/2005] [Indexed: 10/25/2022]
Abstract
The correlation of hemodynamic events with clinical or pathological observations is represented by a variety of applications reflecting the broad range of this theme. The position paper describes several cases in which benefits of combining imaging information with transport models of contrast material, can cause a gain in hemodynamic information. What appears to be lack of cohesiveness among the cases illustrates the variety in the application of hemodynamic research to the practice of medicine. Some of the contributions presented at the symposium do not directly apply to clinical medicine, but instead described mathematical models or applications to animal physiology or technical advancements in measuring blood rheology. Although related to this theme topic they fall somewhat outside the main scope. The topics summarized below demonstrate four examples in which translation of the research to the clinical arena can be realized in a short period of time. Overall recommendations for priority objectives related to this topic are provided at the end of this position paper.
Collapse
Affiliation(s)
- Baruch B Lieber
- Department of Biomedical Engineering, University of Miami, Miami, Florida, USA.
| | | | | |
Collapse
|
65
|
van Walsum T, Baert SAM, Niessen WJ. Guide wire reconstruction and visualization in 3DRA using monoplane fluoroscopic imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2005; 24:612-23. [PMID: 15889549 DOI: 10.1109/tmi.2005.844073] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A method has been developed that, based on the guide wire position in monoplane fluoroscopic images, visualizes the approximate guide wire position in the three-dimensional (3-D) vasculature, that is obtained prior to the intervention with 3-D rotational X-ray angiography (3DRA). The method assumes the position of the guide wire in the fluoroscopic images is known. A two-dimensional feature image is determined from the 3DRA data. In this feature image, the guide wire position is determined in a two-step approach: a mincost algorithm is used to determine a suitable position for the guide wire, and subsequently a snake optimization technique is applied to move the guide wire to a better position. The resulting guide wire can then be visualized in 3-D in combination with the 3DRA dataset. The reconstruction accuracy of the method has been evaluated using a 3DRA image of a vascular phantom filled with contrast, and monoplane fluoroscopic images of the same phantom without contrast and with a guide wire inserted. The evaluation has been performed for different projection angles, and with different parameters for the method. The final result does not appear to be very sensitive to the parameters of the method. The average mean error of the estimated 3-D guide wire position is 1.5 mm, and the average tip distance is 2.3 mm. The effect of inaccurate C-arm geometry information is also investigated. Small errors in geometry information (up to 1 degrees) will slightly decrease the 3-D reconstruction accuracies, with an error of at most 1 mm. The feasibility of this approach on clinical data is demonstrated.
Collapse
Affiliation(s)
- Theo van Walsum
- Image Sciences Institute, University Medical Center Utrecht, Room E.01.335, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | |
Collapse
|
66
|
Godbout B, de Guise JA, Soulez G, Cloutier G. 3D elastic registration of vessel structures from IVUS data on biplane angiography. Acad Radiol 2005; 12:10-6. [PMID: 15691721 DOI: 10.1016/j.acra.2004.10.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
RATIONALE AND OBJECTIVES Planar angiograms and intravascular ultrasound (IVUS) imaging provide important insight for the evaluation of atherosclerotic diseases and blood flow abnormalities. The construction of realistic three-dimensional models is essential to efficiently follow the progression of arterial plaque. This requires an explicit localization of IVUS frames from angiograms. Because of the difficulties encountered when trying to track the position of an IVUS transducer, we propose an elastic registration approach that relies on a virtual catheter path. MATERIALS AND METHODS Deformable surface models of the lumen and external wall are constructed from segmented IVUS contours. A crude registration is obtained using a three-dimensional vessel centerline, reconstructed from two calibrated angiograms. Robust optimization of the virtual catheter path, position, absolute orientation, and regulation of the external wall shape is performed until near-perfect alignment of the back-projected silhouettes on image edges is reached. RESULTS Visual assessment of the reconstructed vessels showed a good superposition of virtual models on the angiograms. We measured a 0.4-mm residual error value. A preliminary study of convergence properties on 15 datasets showed that initial absolute orientation may affect the solution. However, for follow-ups, coherent solutions were found among datasets. CONCLUSION The advantages of the virtual catheter path approach are demonstrated. Future work will look at ways to single out the true solution with a better use of the available information in both modalities and additional validation studies on improved datasets.
Collapse
Affiliation(s)
- Benoit Godbout
- Laboratoire de Recherche en Imagerie et Orthopédie, CRCHUM, 1560 Sherbooke Est (Y-1615), Montréal, Quebec H2L-4M1, Canada
| | | | | | | |
Collapse
|
67
|
Nadkarni SK, Boughner D, Fenster A. Image-based cardiac gating for three-dimensional intravascular ultrasound imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2005; 31:53-63. [PMID: 15653231 DOI: 10.1016/j.ultrasmedbio.2004.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2003] [Revised: 08/23/2004] [Accepted: 08/31/2004] [Indexed: 05/24/2023]
Abstract
Three-dimensional (3-D) intravascular ultrasound (US), or IVUS, provides valuable insight into the tissue characteristics of the coronary wall and plaque composition. However, artefacts due to cardiac motion and vessel wall pulsation limit the accuracy and variability of coronary lumen and plaque volume measurement in 3-D IVUS images. ECG-gated image acquisition can reduce these artefacts but it requires recording the ECG signal and may increase image acquisition time. The goal of our study was to reconstruct a 3-D IVUS image with negligible cardiac motion and vessel pulsation artefacts, by developing an image-based gating method to track 2-D IVUS images over the cardiac cycle. Our approach involved selecting 2-D IVUS images belonging to the same cardiac phase from an asynchronously-acquired series, by tracking the changing lumen contour over the cardiac cycle. The algorithm was tested with IVUS images of a custom-built coronary vessel phantom and with patient images. The artefact reduction achieved using the image-gating approach was > 86% in the in vitro images and > 80% in the in vivo images in our study. Our study shows that image-based gating of IVUS images provides a useful method for accurate reconstruction of 3-D IVUS images with reduced cardiac motion artefact.
Collapse
|
68
|
Ramaswamy SD, Vigmostad SC, Wahle A, Lai YG, Olszewski ME, Braddy KC, Brennan TMH, Rossen JD, Sonka M, Chandran KB. Fluid Dynamic Analysis in a Human Left Anterior Descending Coronary Artery with Arterial Motion. Ann Biomed Eng 2004; 32:1628-41. [PMID: 15675676 DOI: 10.1007/s10439-004-7816-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A computational fluid dynamic (CFD) analysis is pre sented to describe local flow dynamics in both 3-D spatial and 4-D spatial and temporal domains from reconstructions of intravascular ultrasound (IVUS) and bi-plane angiographic fusion images. A left anterior descending (LAD) coronary artery segment geometry was accurately reconstructed and subsequently its motion was incorporated into the CFD model. The results indicate that the incorporation of motion had appreciable effects on blood flow patterns. The velocity profiles in the region of a stenosis and the circumferential distribution of the axial wall shear stress (WSS) patterns in the vessel are altered with the wall motion introduced in the simulation. The time-averaged axial WSS between simulations of steady flow and unsteady flow without arterial motion were comparable (-0.3 to 13.7 Pa in unsteady flow versus -0.2 to 10.1 Pa in steady flow) while the magnitudes decreased when motion was introduced (0.3-4.5 Pa). The arterial wall motion affects the time-mean WSS and the oscillatory shear index in the coronary vessel fluid dynamics and may provide more realistic predictions on the progression of atherosclerotic disease.
Collapse
Affiliation(s)
- S D Ramaswamy
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Wahle A, Olszewski ME, Sonka M. Interactive virtual endoscopy in coronary arteries based on multimodality fusion. IEEE TRANSACTIONS ON MEDICAL IMAGING 2004; 23:1391-1403. [PMID: 15554127 DOI: 10.1109/tmi.2004.837109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A novel approach for platform-independent virtual endoscopy in human coronary arteries is presented in this paper. It incorporates previously developed and validated methodology for multimodality fusion of two X-ray angiographic images with pullback data from intravascular ultrasound (IVUS). These modalities pose inherently different challenges than those present in many tomographic modalities that provide parallel slices. The fusion process results in a three- or four-dimensional (3-D/4-D) model of a coronary artery, specifically of its lumen/plaque and media/adventitia surfaces. The model is used for comprehensive quantitative hemodynamic, morphologic, and functional analyses. The resulting quantitative indexes are then used to supplement the model. Platform-independent visualization is achieved through the use of the ISO/IEC-standardized Virtual Reality Modeling Language (VRML). The visualization includes an endoscopic fly-through animation that enables the user to interactively select vessel location and fly-through speed, as well as to display image pixel data or quantification results in 3-D. The presented VRML virtual-endoscopy system is used in research studies of coronary atherosclerosis development, quantitative assessment of coronary morphology and function, and vascular interventions.
Collapse
Affiliation(s)
- Andreas Wahle
- University of Iowa, Department of Electrical and Computer Engineering, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
70
|
Segmentation of intravascular ultrasound images: a machine learning approach mimicking human vision. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ics.2004.03.252] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
71
|
Brusseau E, de Korte CL, Mastik F, Schaar J, van der Steen AFW. Fully automatic luminal contour segmentation in intracoronary ultrasound imaging--a statistical approach. IEEE TRANSACTIONS ON MEDICAL IMAGING 2004; 23:554-566. [PMID: 15147009 DOI: 10.1109/tmi.2004.825602] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this paper, a fully automatic method for luminal contour segmentation in intracoronary ultrasound imaging is introduced. Its principle is based on a contour with a priori properties that evolves according to the statistics of the ultrasound texture brightness, which is generally Rayleigh distributed. The main interest of the technique is its fully automatic character. This is insured by an initial contour that is not set by the user, like in classical snake-based algorithms, but estimated and, thus, adapted to each image. Its estimation combines two pieces of information extracted from the a posteriori probability function of the contour position: the function maximum location (or maximum a posteriori estimator) and the first zero-crossing of its derivative. Then, starting from the initial contour, a region of interest is automatically selected and the process iterated until the contour evolution can be ignored. In vivo coronary images from 15 patients, acquired with the 20-MHz central frequency Jomed Invision ultrasound scanner, were segmented with the developed method. Automatic contours were compared to those manually drawn by two physicians in terms of mean absolute difference. The results demonstrate that the error between automatic contours and the average of manual ones is of small amplitude, and only very slightly higher (0.099 +/- 0.032 mm) than the interexpert error (0.097 +/- 0.027 mm).
Collapse
|
72
|
Yang F, Holzapfel G, Schulze-Bauer C, Stollberger R, Thedens D, Bolinger L, Stolpen A, Sonka M. Segmentation of wall and plaque in in vitro vascular MR images. Int J Cardiovasc Imaging 2004; 19:419-28. [PMID: 14609192 DOI: 10.1023/a:1025829232098] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Atherosclerosis leads to heart attack and stroke, which are major killers in the western world. These cardiovascular events frequently result from local rupture of vulnerable atherosclerotic plaque. Non-invasive assessment of plaque vulnerability would dramatically change the way in which atherosclerotic disease is diagnosed, monitored, and treated. In this paper, we report a computerized method for segmentation of arterial wall layers and plaque from high-resolution volumetric MR images. The method uses dynamic programming to detect optimal borders in each MRI frame. The accuracy of the results was tested in 62 T1-weighted MR images from six vessel specimens in comparison to borders manually determined by an expert observer. The mean signed border positioning errors for the lumen, internal elastic lamina, and external elastic lamina borders were -0.1 +/- 0.1, 0.0 +/- 0.1, and -0.1 +/- 0.1 mm, respectively. The presented wall layer segmentation approach is one of the first steps towards non-invasive assessment of plaque vulnerability in atherosclerotic subjects.
Collapse
Affiliation(s)
- Fuxing Yang
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Dijkstra J, von Birgelen C. The devil may be in the details...quantitative measurements in intravascular ultrasound images. Int J Cardiovasc Imaging 2004; 20:93-4. [PMID: 15068138 DOI: 10.1023/b:caim.0000014299.22996.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
74
|
Medina R, Wahle A, Olszewski ME, Sonka M. Three methods for accurate quantification of plaque volume in coronary arteries. Int J Cardiovasc Imaging 2004; 19:301-11. [PMID: 14598898 DOI: 10.1023/a:1025470327543] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The coronary atherosclerotic process evolves to an occlusive disease that causes chronic angina and acute coronary syndromes, such as myocardial infarction and sudden death. An important milestone in the understanding of the atherosclerotic process is the development of tools for quantitative assessment of disease progression or regression. A new methodology to analyze the coronary vessel lumen and plaque morphology in 3-D is based on the fusion of intravascular ultrasound (IVUS) and biplane X-ray angiography, which results in a geometrically correct representation of coronary vessels. A comparison of three volume quantification methods: polytope, Watanabe, and Simpson's rule is reported for quantifying the amount of plaque accumulation. The three methods allow local estimation of plaque volume. To determine volumetric indices, the space between the luminal and adventitial surfaces is first subdivided and then each of the volume elements is considered individually to achieve volume quantification. Polyhedral volume elements are employed and the volume of every element is estimated by each of the three approaches. The volume quantification methods were validated in 314 computer-generated shapes. All three methods are highly accurate, providing a mean error of 0.138 +/- 0.049%, 0.139 +/- 0.049%, and 0.832 +/- 0.203% for the polytope, Watanabe, and Simpson-rule methods, respectively. Nevertheless, the polytope and Watanabe methods are statistically significantly more accurate than the Simpson-rule approach (p < 0.001). The volumetric quantification methods were also tested using seven in vivo coronary arterial datasets from seven patients undergoing coronary angioplasty. While the polytope and Watanabe approaches are statistically significantly more accurate compared to the Simpson's rule method, accuracy of either of the tested method is sufficient for all practical purposes. Yet, the methods are not interchangeable and a single technique should be used in comparative volumetric studies.
Collapse
Affiliation(s)
- Ruben Medina
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA 52242-1527, USA
| | | | | | | |
Collapse
|
75
|
Dijkstra J, Carlier S. Accurate plaque volume measurements in 3D reconstructed IVUS pullback sequences. Int J Cardiovasc Imaging 2003; 19:313-4. [PMID: 14598899 DOI: 10.1023/a:1025484520017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
76
|
Stone PH, Coskun AU, Yeghiazarians Y, Kinlay S, Popma JJ, Kuntz RE, Feldman CL. Prediction of sites of coronary atherosclerosis progression:In vivo profiling of endothelial shear stress, lumen, and outer vessel wall characteristics to predict vascular behavior. Curr Opin Cardiol 2003; 18:458-70. [PMID: 14597887 DOI: 10.1097/00001573-200311000-00007] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Native atherosclerosis and in-stent restenosis are focal and evolve independently. The endothelium regulates arterial behavior by responding to its local environment of hemodynamic stresses, in particular, shear stress. Identification of endothelial shear stress and arterial wall characteristics may allow for the prediction of the progression of atherosclerosis. Accurate identification of arterial segments at high risk for progression may permit preemptive intervention strategies to avoid adverse coronary events. RECENT FINDINGS In vitro studies indicate that low endothelial shear stress upregulates the genetic and molecular responses leading to the initiation and progression of atherosclerosis, and promotes inflammation and formation of other features characteristic of vulnerable plaque. Physiologic endothelial shear stress is vasculoprotective and fosters quiescence of the endothelium and vascular wall. High endothelial shear stress promotes platelet aggregation. Recent studies have now provided evidence that endothelial shear stress and vascular wall morphology along the course of human coronary arteries can be characterized in vivo, and, in serial studies, may actually predict the focal areas in which atherosclerosis progression occurs. SUMMARY Rapidly evolving methodologies are able to characterize the arterial wall and the local hemodynamic environmental factors likely responsible for progression of coronary disease in humans. These new diagnostic modalities allow for identification of plaque progression. Future studies need to identify the factors responsible for vulnerable plaque formation. The current availability of drug-eluting stents with a low risk of restenosis allows for consideration of preemptive intervention strategies for these high-risk vascular sites such that future adverse coronary events can be averted.
Collapse
Affiliation(s)
- Peter H Stone
- Cardiovascular Division, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
77
|
Wahle A, Lopez JJ, Pennington EC, Meeks SL, Braddy KC, Fox JM, Brennan TMH, Buatti JM, Rossen JD, Sonka M. Effects of vessel geometry and catheter position on dose delivery in intracoronary brachytherapy. IEEE Trans Biomed Eng 2003; 50:1286-95. [PMID: 14619999 DOI: 10.1109/tbme.2003.818474] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In-stent restenosis is commonly observed in coronary arteries after intervention. Intravascular brachytherapy has been found effective in reducing the recurrence of restenosis after stent placement. Conventional dosing models for brachytherapy with beta (beta) radiation neglect vessel geometry as well as the position of the delivery catheter. This paper demonstrates in computer simulations on phantoms and on in vivo patient data that the estimated dose distribution varies substantially in curved vessels. In simulated phantoms of 50-mm length with a shape corresponding to a 60 degrees - 180 degrees segment of a respectively sized torus, the average dose in 2-mm depth was decreased by 2.70%-7.48% at the outer curvature and increased by 2.95%-9.70% at the inner curvature as compared with a straight phantom. In vivo data were represented in a geometrically correct three-dimensional model that was derived by fusion of intravascular ultrasound (IVUS) and biplane angiography. These data were compared with a simplified tubular model reflecting common assumptions of conventional dosing schemes. The simplified model yielded significantly lower estimates of the delivered radiation and the dose variability as compared with a geometrically correct model (p < 0.001). The estimated dose in ten vessel segments of eight patients was on average 8.76% lower at the lumen/plaque and 6.52% lower at the media/adventitia interfaces (simplified tubular model relative to geometrically correct model). The differences in dose estimates between the two models were significantly higher in the right coronary artery as compared with the left coronary artery (p < 0.001).
Collapse
Affiliation(s)
- Andreas Wahle
- Department of Electrical and Computer Engineering, 3320 Seamans Center for Engineering, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Wu HC, Chen SYJ, Shroff SG, Carroll JD. Stress analysis using anatomically realistic coronary tree. Med Phys 2003; 30:2927-36. [PMID: 14655940 DOI: 10.1118/1.1593635] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Plaque rupture with superimposed thrombosis is the main cause of the acute coronary syndromes of unstable angina, myocardial infarction, and sudden death. Endothelial disruption leading to plaque rupture may relate to mechanical fatigue associated with cyclic flexion of plaques. A novel method is proposed to assess stress and strain distribution using the finite element (FE) analysis and in vivo patient-specific dynamic 3D coronary arterial tree reconstruction from cine angiographic images. The local stresses were calculated on the diseased arterial wall which was modeled as consisting of a central fibrotic cap subjected to the cyclic flexion from cardiac contraction. Various parameters characterizing the plaque were chosen including vessel diameter, percentage narrowing, and lesion length. According to the FEA simulations, the results show that the smaller vessel diameter, greater percentage narrowing, and/or larger lesion size may result in higher stress on the plaque cap, with the vessel diameter as the dominant factor.
Collapse
Affiliation(s)
- Hsien-Chih Wu
- Division of Cardiology, Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
79
|
Coskun AU, Yeghiazarians Y, Kinlay S, Clark ME, Ilegbusi OJ, Wahle A, Sonka M, Popma JJ, Kuntz RE, Feldman CL, Stone PH. Reproducibility of coronary lumen, plaque, and vessel wall reconstruction and of endothelial shear stress measurements in vivo in humans. Catheter Cardiovasc Interv 2003; 60:67-78. [PMID: 12929106 DOI: 10.1002/ccd.10594] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to assess the reproducibility of an in vivo methodology to reconstruct the lumen, plaque, and external elastic membrane (EEM) of coronary arteries and estimate endothelial shear stress (ESS). Ten coronary arteries without significant stenoses (five native and five stented arteries) were investigated. The 3D lumen and EEM boundaries of each coronary artery were determined by fusing end-diastolic intravascular ultrasound images with biplane coronary angiograms. Coronary flow was measured. Computational fluid dynamics was used to calculate local ESS. Complete data acquisition was then repeated. Analysis was performed on each data set in a blinded manner. The intertest correlation coefficients for all arteries for the two measurements of lumen radius, EEM radius, plaque thickness, and ESS were r = 0.96, 0.96, 0.94, 0.91, respectively (all P values < 0.0001). The 3D anatomy and ESS of human coronary arteries can be reproducibly estimated in vivo. This methodology provides a tool to examine the effect of ESS on atherogenesis, remodeling, and restenosis; the contribution of arterial remodeling and plaque growth to changes in the lumen; and the impact of new therapies.
Collapse
Affiliation(s)
- Ahmet U Coskun
- Department of Mechanical, Industrial and Manufacturing Engineering, Northeastern University, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Stone PH, Coskun AU, Kinlay S, Clark ME, Sonka M, Wahle A, Ilegbusi OJ, Yeghiazarians Y, Popma JJ, Orav J, Kuntz RE, Feldman CL. Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation 2003; 108:438-44. [PMID: 12860915 DOI: 10.1161/01.cir.0000080882.35274.ad] [Citation(s) in RCA: 331] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Native atherosclerosis and in-stent restenosis are focal and evolve independently. The endothelium controls local arterial responses by transduction of shear stress. Characterization of endothelial shear stress (ESS) may allow for prediction of progression of atherosclerosis and in-stent restenosis. METHODS AND RESULTS By using intracoronary ultrasound, biplane coronary angiography, and measurement of coronary blood flow, we represented the artery in accurate 3D space and determined detailed characteristics of ESS and arterial wall/plaque morphology. Patients who underwent stent implantation and who had another artery with luminal obstruction <50% underwent intravascular profiling initially and after 6-month follow-up. Twelve arteries in 8 patients were studied: 6 native and 6 stented arteries. In native arteries, regions of abnormally low baseline ESS exhibited a significant increase in plaque thickness and enlargement of the outer vessel wall, such that lumen radius remained unchanged (outward remodeling). Regions of physiological ESS showed little change. Regions with increased ESS exhibited outward remodeling with normalization of ESS. In stented arteries, there was an increase in intima-medial thickness, a decrease in lumen radius, and an increase in ESS at all levels of baseline ESS. CONCLUSIONS The present study represents the first experience in humans relating ESS to subsequent outcomes in native and stented arteries. Regions of low ESS develop progressive atherosclerosis and outward remodeling, areas of physiological ESS remain quiescent, and areas of increased ESS exhibit outward remodeling. ESS may have a limited role in in-stent restenosis. This technology can predict areas of minor plaque likely to exhibit progression of atherosclerosis.
Collapse
Affiliation(s)
- Peter H Stone
- Cardiovascular Division, Brigham and Women's Hospital, 75 Francis St, Boston, Mass 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Bourantas C, Fotiadis D, Kourtis I, Michalis L, Plissiti M. Three-dimensional coronary artery reconstruction using fusion of intravascular ultrasound and biplane angiography. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0531-5131(03)00334-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
82
|
Klingensmith JD, Schoenhagen P, Tajaddini A, Halliburton SS, Tuzcu EM, Nissen SE, Vince DG. Automated three-dimensional assessment of coronary artery anatomy with intravascular ultrasound scanning. Am Heart J 2003; 145:795-805. [PMID: 12766735 DOI: 10.1016/s0002-8703(03)00089-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Angiography allows the definition of advanced, severe stages of coronary artery disease, but early atherosclerotic lesions, which do not lead to luminal stenosis, are not identified reliably. In contrast, intravascular ultrasound scanning allows the precise characterization and quantification of a wide range of atherosclerotic lesions, independent of the severity of luminal stenosis. METHODS Three-dimensional (3-D) reconstruction of entire coronary segments is possible with the integration of sequential 2-dimensional tomographic images and allows volumetric analysis of coronary arteries. RESULTS Automated systems able to recognize lumen and vessel borders and to display 3-D images are becoming available. CONCLUSION These systems have the potential for on-line 3-D image reconstruction for clinical decision-making and fast routine volumetric analysis in research studies. This review describes 3-D intravascular ultrasound scanning acquisition, analysis, and processing, and the associated technical challenges.
Collapse
Affiliation(s)
- Jon D Klingensmith
- Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
This article reviews the fundamental techniques to quantify the physiological severity of (coronary) stenoses. Although a wide survey of different techniques and applications is provided, the focus of this review is on: 1) the assessment of the immediate effect of the stenoses on blood flow (i.e., the hemodynamic severity), and not on the assessment of the pathology of the vessel itself; 2) the flow reserve methods to defining the physiological severity of stenoses; and 3) the determination of blood flow and tissue perfusion by X-ray angiography (a short survey of other imaging modalities is provided as well). Although the practical implementation of the techniques is illustrated by applying them to coronary stenoses, most of the issues involved are of interest in other application areas (using other imaging modalities) as well. This review consists of four parts. The first part deals with the definition of stenoses severity; the second part with tracer kinetic theory necessary to determine flows by imaging; the third part focusses on (cardiac) imaging modalities, with an emphasis on X-ray angiography; and the last part illustrates the practical implementation of the techniques in cardiology.
Collapse
Affiliation(s)
- M Schrijver
- Chair of Signals and Systems, Faculty of Electrical Engineering, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
84
|
Tajaddini A, Kilpatrick DL, Vince DG. A novel experimental method to estimate stress-strain behavior of intact coronary arteries using intravascular ultrasound (IVUS). J Biomech Eng 2003; 125:120-3. [PMID: 12661205 DOI: 10.1115/1.1536929] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most arterial mechanics studies have focused on excised non-coronary vessels, with few studies validating the application of ex-vivo results to in-vivo conditions. A method was developed for testing the mechanical properties of intact left anterior descending coronary arteries under a variety of conditions. Vascular deformation and pressure were simultaneously measured with intravascular ultrasound and a pressure transducer guidewire, respectively. Results suggest the importance of understanding in-vivo factors such as myocardial support, vascular tone and local pressure fluctuations when applying ex-vivo coronary characterization data. With further development, this method can more accurately characterize the true in-vivo constitutive behavior in normal and atherosclerotic coronaries.
Collapse
Affiliation(s)
- Azita Tajaddini
- Department of Biomedical Engineering/ND20 Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
85
|
|
86
|
Berthier B, Bouzerar R, Legallais C. Blood flow patterns in an anatomically realistic coronary vessel: influence of three different reconstruction methods. J Biomech 2002; 35:1347-56. [PMID: 12231280 DOI: 10.1016/s0021-9290(02)00179-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many clinical studies suggest that local blood flow patterns are involved in the location and development of atherosclerosis. In coronary diseases, this assumption should be corroborated by quantitative information on local hemodynamic parameters such as pressure, velocity or wall shear stress. Nowadays, computational fluid dynamics (CFD) algorithms coupled to realistic 3-D reconstructions of such vessels make these data accessible. Nevertheless, they should be carefully analysed to avoid misinterpretations when the physiological parameters are not all considered. As an example, we propose here to compare the flow patterns calculated in a coronary vessel reconstructed by three different methods. In the three cases, the vessel trajectory respected the physiology. In the simplest reconstruction, the coronary was modelled by a tube of constant diameter while in the most complex one, the cross-sections corresponded to the reality. We showed that local pressures, wall shear rates and velocity profiles were severely affected by the geometrical modifications. In the constant cross-section vessel, the flow resembled to that of Poiseuille in a straight tube. On the contrary, velocity and shear rate exhibited sudden local variations in the more realistic vessels. As an example, velocity could be multiplied by 5 as compared to Poiseuille's flow and area of very low wall shear rates appeared. The results obtained with the most complex model clearly outlined that, in addition to a proper description of the vessel trajectory, the section area changes should be carefully taken into account, confirming assumptions already highlighted before the rise of commercially available and efficient CFD softwares.
Collapse
Affiliation(s)
- B Berthier
- Université de Technologie de Compiègne, UMR CNRS 6600 Biomécanique et Génie Biomédical, Compiègne, France
| | | | | |
Collapse
|
87
|
Cañero C, Vilariño F, Mauri J, Radeva P. Predictive (un)distortion model and 3-D reconstruction by biplane snakes. IEEE TRANSACTIONS ON MEDICAL IMAGING 2002; 21:1188-1201. [PMID: 12564886 DOI: 10.1109/tmi.2002.804421] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This paper is concerned with the three-dimensional (3-D) reconstruction of coronary vessel centerlines and with how distortion of X-ray angiographic images affects it. Angiographies suffer from pincushion and other geometrical distortions, caused by the peripheral concavity of the image intensifier (II) and the nonlinearity of electronic acquisition devices. In routine clinical practice, where a field-of-view (FOV) of 17-23 cm is commonly used for the acquisition of coronary vessels, this distortion introduces a positional error of up to 7 pixels for an image matrix size of 512 x 512 and an FOV of 17 cm. This error increases with the size of the FOV. Geometrical distortions have a significant effect on the validity of the 3-D reconstruction of vessels from these images. We show how this effect can be reduced by integrating a predictive model of (un)distortion into the biplane snakes formulation for 3-D reconstruction. First, we prove that the distortion can be accurately modeled using a polynomial for each view. Also, we show that the estimated polynomial is independent of focal length, but not of changes in anatomical angles, as the II is influenced by the earth's magnetic field. Thus, we decompose the polynomial into two components: the steady and the orientation-dependent component. We determine the optimal polynomial degree for each component, which is empirically determined to be five for the steady component and three for the orientation-dependent component. This fact simplifies the prediction of the orientation-dependent polynomial, since the number of polynomial coefficients to be predicted is lower. The integration of this model into the biplane snakes formulation enables us to avoid image unwarping, which deteriorates image quality and therefore complicates vessel centerline feature extraction. Moreover, we improve the biplane snake behavior when dealing with wavy vessels, by means of using generalized gradient vector flow. Our experiments show that the proposed methods in this paper decrease up to 88% the reconstruction error obtained when geometrical distortion effects are ignored. Tests on imaged phantoms and real cardiac images are presented as well.
Collapse
Affiliation(s)
- Cristina Cañero
- Computer Vision Center, Edifici O, Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | |
Collapse
|
88
|
Stähr P, Voigtländer T, Rupprecht HJ, Aschenbrücker P, Mamtimin H, Brennecke R, Otto M, Fitzgerald PJ, Meyer J. Impact of vessel curvature on the accuracy of three-dimensional intravascular ultrasound: validation by phantoms and coronary segments. J Am Soc Echocardiogr 2002; 15:823-30. [PMID: 12174352 DOI: 10.1067/mje.2002.120700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Three-dimensional intravascular ultrasound (IVUS) is used for volumetric assessment of arteriosclerotic plaque burden and restenotic tissue at follow-up after coronary interventions. However, the accuracy of these measurements, especially in tortuous vessels, is unclear. METHODS A commercially available electrocardiogram (ECG)-gated 3-dimensional-IVUS system was tested in volume-validated straight and curved hydrocolloid phantoms and in volume-validated coronary specimens. Catheter withdrawal (30 MHz, 3.2F) was triggered using standardized ECG source with 0.2-mm step intervals per cardiac cycle simulation. RESULTS On the basis of automated phantom volume measurements, IVUS overestimated true phantom volume (relative error = [measured V - true V]/true V x 100) by a median of 0.9%, 0.25%, and 1.96% for straight, mildly curved, and severely curved segments, respectively. The true volume of the coronary specimens was overestimated by a median of 5.79%. CONCLUSION A median percentage deviation of 3-dimensional-IVUS-measured volumes from the true volumes of less than 10% in phantoms and coronary artery segments can be achieved.
Collapse
Affiliation(s)
- Peter Stähr
- Stanford University Medical School, CA 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Koning G, Dijkstra J, von Birgelen C, Tuinenburg JC, Brunette J, Tardif JC, Oemrawsingh PW, Sieling C, Melsa S, Reiber JHC. Advanced contour detection for three-dimensional intracoronary ultrasound: a validation--in vitro and in vivo. Int J Cardiovasc Imaging 2002; 18:235-48. [PMID: 12123316 DOI: 10.1023/a:1015551920382] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Intracoronary ultrasound (ICUS) provides high-resolution transmural images of the arterial wall. By performing a pullback of the ICUS transducer and three-dimensional reconstruction of the images, an advanced assessment of the lumen and vessel wall morphology can be obtained. To reduce the analysis time and the subjectivity of boundary tracing, automated segmentation of the image sequence must be performed. The Quantitative Coronary Ultrasound-Clinical Measurement Solutions (QCU-CMS) (semi)automated analytical software package uses a combination of transversal and longitudinal model- and knowledge-guided contour detection techniques. On multiple longitudinal sections through the pullback stack, the external vessel contours are detected simultaneously, allowing mutual guidance of the detection in difficult areas. Subsequently, luminal contours are detected on these longitudinal sections. Vessel and luminal contour points are transformed to the individual cross-sections, where they guide the vessel and lumen contour detection on these transversal images. The performance of the software was validated stepwise. A set of phantoms was used to determine the systematic and random errors of the contour detection of external vessel and lumen boundaries. Subsequently, the results of the contour detection as obtained in in vivo image sets were compared with expert manual tracing, and finally the contour detection in in vivo image sequences was compared with results obtained from another previously validated ICUS quantification system. The phantom lumen diameters were underestimated by 0.1 mm, equally by the QCU-CMS software and by manual tracing. Comparison of automatically detected contours and expert manual contours, showed that lumen contours correspond very well (systematic and random radius difference: -0.025 +/- 0.067 mm), while automatically detected vessel contours slightly overestimated the expert manual contours (radius difference: 0.061 +/- 0.037 mm). The cross-sectional vessel and lumen areas as detected with our system and with the second computerized system showed a high correlation (r = 0.995 and 0.978, respectively). Thus, use of the new QCU-CMS analytical software is feasible and the validation data suggest its application for the analysis of clinical research.
Collapse
Affiliation(s)
- Gerhard Koning
- Department of Radiology, Leiden University Medical Center, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Wellnhofer E, Wahle A, Fleck E. Progression of coronary atherosclerosis quantified by analysis of 3-D reconstruction of left coronary arteries. Atherosclerosis 2002; 160:483-93. [PMID: 11849675 DOI: 10.1016/s0021-9150(01)00609-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Quantitative measurements on three-dimensional (3-D) reconstructed coronary trees permit accurate evaluation of vascular volumes, lengths and diameters. We applied this technique to investigate diffuse luminal narrowing in patients with the clinical manifestation of progressive atherosclerosis. METHODS In 13 patients who presented repeatedly for coronary angioplasty (at least 4 years of invasive follow-up), left coronary arteries were reconstructed in 3-D from biplane coronary angiograms. Mean diameter, cross-sectional areas, total length, and volume were calculated for segments and branches. Five patients without coronary artery disease served as controls. RESULTS Patients with progressive coronary atherosclerosis demonstrated a significant reduction of total vascular volumes, mean diameters and cross-sectional areas at the initial investigation when compared with controls. Progressive luminal shrinkage occurred during follow-up (-0.04+/-0.13 mm per year and per segmental diameter). The progress of luminal narrowing in patients with coronary artery disease is related to the number of coronary risk factors and the duration of follow-up. CONCLUSION Quantitative measurements on 3-D reconstructed coronary trees are a useful investigative tool for the assessment of progression of coronary atherosclerosis.
Collapse
Affiliation(s)
- Ernst Wellnhofer
- Department of Internal Medicine/Cardiology, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | |
Collapse
|
91
|
Anwer K, Kao G, Proctor B, Anscombe I, Florack V, Earls R, Wilson E, McCreery T, Unger E, Rolland A, Sullivan SM. Ultrasound enhancement of cationic lipid-mediated gene transfer to primary tumors following systemic administration. Gene Ther 2000; 7:1833-9. [PMID: 11110415 DOI: 10.1038/sj.gt.3301302] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The impact of a localized application of ultrasound on gene transfer to primary tumors following systemic administration of cationic lipid based transfection complexes was investigated. We have previously shown that systemic administration of DOTMA (N-[(1-(2-3-dioleyloxy) propyl)]-N-N-N-trimethylammonium chloride):cholesterol-based transfection complexes to tumor-bearing mice resulted in expression in the tumor and other tissues, primarily the lungs. Application of ultrasound to the tumor before or after the injection resulted in a significant increase in gene transfer to the tumor with no increase observed in other tissues. The magnitude of increased expression ranged from three- to 270-fold depending upon the DNA dose. The following parameters were optimized for maximal increase: duration of ultrasound application, the time interval between plasmid injection and sonoporation, and plasmid dose. A combination of plasmid quantitation and fluorescence microscopy showed that ultrasound increased tumor uptake of the plasmid and that uptake was limited to the tumor vasculature. Using an IL- 12 expression plasmid, the combination of a single plasmid dose (10 microg) and ultrasound treatment produced significantly higher levels of IL-12 in tumor. This increased expression was sufficient to inhibit tumor growth compared with the control conditions. These data demonstrate the potential application of sonoporation as an effective method for enhancing the expression of systemically administered genes in tumor endothelium for cancer gene therapy.
Collapse
Affiliation(s)
- K Anwer
- Valentis, Inc, The Woodlands, TX 77381-4248, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Klingensmith JD, Shekhar R, Vince DG. Evaluation of three-dimensional segmentation algorithms for the identification of luminal and medial-adventitial borders in intravascular ultrasound images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2000; 19:996-1011. [PMID: 11131497 DOI: 10.1109/42.887615] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Intravascular ultrasound (IVUS) provides direct depiction of coronary artery anatomy, including plaque and vessel area, which is important in quantitative studies on the progression or regression of coronary artery disease. Traditionally, these studies have relied on manual evaluation, which is laborious, time consuming, and subject to large interobserver and intraobserver variability. A new technique, called active surface segmentation, alleviates these limitations and makes strides toward routine analyses. However, for three-dimensional (3-D) plaque assessment or 3-D reconstruction to become a clinical reality, methods must be developed which can analyze many images quickly. Presented is a comparison between two active surface techniques for three-dimensional segmentation of luminal and medial-adventitial borders. The force-acceleration technique and the neighborhood-search technique accurately detected both borders in vivo (r2 = 0.95 and 0.99, Williams' index = 0.67 and 0.65, and r2 = 0.95 and 0.99, WI = 0.67 and 0.70, respectively). However, the neighborhood-search technique was significantly faster and required less computation. Volume calculations for both techniques (r2 = 0.99 and r2 = 0.99) also agreed with a known-volume phantom. Active surface segmentation allows 3-D assessment of coronary morphology and further developments with this technology will provide clinical analysis tools.
Collapse
Affiliation(s)
- J D Klingensmith
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, OH 44195, USA
| | | | | |
Collapse
|