51
|
Bagdasarov A, Roberts K, Brunet D, Michel CM, Gaffrey MS. Exploring the Association Between EEG Microstates During Resting-State and Error-Related Activity in Young Children. Brain Topogr 2024; 37:552-570. [PMID: 38141125 PMCID: PMC11199242 DOI: 10.1007/s10548-023-01030-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
The error-related negativity (ERN) is a negative deflection in the electroencephalography (EEG) waveform at frontal-central scalp sites that occurs after error commission. The relationship between the ERN and broader patterns of brain activity measured across the entire scalp that support error processing during early childhood is unclear. We examined the relationship between the ERN and EEG microstates - whole-brain patterns of dynamically evolving scalp potential topographies that reflect periods of synchronized neural activity - during both a go/no-go task and resting-state in 90, 4-8-year-old children. The mean amplitude of the ERN was quantified during the -64 to 108 millisecond (ms) period of time relative to error commission, which was determined by data-driven microstate segmentation of error-related activity. We found that greater magnitude of the ERN associated with greater global explained variance (GEV; i.e., the percentage of total variance in the data explained by a given microstate) of an error-related microstate observed during the same -64 to 108 ms period (i.e., error-related microstate 3), and to greater anxiety risk as measured by parent-reported behavioral inhibition. During resting-state, six data-driven microstates were identified. Both greater magnitude of the ERN and greater GEV values of error-related microstate 3 associated with greater GEV values of resting-state microstate 4, which showed a frontal-central scalp topography. Source localization results revealed overlap between the underlying neural generators of error-related microstate 3 and resting-state microstate 4 and canonical brain networks (e.g., ventral attention) known to support the higher-order cognitive processes involved in error processing. Taken together, our results clarify how individual differences in error-related and intrinsic brain activity are related and enhance our understanding of developing brain network function and organization supporting error processing during early childhood.
Collapse
Affiliation(s)
- Armen Bagdasarov
- Department of Psychology & Neuroscience, Duke University, Reuben-Cooke Building, 417 Chapel Drive, Durham, NC, 27708, USA.
| | - Kenneth Roberts
- Duke Institute for Brain Sciences, Duke University, 308 Research Drive, Durham, NC, USA
| | - Denis Brunet
- Department of Basic Neurosciences, University of Geneva, Campus Biotech, 9 Chemin des Mines, Geneva, 1202, Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne, EPFL AVP CP CIBM Station 6, Lausanne, 1015, Switzerland
| | - Christoph M Michel
- Department of Basic Neurosciences, University of Geneva, Campus Biotech, 9 Chemin des Mines, Geneva, 1202, Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne, EPFL AVP CP CIBM Station 6, Lausanne, 1015, Switzerland
| | - Michael S Gaffrey
- Department of Psychology & Neuroscience, Duke University, Reuben-Cooke Building, 417 Chapel Drive, Durham, NC, 27708, USA
- Children's Wisconsin, 9000 W. Wisconsin Avenue, Milwaukee, WI, 53226, USA
- Medical College of Wisconsin, Division of Pediatric Psychology and Developmental Medicine, Department of Pediatrics, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
52
|
Handiru VS, Selvan Suviseshamuthu E, Yue G, Allexandre D. Robust k-means-based Clustering of Independent Components Estimated from the EEG data. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039423 DOI: 10.1109/embc53108.2024.10782864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
In this study, we present a comprehensive investigation into the robust clustering of independent components (ICs) related to anticipatory postural control tasks in individuals with traumatic brain injury (TBI) using EEG data. Given the significance of accurately clustering the neural sources, our research evaluates the performance of various k-means clustering algorithms, including traditional, our modified approach of repeated k-means, and global k-means. This study aims to identify the optimal clustering approach that accurately locates the cortical sources germane to balance dysfunction and is computationally efficient. Our results highlight the superior performance of the global k-means algorithm in terms of clustering quality and computational runtime, demonstrating its application in a real-world dataset with noise.
Collapse
|
53
|
Xu J, Whelan E, O'Brien A, O'Hora D. Does Self-View Mode Generate More Videoconferencing Fatigue in Women than Men? An Experiment Using EEG Signals. CYBERPSYCHOLOGY, BEHAVIOR AND SOCIAL NETWORKING 2024; 27:426-430. [PMID: 38574294 DOI: 10.1089/cyber.2023.0577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The ability to see or hide one's own image is a typical feature of videoconferencing platforms. Previous research, informed primarily by self-reported data, has suggested that enabling self-view mode is associated with videoconferencing fatigue, particularly for women. Our goal in this study is to test this assumption by gathering neurophysiological evidence. We conducted an experiment using electroencephalography (EEG) with 32 volunteers (16 men and 16 women), who each participated in a live video meeting with the self-view mode both on and off. Our findings confirm the effects of self-view on fatigue, with significantly greater alpha activity when self-view was on than when it was off. Alpha activity did not change significantly across a 20-minute session, and was not significantly different for men or women. Thus, our study does not replicate previous findings that women experience greater videoconferencing fatigue because of the increased self-awareness generated when viewing themselves on a screen. We discuss why our EEG findings may diverge from prior self-reported studies.
Collapse
Affiliation(s)
- Jin Xu
- Insight Centre for Data Analytics, University of Galway, Galway, Ireland
| | - Eoin Whelan
- Business Information Systems, J.E. Cairnes School of Business & Economics, University of Galway, Galway, Ireland
| | - Ann O'Brien
- Business Information Systems, J.E. Cairnes School of Business & Economics, University of Galway, Galway, Ireland
| | - Denis O'Hora
- School of Psychology, University of Galway, Galway, Ireland
| |
Collapse
|
54
|
Cannard C, Delorme A, Wahbeh H. HRV and EEG correlates of well-being using ultra-short, portable, and low-cost measurements. PROGRESS IN BRAIN RESEARCH 2024; 287:91-109. [PMID: 39097360 DOI: 10.1016/bs.pbr.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Wearable electroencephalography (EEG) and electrocardiography (ECG) devices may offer a non-invasive, user-friendly, and cost-effective approach for assessing well-being (WB) in real-world settings. However, challenges remain in dealing with signal artifacts (such as environmental noise and movements) and identifying robust biomarkers. We evaluated the feasibility of using portable hardware to identify potential EEG and heart-rate variability (HRV) correlates of WB. We collected simultaneous ultrashort (2-min) EEG and ECG data from 60 individuals in real-world settings using a wrist ECG electrode connected to a 4-channel wearable EEG headset. These data were processed, assessed for signal quality, and analyzed using the open-source EEGLAB BrainBeats plugin to extract several theory-driven metrics as potential correlates of WB. Namely, the individual alpha frequency (IAF), frontal and posterior alpha asymmetry, and signal entropy for EEG. SDNN, the low/high frequency (LF/HF) ratio, the Poincaré SD1/SD2 ratio, and signal entropy for HRV. We assessed potential associations between these features and the main WB dimensions (hedonic, eudaimonic, global, physical, and social) implementing a pairwise correlation approach, robust Spearman's correlations, and corrections for multiple comparisons. Only eight files showed poor signal quality and were excluded from the analysis. Eudaimonic (psychological) WB was positively correlated with SDNN and the LF/HF ratio. EEG posterior alpha asymmetry was positively correlated with Physical WB (i.e., sleep and pain levels). No relationships were found with the other metrics, or between EEG and HRV metrics. These physiological metrics enable a quick, objective assessment of well-being in real-world settings using scalable, user-friendly tools.
Collapse
Affiliation(s)
- Cédric Cannard
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS, Paul Sabatier University, Toulouse, France; Institute of Noetic Sciences (IONS), Petaluma, CA, United States
| | - Arnaud Delorme
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS, Paul Sabatier University, Toulouse, France; Institute of Noetic Sciences (IONS), Petaluma, CA, United States; Swartz Center of Computational Neuroscience (SCCN), University of California San Diego (UCSD), La Jolla, CA, United States
| | - Helané Wahbeh
- Institute of Noetic Sciences (IONS), Petaluma, CA, United States; Department of Neurology, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
55
|
Cataldi J, Stephan AM, Haba-Rubio J, Siclari F. Shared EEG correlates between non-REM parasomnia experiences and dreams. Nat Commun 2024; 15:3906. [PMID: 38724511 PMCID: PMC11082195 DOI: 10.1038/s41467-024-48337-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Sleepwalking and related parasomnias result from incomplete awakenings out of non-rapid eye movement sleep. Behavioral episodes can occur without consciousness or recollection, or in relation to dream-like experiences. To understand what accounts for these differences in consciousness and recall, here we recorded parasomnia episodes with high-density electroencephalography (EEG) and interviewed participants immediately afterward about their experiences. Compared to reports of no experience (19%), reports of conscious experience (56%) were preceded by high-amplitude EEG slow waves in anterior cortical regions and activation of posterior cortical regions, similar to previously described EEG correlates of dreaming. Recall of the content of the experience (56%), compared to no recall (25%), was associated with higher EEG activation in the right medial temporal region before movement onset. Our work suggests that the EEG correlates of parasomnia experiences are similar to those reported for dreams and may thus reflect core physiological processes involved in sleep consciousness.
Collapse
Affiliation(s)
- Jacinthe Cataldi
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland
- The Sense Innovation and Research Center, Lausanne and Sion, Lausanne, Switzerland
| | - Aurélie M Stephan
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland
- The Sense Innovation and Research Center, Lausanne and Sion, Lausanne, Switzerland
- The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - José Haba-Rubio
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland.
- The Sense Innovation and Research Center, Lausanne and Sion, Lausanne, Switzerland.
- The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
56
|
Zhou L, Guess M, Kim KR, Yeo WH. Skin-interfacing wearable biosensors for smart health monitoring of infants and neonates. COMMUNICATIONS MATERIALS 2024; 5:72. [PMID: 38737724 PMCID: PMC11081930 DOI: 10.1038/s43246-024-00511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Health monitoring of infant patients in intensive care can be especially strenuous for both the patient and their caregiver, as testing setups involve a tangle of electrodes, probes, and catheters that keep the patient bedridden. This has typically involved expensive and imposing machines, to track physiological metrics such as heart rate, respiration rate, temperature, blood oxygen saturation, blood pressure, and ion concentrations. However, in the past couple of decades, research advancements have propelled a world of soft, wearable, and non-invasive systems to supersede current practices. This paper summarizes the latest advancements in neonatal wearable systems and the different approaches to each branch of physiological monitoring, with an emphasis on smart skin-interfaced wearables. Weaknesses and shortfalls are also addressed, with some guidelines provided to help drive the further research needed.
Collapse
Affiliation(s)
- Lauren Zhou
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
- IEN Center for Wearable Intelligent Systems and Healthcare, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Matthew Guess
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
- IEN Center for Wearable Intelligent Systems and Healthcare, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Ka Ram Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
- IEN Center for Wearable Intelligent Systems and Healthcare, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
- IEN Center for Wearable Intelligent Systems and Healthcare, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332 USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332 USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332 USA
| |
Collapse
|
57
|
Neri B, Callara AL, Vanello N, Menicucci D, Zaccaro A, Piarulli A, Laurino M, Norbu N, Kechok J, Sherab N, Gemignani A. Report from a Tibetan Monastery: EEG neural correlates of concentrative and analytical meditation. Front Psychol 2024; 15:1348317. [PMID: 38756494 PMCID: PMC11098278 DOI: 10.3389/fpsyg.2024.1348317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
The positive effects of meditation on human wellbeing are indisputable, ranging from emotion regulation improvement to stress reduction and present-moment awareness enhancement. Changes in brain activity regulate and support these phenomena. However, the heterogeneity of meditation practices and their cultural background, as well as their poor categorization limit the generalization of results to all types of meditation. Here, we took advantage of a collaboration with the very singular and precious community of the Monks and Geshes of the Tibetan University of Sera-Jey in India to study the neural correlates of the two main types of meditation recognized in Tibetan Buddhism, namely concentrative and analytical meditation. Twenty-three meditators with different levels of expertise underwent to an ecological (i.e., within the monastery) EEG acquisition consisting of an analytical and/or concentrative meditation session at "their best," and with the only constraint of performing a 5-min-long baseline at the beginning of the session. Time-varying power-spectral-density estimates of each session were compared against the baseline (i.e., within session) and between conditions (i.e., analytical vs. concentrative). Our results showed that concentrative meditation elicited more numerous and marked changes in the EEG power compared to analytical meditation, and mainly in the form of an increase in the theta, alpha and beta frequency ranges. Moreover, the full immersion in the Monastery life allowed to share the results and discuss their interpretation with the best scholars of the Monastic University, ensuring the identification of the most expert meditators, as well as to highlight better the differences between the different types of meditation practiced by each of them.
Collapse
Affiliation(s)
- Bruno Neri
- Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
| | - Alejandro Luis Callara
- Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
- Research Center “E. Piaggio”, University of Pisa, Pisa, Italy
| | - Nicola Vanello
- Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
- Research Center “E. Piaggio”, University of Pisa, Pisa, Italy
| | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Andrea Zaccaro
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Andrea Piarulli
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | - Ngawang Norbu
- Sera Jey Monastic University for Advanced Buddhist Studies & Practice, Bylakuppe, Mysore, India
| | - Jampa Kechok
- Sera Jey Monastic University for Advanced Buddhist Studies & Practice, Bylakuppe, Mysore, India
| | - Ngawang Sherab
- Sera Jey Monastic University for Advanced Buddhist Studies & Practice, Bylakuppe, Mysore, India
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
58
|
Sagehorn M, Johnsdorf M, Kisker J, Gruber T, Schöne B. Electrophysiological correlates of face and object perception: A comparative analysis of 2D laboratory and virtual reality conditions. Psychophysiology 2024; 61:e14519. [PMID: 38219244 DOI: 10.1111/psyp.14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Human face perception is a specialized visual process with inherent social significance. The neural mechanisms reflecting this intricate cognitive process have evolved in spatially complex and emotionally rich environments. Previous research using VR to transfer an established face perception paradigm to realistic conditions has shown that the functional properties of face-sensitive neural correlates typically observed in the laboratory are attenuated outside the original modality. The present study builds on these results by comparing the perception of persons and objects under conventional laboratory (PC) and realistic conditions in VR. Adhering to established paradigms, the PC- and VR modalities both featured images of persons and cars alongside standard control images. To investigate the individual stages of realistic face processing, response times, the typical face-sensitive N170 component, and relevant subsequent components (L1, L2; pre-, post-response) were analyzed within and between modalities. The between-modality comparison of response times and component latencies revealed generally faster processing under realistic conditions. However, the obtained N170 latency and amplitude differences showed reduced discriminative capacity under realistic conditions during this early stage. These findings suggest that the effects commonly observed in the lab are specific to monitor-based presentations. Analyses of later and response-locked components showed specific neural mechanisms for identification and evaluation are employed when perceiving the stimuli under realistic conditions, reflected in discernible amplitude differences in response to faces and objects beyond the basic perceptual features. Conversely, the results do not provide evidence for comparable stimulus-specific perceptual processing pathways when viewing pictures of the stimuli under conventional laboratory conditions.
Collapse
Affiliation(s)
- Merle Sagehorn
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Marike Johnsdorf
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Joanna Kisker
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Thomas Gruber
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
| | - Benjamin Schöne
- Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
59
|
Hua A, Wang G, Bai J, Hao Z, Liu J, Meng J, Wang J. Nonlinear dynamics of postural control system under visual-vestibular habituation balance practice: evidence from EEG, EMG and center of pressure signals. Front Hum Neurosci 2024; 18:1371648. [PMID: 38736529 PMCID: PMC11082324 DOI: 10.3389/fnhum.2024.1371648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Human postural control system is inherently complex with nonlinear interaction among multiple subsystems. Accordingly, such postural control system has the flexibility in adaptation to complex environments. Previous studies applied complexity-based methods to analyze center of pressure (COP) to explore nonlinear dynamics of postural sway under changing environments, but direct evidence from central nervous system or muscular system is limited in the existing literature. Therefore, we assessed the fractal dimension of COP, surface electromyographic (sEMG) and electroencephalogram (EEG) signals under visual-vestibular habituation balance practice. We combined a rotating platform and a virtual reality headset to present visual-vestibular congruent or incongruent conditions. We asked participants to undergo repeated exposure to either congruent (n = 14) or incongruent condition (n = 13) five times while maintaining balance. We found repeated practice under both congruent and incongruent conditions increased the complexity of high-frequency (0.5-20 Hz) component of COP data and the complexity of sEMG data from tibialis anterior muscle. In contrast, repeated practice under conflicts decreased the complexity of low-frequency (<0.5 Hz) component of COP data and the complexity of EEG data of parietal and occipital lobes, while repeated practice under congruent environment decreased the complexity of EEG data of parietal and temporal lobes. These results suggested nonlinear dynamics of cortical activity differed after balance practice under congruent and incongruent environments. Also, we found a positive correlation (1) between the complexity of high-frequency component of COP and the complexity of sEMG signals from calf muscles, and (2) between the complexity of low-frequency component of COP and the complexity of EEG signals. These results suggested the low- or high-component of COP might be related to central or muscular adjustment of postural control, respectively.
Collapse
Affiliation(s)
- Anke Hua
- Department of Sports Science, Zhejiang University, Hangzhou, China
- Sciences Cognitives et Sciences Affectives, University of Lille, Lille, France
| | - Guozheng Wang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou, China
| | - Jingyuan Bai
- Department of Sports Science, Zhejiang University, Hangzhou, China
| | - Zengming Hao
- Department of Rehabilitation Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Liu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jun Meng
- College of Control Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jian Wang
- Department of Sports Science, Zhejiang University, Hangzhou, China
- Center for Psychological Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
60
|
Santos PCRD, Heimler B, Koren O, Flash T, Plotnik M. Dopamine improves defective cortical and muscular connectivity during bilateral control of gait in Parkinson's disease. Commun Biol 2024; 7:495. [PMID: 38658666 PMCID: PMC11043351 DOI: 10.1038/s42003-024-06195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Parkinson's Disease (PD)-typical declines in gait coordination are possibly explained by weakness in bilateral cortical and muscular connectivity. Here, we seek to determine whether this weakness and consequent decline in gait coordination is affected by dopamine levels. To this end, we compare cortico-cortical, cortico-muscular, and intermuscular connectivity and gait outcomes between body sides in people with PD under ON and OFF medication states, and in older adults. In our study, participants walked back and forth along a 12 m corridor. Gait events (heel strikes and toe-offs) and electrical cortical and muscular activities were measured and used to compute cortico-cortical, cortico-muscular, and intermuscular connectivity (i.e., coherences in the alpha, beta, and gamma bands), as well as features characterizing gait performance (e.g., the step-timing coordination, length, and speed). We observe that people with PD, mainly during the OFF medication, walk with reduced step-timing coordination. Additionally, our results suggest that dopamine intake in PD increases the overall cortico-muscular connectivity during the stance and swing phases of gait. We thus conclude that dopamine corrects defective feedback caused by impaired sensory-information processing and sensory-motor integration, thus increasing cortico-muscular coherences in the alpha bands and improving gait.
Collapse
Affiliation(s)
- Paulo Cezar Rocha Dos Santos
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.
- IDOR/Pioneer Science Initiative, Rio de Janeiro, Brazil.
| | - Benedetta Heimler
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Or Koren
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Tamar Flash
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Meir Plotnik
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
61
|
Safari M, Shalbaf R, Bagherzadeh S, Shalbaf A. Classification of mental workload using brain connectivity and machine learning on electroencephalogram data. Sci Rep 2024; 14:9153. [PMID: 38644365 PMCID: PMC11033270 DOI: 10.1038/s41598-024-59652-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024] Open
Abstract
Mental workload refers to the cognitive effort required to perform tasks, and it is an important factor in various fields, including system design, clinical medicine, and industrial applications. In this paper, we propose innovative methods to assess mental workload from EEG data that use effective brain connectivity for the purpose of extracting features, a hierarchical feature selection algorithm to select the most significant features, and finally machine learning models. We have used the Simultaneous Task EEG Workload (STEW) dataset, an open-access collection of raw EEG data from 48 subjects. We extracted brain-effective connectivities by the direct directed transfer function and then selected the top 30 connectivities for each standard frequency band. Then we applied three feature selection algorithms (forward feature selection, Relief-F, and minimum-redundancy-maximum-relevance) on the top 150 features from all frequencies. Finally, we applied sevenfold cross-validation on four machine learning models (support vector machine (SVM), linear discriminant analysis, random forest, and decision tree). The results revealed that SVM as the machine learning model and forward feature selection as the feature selection method work better than others and could classify the mental workload levels with accuracy equal to 89.53% (± 1.36).
Collapse
Affiliation(s)
| | - Reza Shalbaf
- Institute for Cognitive Science Studies, Tehran, Iran.
| | - Sara Bagherzadeh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Shalbaf
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
62
|
Vitali H, Campus C, De Giorgis V, Signorini S, Morelli F, Fasce M, Gori M. Sensorimotor Oscillations in Human Infants during an Innate Rhythmic Movement. Brain Sci 2024; 14:402. [PMID: 38672051 PMCID: PMC11047852 DOI: 10.3390/brainsci14040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The relationship between cerebral rhythms and early sensorimotor development is not clear. In recent decades, evidence revealed a rhythmic modulation involving sensorimotor processing. A widely corroborated functional role of oscillatory activity is to coordinate the information flow across sensorimotor networks. Their activity is coordinated by event-related synchronisation and desynchronisation in different sensorimotor rhythms, which indicate parallel processes may be occurring in the neuronal network during movement. To date, the dynamics of these brain oscillations and early sensorimotor development are unexplored. Our study investigates the relationship between the cerebral rhythms using EEG and a typical rhythmic movement of infants, the non-nutritive sucking (NNS) behaviour. NNS is an endogenous behaviour that originates from the suck central pattern generator in the brainstem. We find, in 17 infants, that sucking frequency correlates with beta synchronisation within the sensorimotor area in two phases: one strongly anticipating (~3 s) and the other encompassing the start of the motion. These findings suggest that a beta synchronisation of the sensorimotor cortex may influence the sensorimotor dynamics of NNS activity. Our results reveal the importance of rapid brain oscillations in infants and the role of beta synchronisation and their possible role in the communication between cortical and deep generators.
Collapse
Affiliation(s)
- Helene Vitali
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, 16152 Genoa, Italy; (H.V.)
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), University of Genova, 16145 Genoa, Italy
| | - Claudio Campus
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, 16152 Genoa, Italy; (H.V.)
| | - Valentina De Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.D.G.)
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | - Sabrina Signorini
- Developmental Neuro-Ophthalmology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy (F.M.)
| | - Federica Morelli
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
- Developmental Neuro-Ophthalmology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy (F.M.)
| | - Marco Fasce
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; (V.D.G.)
| | - Monica Gori
- Unit for Visually Impaired People, Istituto Italiano di Tecnologia, 16152 Genoa, Italy; (H.V.)
| |
Collapse
|
63
|
Zhou W, Nan W, Xiong K, Ku Y. Alpha neurofeedback training improves visual working memory in healthy individuals. NPJ SCIENCE OF LEARNING 2024; 9:32. [PMID: 38637595 PMCID: PMC11026515 DOI: 10.1038/s41539-024-00242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Neurofeedback (NF) training is a closed-loop brain training in which participants learn to regulate their neural activation. NF training of alpha (8-12 Hz) activity has been reported to enhance working memory capacity, but whether it affects the precision in working memory has not yet been explored. Moreover, whether NF training distinctively influences performance in different types of working memory tasks remains unclear. Therefore, the present study conducted a randomized, single-blind, sham-controlled experiment to investigate how alpha NF training affected the capacity and precision of working memory, as well as the related neural change. Forty participants were randomly and equally assigned to the NF group and the sham control group. Both groups received NF training (about 30 min daily) for five consecutive days. The NF group received alpha (8-12 Hz) training, while the sham control group received sham NF training. We found a significant alpha increase within sessions but no significant difference across sessions. However, the behavioral performance and neural activity in the modified Sternberg task did not show significant change after alpha NF training. On the contrary, the alpha NF training group significantly increased visual working memory capacity measured by the Corsi-block tapping task and improved visual working memory precision in the interference condition in a color-recall task. These results suggest that alpha NF training influences performance in working memory tasks involved in the visuospatial sketchpad. Notably, we demonstrated that alpha NF training improves the quantity and quality of visual working memory.
Collapse
Affiliation(s)
- Wenbin Zhou
- School of Psychology, Shanghai Normal University, Shanghai, China
- Zhengzhou Shuqing Medical College, Zhengzhou, China
| | - Wenya Nan
- School of Psychology, Shanghai Normal University, Shanghai, China.
- The Research Base of Online Education for Shanghai Middle and Primary Schools, Shanghai, China.
| | - Kaiwen Xiong
- School of Psychology, Shanghai Normal University, Shanghai, China
| | - Yixuan Ku
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Wellbeing, Department of Psychology, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Peng Cheng Laboratory, Shenzhen, Guangdong, China.
| |
Collapse
|
64
|
Lutes N, Nadendla VSS, Krishnamurthy K. Convolutional spiking neural networks for intent detection based on anticipatory brain potentials using electroencephalogram. Sci Rep 2024; 14:8850. [PMID: 38632436 PMCID: PMC11024189 DOI: 10.1038/s41598-024-59469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
Spiking neural networks (SNNs) are receiving increased attention because they mimic synaptic connections in biological systems and produce spike trains, which can be approximated by binary values for computational efficiency. Recently, the addition of convolutional layers to combine the feature extraction power of convolutional networks with the computational efficiency of SNNs has been introduced. This paper studies the feasibility of using a convolutional spiking neural network (CSNN) to detect anticipatory slow cortical potentials (SCPs) related to braking intention in human participants using an electroencephalogram (EEG). Data was collected during an experiment wherein participants operated a remote-controlled vehicle on a testbed designed to simulate an urban environment. Participants were alerted to an incoming braking event via an audio countdown to elicit anticipatory potentials that were measured using an EEG. The CSNN's performance was compared to a standard CNN, EEGNet and three graph neural networks via 10-fold cross-validation. The CSNN outperformed all the other neural networks, and had a predictive accuracy of 99.06% with a true positive rate of 98.50%, a true negative rate of 99.20% and an F1-score of 0.98. Performance of the CSNN was comparable to the CNN in an ablation study using a subset of EEG channels that localized SCPs. Classification performance of the CSNN degraded only slightly when the floating-point EEG data were converted into spike trains via delta modulation to mimic synaptic connections.
Collapse
Affiliation(s)
- Nathan Lutes
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| | | | - K Krishnamurthy
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA.
| |
Collapse
|
65
|
Konrad K, Gerloff C, Kohl SH, Mehler DMA, Mehlem L, Volbert EL, Komorek M, Henn AT, Boecker M, Weiss E, Reindl V. Interpersonal neural synchrony and mental disorders: unlocking potential pathways for clinical interventions. Front Neurosci 2024; 18:1286130. [PMID: 38529267 PMCID: PMC10962391 DOI: 10.3389/fnins.2024.1286130] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/30/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Interpersonal synchronization involves the alignment of behavioral, affective, physiological, and brain states during social interactions. It facilitates empathy, emotion regulation, and prosocial commitment. Mental disorders characterized by social interaction dysfunction, such as Autism Spectrum Disorder (ASD), Reactive Attachment Disorder (RAD), and Social Anxiety Disorder (SAD), often exhibit atypical synchronization with others across multiple levels. With the introduction of the "second-person" neuroscience perspective, our understanding of interpersonal neural synchronization (INS) has improved, however, so far, it has hardly impacted the development of novel therapeutic interventions. Methods To evaluate the potential of INS-based treatments for mental disorders, we performed two systematic literature searches identifying studies that directly target INS through neurofeedback (12 publications; 9 independent studies) or brain stimulation techniques (7 studies), following PRISMA guidelines. In addition, we narratively review indirect INS manipulations through behavioral, biofeedback, or hormonal interventions. We discuss the potential of such treatments for ASD, RAD, and SAD and using a systematic database search assess the acceptability of neurofeedback (4 studies) and neurostimulation (4 studies) in patients with social dysfunction. Results Although behavioral approaches, such as engaging in eye contact or cooperative actions, have been shown to be associated with increased INS, little is known about potential long-term consequences of such interventions. Few proof-of-concept studies have utilized brain stimulation techniques, like transcranial direct current stimulation or INS-based neurofeedback, showing feasibility and preliminary evidence that such interventions can boost behavioral synchrony and social connectedness. Yet, optimal brain stimulation protocols and neurofeedback parameters are still undefined. For ASD, RAD, or SAD, so far no randomized controlled trial has proven the efficacy of direct INS-based intervention techniques, although in general brain stimulation and neurofeedback methods seem to be well accepted in these patient groups. Discussion Significant work remains to translate INS-based manipulations into effective treatments for social interaction disorders. Future research should focus on mechanistic insights into INS, technological advancements, and rigorous design standards. Furthermore, it will be key to compare interventions directly targeting INS to those targeting other modalities of synchrony as well as to define optimal target dyads and target synchrony states in clinical interventions.
Collapse
Affiliation(s)
- Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| | - Christian Gerloff
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
- Department of Applied Mathematics and Theoretical Physics, Cambridge Centre for Data-Driven Discovery, University of Cambridge, Cambridge, United Kingdom
| | - Simon H. Kohl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| | - David M. A. Mehler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- School of Psychology, Cardiff University Brain Research Imaging Center (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Lena Mehlem
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Emily L. Volbert
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Maike Komorek
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Alina T. Henn
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Maren Boecker
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- Institute of Medical Psychology and Medical Sociology, University Hospital RWTH, Aachen, Germany
| | - Eileen Weiss
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- Institute of Medical Psychology and Medical Sociology, University Hospital RWTH, Aachen, Germany
| | - Vanessa Reindl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- Department of Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
66
|
Kaar SJ, Nottage JF, Angelescu I, Marques TR, Howes OD. Gamma Oscillations and Potassium Channel Modulation in Schizophrenia: Targeting GABAergic Dysfunction. Clin EEG Neurosci 2024; 55:203-213. [PMID: 36591873 PMCID: PMC10851642 DOI: 10.1177/15500594221148643] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023]
Abstract
Impairments in gamma-aminobutyric acid (GABAergic) interneuron function lead to gamma power abnormalities and are thought to underlie symptoms in people with schizophrenia. Voltage-gated potassium 3.1 (Kv3.1) and 3.2 (Kv3.2) channels on GABAergic interneurons are critical to the generation of gamma oscillations suggesting that targeting Kv3.1/3.2 could augment GABAergic function and modulate gamma oscillation generation. Here, we studied the effect of a novel potassium Kv3.1/3.2 channel modulator, AUT00206, on resting state frontal gamma power in people with schizophrenia. We found a significant positive correlation between frontal resting gamma (35-45 Hz) power (n = 22, r = 0.613, P < .002) and positive and negative syndrome scale (PANSS) positive symptom severity. We also found a significant reduction in frontal gamma power (t13 = 3.635, P = .003) from baseline in patients who received AUT00206. This provides initial evidence that the Kv3.1/3.2 potassium channel modulator, AUT00206, may address gamma oscillation abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Stephen J. Kaar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Division of Psychology and Mental Health, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Judith F. Nottage
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Ilinca Angelescu
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research London, London, UK
| | - Tiago Reis Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| |
Collapse
|
67
|
Tseng YL, Su YK, Chou WJ, Miyakoshi M, Tsai CS, Li CJ, Lee SY, Wang LJ. Neural Network Dynamics and Brain Oscillations Underlying Aberrant Inhibitory Control in Internet Addiction. IEEE Trans Neural Syst Rehabil Eng 2024; 32:946-955. [PMID: 38335078 DOI: 10.1109/tnsre.2024.3363756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Previous studies have reported a role of alterations in the brain's inhibitory control mechanism in addiction. Mounting evidence from neuroimaging studies indicates that its key components can be evaluated with brain oscillations and connectivity during inhibitory control. In this study, we developed an internet-related stop-signal task with electroencephalography (EEG) signal recorded to investigate inhibitory control. Healthy controls and participants with Internet addiction were recruited to participate in the internet-related stop-signal task with 19-channel EEG signal recording, and the corresponding event-related potentials and spectral perturbations were analyzed. Brain effective connections were also evaluated using direct directed transfer function. The results showed that, relative to the healthy controls, participants with Internet addiction had increased Stop-P3 during inhibitory control, suggesting that they have an altered neural mechanism in impulsive control. Furthermore, participants with Internet addiction showed increased low-frequency synchronization and decreased alpha and beta desynchronization in the middle and right frontal regions compared to healthy controls. Aberrant brain effective connectivity was also observed, with increased occipital-parietal and intra-occipital connections, as well as decreased frontal-paracentral connection in participants with Internet addiction. These results suggest that physiological signals are essential in future implementations of cognitive assessment of Internet addiction to further investigate the underlying mechanisms and effective biomarkers.
Collapse
|
68
|
Rho G, Callara AL, Bossi F, Ognibene D, Cecchetto C, Lomonaco T, Scilingo EP, Greco A. Combining electrodermal activity analysis and dynamic causal modeling to investigate the visual-odor multimodal integration during face perception. J Neural Eng 2024; 21:016020. [PMID: 38290158 DOI: 10.1088/1741-2552/ad2403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Objective. This study presents a novel methodological approach for incorporating information related to the peripheral sympathetic response into the investigation of neural dynamics. Particularly, we explore how hedonic contextual olfactory stimuli influence the processing of neutral faces in terms of sympathetic response, event-related potentials and effective connectivity analysis. The objective is to investigate how the emotional valence of odors influences the cortical connectivity underlying face processing and the role of face-induced sympathetic arousal in this visual-olfactory multimodal integration.Approach. To this aim, we combine electrodermal activity (EDA) analysis and dynamic causal modeling to examine changes in cortico-cortical interactions.Results. The results reveal that stimuli arising sympathetic EDA responses are associated with a more negative N170 amplitude, which may be a marker of heightened arousal in response to faces. Hedonic odors, on the other hand, lead to a more negative N1 component and a reduced the vertex positive potential when they are unpleasant or pleasant. Concerning connectivity, unpleasant odors strengthen the forward connection from the inferior temporal gyrus (ITG) to the middle temporal gyrus, which is involved in processing changeable facial features. Conversely, the occurrence of sympathetic responses after a stimulus is correlated with an inhibition of this same connection and an enhancement of the backward connection from ITG to the fusiform face gyrus.Significance. These findings suggest that unpleasant odors may enhance the interpretation of emotional expressions and mental states, while faces capable of eliciting sympathetic arousal prioritize identity processing.
Collapse
Affiliation(s)
- Gianluca Rho
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
- Research Center 'E. Piaggio', School of Engineering, University of Pisa, Pisa, Italy
| | - Alejandro Luis Callara
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
- Research Center 'E. Piaggio', School of Engineering, University of Pisa, Pisa, Italy
| | - Francesco Bossi
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Dimitri Ognibene
- Università Milano-Bicocca, Milan, Italy
- University of Essex, Colchester, United Kingdom
| | - Cinzia Cecchetto
- Department of General Psychology, University of Padua, Padua, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Enzo Pasquale Scilingo
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
- Research Center 'E. Piaggio', School of Engineering, University of Pisa, Pisa, Italy
| | - Alberto Greco
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
- Research Center 'E. Piaggio', School of Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
69
|
Ingolfsson TM, Benatti S, Wang X, Bernini A, Ducouret P, Ryvlin P, Beniczky S, Benini L, Cossettini A. Minimizing artifact-induced false-alarms for seizure detection in wearable EEG devices with gradient-boosted tree classifiers. Sci Rep 2024; 14:2980. [PMID: 38316856 PMCID: PMC10844293 DOI: 10.1038/s41598-024-52551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Electroencephalography (EEG) is widely used to monitor epileptic seizures, and standard clinical practice consists of monitoring patients in dedicated epilepsy monitoring units via video surveillance and cumbersome EEG caps. Such a setting is not compatible with long-term tracking under typical living conditions, thereby motivating the development of unobtrusive wearable solutions. However, wearable EEG devices present the challenges of fewer channels, restricted computational capabilities, and lower signal-to-noise ratio. Moreover, artifacts presenting morphological similarities to seizures act as major noise sources and can be misinterpreted as seizures. This paper presents a combined seizure and artifacts detection framework targeting wearable EEG devices based on Gradient Boosted Trees. The seizure detector achieves nearly zero false alarms with average sensitivity values of [Formula: see text] for 182 seizures from the CHB-MIT dataset and [Formula: see text] for 25 seizures from the private dataset with no preliminary artifact detection or removal. The artifact detector achieves a state-of-the-art accuracy of [Formula: see text] (on the TUH-EEG Artifact Corpus dataset). Integrating artifact and seizure detection significantly reduces false alarms-up to [Formula: see text] compared to standalone seizure detection. Optimized for a Parallel Ultra-Low Power platform, these algorithms enable extended monitoring with a battery lifespan reaching 300 h. These findings highlight the benefits of integrating artifact detection in wearable epilepsy monitoring devices to limit the number of false positives.
Collapse
Affiliation(s)
| | - Simone Benatti
- University of Bologna, 40126, Bologna, Italy
- University of Modena and Reggio Emilia, 41121, Reggio Emilia, Italy
| | | | - Adriano Bernini
- University Hospital of Lausanne (CHUV), 1011, Lausanne, Switzerland
| | - Pauline Ducouret
- University Hospital of Lausanne (CHUV), 1011, Lausanne, Switzerland
| | - Philippe Ryvlin
- University Hospital of Lausanne (CHUV), 1011, Lausanne, Switzerland
| | - Sandor Beniczky
- Aarhus University Hospital, 8200, Aarhus, Denmark
- Danish Epilepsy Centre (Filadelfia), 4293, Dianalund, Denmark
| | - Luca Benini
- ETH Zürich, D-ITET, 8092, Zürich, Switzerland
- University of Bologna, 40126, Bologna, Italy
| | | |
Collapse
|
70
|
Sadeghi M, Bristow T, Fakorede S, Liao K, Palmer JA, Lyons KE, Pahwa R, Huang CK, Akinwuntan A, Devos H. The Effect of Sensory Reweighting on Postural Control and Cortical Activity in Parkinson's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.26.24301687. [PMID: 38352617 PMCID: PMC10862999 DOI: 10.1101/2024.01.26.24301687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Aims Balance requires the cortical control of visual, somatosensory, and vestibular inputs. The aim of this cross-sectional study was to compare the contributions of each of these systems on postural control and cortical activity using a sensory reweighting approach between participants with Parkinson's disease (PD) and controls. Methods Ten participants with PD (age: 72 ± 9; 3 women; Hoehn & Yahr: 2 [1.5 - 2.50]) and 11 controls (age: 70 ± 3; 4 women) completed a sensory organization test in virtual reality (VR-SOT) while cortical activity was being recorded using electroencephalography (EEG). Conditions 1 to 3 were completed on a stable platform; conditions 4 to 6 on a foam. Conditions 1 and 4 were done with eyes open; conditions 2 and 5 in a darkened VR environment; and conditions 3 and 6 in a moving VR environment. Linear mixed models were used to evaluate changes in center of pressure (COP) displacement and EEG alpha and theta/beta ratio power between the two groups across the postural control conditions. Condition 1 was used as reference in all analyses. Results Participants with PD showed greater COP displacement than controls in the anteroposterior (AP) direction when relying on vestibular input (condition 5; p<0.0001). The mediolateral (ML) COP sway was greater in PD than in controls when relying on the somatosensory (condition 2; p = 0.03), visual (condition 4; p = 0.002), and vestibular (condition 5; p < 0.0001) systems. Participants with PD exhibited greater alpha power compared to controls when relying on visual input (condition 2; p = 0.003) and greater theta/beta ratio power when relying on somatosensory input (condition 4; p = 0.001). Conclusions PD affects reweighting of postural control, exemplified by greater COP displacement and increased cortical activity. Further research is needed to establish the temporal dynamics between cortical activity and COP displacement.
Collapse
|
71
|
Massaeli F, Power SD. EEG-based hierarchical classification of level of demand and modality of auditory and visual sensory processing. J Neural Eng 2024; 21:016008. [PMID: 38176028 DOI: 10.1088/1741-2552/ad1ac1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Objective.To date, most research on electroencephalography (EEG)-based mental workload detection for passive brain-computer interface (pBCI) applications has focused on identifying the overall level of cognitive resources required, such as whether the workload is high or low. We propose, however, that being able to determine the specific type of cognitive resources being used, such as visual or auditory, would also be useful. This would enable the pBCI to take more appropriate action to reduce the overall level of cognitive demand on the user. For example, if a high level of workload was detected and it is determined that the user is primarily engaged in visual information processing, then the pBCI could cause some information to be presented aurally instead. In our previous work we showed that EEG could be used to differentiate visual from auditory processing tasks when the level of processing is high, but the two modalities could not be distinguished when the level of cognitive processing demand was very low. The current study aims to build on this work and move toward the overall objective of developing a pBCI that is capable of predicting both the level and the type of cognitive resources being used.Approach.Fifteen individuals undertook carefully designed visual and auditory tasks while their EEG data was being recorded. In this study, we incorporated a more diverse range of sensory processing conditions including not only single-modality conditions (i.e. those requiring one of either visual or auditory processing) as in our previous study, but also dual-modality conditions (i.e. those requiring both visual and auditory processing) and no-task/baseline conditions (i.e. when the individual is not engaged in either visual or auditory processing).Main results.Using regularized linear discriminant analysis within a hierarchical classification algorithm, the overall cognitive demand was predicted with an accuracy of more than 86%, while the presence or absence of visual and auditory sensory processing were each predicted with an accuracy of approximately 70%.Significance.The findings support the feasibility of establishing a pBCI that can determine both the level and type of attentional resources required by the user at any given moment. This pBCI could assist in enhancing safety in hazardous jobs by triggering the most effective and efficient adaptation strategies when high workload conditions are detected.
Collapse
Affiliation(s)
- Faghihe Massaeli
- Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. Johns, Canada
| | - Sarah D Power
- Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. Johns, Canada
- Faculty of Medicine, Memorial University of Newfoundland, St. Johns, Canada
| |
Collapse
|
72
|
Peier F, Mouthon M, De Pretto M, Chabwine JN. Response to experimental cold-induced pain discloses a resistant category among endurance athletes, with a distinct profile of pain-related behavior and GABAergic EEG markers: a case-control preliminary study. Front Neurosci 2024; 17:1287233. [PMID: 38287989 PMCID: PMC10822956 DOI: 10.3389/fnins.2023.1287233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Pain is a major public health problem worldwide, with a high rate of treatment failure. Among promising non-pharmacological therapies, physical exercise is an attractive, cheap, accessible and innocuous method; beyond other health benefits. However, its highly variable therapeutic effect and incompletely understood underlying mechanisms (plausibly involving the GABAergic neurotransmission) require further research. This case-control study aimed to investigate the impact of long-lasting intensive endurance sport practice (≥7 h/week for the last 6 months at the time of the experiment) on the response to experimental cold-induced pain (as a suitable chronic pain model), assuming that highly trained individual would better resist to pain, develop advantageous pain-copying strategies and enhance their GABAergic signaling. For this purpose, clinical pain-related data, response to a cold-pressor test and high-density EEG high (Hβ) and low beta (Lβ) oscillations were documented. Among 27 athletes and 27 age-adjusted non-trained controls (right-handed males), a category of highly pain-resistant participants (mostly athletes, 48.1%) was identified, displaying lower fear of pain, compared to non-resistant non-athletes. Furthermore, they tolerated longer cold-water immersion and perceived lower maximal sensory pain. However, while having similar Hβ and Lβ powers at baseline, they exhibited a reduction between cold and pain perceptions and between pain threshold and tolerance (respectively -60% and - 6.6%; -179.5% and - 5.9%; normalized differences), in contrast to the increase noticed in non-resistant non-athletes (+21% and + 14%; +23.3% and + 13.6% respectively). Our results suggest a beneficial effect of long-lasting physical exercise on resistance to pain and pain-related behaviors, and a modification in brain GABAergic signaling. In light of the current knowledge, we propose that the GABAergic neurotransmission could display multifaceted changes to be differently interpreted, depending on the training profile and on the homeostatic setting (e.g., in pain-free versus chronic pain conditions). Despite limitations related to the sample size and to absence of direct observations under acute physical exercise, this precursory study brings into light the unique profile of resistant individuals (probably favored by training) allowing highly informative observation on physical exercise-induced analgesia and paving the way for future clinical translation. Further characterizing pain-resistant individuals would open avenues for a targeted and physiologically informed pain management.
Collapse
Affiliation(s)
- Franziska Peier
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Mouthon
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael De Pretto
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Joelle Nsimire Chabwine
- Laboratory for Neurorehabilitation Science, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Neurology Division, Department of Internal Medicine, Fribourg-Cantonal Hospital, Fribourg, Switzerland
| |
Collapse
|
73
|
Wang G, Yang Y, Dong K, Hua A, Wang J, Liu J. Multisensory Conflict Impairs Cortico-Muscular Network Connectivity and Postural Stability: Insights from Partial Directed Coherence Analysis. Neurosci Bull 2024; 40:79-89. [PMID: 37989834 PMCID: PMC10774487 DOI: 10.1007/s12264-023-01143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/16/2023] [Indexed: 11/23/2023] Open
Abstract
Sensory conflict impacts postural control, yet its effect on cortico-muscular interaction remains underexplored. We aimed to investigate sensory conflict's influence on the cortico-muscular network and postural stability. We used a rotating platform and virtual reality to present subjects with congruent and incongruent sensory input, recorded EEG (electroencephalogram) and EMG (electromyogram) data, and constructed a directed connectivity network. The results suggest that, compared to sensory congruence, during sensory conflict: (1) connectivity among the sensorimotor, visual, and posterior parietal cortex generally decreases, (2) cortical control over the muscles is weakened, (3) feedback from muscles to the cortex is strengthened, and (4) the range of body sway increases and its complexity decreases. These results underline the intricate effects of sensory conflict on cortico-muscular networks. During the sensory conflict, the brain adaptively decreases the integration of conflicting information. Without this integrated information, cortical control over muscles may be lessened, whereas the muscle feedback may be enhanced in compensation.
Collapse
Affiliation(s)
- Guozheng Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310058, China
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou, 310058, China
| | - Yi Yang
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou, 310058, China
| | - Kangli Dong
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Anke Hua
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wang
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou, 310058, China.
- Center for Psychological Science, Zhejiang University, Hangzhou, 310058, China.
| | - Jun Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310058, China.
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University-Taizhou, Taizhou, 318000, China.
| |
Collapse
|
74
|
Lin S, Jiang J, Huang K, Li L, He X, Du P, Wu Y, Liu J, Li X, Huang Z, Zhou Z, Yu Y, Gao J, Lei M, Wu H. Advanced Electrode Technologies for Noninvasive Brain-Computer Interfaces. ACS NANO 2023; 17:24487-24513. [PMID: 38064282 DOI: 10.1021/acsnano.3c06781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Brain-computer interfaces (BCIs) have garnered significant attention in recent years due to their potential applications in medical, assistive, and communication technologies. Building on this, noninvasive BCIs stand out as they provide a safe and user-friendly method for interacting with the human brain. In this work, we provide a comprehensive overview of the latest developments and advancements in material, design, and application of noninvasive BCIs electrode technology. We also explore the challenges and limitations currently faced by noninvasive BCI electrode technology and sketch out the technological roadmap from three dimensions: Materials and Design; Performances; Mode and Function. We aim to unite research efforts within the field of noninvasive BCI electrode technology, focusing on the consolidation of shared goals and fostering integrated development strategies among a diverse array of multidisciplinary researchers.
Collapse
Affiliation(s)
- Sen Lin
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Jingjing Jiang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Kai Huang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Lei Li
- National Engineering Research Center of Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
| | - Xian He
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Peng Du
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yufeng Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Junchen Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Xilin Li
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- Advanced Institute for Brain and Intelligence, Guangxi University, Nanning 530004, China
| | - Zhibao Huang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Zenan Zhou
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuanhang Yu
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiaxin Gao
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Ming Lei
- State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Hui Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
75
|
Miyakoshi M. Artifact subspace reconstruction: a candidate for a dream solution for EEG studies, sleep or awake. Sleep 2023; 46:zsad241. [PMID: 37715954 PMCID: PMC10710985 DOI: 10.1093/sleep/zsad241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 09/18/2023] Open
Affiliation(s)
- Makoto Miyakoshi
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
76
|
Somervail R, Cataldi J, Stephan AM, Siclari F, Iannetti GD. Dusk2Dawn: an EEGLAB plugin for automatic cleaning of whole-night sleep electroencephalogram using Artifact Subspace Reconstruction. Sleep 2023; 46:zsad208. [PMID: 37542730 DOI: 10.1093/sleep/zsad208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/20/2023] [Indexed: 08/07/2023] Open
Abstract
Whole-night sleep electroencephalogram (EEG) is plagued by several types of large-amplitude artifacts. Common approaches to remove them are fraught with issues: channel interpolation, rejection of noisy intervals, and independent component analysis are time-consuming, rely on subjective user decisions, and result in signal loss. Artifact Subspace Reconstruction (ASR) is an increasingly popular approach to rapidly and automatically clean wake EEG data. Indeed, ASR adaptively removes large-amplitude artifacts regardless of their scalp topography or consistency throughout the recording. This makes ASR, at least in theory, a highly-promising tool to clean whole-night EEG. However, ASR crucially relies on calibration against a subset of relatively clean "baseline" data. This is problematic when the baseline changes substantially over time, as in whole-night EEG data. Here we tackled this issue and, for the first time, validated ASR for cleaning sleep EEG. We demonstrate that ASR applied out-of-the-box, with the parameters recommended for wake EEG, results in the dramatic removal of slow waves. We also provide an appropriate procedure to use ASR for automatic and rapid cleaning of whole-night sleep EEG data or any long EEG recording. Our procedure is freely available in Dusk2Dawn, an open-source plugin for EEGLAB.
Collapse
Affiliation(s)
- Richard Somervail
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology (IIT), Rome, Italy
- Department of Neuroscience Physiology and Pharmacology, University College London (UCL), London, UK
| | - Jacinthe Cataldi
- Centre d'Investigation et de Recherche sur le Sommeil, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- The Sense Innovation and Research Center, Lausanne and Sion, Switzerland
| | - Aurélie M Stephan
- Centre d'Investigation et de Recherche sur le Sommeil, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- The Sense Innovation and Research Center, Lausanne and Sion, Switzerland
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Francesca Siclari
- Centre d'Investigation et de Recherche sur le Sommeil, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- The Sense Innovation and Research Center, Lausanne and Sion, Switzerland
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology (IIT), Rome, Italy
- Department of Neuroscience Physiology and Pharmacology, University College London (UCL), London, UK
| |
Collapse
|
77
|
Tamburro G, Fiedler P, De Fano A, Raeisi K, Khazaei M, Vaquero L, Bruña R, Oppermann H, Bertollo M, Filho E, Zappasodi F, Comani S. An ecological study protocol for the multimodal investigation of the neurophysiological underpinnings of dyadic joint action. Front Hum Neurosci 2023; 17:1305331. [PMID: 38125713 PMCID: PMC10730734 DOI: 10.3389/fnhum.2023.1305331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
A novel multimodal experimental setup and dyadic study protocol were designed to investigate the neurophysiological underpinnings of joint action through the synchronous acquisition of EEG, ECG, EMG, respiration and kinematic data from two individuals engaged in ecologic and naturalistic cooperative and competitive joint actions involving face-to-face real-time and real-space coordinated full body movements. Such studies are still missing because of difficulties encountered in recording reliable neurophysiological signals during gross body movements, in synchronizing multiple devices, and in defining suitable study protocols. The multimodal experimental setup includes the synchronous recording of EEG, ECG, EMG, respiration and kinematic signals of both individuals via two EEG amplifiers and a motion capture system that are synchronized via a single-board microcomputer and custom Python scripts. EEG is recorded using new dry sports electrode caps. The novel study protocol is designed to best exploit the multimodal data acquisitions. Table tennis is the dyadic motor task: it allows naturalistic and face-to-face interpersonal interactions, free in-time and in-space full body movement coordination, cooperative and competitive joint actions, and two task difficulty levels to mimic changing external conditions. Recording conditions-including minimum table tennis rally duration, sampling rate of kinematic data, total duration of neurophysiological recordings-were defined according to the requirements of a multilevel analytical approach including a neural level (hyperbrain functional connectivity, Graph Theoretical measures and Microstate analysis), a cognitive-behavioral level (integrated analysis of neural and kinematic data), and a social level (extending Network Physiology to neurophysiological data recorded from two interacting individuals). Four practical tests for table tennis skills were defined to select the study population, permitting to skill-match the dyad members and to form two groups of higher and lower skilled dyads to explore the influence of skill level on joint action performance. Psychometric instruments are included to assess personality traits and support interpretation of results. Studying joint action with our proposed protocol can advance the understanding of the neurophysiological mechanisms sustaining daily life joint actions and could help defining systems to predict cooperative or competitive behaviors before being overtly expressed, particularly useful in real-life contexts where social behavior is a main feature.
Collapse
Affiliation(s)
- Gabriella Tamburro
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Patrique Fiedler
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Antonio De Fano
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Khadijeh Raeisi
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Mohammad Khazaei
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Lucia Vaquero
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Experimental Pschology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid, Spain
- Department of Radiology, Universidad Complutense de Madrid, IdISSC, Madrid, Spain
| | - Hannes Oppermann
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Maurizio Bertollo
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Department of Medicine and Sciences of Aging, “University G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Edson Filho
- Wheelock College of Education and Human Development, Boston University, Boston, MA, United States
| | - Filippo Zappasodi
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| | - Silvia Comani
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
- Behavioral Imaging and Neural Dynamics Center, University “G. d’Annunzio” of Chieti–Pescara, Chieti, Italy
| |
Collapse
|
78
|
Koizumi K, Kunii N, Ueda K, Takabatake K, Nagata K, Fujitani S, Shimada S, Nakao M. Intracranial Neurofeedback Modulating Neural Activity in the Mesial Temporal Lobe During Memory Encoding: A Pilot Study. Appl Psychophysiol Biofeedback 2023; 48:439-451. [PMID: 37405548 PMCID: PMC10581957 DOI: 10.1007/s10484-023-09595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2023] [Indexed: 07/06/2023]
Abstract
Removal of the mesial temporal lobe (MTL) is an established surgical procedure that leads to seizure freedom in patients with intractable MTL epilepsy; however, it carries the potential risk of memory damage. Neurofeedback (NF), which regulates brain function by converting brain activity into perceptible information and providing feedback, has attracted considerable attention in recent years for its potential as a novel complementary treatment for many neurological disorders. However, no research has attempted to artificially reorganize memory functions by applying NF before resective surgery to preserve memory functions. Thus, this study aimed (1) to construct a memory NF system that used intracranial electrodes to feedback neural activity on the language-dominant side of the MTL during memory encoding and (2) to verify whether neural activity and memory function in the MTL change with NF training. Two intractable epilepsy patients with implanted intracranial electrodes underwent at least five sessions of memory NF training to increase the theta power in the MTL. There was an increase in theta power and a decrease in fast beta and gamma powers in one of the patients in the late stage of memory NF sessions. NF signals were not correlated with memory function. Despite its limitations as a pilot study, to our best knowledge, this study is the first to report that intracranial NF may modulate neural activity in the MTL, which is involved in memory encoding. The findings provide important insights into the future development of NF systems for the artificial reorganization of memory functions.
Collapse
Affiliation(s)
- Koji Koizumi
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Naoto Kunii
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ueda
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Keisuke Nagata
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Shigeta Fujitani
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Seijiro Shimada
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Masayuki Nakao
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
79
|
Choi YJ, Kwon OS, Kim SP. Design of auditory P300-based brain-computer interfaces with a single auditory channel and no visual support. Cogn Neurodyn 2023; 17:1401-1416. [PMID: 37974580 PMCID: PMC10640544 DOI: 10.1007/s11571-022-09901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/05/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022] Open
Abstract
Non-invasive brain-computer interfaces (BCIs) based on an event-related potential (ERP) component, P300, elicited via the oddball paradigm, have been extensively developed to enable device control and communication. While most P300-based BCIs employ visual stimuli in the oddball paradigm, auditory P300-based BCIs also need to be developed for users with unreliable gaze control or limited visual processing. Specifically, auditory BCIs without additional visual support or multi-channel sound sources can broaden the application areas of BCIs. This study aimed to design optimal stimuli for auditory BCIs among artificial (e.g., beep) and natural (e.g., human voice and animal sounds) sounds in such circumstances. In addition, it aimed to investigate differences between auditory and visual stimulations for online P300-based BCIs. As a result, natural sounds led to both higher online BCI performance and larger differences in ERP amplitudes between the target and non-target compared to artificial sounds. However, no single type of sound offered the best performance for all subjects; rather, each subject indicated different preferences between the human voice and animal sound. In line with previous reports, visual stimuli yielded higher BCI performance (average 77.56%) than auditory counterparts (average 54.67%). In addition, spatiotemporal patterns of the differences in ERP amplitudes between target and non-target were more dynamic with visual stimuli than with auditory stimuli. The results suggest that selecting a natural auditory stimulus optimal for individual users as well as making differences in ERP amplitudes between target and non-target stimuli more dynamic may further improve auditory P300-based BCIs. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09901-3.
Collapse
Affiliation(s)
- Yun-Joo Choi
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Korea
| | - Oh-Sang Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Korea
| |
Collapse
|
80
|
Chen JY, Oh Y, Kounios J, Lowe MR. An examination of frontal asymmetry in relation to eating in the absence of hunger and loss-of-control eating. Appetite 2023; 191:107090. [PMID: 37871365 DOI: 10.1016/j.appet.2023.107090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
Loss-of-control (LOC) eating involves a subjective feeling that one cannot stop eating or control one's eating. Individuals with LOC eating may exhibit strong appetitive drives and weak inhibitory control, and these two opposing motivations have been related to EEG measurements of frontal asymmetry or lateralized frontal activation. The present study investigated whether frontal asymmetry is related to hedonic hunger, LOC eating severity and frequency, and eating in the absence of hunger (EAH) in the laboratory. Fifty-nine individuals participated in an ostensible taste study after resting-state electroencephalogram (EEG) recordings. After the EEGs, they were provided a meal to eat until fullness, followed by an array of snacks and instructions to eat as much as they would like. The results indicated that several measures of right-frontal asymmetry were related to greater EAH and greater self-reported LOC eating severity. Although right-frontal asymmetry has been theorized to reflect avoidance motivation, recent evidence suggests it may indicate effortful control during approach-avoidance conflicts. Because individuals with LOC eating presumably experience heightened conflict between drives to eat beyond energy needs and to minimize such eating, those experiencing greater LOC may exert greater effort to manage these conflicting motivations. An integration of these neurobiological correlates of LOC eating may help provide a more comprehensive understanding of LOC eating and inform treatments.
Collapse
Affiliation(s)
- Joanna Y Chen
- Department of Psychological and Brain Sciences, Drexel University, 3141 Chestnut Street, Suite 119, Philadelphia, PA, 19104, USA.
| | - Yongtaek Oh
- Department of Psychological and Brain Sciences, Drexel University, 3141 Chestnut Street, Suite 119, Philadelphia, PA, 19104, USA
| | - John Kounios
- Department of Psychological and Brain Sciences, Drexel University, 3141 Chestnut Street, Suite 119, Philadelphia, PA, 19104, USA
| | - Michael R Lowe
- Department of Psychological and Brain Sciences, Drexel University, 3141 Chestnut Street, Suite 119, Philadelphia, PA, 19104, USA
| |
Collapse
|
81
|
Pirovano I, Antonacci Y, Mastropietro A, Bara C, Sparacino L, Guanziroli E, Molteni F, Tettamanti M, Faes L, Rizzo G. Rehabilitation Modulates High-Order Interactions Among Large-Scale Brain Networks in Subacute Stroke. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4549-4560. [PMID: 37955999 DOI: 10.1109/tnsre.2023.3332114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The recovery of motor functions after stroke is fostered by the functional integration of large-scale brain networks, including the motor network (MN) and high-order cognitive controls networks, such as the default mode (DMN) and executive control (ECN) networks. In this paper, electroencephalography signals are used to investigate interactions among these three resting state networks (RSNs) in subacute stroke patients after motor rehabilitation. A novel metric, the O-information rate (OIR), is used to quantify the balance between redundancy and synergy in the complex high-order interactions among RSNs, as well as its causal decomposition to identify the direction of information flow. The paper also employs conditional spectral Granger causality to assess pairwise directed functional connectivity between RSNs. After rehabilitation, a synergy increase among these RSNs is found, especially driven by MN. From the pairwise description, a reduced directed functional connectivity towards MN is enhanced after treatment. Besides, inter-network connectivity changes are associated with motor recovery, for which the mediation role of ECN seems to play a relevant role, both from pairwise and high-order interactions perspective.
Collapse
|
82
|
Pousson JE, Shen YW, Lin YP, Voicikas A, Pipinis E, Bernhofs V, Burmistrova L, Griskova-Bulanova I. Exploring Spatio-Spectral Electroencephalogram Modulations of Imbuing Emotional Intent During Active Piano Playing. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4347-4356. [PMID: 37883285 DOI: 10.1109/tnsre.2023.3327740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Imbuing emotional intent serves as a crucial modulator of music improvisation during active musical instrument playing. However, most improvisation-related neural endeavors have been gained without considering the emotional context. This study attempts to exploit reproducible spatio-spectral electroencephalogram (EEG) oscillations of emotional intent using a data-driven independent component analysis framework in an ecological multiday piano playing experiment. Through the four-day 32-ch EEG dataset of 10 professional players, we showed that EEG patterns were substantially affected by both intra- and inter-individual variability underlying the emotional intent of the dichotomized valence (positive vs. negative) and arousal (high vs. low) categories. Less than half (3-4) of the 10 participants analogously exhibited day-reproducible ( ≥ three days) spectral modulations at the right frontal beta in response to the valence contrast as well as the frontal central gamma and the superior parietal alpha to the arousal counterpart. In particular, the frontal engagement facilitates a better understanding of the frontal cortex (e.g., dorsolateral prefrontal cortex and anterior cingulate cortex) and its role in intervening emotional processes and expressing spectral signatures that are relatively resistant to natural EEG variability. Such ecologically vivid EEG findings may lead to better understanding of the development of a brain-computer music interface infrastructure capable of guiding the training, performance, and appreciation for emotional improvisatory status or actuating music interaction via emotional context.
Collapse
|
83
|
Tokimoto S, Tokimoto N. Time course of effective connectivity associated with perspective taking in utterance comprehension. Front Hum Neurosci 2023; 17:1179230. [PMID: 38021233 PMCID: PMC10658713 DOI: 10.3389/fnhum.2023.1179230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
This study discusses the effective connectivity in the brain and its time course in realizing perspective taking in verbal communication through electroencephalogram (EEG) associated with the understanding of Japanese utterances. We manipulated perspective taking in a sentence with the Japanese subsidiary verbs -ageru and -kureru, which mean "to give". We measured the EEG during the auditory presentation of the sentences with a multichannel electroencephalograph, and the partial directed coherence and its temporal variations were analyzed using the source localization method to examine causal interactions between nineteen regions of interest in the brain. Three different processing stages were recognized on the basis of the connectivity hubs, direction of information flow, increase or decrease in flow, and temporal variation. We suggest that perspective taking in speech comprehension is realized by interactions between the mentalizing network, mirror neuron network, and executive control network. Furthermore, we found that individual differences in the sociality of typically developing adult speakers were systematically related to effective connectivity. In particular, attention switching was deeply concerned with perspective taking in real time, and the precuneus played a crucial role in implementing individual differences.
Collapse
Affiliation(s)
- Shingo Tokimoto
- Department of English Language Studies, Mejiro University, Tokyo, Japan
| | - Naoko Tokimoto
- Department of Performing Arts, Shobi University, Saitama, Japan
| |
Collapse
|
84
|
Lombardi F, Herrmann HJ, Parrino L, Plenz D, Scarpetta S, Vaudano AE, de Arcangelis L, Shriki O. Beyond pulsed inhibition: Alpha oscillations modulate attenuation and amplification of neural activity in the awake resting state. Cell Rep 2023; 42:113162. [PMID: 37777965 PMCID: PMC10842118 DOI: 10.1016/j.celrep.2023.113162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023] Open
Abstract
Alpha oscillations are a distinctive feature of the awake resting state of the human brain. However, their functional role in resting-state neuronal dynamics remains poorly understood. Here we show that, during resting wakefulness, alpha oscillations drive an alternation of attenuation and amplification bouts in neural activity. Our analysis indicates that inhibition is activated in pulses that last for a single alpha cycle and gradually suppress neural activity, while excitation is successively enhanced over a few alpha cycles to amplify neural activity. Furthermore, we show that long-term alpha amplitude fluctuations-the "waxing and waning" phenomenon-are an attenuation-amplification mechanism described by a power-law decay of the activity rate in the "waning" phase. Importantly, we do not observe such dynamics during non-rapid eye movement (NREM) sleep with marginal alpha oscillations. The results suggest that alpha oscillations modulate neural activity not only through pulses of inhibition (pulsed inhibition hypothesis) but also by timely enhancement of excitation (or disinhibition).
Collapse
Affiliation(s)
- Fabrizio Lombardi
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria; Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58B, 35131 Padova, Italy.
| | - Hans J Herrmann
- Departamento de Fisica, Universitade Federal do Ceara, Fortaleza 60451-970, Ceara, Brazil; PMMH, ESPCI, 7 quai St. Bernard, 75005 Paris, France
| | - Liborio Parrino
- Sleep Disorders Center, Department of Neurosciences, University of Parma, 43121 Parma, Italy
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, NIH, Bethesda, MD 20892, USA
| | - Silvia Scarpetta
- Department of Physics, University of Salerno, 84084 Fisciano, Italy; INFN sez, Napoli Gr. Coll, 84084 Fisciano, Italy
| | - Anna Elisabetta Vaudano
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, OCB Hospital, 41125 Modena, Italy; Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Lucilla de Arcangelis
- Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", Viale Lincoln 5, 81100 Caserta, Italy.
| | - Oren Shriki
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer-sheva, Israel.
| |
Collapse
|
85
|
Staffa M, D'Errico L, Sansalone S, Alimardani M. Classifying human emotions in HRI: applying global optimization model to EEG brain signals. Front Neurorobot 2023; 17:1191127. [PMID: 37881515 PMCID: PMC10595007 DOI: 10.3389/fnbot.2023.1191127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/21/2023] [Indexed: 10/27/2023] Open
Abstract
Significant efforts have been made in the past decade to humanize both the form and function of social robots to increase their acceptance among humans. To this end, social robots have recently been combined with brain-computer interface (BCI) systems in an attempt to give them an understanding of human mental states, particularly emotions. However, emotion recognition using BCIs poses several challenges, such as subjectivity of emotions, contextual dependency, and a lack of reliable neuro-metrics for real-time processing of emotions. Furthermore, the use of BCI systems introduces its own set of limitations, such as the bias-variance trade-off, dimensionality, and noise in the input data space. In this study, we sought to address some of these challenges by detecting human emotional states from EEG brain activity during human-robot interaction (HRI). EEG signals were collected from 10 participants who interacted with a Pepper robot that demonstrated either a positive or negative personality. Using emotion valence and arousal measures derived from frontal brain asymmetry (FBA), several machine learning models were trained to classify human's mental states in response to the robot personality. To improve classification accuracy, all proposed classifiers were subjected to a Global Optimization Model (GOM) based on feature selection and hyperparameter optimization techniques. The results showed that it is possible to classify a user's emotional responses to the robot's behavior from the EEG signals with an accuracy of up to 92%. The outcome of the current study contributes to the first level of the Theory of Mind (ToM) in Human-Robot Interaction, enabling robots to comprehend users' emotional responses and attribute mental states to them. Our work advances the field of social and assistive robotics by paving the way for the development of more empathetic and responsive HRI in the future.
Collapse
Affiliation(s)
- Mariacarla Staffa
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
| | - Lorenzo D'Errico
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Naples, Italy
| | - Simone Sansalone
- Department of Physics, University of Naples Federico II, Naples, Italy
| | - Maryam Alimardani
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, Netherlands
| |
Collapse
|
86
|
Warsito IF, Komosar M, Bernhard MA, Fiedler P, Haueisen J. Flower electrodes for comfortable dry electroencephalography. Sci Rep 2023; 13:16589. [PMID: 37789022 PMCID: PMC10547758 DOI: 10.1038/s41598-023-42732-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023] Open
Abstract
Dry electroencephalography (EEG) electrodes provide rapid, gel-free, and easy EEG preparation, but with limited wearing comfort. We propose a novel dry electrode comprising multiple tilted pins in a flower-like arrangement. The novel Flower electrode increases wearing comfort and contact area while maintaining ease of use. In a study with 20 volunteers, we compare the performance of a novel 64-channel dry Flower electrode cap to a commercial dry Multipin electrode cap in sitting and supine positions. The wearing comfort of the Flower cap was rated as significantly improved both in sitting and supine positions. The channel reliability and average impedances of both electrode systems were comparable. Averaged VEP components showed no considerable differences in global field power amplitude and latency, as well as in signal-to-noise ratio and topography. No considerable differences were found in the power spectral density of the resting state EEGs between 1 and 40 Hz. Overall, our findings provide evidence for equivalent channel reliability and signal characteristics of the compared cap systems in the sitting and supine positions. The reliability, signal quality, and significantly improved wearing comfort of the Flower electrode allow new fields of applications for dry EEG in long-term monitoring, sensitive populations, and recording in supine position.
Collapse
Affiliation(s)
- Indhika Fauzhan Warsito
- Institute of Biomedical Engineering and Informatics at the Technische Universität Ilmenau, Ilmenau, Germany
| | - Milana Komosar
- Institute of Biomedical Engineering and Informatics at the Technische Universität Ilmenau, Ilmenau, Germany
| | - Maria Anne Bernhard
- Institute of Biomedical Engineering and Informatics at the Technische Universität Ilmenau, Ilmenau, Germany
| | - Patrique Fiedler
- Institute of Biomedical Engineering and Informatics at the Technische Universität Ilmenau, Ilmenau, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics at the Technische Universität Ilmenau, Ilmenau, Germany.
- Department of Neurology, Biomagnetic Center, University Hospital Jena, Jena, Germany.
| |
Collapse
|
87
|
Lee M, Hong Y, An S, Park U, Shin J, Lee J, Oh MS, Lee BC, Yu KH, Lim JS, Kang SW. Machine learning-based prediction of post-stroke cognitive status using electroencephalography-derived brain network attributes. Front Aging Neurosci 2023; 15:1238274. [PMID: 37842126 PMCID: PMC10568623 DOI: 10.3389/fnagi.2023.1238274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Objectives More than half of patients with acute ischemic stroke develop post-stroke cognitive impairment (PSCI), a significant barrier to future neurological recovery. Thus, predicting cognitive trajectories post-AIS is crucial. Our primary objective is to determine whether brain network properties from electroencephalography (EEG) can predict post-stroke cognitive function using machine learning approach. Methods We enrolled consecutive stroke patients who underwent both EEG during the acute stroke phase and cognitive assessments 3 months post-stroke. We preprocessed acute stroke EEG data to eliminate low-quality epochs, then performed independent component analysis and quantified network characteristics using iSyncBrain®. Cognitive function was evaluated using the Montreal cognitive assessment (MoCA). We initially categorized participants based on the lateralization of their lesions and then developed machine learning models to predict cognitive status in the left and right hemisphere lesion groups. Results Eighty-seven patients were included, and the accuracy of lesion laterality prediction using EEG attributes was 97.0%. In the left hemispheric lesion group, the network attributes of the theta band were significantly correlated with MoCA scores, and higher global efficiency, clustering coefficient, and lower characteristic path length were associated with higher MoCA scores. Most features related to cognitive scores were selected from the frontal lobe. The predictive powers (R-squared) were 0.76 and 0.65 for the left and right stroke groups, respectively. Conclusion Estimating EEG-based network properties in the acute phase of ischemic stroke through a machine learning model has a potential to predict cognitive outcomes after ischemic stroke.
Collapse
Affiliation(s)
- Minwoo Lee
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
| | | | - Sungsik An
- Department of Neurology, Hwahong Hospital, Suwon, Republic of Korea
| | - Ukeob Park
- iMedisync, Inc., Seoul, Republic of Korea
| | | | - Jeongjae Lee
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Mi Sun Oh
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Byung-Chul Lee
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Kyung-Ho Yu
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Jae-Sung Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | |
Collapse
|
88
|
Gil Ávila C, Bott FS, Tiemann L, Hohn VD, May ES, Nickel MM, Zebhauser PT, Gross J, Ploner M. DISCOVER-EEG: an open, fully automated EEG pipeline for biomarker discovery in clinical neuroscience. Sci Data 2023; 10:613. [PMID: 37696851 PMCID: PMC10495446 DOI: 10.1038/s41597-023-02525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
Biomarker discovery in neurological and psychiatric disorders critically depends on reproducible and transparent methods applied to large-scale datasets. Electroencephalography (EEG) is a promising tool for identifying biomarkers. However, recording, preprocessing, and analysis of EEG data is time-consuming and researcher-dependent. Therefore, we developed DISCOVER-EEG, an open and fully automated pipeline that enables easy and fast preprocessing, analysis, and visualization of resting state EEG data. Data in the Brain Imaging Data Structure (BIDS) standard are automatically preprocessed, and physiologically meaningful features of brain function (including oscillatory power, connectivity, and network characteristics) are extracted and visualized using two open-source and widely used Matlab toolboxes (EEGLAB and FieldTrip). We tested the pipeline in two large, openly available datasets containing EEG recordings of healthy participants and patients with a psychiatric condition. Additionally, we performed an exploratory analysis that could inspire the development of biomarkers for healthy aging. Thus, the DISCOVER-EEG pipeline facilitates the aggregation, reuse, and analysis of large EEG datasets, promoting open and reproducible research on brain function.
Collapse
Affiliation(s)
- Cristina Gil Ávila
- Department of Neurology, TUM School of Medicine, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, TUM School of Medicine, Technical University of Munich, München, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, München, Germany
| | - Felix S Bott
- Department of Neurology, TUM School of Medicine, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, TUM School of Medicine, Technical University of Munich, München, Germany
| | - Laura Tiemann
- Department of Neurology, TUM School of Medicine, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, TUM School of Medicine, Technical University of Munich, München, Germany
| | - Vanessa D Hohn
- Department of Neurology, TUM School of Medicine, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, TUM School of Medicine, Technical University of Munich, München, Germany
| | - Elisabeth S May
- Department of Neurology, TUM School of Medicine, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, TUM School of Medicine, Technical University of Munich, München, Germany
| | - Moritz M Nickel
- Department of Neurology, TUM School of Medicine, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, TUM School of Medicine, Technical University of Munich, München, Germany
| | - Paul Theo Zebhauser
- Department of Neurology, TUM School of Medicine, Technical University of Munich, München, Germany
- TUM-Neuroimaging Center, TUM School of Medicine, Technical University of Munich, München, Germany
- Center for Interdisciplinary Pain Medicine, TUM School of Medicine, Technical University of Munich, München, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Markus Ploner
- Department of Neurology, TUM School of Medicine, Technical University of Munich, München, Germany.
- TUM-Neuroimaging Center, TUM School of Medicine, Technical University of Munich, München, Germany.
- Center for Interdisciplinary Pain Medicine, TUM School of Medicine, Technical University of Munich, München, Germany.
| |
Collapse
|
89
|
Huang J, Zhang G, Dang J, Chen Y, Miyamoto S. Semantic processing during continuous speech production: an analysis from eye movements and EEG. Front Hum Neurosci 2023; 17:1253211. [PMID: 37727862 PMCID: PMC10505728 DOI: 10.3389/fnhum.2023.1253211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Speech production involves neurological planning and articulatory execution. How speakers prepare for articulation is a significant aspect of speech production research. Previous studies have focused on isolated words or short phrases to explore speech planning mechanisms linked to articulatory behaviors, including investigating the eye-voice span (EVS) during text reading. However, these experimental paradigms lack real-world speech process replication. Additionally, our understanding of the neurological dimension of speech planning remains limited. Methods This study examines speech planning mechanisms during continuous speech production by analyzing behavioral (eye movement and speech) and neurophysiological (EEG) data within a continuous speech production task. The study specifically investigates the influence of semantic consistency on speech planning and the occurrence of "look ahead" behavior. Results The outcomes reveal the pivotal role of semantic coherence in facilitating fluent speech production. Speakers access lexical representations and phonological information before initiating speech, emphasizing the significance of semantic processing in speech planning. Behaviorally, the EVS decreases progressively during continuous reading of regular sentences, with a slight increase for non-regular sentences. Moreover, eye movement pattern analysis identifies two distinct speech production modes, highlighting the importance of semantic comprehension and prediction in higher-level lexical processing. Neurologically, the dual pathway model of speech production is supported, indicating a dorsal information flow and frontal lobe involvement. The brain network linked to semantic understanding exhibits a negative correlation with semantic coherence, with significant activation during semantic incoherence and suppression in regular sentences. Discussion The study's findings enhance comprehension of speech planning mechanisms and offer insights into the role of semantic coherence in continuous speech production. Furthermore, the research methodology establishes a valuable framework for future investigations in this domain.
Collapse
Affiliation(s)
- Jinfeng Huang
- Faculty of Human Sciences, University of Tsukuba, Ibaraki, Japan
- Research Institute, NeuralEcho Technology Co., Ltd., Beijing, China
| | - Gaoyan Zhang
- Tianjin Key Laboratory of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Jianwu Dang
- Tianjin Key Laboratory of Cognitive Computing and Application, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Yu Chen
- Technical College for the Deaf, Tianjin University of Technology, Tianjin, China
| | - Shoko Miyamoto
- Faculty of Human Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
90
|
Aminosharieh Najafi T, Affanni A, Rinaldo R, Zontone P. Drivers' Mental Engagement Analysis Using Multi-Sensor Fusion Approaches Based on Deep Convolutional Neural Networks. SENSORS (BASEL, SWITZERLAND) 2023; 23:7346. [PMID: 37687801 PMCID: PMC10490517 DOI: 10.3390/s23177346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023]
Abstract
In this paper, we present a comprehensive assessment of individuals' mental engagement states during manual and autonomous driving scenarios using a driving simulator. Our study employed two sensor fusion approaches, combining the data and features of multimodal signals. Participants in our experiment were equipped with Electroencephalogram (EEG), Skin Potential Response (SPR), and Electrocardiogram (ECG) sensors, allowing us to collect their corresponding physiological signals. To facilitate the real-time recording and synchronization of these signals, we developed a custom-designed Graphical User Interface (GUI). The recorded signals were pre-processed to eliminate noise and artifacts. Subsequently, the cleaned data were segmented into 3 s windows and labeled according to the drivers' high or low mental engagement states during manual and autonomous driving. To implement sensor fusion approaches, we utilized two different architectures based on deep Convolutional Neural Networks (ConvNets), specifically utilizing the Braindecode Deep4 ConvNet model. The first architecture consisted of four convolutional layers followed by a dense layer. This model processed the synchronized experimental data as a 2D array input. We also proposed a novel second architecture comprising three branches of the same ConvNet model, each with four convolutional layers, followed by a concatenation layer for integrating the ConvNet branches, and finally, two dense layers. This model received the experimental data from each sensor as a separate 2D array input for each ConvNet branch. Both architectures were evaluated using a Leave-One-Subject-Out (LOSO) cross-validation approach. For both cases, we compared the results obtained when using only EEG signals with the results obtained by adding SPR and ECG signals. In particular, the second fusion approach, using all sensor signals, achieved the highest accuracy score, reaching 82.0%. This outcome demonstrates that our proposed architecture, particularly when integrating EEG, SPR, and ECG signals at the feature level, can effectively discern the mental engagement of drivers.
Collapse
Affiliation(s)
- Taraneh Aminosharieh Najafi
- Polytechnic Department of Engineering and Architecture, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy; (A.A.); (R.R.); (P.Z.)
| | | | | | | |
Collapse
|
91
|
Koizumi K, Kunii N, Ueda K, Nagata K, Fujitani S, Shimada S, Nakao M. Paving the Way for Memory Enhancement: Development and Examination of a Neurofeedback System Targeting the Medial Temporal Lobe. Biomedicines 2023; 11:2262. [PMID: 37626758 PMCID: PMC10452721 DOI: 10.3390/biomedicines11082262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Neurofeedback (NF) shows promise in enhancing memory, but its application to the medial temporal lobe (MTL) still needs to be studied. Therefore, we aimed to develop an NF system for the memory function of the MTL and examine neural activity changes and memory task score changes through NF training. We created a memory NF system using intracranial electrodes to acquire and visualise the neural activity of the MTL during memory encoding. Twenty trials of a tug-of-war game per session were employed for NF and designed to control neural activity bidirectionally (Up/Down condition). NF training was conducted with three patients with drug-resistant epilepsy, and we observed an increasing difference in NF signal between conditions (Up-Down) as NF training progressed. Similarities and negative correlation tendencies between the transition of neural activity and the transition of memory function were also observed. Our findings demonstrate NF's potential to modulate MTL activity and memory encoding. Future research needs further improvements to the NF system to validate its effects on memory functions. Nonetheless, this study represents a crucial step in understanding NF's application to memory and provides valuable insights into developing more efficient memory enhancement strategies.
Collapse
Affiliation(s)
- Koji Koizumi
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (K.U.); (M.N.)
| | - Naoto Kunii
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-8655, Japan; (N.K.); (K.N.); (S.F.); (S.S.)
| | - Kazutaka Ueda
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (K.U.); (M.N.)
| | - Keisuke Nagata
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-8655, Japan; (N.K.); (K.N.); (S.F.); (S.S.)
| | - Shigeta Fujitani
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-8655, Japan; (N.K.); (K.N.); (S.F.); (S.S.)
| | - Seijiro Shimada
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-8655, Japan; (N.K.); (K.N.); (S.F.); (S.S.)
| | - Masayuki Nakao
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (K.U.); (M.N.)
| |
Collapse
|
92
|
He C, Chen YY, Phang CR, Stevenson C, Chen IP, Jung TP, Ko LW. Diversity and Suitability of the State-of-the-Art Wearable and Wireless EEG Systems Review. IEEE J Biomed Health Inform 2023; 27:3830-3843. [PMID: 37022001 DOI: 10.1109/jbhi.2023.3239053] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Wireless electroencephalography (EEG) systems have been attracting increasing attention in recent times. Both the number of articles discussing wireless EEG and their proportion relative to general EEG publications have increased over years. These trends indicate that wireless EEG systems could be more accessible to researchers and the research community has recognized the potential of wireless EEG systems. To explore the development and diverse applications of wireless EEG systems, this review highlights the trends in wearable and wireless EEG systems over the past decade and compares the specifications and research applications of the major wireless systems marketed by 16 companies. For each product, five parameters (number of channels, sampling rate, cost, battery life, and resolution) were assessed for comparison. Currently, these wearable and portable wireless EEG systems have three main application areas: consumer, clinical, and research. To address this multitude of options, the article also discussed the thought process to find a suitable device that meets personalization and use cases specificities. These investigations suggest that low-price and convenience are key factors for consumer applications, wireless EEG systems with FDA or CE-certification may be more suitable for clinical settings, and devices that provide raw EEG data with high-density channels are important for laboratory research. This article presents an overview of the current state of the wireless EEG systems specifications and possible applications and serves as a guide point as it is expected that more influential and novel research will cyclically promote the development of such EEG systems.
Collapse
|
93
|
Tortora S, Tonin L, Sieghartsleitner S, Ortner R, Guger C, Lennon O, Coyle D, Menegatti E, Del Felice A. Effect of Lower Limb Exoskeleton on the Modulation of Neural Activity and Gait Classification. IEEE Trans Neural Syst Rehabil Eng 2023; 31:2988-3003. [PMID: 37432820 DOI: 10.1109/tnsre.2023.3294435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Neurorehabilitation with robotic devices requires a paradigm shift to enhance human-robot interaction. The coupling of robot assisted gait training (RAGT) with a brain-machine interface (BMI) represents an important step in this direction but requires better elucidation of the effect of RAGT on the user's neural modulation. Here, we investigated how different exoskeleton walking modes modify brain and muscular activity during exoskeleton assisted gait. We recorded electroencephalographic (EEG) and electromyographic (EMG) activity from ten healthy volunteers walking with an exoskeleton with three modes of user assistance (i.e., transparent, adaptive and full assistance) and during free overground gait. Results identified that exoskeleton walking (irrespective of the exoskeleton mode) induces a stronger modulation of central mid-line mu (8-13 Hz) and low-beta (14-20 Hz) rhythms compared to free overground walking. These modifications are accompanied by a significant re-organization of the EMG patterns in exoskeleton walking. On the other hand, we observed no significant differences in neural activity during exoskeleton walking with the different assistance levels. We subsequently implemented four gait classifiers based on deep neural networks trained on the EEG data during the different walking conditions. Our hypothesis was that exoskeleton modes could impact the creation of a BMI-driven RAGT. We demonstrated that all classifiers achieved an average accuracy of 84.13±3.49% in classifying swing and stance phases on their respective datasets. In addition, we demonstrated that the classifier trained on the transparent mode exoskeleton data can classify gait phases during adaptive and full modes with an accuracy of 78.3±4.8% , while the classifier trained on free overground walking data fails to classify the gait during exoskeleton walking (accuracy of 59.4±11.8% ). These findings provide important insights into the effect of robotic training on neural activity and contribute to the advancement of BMI technology for improving robotic gait rehabilitation therapy.
Collapse
|
94
|
Moinnereau MA, Oliveira AA, Falk TH. Quantifying time perception during virtual reality gameplay using a multimodal biosensor-instrumented headset: a feasibility study. FRONTIERS IN NEUROERGONOMICS 2023; 4:1189179. [PMID: 38234469 PMCID: PMC10790866 DOI: 10.3389/fnrgo.2023.1189179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/29/2023] [Indexed: 01/19/2024]
Abstract
We have all experienced the sense of time slowing down when we are bored or speeding up when we are focused, engaged, or excited about a task. In virtual reality (VR), perception of time can be a key aspect related to flow, immersion, engagement, and ultimately, to overall quality of experience. While several studies have explored changes in time perception using questionnaires, limited studies have attempted to characterize them objectively. In this paper, we propose the use of a multimodal biosensor-embedded VR headset capable of measuring electroencephalography (EEG), electrooculography (EOG), electrocardiography (ECG), and head movement data while the user is immersed in a virtual environment. Eight gamers were recruited to play a commercial action game comprised of puzzle-solving tasks and first-person shooting and combat. After gameplay, ratings were given across multiple dimensions, including (1) the perception of time flowing differently than usual and (2) the gamers losing sense of time. Several features were extracted from the biosignals, ranked based on a two-step feature selection procedure, and then mapped to a predicted time perception rating using a Gaussian process regressor. Top features were found to come from the four signal modalities and the two regressors, one for each time perception scale, were shown to achieve results significantly better than chance. An in-depth analysis of the top features is presented with the hope that the insights can be used to inform the design of more engaging and immersive VR experiences.
Collapse
Affiliation(s)
- Marc-Antoine Moinnereau
- Institut National de la Recherche Scientifique (INRS-EMT), University of Québec, Montréal, QC, Canada
| | - Alcyr A. Oliveira
- Graduate Program in Psychology and Health, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Tiago H. Falk
- Institut National de la Recherche Scientifique (INRS-EMT), University of Québec, Montréal, QC, Canada
| |
Collapse
|
95
|
Monroe DC, Berry NT, Fino PC, Rhea CK. A Dynamical Systems Approach to Characterizing Brain-Body Interactions during Movement: Challenges, Interpretations, and Recommendations. SENSORS (BASEL, SWITZERLAND) 2023; 23:6296. [PMID: 37514591 PMCID: PMC10385586 DOI: 10.3390/s23146296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023]
Abstract
Brain-body interactions (BBIs) have been the focus of intense scrutiny since the inception of the scientific method, playing a foundational role in the earliest debates over the philosophy of science. Contemporary investigations of BBIs to elucidate the neural principles of motor control have benefited from advances in neuroimaging, device engineering, and signal processing. However, these studies generally suffer from two major limitations. First, they rely on interpretations of 'brain' activity that are behavioral in nature, rather than neuroanatomical or biophysical. Second, they employ methodological approaches that are inconsistent with a dynamical systems approach to neuromotor control. These limitations represent a fundamental challenge to the use of BBIs for answering basic and applied research questions in neuroimaging and neurorehabilitation. Thus, this review is written as a tutorial to address both limitations for those interested in studying BBIs through a dynamical systems lens. First, we outline current best practices for acquiring, interpreting, and cleaning scalp-measured electroencephalography (EEG) acquired during whole-body movement. Second, we discuss historical and current theories for modeling EEG and kinematic data as dynamical systems. Third, we provide worked examples from both canonical model systems and from empirical EEG and kinematic data collected from two subjects during an overground walking task.
Collapse
Affiliation(s)
- Derek C Monroe
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Nathaniel T Berry
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
- Under Armour, Inc., Innovation, Baltimore, MD 21230, USA
| | - Peter C Fino
- Department of Health and Kinesiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher K Rhea
- College of Health Sciences, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
96
|
Kim N, Jamison K, Jaywant A, Garetti J, Blunt E, RoyChoudhury A, Butler T, Dams-O'Connor K, Khedr S, Chen CC, Shetty T, Winchell R, Hill NJ, Schiff ND, Kuceyeski A, Shah SA. Comparisons of electrophysiological markers of impaired executive attention after traumatic brain injury and in healthy aging. Neuroimage 2023; 274:120126. [PMID: 37191655 PMCID: PMC10286242 DOI: 10.1016/j.neuroimage.2023.120126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Executive attention impairments are a persistent and debilitating consequence of traumatic brain injury (TBI). To make headway towards treating and predicting outcomes following heterogeneous TBI, cognitive impairment specific pathophysiology first needs to be characterized. In a prospective observational study, we measured EEG during the attention network test aimed at detecting alerting, orienting, executive attention and processing speed. The sample (N = 110) of subjects aged 18-86 included those with and without traumatic brain injury: n = 27, complicated mild TBI; n = 5, moderate TBI; n = 10, severe TBI; n = 63, non-brain-injured controls. Subjects with TBI had impairments in processing speed and executive attention. Electrophysiological markers of executive attention processing in the midline frontal regions reveal that, as a group, those with TBI and elderly non-brain-injured controls have reduced responses. We also note that those with TBI and elderly controls have responses that are similar for both low and high-demand trials. In subjects with moderate-severe TBI, reductions in frontal cortical activation and performance profiles are both similar to that of controls who are ∼4 to 7 years older. Our specific observations of frontal response reductions in subjects with TBI and in older adults is consistent with the suggested role of the anterior forebrain mesocircuit as underlying cognitive impairments. Our results provide novel correlative data linking specific pathophysiological mechanisms underlying domain-specific cognitive deficits following TBI and with normal aging. Collectively, our findings provide biomarkers that may serve to track therapeutic interventions and guide development of targeted therapeutics following brain injuries.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, United States
| | - Keith Jamison
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, United States
| | - Abhishek Jaywant
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, United States; Department of Rehabilitation Medicine, Weill Cornell Medicine, New York, NY 10065, United States; NewYork-Presbyterian Hospital, New York, NY 10065, United States
| | - Jacob Garetti
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, United States
| | - Emily Blunt
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Arindam RoyChoudhury
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, United States
| | - Tracy Butler
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, United States
| | - Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Shahenda Khedr
- Department of Surgery, NewYork-Presbyterian Queens Hospital, Queens, NY 11355, United States
| | - Chun-Cheng Chen
- Department of Surgery, NewYork-Presbyterian Queens Hospital, Queens, NY 11355, United States; Department of Surgery, Weill Cornell Medicine, New York, NY 10065, United States
| | - Teena Shetty
- Department of Neurology, Hospital for Special Surgery, New York, NY, 10021 United States
| | - Robert Winchell
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, United States
| | - N Jeremy Hill
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, Albany, NY 12208, United States; Electrical & Computer Engineering Department, State University of New York at Albany, NY 12226, United States
| | - Nicholas D Schiff
- Department of BMRI & Neurology, Weill Cornell Medicine, New York, NY 10065, United States
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, United States
| | - Sudhin A Shah
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, United States; Department of BMRI & Neurology, Weill Cornell Medicine, New York, NY 10065, United States.
| |
Collapse
|
97
|
Vlieger R, Suominen H, Apthorp D, Lueck CJ, Daskalaki E. Evaluating methods of oversampling and averaging resting-state electroencephalography data in classifying Parkinson's disease . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-5. [PMID: 38082678 DOI: 10.1109/embc40787.2023.10340819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Collecting resting-state electroencephalography (RSEEG) data is time-consuming and data sets are therefore often small. Because many machine learning (ML) algorithms work better with ample data, researchers looking to use RSEEG and ML to develop diagnostic models have used oversampling methods that may seem to contradict averaging methods used in conventional electroencephalography (EEG) research to improve the signal-to-noise ratio. Using eyes open (EO) and eyes closed (EC) recordings from 3 different research groups, we investigated the effect of different averaging and oversampling methods on classification metrics when classifying people with Parkinson's disease (PD) and controls. Both EC and EO recordings were used due to differences found between these methods. Our results indicated that grouping 58 electrodes into regions-of-interest (ROI) based on anatomical location is preferable to using single electrodes. Furthermore, although recording EO data led to slightly better classification, the number of data points for each participant was reduced and recordings for three participants entirely lost during pre-processing due to a higher level of artefacts than in the EC data.Clinical relevance- RSEEG is a potential biomarker for the diagnosis and prognostication of PD, but for RSEEG to have clinical relevance, it is necessary to establish which averaging and oversampling of data most reliably segregates the classes for people with PD and controls. We found that using of ROIs and EC data performed the best, as EO data was often contaminated with artefacts.
Collapse
|
98
|
Huang HY, Lin YP. Validation of Model-Basis Transfer Learning for a Personalized Electroencephalogram-Based Emotion-Classification Model . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082699 DOI: 10.1109/embc40787.2023.10340188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The electroencephalogram (EEG)-based affective brain-computer interface (aBCI) has attracted extensive attention in multidisciplinary fields in the past decade. However, the inherent variability of emotional responses recorded in EEG signals increases the vulnerability of pre-trained machine-learning models and impedes the applicability of aBCIs with real-life settings. To overcome the shortcomings associated with the limited personal data in affective modeling, this study proposes a model-basis transfer learning (TL) approach and verifies its feasibility to construct a personalized model using less emotion-annotated data in a longitudinal eight-day dataset comprising data on 10 subjects. By performing daily reliability testing, the proposed TL approach outperformed the subject-dependent counterpart (using limited data only) by ~6% in binary valence classification after recycling a compact set of the eight most transferable models from other subjects. These empirical findings practically contribute to progress in applying TL in realistic aBCI applications.Clinical Relevance- The proposed model-basis TL approach overcomes the shortcoming of inherent variability in EEG signals, supporting realistic aBCI applications.
Collapse
|
99
|
Kaongoen N, Jo S. Adapting Artifact Subspace Reconstruction Method for SingleChannel EEG using Signal Decomposition Techniques . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083141 DOI: 10.1109/embc40787.2023.10340077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Artifact removal from electroencephalography (EEG) data is a crucial step in the analysis of neural signals. One method that has been gaining popularity in recent years is Artifact Subspace Reconstruction (ASR), which is highly effective in eliminating large amplitude and transient artifacts in EEG data. However, traditional ASR is not possible to use with single-channel EEG data. In this study, we propose incorporating signal decomposition techniques such as ensemble empirical mode decomposition (EEMD), wavelet transform (WT), and singular spectrum analysis (SSA) into ASR, to decompose single-channel data into multiple components. This allows the ASR process to be applied effectively to the data. Our results show that the proposed single-channel version of ASR outperforms its counterpart Independent Component Analysis (ICA) methods when tested on two open datasets. Our findings indicate that ASR has significant potential as a powerful tool for removing artifacts from EEG data analysis.Clinical Relevance- This provided artifact removal technique for single-channel EEG.
Collapse
|
100
|
Peterson EJ, Rosen BQ, Belger A, Voytek B, Campbell AM. Aperiodic Neural Activity is a Better Predictor of Schizophrenia than Neural Oscillations. Clin EEG Neurosci 2023; 54:434-445. [PMID: 37287239 PMCID: PMC11905180 DOI: 10.1177/15500594231165589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Diagnosis and symptom severity in schizophrenia are associated with irregularities across neural oscillatory frequency bands, including theta, alpha, beta, and gamma. However, electroencephalographic signals consist of both periodic and aperiodic activity characterized by the (1/fX) shape in the power spectrum. In this paper, we investigated oscillatory and aperiodic activity differences between patients with schizophrenia and healthy controls during a target detection task. Separation into periodic and aperiodic components revealed that the steepness of the power spectrum better-predicted group status than traditional band-limited oscillatory power in classification analysis. Aperiodic activity also outperformed the predictions made using participants' behavioral responses. Additionally, the differences in aperiodic activity were highly consistent across all electrodes. In sum, compared to oscillations the aperiodic activity appears to be a more accurate and more robust way to differentiate patients with schizophrenia from healthy controls.
Collapse
Affiliation(s)
- Erik J Peterson
- University of California, San Diego, La Jolla, CA, USA
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - Burke Q Rosen
- Neurosciences Graduate Program, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Aysenil Belger
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bradley Voytek
- University of California, San Diego, La Jolla, CA, USA
- Neurosciences Graduate Program, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alana M Campbell
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|