51
|
Ding X, Clifton D, Ji N, Lovell NH, Bonato P, Chen W, Yu X, Xue Z, Xiang T, Long X, Xu K, Jiang X, Wang Q, Yin B, Feng G, Zhang YT. Wearable Sensing and Telehealth Technology with Potential Applications in the Coronavirus Pandemic. IEEE Rev Biomed Eng 2021; 14:48-70. [PMID: 32396101 DOI: 10.1109/rbme.2020.2992838] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has emerged as a pandemic with serious clinical manifestations including death. A pandemic at the large-scale like COVID-19 places extraordinary demands on the world's health systems, dramatically devastates vulnerable populations, and critically threatens the global communities in an unprecedented way. While tremendous efforts at the frontline are placed on detecting the virus, providing treatments and developing vaccines, it is also critically important to examine the technologies and systems for tackling disease emergence, arresting its spread and especially the strategy for diseases prevention. The objective of this article is to review enabling technologies and systems with various application scenarios for handling the COVID-19 crisis. The article will focus specifically on 1) wearable devices suitable for monitoring the populations at risk and those in quarantine, both for evaluating the health status of caregivers and management personnel, and for facilitating triage processes for admission to hospitals; 2) unobtrusive sensing systems for detecting the disease and for monitoring patients with relatively mild symptoms whose clinical situation could suddenly worsen in improvised hospitals; and 3) telehealth technologies for the remote monitoring and diagnosis of COVID-19 and related diseases. Finally, further challenges and opportunities for future directions of development are highlighted.
Collapse
|
52
|
Shin H, Park J, Seok HS, Kim SS. Photoplethysmogram analysis and applications: An Integrative Review (Preprint). JMIR BIOMEDICAL ENGINEERING 2020. [DOI: 10.2196/25567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
53
|
Liu Z, Zhou B, Li Y, Tang M, Miao F. Continuous Blood Pressure Estimation From Electrocardiogram and Photoplethysmogram During Arrhythmias. Front Physiol 2020; 11:575407. [PMID: 33013491 PMCID: PMC7509183 DOI: 10.3389/fphys.2020.575407] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/13/2020] [Indexed: 12/02/2022] Open
Abstract
Objective Continuous blood pressure (BP) provides valuable information for the disease management of patients with arrhythmias. The traditional intra-arterial method is too invasive for routine healthcare settings, whereas cuff-based devices are inferior in reliability and comfortable for long-term BP monitoring during arrhythmias. The study aimed to investigate an indirect method for continuous and cuff-less BP estimation based on electrocardiogram (ECG) and photoplethysmogram (PPG) signals during arrhythmias and to test its reliability for the determination of BP using invasive BP (IBP) as reference. Methods Thirty-five clinically stable patients (15 with ventricular arrhythmias and 20 with supraventricular arrhythmias) who had undergone radiofrequency ablation were enrolled in this study. Their ECG, PPG, and femoral arterial IBP signals were simultaneously recorded with a multi-parameter monitoring system. Fifteen features that have the potential ability in indicating beat-to-beat BP changes during arrhythmias were extracted from the ECG and PPG signals. Four machine learning algorithms, decision tree regression (DTR), support vector machine regression (SVR), adaptive boosting regression (AdaboostR), and random forest regression (RFR), were then implemented to develop the BP models. Results The results showed that the mean value ± standard deviation of root mean square error for the estimated systolic BP (SBP), diastolic BP (DBP) with the RFR model against the reference in all patients were 5.87 ± 3.13 and 3.52 ± 1.38 mmHg, respectively, which achieved the best performance among all the models. Furthermore, the mean error ± standard deviation of error between the estimated SBP and DBP with the RFR model against the reference in all patients were −0.04 ± 6.11 and 0.11 ± 3.62 mmHg, respectively, which complied with the Association for the Advancement of Medical Instrumentation and the British Hypertension Society (Grade A) standards. Conclusion The results indicated that the utilization of ECG and PPG signals has the potential to enable cuff-less and continuous BP estimation in an indirect way for patients with arrhythmias.
Collapse
Affiliation(s)
- ZengDing Liu
- Chinese Academy of Sciences Key Laboratory for Health Informatics, Shenzhen Institutes of Advanced Technology, Shenzhen, China.,Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bin Zhou
- State Key Lab of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Li
- Chinese Academy of Sciences Key Laboratory for Health Informatics, Shenzhen Institutes of Advanced Technology, Shenzhen, China.,Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Min Tang
- State Key Lab of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fen Miao
- Chinese Academy of Sciences Key Laboratory for Health Informatics, Shenzhen Institutes of Advanced Technology, Shenzhen, China.,Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
54
|
Chatterjee S, Budidha K, Kyriacou PA. Investigating the origin of photoplethysmography using a multiwavelength Monte Carlo model. Physiol Meas 2020; 41:084001. [PMID: 32585642 DOI: 10.1088/1361-6579/aba008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Photoplethysmography (PPG) is a photometric technique used for the measurement of volumetric changes in the blood. The recent interest in new applications of PPG has invigorated more fundamental research regarding the origin of the PPG waveform, which since its discovery in 1937, remains inconclusive. A handful of studies in the recent past have explored various hypotheses for the origin of PPG. These studies relate PPG to mechanical movement, red blood cell orientation or blood volume variations. OBJECTIVE Recognising the significance and need to corroborate a theory behind PPG formation, the present work rigorously investigates the origin of PPG based on a realistic model of light-tissue interactions. APPROACH A three-dimensional comprehensive Monte Carlo model of finger-PPG was developed and explored to quantify the optical entities pertinent to PPG (e.g. absorbance, reflectance, and penetration depth) as the functions of multiple wavelengths and source-detector separations. Complementary to the simulations, a pilot in vivo investigation was conducted on eight healthy volunteers. PPG signals were recorded using a custom-made multiwavelength sensor with an adjustable source-detector separation. MAIN RESULTS Simulated results illustrate the distribution of photon-tissue interactions in the reflectance PPG geometry. The depth-selective analysis quantifies the contributions of the dermal and subdermal tissue layers in the PPG wave formation. A strong negative correlation (r = -0.96) is found between the ratios of the simulated absorbances and measured PPG amplitudes. SIGNIFICANCE This work quantified for the first time the contributions of different tissue layers and sublayers in the formation of the PPG signal.
Collapse
Affiliation(s)
- Subhasri Chatterjee
- Research Centre for Biomedical Engineering, City, University of London, United Kingdom
| | | | | |
Collapse
|
55
|
Tang Q, Chen Z, Ward R, Elgendi M. Synthetic photoplethysmogram generation using two Gaussian functions. Sci Rep 2020; 10:13883. [PMID: 32807897 PMCID: PMC7431427 DOI: 10.1038/s41598-020-69076-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Evaluating the performance of photoplethysmogram (PPG) event detection algorithms requires a large number of PPG signals with different noise levels and sampling frequencies. As publicly available PPG databases provide few options, artificially constructed PPG signals can also be used to facilitate this evaluation. Here, we propose a dynamic model to synthesize PPG over specified time durations and sampling frequencies. In this model, a single pulse was simulated by two Gaussian functions. Additionally, the beat-to-beat intervals were simulated using a normal distribution with a specific mean value and a specific standard deviation value. To add periodicity and to generate a complete signal, the circular motion principle was used. We synthesized three classes of pulses by emulating three different templates: excellent (systolic and diastolic waves are salient), acceptable (systolic and diastolic waves are not salient), and unfit (systolic and diastolic waves are noisy). The optimized model fitting of the Gaussian functions to the templates yielded 0.99, 0.98, and 0.85 correlations between the template and synthetic pulses for the excellent, acceptable, and unfit classes, respectively, with mean square errors of 0.001, 0.003, and 0.017, respectively. By comparing the heart rate variability of real PPG and randomly synthesized PPG for 5 min in 116 records from the MIMIC III database, strong correlations were found in SDNN, RMSSD, LF, HF, SD1, and SD2 (0.99, 0.89, 0.84, 0.89, 0.90 and 0.95, respectively).
Collapse
Affiliation(s)
- Qunfeng Tang
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada.,School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, China
| | - Zhencheng Chen
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, China.
| | - Rabab Ward
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Mohamed Elgendi
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada. .,Faculty of Medicine, University of British Columbia, Vancouver, Canada. .,BC Children's and Women's Hospital, Vancouver, Canada.
| |
Collapse
|
56
|
Kario K. Management of Hypertension in the Digital Era: Small Wearable Monitoring Devices for Remote Blood Pressure Monitoring. Hypertension 2020; 76:640-650. [PMID: 32755418 PMCID: PMC7418935 DOI: 10.1161/hypertensionaha.120.14742] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Out-of-office blood pressure measurement is an essential part of diagnosing and managing hypertension. In the era of advanced digital health information technology, the approach to achieving this is shifting from traditional methods (ambulatory and home blood pressure monitoring) to wearable devices and technology. Wearable blood pressure monitors allow frequent blood pressure measurements (ideally continuous beat-by-beat monitoring of blood pressure) with minimal stress on the patient. It is expected that wearable devices will dramatically change the quality of detection and management of hypertension by increasing the number of measurements in different situations, allowing accurate detection of phenotypes that have a negative impact on cardiovascular prognosis, such as masked hypertension and abnormal blood pressure variability. Frequent blood pressure measurements and the addition of new features such as monitoring of environmental conditions allows interpretation of blood pressure data in the context of daily stressors and different situations. This new digital approach to hypertension contributes to anticipation medicine, which refers to strategies designed to identify increasing risk and predict the onset of cardiovascular events based on a series of data collected over time, allowing proactive interventions to reduce risk. To achieve this, further research and validation is required to develop wearable blood pressure monitoring devices that provide the same accuracy as current approaches and can effectively contribute to personalized medicine.
Collapse
Affiliation(s)
- Kazuomi Kario
- From the Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan; and the Hypertension Cardiovascular Outcome Prevention and Evidence in Asia (HOPE Asia) Network
| |
Collapse
|
57
|
Li H, Ma Y, Liang Z, Wang Z, Cao Y, Xu Y, Zhou H, Lu B, Chen Y, Han Z, Cai S, Feng X. Wearable skin-like optoelectronic systems with suppression of motion artifacts for cuff-less continuous blood pressure monitor. Natl Sci Rev 2020; 7:849-862. [PMID: 34692108 PMCID: PMC8288864 DOI: 10.1093/nsr/nwaa022] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 11/28/2022] Open
Abstract
According to the statistics of the World Health Organization, an estimated 17.9 million people die from cardiovascular diseases each year, representing 31% of all global deaths. Continuous non-invasive arterial pressure (CNAP) is essential for the management of cardiovascular diseases. However, it is difficult to achieve long-term CNAP monitoring with the daily use of current devices due to irritation of the skin as well as the lack of motion artifacts suppression. Here, we report a high-performance skin-like optoelectronic system integrated with ultra-thin flexible circuits to monitor CNAP. We introduce a theoretical model via the virtual work principle for predicting the precise blood pressure and suppressing motion artifacts, and propose optical difference in the frequency domain for stable optical measurements in terms of skin-like devices. We compare the results with the blood pressure acquired by invasive (intra-arterial) blood pressure monitoring for >1500 min in total on 44 subjects in an intensive care unit. The maximum absolute errors of diastolic and systolic blood pressure were ±7/±10 mm Hg, respectively, in immobilized, and ±10/±14 mm Hg, respectively, in walking scenarios. These strategies provide advanced blood pressure monitoring techniques, which would directly address an unmet clinical need or daily use for a highly vulnerable population.
Collapse
Affiliation(s)
- Haicheng Li
- Key Laboratory of Applied Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yinji Ma
- Key Laboratory of Applied Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Ziwei Liang
- Key Laboratory of Applied Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Zhouheng Wang
- Key Laboratory of Applied Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yu Cao
- Key Laboratory of Applied Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yuan Xu
- Intensive Care Unit, Beijing Tsinghua Changgung Hospital, Beijing 102218, China
| | - Hua Zhou
- Intensive Care Unit, Beijing Tsinghua Changgung Hospital, Beijing 102218, China
| | - Bingwei Lu
- Key Laboratory of Applied Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Ying Chen
- Institute of Flexible Electronics Technology of Tsinghua University, Jiaxing 314000, China
| | - Zhiyuan Han
- Key Laboratory of Applied Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Shisheng Cai
- Key Laboratory of Applied Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xue Feng
- Key Laboratory of Applied Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
58
|
Shao J, Shi P, Hu S, Yu H. A Revised Point-to-Point Calibration Approach with Adaptive Errors Correction to Weaken Initial Sensitivity of Cuff-Less Blood Pressure Estimation. SENSORS 2020; 20:s20082205. [PMID: 32295090 PMCID: PMC7218878 DOI: 10.3390/s20082205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/01/2020] [Accepted: 04/10/2020] [Indexed: 11/16/2022]
Abstract
Initial calibration is a great challenge for cuff-less blood pressure (BP) measurement. The traditional one point-to-point (oPTP) calibration procedure only uses one sample/point to obtain unknown parameters of a specific model in a calm state. In fact, parameters such as pulse transit time (PTT) and BP still have slight fluctuations at rest for each subject. The conventional oPTP method had a strong sensitivity in the selection of initial value. Yet, the initial sensitivity of calibration has not been reported and investigated in cuff-less BP motoring. In this study, a mean point-to-point (mPTP) paring calibration method through averaging and balancing calm or peaceful states was proposed for the first time. Thus, based on mPTP, a factor point-to-point (fPTP) paring calibration method through introducing the penalty factor was further proposed to improve and optimize the performance of BP estimation. Using the oPTP, mPTP, and fPTP methods, a total of more than 100,000 heartbeat samples from 21 healthy subjects were tested and validated in the PTT-based BP monitoring technologies. The results showed that the mPTP and fPTP methods significantly improved the performance of estimating BP compared to the conventional oPTP method. Moreover, the mPTP and fPTP methods could be widely popularized and applied, especially the fPTP method, on estimating cuff-less diastolic blood pressure (DBP). To this extent, the fPTP method weakens the initial calibration sensitivity of cuff-less BP estimation and fills in the ambiguity for individualized calibration procedure.
Collapse
Affiliation(s)
- Jiang Shao
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ping Shi
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence:
| | - Sijung Hu
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | - Hongliu Yu
- Institute of Rehabilitation Engineering and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
59
|
Han S, Roh D, Park J, Shin H. Design of Multi-Wavelength Optical Sensor Module for Depth-Dependent Photoplethysmography. SENSORS 2019; 19:s19245441. [PMID: 31835543 PMCID: PMC6960534 DOI: 10.3390/s19245441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 01/12/2023]
Abstract
The multi-wavelength photoplethysmography sensors were introduced to measure depth-dependent blood volume based on that concept that the longer the light wavelength, the deeper the penetration depth near visible spectrum band. In this study, we propose an omnidirectional optical sensor module that can measure photoplethysmogram while using multiple wavelengths, and describe implementation detail. The developed sensor is manufactured by making a hole in a metal plate and mounting an LED therein, and it has four wavelength LEDs of blue (460 nm), green (530 nm), red (660 nm), and IR (940 nm), being arranged concentrically around a photodetector. Irradiation light intensity was measured by photoluminescent test, and photoplethymogram was measured with each wavelength simultaneously at a periphery of the human body such as fingertip, earlobe, toe, forehead, and wrist, in order to evaluate the developed sensor. As a result, the developed sensor module showed a linear increase of irradiating light intensity according to the number of LEDs increases, and pulsatile waveforms were observed at all four wavelengths in all measuring sites.
Collapse
|
60
|
Ibrahim B, Jafari R. Cuffless Blood Pressure Monitoring from an Array of Wrist Bio-Impedance Sensors Using Subject-Specific Regression Models: Proof of Concept. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:1723-1735. [PMID: 31603828 PMCID: PMC7028300 DOI: 10.1109/tbcas.2019.2946661] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Continuous and beat-to-beat monitoring of blood pressure (BP), compared to office-based BP measurement, provides significant advantages in predicting future cardiovascular disease. Traditional BP measurement methods are based on a cuff, which is bulky, obtrusive and not applicable to continuous monitoring. Measurement of pulse transit time (PTT) is one of the prominent cuffless methods for continuous BP monitoring. PTT is the time taken by the pressure pulse to travel between two points in an arterial vessel, which is correlated with the BP. In this paper, we present a new cuffless BP method using an array of wrist-worn bio-impedance sensors placed on the radial and the ulnar arteries of the wrist to monitor the arterial pressure pulse from the blood volume changes at each sensor site. BP is accurately estimated by using AdaBoost regression model based on selected arterial pressure pulse features such as transit time, amplitude and slope of the pressure pulse, which are dependent on the cardiac activity and the vascular properties of the wrist arteries. A separate model is developed for each subject based on calibration data to capture the individual variations of BP parameters. In this pilot study, data was collected from 10 healthy participants with age ranges from 18 to 30 years after exercising using our custom low-noise bio-impedance sensing hardware. Post-exercise BP was accurately estimated with an average correlation coefficient and root mean square error (RMSE) of 0.77 and 2.6 mmHg for the diastolic BP and 0.86 and 3.4 mmHg for the systolic BP.
Collapse
|
61
|
Chan G, Cooper R, Hosanee M, Welykholowa K, Kyriacou PA, Zheng D, Allen J, Abbott D, Lovell NH, Fletcher R, Elgendi M. Multi-Site Photoplethysmography Technology for Blood Pressure Assessment: Challenges and Recommendations. J Clin Med 2019; 8:jcm8111827. [PMID: 31683938 PMCID: PMC6912608 DOI: 10.3390/jcm8111827] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Hypertension is one of the most prevalent diseases and is often called the “silent killer” because there are usually no early symptoms. Hypertension is also associated with multiple morbidities, including chronic kidney disease and cardiovascular disease. Early detection and intervention are therefore important. The current routine method for diagnosing hypertension is done using a sphygmomanometer, which can only provide intermittent blood pressure readings and can be confounded by various factors, such as white coat hypertension, time of day, exercise, or stress. Consequently, there is an increasing need for a non-invasive, cuff-less, and continuous blood pressure monitoring device. Multi-site photoplethysmography (PPG) is a promising new technology that can measure a range of features of the pulse, including the pulse transit time of the arterial pulse wave, which can be used to continuously estimate arterial blood pressure. This is achieved by detecting the pulse wave at one body site location and measuring the time it takes for it to reach a second, distal location. The purpose of this review is to analyze the current research in multi-site PPG for blood pressure assessment and provide recommendations to guide future research. In a systematic search of the literature from January 2010 to January 2019, we found 13 papers that proposed novel methods using various two-channel PPG systems and signal processing techniques to acquire blood pressure using multi-site PPG that offered promising results. However, we also found a general lack of validation in terms of sample size and diversity of populations.
Collapse
Affiliation(s)
- Gabriel Chan
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Rachel Cooper
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Manish Hosanee
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Kaylie Welykholowa
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Panayiotis A Kyriacou
- School of Mathematics, Computer Science and Engineering, University of London, London, EC1V 0HB, UK.
| | - Dingchang Zheng
- Research Center of Intelligent Healthcare, Faculty of Health and Life Science, Coventry University, Coventry CV1 5FB, UK.
| | - John Allen
- Microvascular Diagnostics, Northern Medical Physics and Clinical Engineering, Freeman Hospital, Newcastle Upon Tyne NE7 7DN, UK.
| | - Derek Abbott
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
- Centre for Biomedical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Richard Fletcher
- D-Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Mohamed Elgendi
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
- School of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
- BC Children's & Women's Hospital, Vancouver, BC V6H 3N1, Canada.
| |
Collapse
|
62
|
Chang CC, Wu CT, Choi BI, Fang TJ. MW-PPG Sensor: An on-Chip Spectrometer Approach. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3698. [PMID: 31454930 PMCID: PMC6749287 DOI: 10.3390/s19173698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022]
Abstract
Multi-wavelength photoplethysmography (MW-PPG) sensing technology has been known to be superior to signal-wavelength photoplethysmography (SW-PPG) sensing technology. However, limited by the availability of sensing detectors, many prior studies can only use conventional bulky and pricy spectrometers as the detectors, and hence cannot bring the MW-PPG technology to daily-life applications. In this study we developed a chip-scale MW-PPG sensor using innovative on-chip spectrometers, aimed at wearable applications. Also in this paper we present signal processing methods for robustly extracting the PPG signals, in which an increase of up to 50% in the signal-to-noise ratio (S/N) was observed. Example measurements of saturation of peripheral blood oxygen (SpO2) and blood pressure were conducted.
Collapse
Affiliation(s)
- Cheng-Chun Chang
- Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Chien-Ta Wu
- Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | | | - Tong-Jing Fang
- Department of Physiology and Biophysics, Graduate Institute of Physiology National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
63
|
Liu J, Sodini CG, Ou Y, Yan B, Zhang YT, Zhao N. Feasibility of Fingertip Oscillometric Blood Pressure Measurement: Model-Based Analysis and Experimental Validation. IEEE J Biomed Health Inform 2019; 24:533-542. [PMID: 31150350 DOI: 10.1109/jbhi.2019.2919896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The most commonly used oscillometric upper-arm (UA) blood pressure (BP) monitors are not convenient enough for ambulatory BP monitoring, given the large size of the arm cuff and the compression of UA during the measurement. Finger-worn oscillometric BP devices featuring miniaturized finger cuff have been developed and researched as an alternative solution to the UA-based measurement, yet the reliability of the finger-based measurement is still questioned. To investigate the feasibility of oscillometric BP measurements at the finger position, we performed model-based analysis and experimental validation to explore the underlying issues associated with extending the cuff-based oscillometric approach from UA to other alternative sites. The simulation results revealed that a larger bone-to-tissue volume ratio produced a lower pressure transmission efficiency, which can account for the inter-site measurement discrepancies of mean blood pressure (MBP). We also experimentally compared the oscillometric MBP measurements at UA, middle forearm, wrist, finger proximal phalanx, and finger distal phalanx (FD) of 20 young adults, and each position was matched with a cuff of appropriate size and kept at the same height with the heart. The experimental results demonstrated that FD could be a superior alternative position for oscillometric BP measurement, as it requires the smallest cuff size while providing the most consistent MBP with the UA. Our analysis also suggested that further study is demanded to identify the appropriate oscillometric algorithm for reliable systolic blood pressure and diastolic blood pressure measurements at FD.
Collapse
|
64
|
Ding X, Zhang YT. Pulse transit time technique for cuffless unobtrusive blood pressure measurement: from theory to algorithm. Biomed Eng Lett 2019; 9:37-52. [PMID: 30956879 PMCID: PMC6431352 DOI: 10.1007/s13534-019-00096-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/20/2018] [Accepted: 01/15/2019] [Indexed: 12/21/2022] Open
Abstract
Cuffless technique holds great promise to measure blood pressure (BP) in an unobtrusive way, improving diagnostics and monitoring of hypertension and its related cardiovascular diseases, and maximizing the independence and participation of individual. Pulse transit time (PTT) has been the most commonly employed techniques for cuffless BP estimation. Many studies have been conducted to explore its feasibility and validate its performance in the clinical settings. However, there is still issues and challenges ahead before its wide application. This review will investigate the understanding and development of the PTT technique in depth, with a focus on the physiological regulation of arterial BP, the relationship between PTT and BP, and the summaries of the PTT-based models for BP estimation.
Collapse
Affiliation(s)
- Xiaorong Ding
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Yuan-Ting Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
65
|
Yang G, Pang G, Pang Z, Gu Y, Mantysalo M, Yang H. Non-Invasive Flexible and Stretchable Wearable Sensors With Nano-Based Enhancement for Chronic Disease Care. IEEE Rev Biomed Eng 2018; 12:34-71. [PMID: 30571646 DOI: 10.1109/rbme.2018.2887301] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Advances in flexible and stretchable electronics, functional nanomaterials, and micro/nano manufacturing have been made in recent years. These advances have accelerated the development of wearable sensors. Wearable sensors, with excellent flexibility, stretchability, durability, and sensitivity, have attractive application prospects in the next generation of personal devices for chronic disease care. Flexible and stretchable wearable sensors play an important role in endowing chronic disease care systems with the capability of long-term and real-time tracking of biomedical signals. These signals are closely associated with human body chronic conditions, such as heart rate, wrist/neck pulse, blood pressure, body temperature, and biofluids information. Monitoring these signals with wearable sensors provides a convenient and non-invasive way for chronic disease diagnoses and health monitoring. In this review, the applications of wearable sensors in chronic disease care are introduced. In addition, this review exploits a comprehensive investigation of requirements for flexibility and stretchability, and methods of nano-based enhancement. Furthermore, recent progress in wearable sensors-including pressure, strain, electrophysiological, electrochemical, temperature, and multifunctional sensors-is presented. Finally, opening research challenges and future directions of flexible and stretchable sensors are discussed.
Collapse
|