51
|
Malartre S, Bachasson D, Mercy G, Sarkis E, Anquetil C, Benveniste O, Allenbach Y. MRI and muscle imaging for idiopathic inflammatory myopathies. Brain Pathol 2021; 31:e12954. [PMID: 34043260 PMCID: PMC8412099 DOI: 10.1111/bpa.12954] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
Although idiopathic inflammatory myopathies (IIM) are a heterogeneous group of diseases nearly all patients display muscle inflammation. Originally, muscle biopsy was considered as the gold standard for IIM diagnosis. The development of muscle imaging led to revisiting not only the IIM diagnosis strategy but also the patients' follow-up. Different techniques have been tested or are in development for IIM including positron emission tomography, ultrasound imaging, ultrasound shear wave elastography, though magnetic resonance imaging (MRI) remains the most widely used technique in routine. Whereas guidelines on muscle imaging in myositis are lacking here we reviewed the relevance of muscle imaging for both diagnosis and myositis patients' follow-up. We propose recommendations about when and how to perform MRI on myositis patients, and we describe new techniques that are under development.
Collapse
Affiliation(s)
- Samuel Malartre
- Department of Internal Medicine and Clinical Immunlogy, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Damien Bachasson
- Neuromuscular Physiology Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Guillaume Mercy
- Department of Medical Imaging, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles-Foix, Sorbonne Université, Paris, France
| | - Elissone Sarkis
- Department of Internal Medicine and Clinical Immunlogy, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Céline Anquetil
- Department of Internal Medicine and Clinical Immunlogy, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Olivier Benveniste
- Department of Internal Medicine and Clinical Immunlogy, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| | - Yves Allenbach
- Department of Internal Medicine and Clinical Immunlogy, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,Centre de Recherche en Myologie, UMRS974, Association Institut de Myologie, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Paris, France
| |
Collapse
|
52
|
Kijanka P, Urban MW. Phase Velocity Estimation With Expanded Bandwidth in Viscoelastic Phantoms and Tissues. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1352-1362. [PMID: 33502973 PMCID: PMC8087630 DOI: 10.1109/tmi.2021.3054950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ultrasound shear wave elastography (SWE) is a technique used to measure mechanical properties to evaluate healthy and pathological soft tissues. SWE typically employs an acoustic radiation force (ARF) to generate laterally propagating shear waves that are tracked in the spatiotemporal domains, and algorithms are used to estimate the wave velocity. The tissue viscoelasticity is often examined through analyzing the shear wave phase velocity dispersion curves, which is the variation of phase velocity with frequency or wavelength. A number of available methods to estimate dispersion exist, which can differ in resolution and variance. Moreover, most of these techniques reconstruct dispersion curves for a limited frequency band. In this work, we propose a novel method used for dispersion curve calculation. Our unique approach uses a generalized Stockwell transformation combined with a slant frequency-wavenumber analysis (GST-SFK). We tested the GST-SFK method on numerical phantom data generated using a finite-difference-based method in tissue-mimicking viscoelastic media. In addition, we evaluated the method on numerical shear wave motion data with different amounts of white Gaussian noise added. Additionally, we performed tests on data from custom-made tissue-mimicking viscoelastic phantom experiments, ex vivo porcine liver measurements, and in vivo liver tissue experiments. We compared results from our method with two other techniques used for estimating shear wave phase velocity: the two-dimensional Fourier transform (2D-FT) and the eigenvector (EV) method. Tests carried out revealed that the GST-SFK method provides dispersion curve estimates with lower errors over a wider frequency band in comparison to the 2D-FT and EV methods. In addition, the GST-SFK provides expanded bandwidth by a factor of two or more to be used for phase velocity estimation, which is meaningful for a tissue dispersion analysis in vivo.
Collapse
|
53
|
Vasconcelos L, Kijanka P, Urban MW. Viscoelastic parameter estimation using simulated shear wave motion and convolutional neural networks. Comput Biol Med 2021; 133:104382. [PMID: 33872971 DOI: 10.1016/j.compbiomed.2021.104382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 04/02/2021] [Indexed: 12/18/2022]
Abstract
Ultrasound shear wave elastography (SWE) techniques have been very useful for the analysis of tissue rheological properties, but there are still obstacles for robust evaluation of viscoelastic tissue properties. In this proof-of-concept study, we investigate whether convolutional neural networks (CNN) are capable of retrieving the elasticity and viscosity parameters from simulated shear wave motion images. Staggered-grid finite difference simulations based on a Kelvin-Voigt rheological model were used to generate data for this study. The wave motion datasets were created using Kelvin-Voigt shear elasticity values ranging from 1 to 25 kPa, shear viscosities ranging from 0 to 10 Pa⋅s, and two different push profiles using f-numbers of 1 and 2. The CNN architectures, optimized using mean squared error loss, were then trained to retrieve a specific viscoelastic parameter. Both elasticity and viscosity values were successfully retrieved, with regression R2 values above 0.99 when correlating the estimated mechanical properties versus the true mechanical properties. The CNN performance was also compared to estimation of shear elasticity and viscosity from fitting dispersion curves estimated from two-dimensional Fourier transform analysis. The results demonstrated that the CNN models were robust to noise, vertical position and partially to f-number. The architecture was proven to be robust to multiple push profiles if trained properly. The CNN results showed higher accuracy over the full viscoelastic parameter range compared to the Fourier-based analysis. The overall results showed the CNNs' potential to be an alternative to complex mathematical analyses such as Fourier analysis and dispersion curve estimation used currently for shear wave viscoelastic parameter estimation.
Collapse
Affiliation(s)
- Luiz Vasconcelos
- Bioinformatics and Computational Biology, University of Minnesota, Rochester, MN, USA; Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | - Piotr Kijanka
- AGH University of Science and Technology, Krakow, Poland
| | | |
Collapse
|
54
|
Bhatt M, Yazdani L, Destrempes F, Allard L, Nguyen BN, Tang A, Cloutier G. Multiparametric in vivo ultrasound shear wave viscoelastography on farm-raised fatty duck livers: human radiology imaging applied to food sciences. Poult Sci 2021; 100:100968. [PMID: 33607316 PMCID: PMC7900601 DOI: 10.1016/j.psj.2020.12.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Nine mulard ducks that were being raised for foie gras (steatosis) production went through in vivo shear wave (SW) elastography imaging of their liver during the force-feeding period to investigate changes in liver tissue characteristics. A total of 4 imaging sessions at an interval of 3 to 4 d were conducted at the farm on each animal. Three ducks were sacrificed at the second, third, and fourth imaging sessions for histopathology analysis of all animals at these time points. Six SW elastography parameters were evaluated: SW speed, SW attenuation, SW dispersion, Young's modulus, viscosity, and shear modulus. Shear waves of different frequencies propagate with different phase velocities. Thus, SW speed and other dependent parameters such as Young's modulus, viscosity, and shear modulus were computed at 2 frequencies: 75 and 202 Hz. Each parameter depicted a statistically significant trend along the force-feeding process (P-values between 0.001 and 0.0001). The fat fraction of the liver increased over the 12-day period of feeding. All parameters increased monotonically over time at 75 Hz, whereas modal relations were seen at 202 Hz. Shear wave dispersion measured between 75 and 202 Hz depicted a plateau from day 5. Based on this validation, proposed imaging methods are aimed to be used in the future on naturally fed ducks and geese.
Collapse
Affiliation(s)
- Manish Bhatt
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada H2X 0A9
| | - Ladan Yazdani
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada H2X 0A9; Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada H3C 3J7
| | - François Destrempes
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada H2X 0A9
| | - Louise Allard
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada H2X 0A9
| | - Bich N Nguyen
- Service of Pathology, University of Montreal Hospital (CHUM), Montréal, Québec, Canada H2X 0C1
| | - An Tang
- Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada H3C 3J7; Laboratory of Medical Image Analysis, CRCHUM, Montréal, Québec, Canada H2X 0A9; Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montréal, Québec, Canada H3T 1J4
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, Québec, Canada H2X 0A9; Institute of Biomedical Engineering, University of Montreal, Montréal, Québec, Canada H3C 3J7; Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montréal, Québec, Canada H3T 1J4.
| |
Collapse
|
55
|
Nakano C, Nishimura T, Tada T, Yoshida M, Takashima T, Aizawa N, Ikeda N, Nishikawa H, Enomoto H, Hatano E, Yano H, Hirota S, Hachiya H, Iijima H. Severity of liver fibrosis using shear wave elastography is influenced by hepatic necroinflammation in chronic hepatitis patients, but not in cirrhotic patients. Hepatol Res 2021; 51:436-444. [PMID: 33462941 DOI: 10.1111/hepr.13617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
AIM Shear wave elastography (SWE) in patients with chronic liver diseases is a noninvasive useful method for the diagnosis of liver fibrosis severity, which can be an alternative to liver biopsy. However, the liver stiffness measurement using SWE can be affected by various factors including hepatic inflammation, extrahepatic cholestasis, heart failure, and underlying liver diseases. The aim of this study is to clarify the correlation between liver stiffness using SWE and hepatic necroinflammation serologically and pathologically. METHODS A total of 843 patients with chronic liver disease who received liver biopsy were analyzed. Liver stiffness measurement using transient elastography (TE) and virtual touch quantification (VTQ) were carried out on the same day as the liver biopsy. The correlation between SWE and hepatic inflammation was analyzed serologically and pathologically. RESULTS The liver stiffness values increased significantly with the progression of liver fibrosis and inflammation (overall p < 0.001). In patients with F0-1, F2, and F3, TE and VTQ values of A2 or A3 were significantly higher than those of A0 or A1 (p value, all <0.05), but not in patients with F4. The median alanine aminotransferase (ALT) values increased significantly with the progression of liver inflammation (p < 0.001). Moreover, TE and VTQ in patients with ALT ≥70 IU/L were significantly higher than those in patients with ALT <70 IU/L (p < 0.01), but not in patients with F4. CONCLUSION Shear wave elastography can be affected by hepatic necroinflammation in F0-F3 fibrosis, but not in F4.
Collapse
Affiliation(s)
- Chikage Nakano
- Ultrasound Imaging Center, Hyogo College of Medicine Hospital, Nishinomiya, Japan
| | - Takashi Nishimura
- Ultrasound Imaging Center, Hyogo College of Medicine Hospital, Nishinomiya, Japan
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshifumi Tada
- Department of Internal Medicine, Japanease Red Cross Society Himeji Hospital, Himeji, Japan
| | - Masahiro Yoshida
- Ultrasound Imaging Center, Hyogo College of Medicine Hospital, Nishinomiya, Japan
| | - Tomoyuki Takashima
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Nobuhiro Aizawa
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Naoto Ikeda
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroki Nishikawa
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya, Japan
- Center for Clinical Research and Education, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hirayuki Enomoto
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Etsuro Hatano
- Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Seiichi Hirota
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroyuki Hachiya
- School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Hiroko Iijima
- Ultrasound Imaging Center, Hyogo College of Medicine Hospital, Nishinomiya, Japan
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
56
|
Prieto Ortiz JE, Garzón-Orjuela N, Sánchez Pardo S, Prieto Ortíz RG, Ochoa Díaz AF, Soto-Ospina PH, Eslava-Schmalbach JH. Elastografía en tiempo real (Supersonic), experiencia de un centro en Bogotá. REVISTA COLOMBIANA DE GASTROENTEROLOGÍA 2021; 36:58-64. [DOI: 10.22516/25007440.594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Introducción: la elastografía en tiempo real, 2D-SWE (Supersonic), es una prueba no invasiva que se utiliza para determinar la elasticidad del hígado y, de esa forma, calcular el grado de fibrosis hepática. En Colombia, la prueba se introdujo en 2016 y no existen hasta el momento estudios del comportamiento de la prueba en todos los pacientes hepáticos, solo se han publicado en pacientes sanos y cirróticos.
Objetivo: analizar la experiencia de la aplicación de la elastografía en tiempo real, en sujetos atendidos en el centro de enfermedades hepáticas y digestivas de Bogotá, Colombia.
Materiales y métodos: estudio descriptivo retrospectivo de una cohorte de sujetos atendidos entre marzo de 2016 y julio de 2017. Se realizó una historia clínica completa y una prueba de elastografía en tiempo real (Supersonic).
Resultados: se incluyeron 654 sujetos, con una mediana de edad de 55 años (rango intercuartílico [RIC]: 45-64). La mediana de valores de fibrosis expresada en kilopascales (kPs) fue de 8,3, con un promedio de 5 mediciones. Se observó una diferencia significativa en el grado de fibrosis entre los grupos de edad y en relación con el diagnóstico final, donde se evidenció una mayor fibrosis en el grupo de enfermedades colestásicas (autoinmune, colangitis biliar primaria [CBP] y superposición autoinmune-CBP). La tasa global de fracaso fue menor al 1 %.
Conclusiones: es la primera descripción del comportamiento de la prueba a nivel nacional. Los valores de rigidez hepática observados en los diferentes estadios demuestran la utilidad de la prueba para la determinación de la fibrosis hepática en pacientes con diferentes patologías.
Collapse
|
57
|
Wear KA. Hydrophone Spatial Averaging Correction for Acoustic Exposure Measurements From Arrays-Part I: Theory and Impact on Diagnostic Safety Indexes. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:358-375. [PMID: 33186102 PMCID: PMC8325172 DOI: 10.1109/tuffc.2020.3037946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This article reports underestimation of mechanical index (MI) and nonscanned thermal index for bone near focus (TIB) due to hydrophone spatial averaging effects that occur during acoustic output measurements for clinical linear and phased arrays. TIB is the appropriate version of thermal index (TI) for fetal imaging after ten weeks from the last menstrual period according to the American Institute of Ultrasound in Medicine (AIUM). Spatial averaging is particularly troublesome for highly focused beams and nonlinear, nonscanned modes such as acoustic radiation force impulse (ARFI) and pulsed Doppler. MI and variants of TI (e.g., TIB), which are displayed in real-time during imaging, are often not corrected for hydrophone spatial averaging because a standardized method for doing so does not exist for linear and phased arrays. A novel analytic inverse-filter method to correct for spatial averaging for pressure waves from linear and phased arrays is derived in this article (Part I) and experimentally validated in a companion article (Part II). A simulation was developed to estimate potential spatial-averaging errors for typical clinical ultrasound imaging systems based on the theoretical inverse filter and specifications for 124 scanner/transducer combinations from the U.S. Food and Drug Administration (FDA) 510(k) database from 2015 to 2019. Specifications included center frequency, aperture size, acoustic output parameters, hydrophone geometrical sensitive element diameter, etc. Correction for hydrophone spatial averaging using the inverse filter suggests that maximally achievable values for MI, TIB, thermal dose ( t 43 ), and spatial-peak-temporal-average intensity ( [Formula: see text]) for typical clinical systems are potentially higher than uncorrected values by (means ± standard deviations) 9% ± 4% (ARFI MI), 19% ± 15% (ARFI TIB), 50% ± 41% (ARFI t 43 ), 43% ± 39% (ARFI [Formula: see text]), 7% ± 5% (pulsed Doppler MI), 15% ± 11% (pulsed Doppler TIB), 42% ± 31% (pulsed Doppler t 43 ), and 33% ± 27% (pulsed Doppler [Formula: see text]). These values correspond to frequencies of 3.2 ± 1.3 (ARFI) and 4.1 ± 1.4 MHz (pulsed Doppler), and the model predicts that they would increase with frequency. Inverse filtering for hydrophone spatial averaging significantly improves the accuracy of estimates of MI, TIB, t 43 , and [Formula: see text] for ARFI and pulsed Doppler signals.
Collapse
|
58
|
Kijanka P, Urban MW. Local Phase Velocity Based Imaging of Viscoelastic Phantoms and Tissues. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:389-405. [PMID: 31976887 PMCID: PMC7590236 DOI: 10.1109/tuffc.2020.2968147] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Assessment of soft tissue elasticity and viscosity is of interest in several clinical applications. In this study, we present the feasibility of the local phase velocity based imaging (LPVI) method to create images of phase velocity and viscoelastic parameters in viscoelastic tissue-mimicking materials and soft tissues. In viscoelastic materials, it is necessary to utilize wave-mode isolation using a narrow bandpass filter combined with a directional filter in order to robustly reconstruct phase velocity images with LPVI in viscoelastic media over a wide range of frequencies. A pair of sequential focused acoustic radiation force push beams, focused once on the left-hand side and once on the right-hand side of the probe, was used to produce broadband propagating shear waves. The local shear wave phase velocity is then recovered in the frequency domain for multiple frequencies, for both acquired data sets. Then, a 2-D shear wave velocity map is reconstructed by combining maps from two separate acquisitions. By testing the method on simulated data sets and performing in vitro phantom and in vivo liver tissue experiments, we show the ability of the proposed technique to generate shear wave phase velocity maps at various frequencies in viscoelastic materials. Moreover, a nonlinear least-squares problem is solved in order to locally estimate elasticity and viscosity parameters. The LPVI method with added directional and wavenumber filters can produce phase velocity images, which can be used to characterize the viscoelastic materials.
Collapse
|
59
|
Nakayama R, Takaya Y, Nakamura K, Kondo M, Kobayashi K, Ohno Y, Amioka N, Akagi S, Yoshida M, Miyoshi T, Ito H. Efficacy of shear wave elastography for evaluating right ventricular myocardial fibrosis in monocrotaline-induced pulmonary hypertension rats. J Cardiol 2021; 78:17-23. [PMID: 33568315 DOI: 10.1016/j.jjcc.2021.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Accepted: 01/01/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Right ventricular (RV) function is important for outcomes in pulmonary hypertension. Evaluation of RV myocardial characteristics is useful to assess the disease severity. Shear wave elastography (SWE) provides information of shear wave (SW) elasticity, which is related to tissue hardness, and SW dispersion slope, which reflects tissue viscosity. This study aimed to test the hypothesis that SW elasticity is increased and SW dispersion slope is decreased in the right ventricle of monocrotaline (MCT)-induced pulmonary hypertension rats. METHODS Rats were divided into MCT-induced pulmonary hypertension group (n = 10) and control group (n = 10). SW elasticity and SW dispersion slope were measured on excised hearts. Myocardial fibrosis was evaluated histologically. RESULTS RV hypertrophy was observed in the MCT group. SW elasticity of right ventricle was higher in the MCT group than in the control group (3.5 ± 0.9 kPa vs. 2.5 ± 0.4 kPa, p < 0.01). SW dispersion slope of right ventricle was lower in the MCT group than in the control group (5.3 ± 1.7 m/s/kHz vs. 7.7 ± 1.5 m/s/kHz, p < 0.01). The fibrosis area of right ventricle was increased in MCT group compared with control group (18 ± 5% vs. 8 ± 3%, p < 0.01), and was positively related to SW elasticity and negatively related to SW dispersion slope. CONCLUSIONS Higher SW elasticity and lower SW dispersion slope were observed in the fibrotic myocardium of right ventricle in MCT-induced pulmonary hypertension rats. SWE may have the potential to evaluate RV function by assessing myocardial characteristics.
Collapse
Affiliation(s)
- Rie Nakayama
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yoichi Takaya
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Megumi Kondo
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kaoru Kobayashi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yuko Ohno
- Kawasaki University of Medical Welfare, Okayama, Japan
| | - Naofumi Amioka
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Satoshi Akagi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masashi Yoshida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
60
|
Torres A, Palmeri ML, Feltovich H, Hall TJ, Rosado-Mendez IM. Shear wave dispersion as a potential biomarker for cervical remodeling during pregnancy: evidence from a non-human primate model. FRONTIERS IN PHYSICS 2021; 8:606664. [PMID: 34178971 PMCID: PMC8225254 DOI: 10.3389/fphy.2020.606664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Shear wave dispersion (variation of phase velocity with frequency) occurs in tissues with layered and anisotropic microstructure and viscous components, such as the uterine cervix. This phenomenon, mostly overlooked in previous applications of cervical Shear Wave Elasticity Imaging (SWEI) for preterm birth risk assessment, is expected to change drastically during pregnancy due to cervical remodeling. Here we demonstrate the potential of SWEI-based descriptors of dispersion as potential biomarkers for cervical remodeling during pregnancy. First, we performed a simulation-based pre-selection of two SWEI-based dispersion descriptors: the ratio R of group velocities computed with particle-velocity and particle-displacement, and the slope S of the phase velocity vs. frequency. The pre-selection consisted of comparing the contrast-to-noise ratio (CNR) of dispersion descriptors in materials with different degrees of dispersion with respect to a low-dispersive medium. Shear waves induced in these media by SWEI were simulated with a finite-element model of Zener viscoelastic solids. The pre-selection also considered two denoising strategies to improve CNR: a low-pass filter with automatic frequency cutoff determination, and singular value decomposition of shear wave displacements. After pre-selection, the descriptor-denoising combination that produced the largest CNR was applied to SWEI cervix data from 18 pregnant Rhesus macaques acquired at weeks 10 (mid-pregnancy stage) and 23 (late pregnancy stage) of the 24.5-week full pregnancy. A maximum likelihood linear mixed-effects model (LME) was used to evaluate the dependence of the dispersion descriptor on pregnancy stage, maternal age, parity and other experimental factors. The pre-selection study showed that descriptor S combined with singular value decomposition produced a CNR 11.6 times larger than the other descriptor and denoising strategy combinations. In the Non-Human Primates (NHP) study, the LME model showed that descriptor S significantly decreased from mid to late pregnancy (-0.37 ± 0.07 m/s-kHz per week, p <0.00001) with respect to the base value of 15.5 ± 1.9 m/s-kHz. This change was more significant than changes in other SWEI features such as the group velocity previously reported. Also, S varied significantly between the anterior and posterior portions of the cervix (p =0.02) and with maternal age (p =0.008). Given the potential of shear wave dispersion to track cervical remodeling, we will extend its application to ongoing longitudinal human studies.
Collapse
Affiliation(s)
- Abel Torres
- Departamento de Física Experimental, Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, MEX
| | | | | | - Timothy J. Hall
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Ivan M. Rosado-Mendez
- Departamento de Física Experimental, Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, MEX
| |
Collapse
|
61
|
McGarry MDJ, Campo A, Payen T, Han Y, Konofagou EE. An analytical model of full-field displacement and strain induced by amplitude-modulated focused ultrasound in harmonic motion imaging. Phys Med Biol 2021; 66. [PMID: 33472178 DOI: 10.1088/1361-6560/abddd1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/20/2021] [Indexed: 11/12/2022]
Abstract
The majority of disease processes involves changes in the micro-structure of the affected tissue, which can translate to changes in the mechanical properties of the corresponding tissue. Harmonic motion imaging (HMI) is an elasticity imaging technique that allows the study of the mechanical parameters of tissue by detecting the tissue response by a harmonic motion field, which is generated by oscillatory acoustic radiation force (ARF). HMI has been demonstrated in tumor detection and characterization as well as monitoring of ablation procedures. In this study, an analytical HMI model is demonstrated and compared with a finite element model (FEM), allowing rapid and accurate computation of the displacement, strain, and shear wave velocity (SWV) at any location in a homogeneous linear elastic material. Average absolute differences between the analytical model and the FEM were respectively 1.2 % for the displacements and 0.5 % for the strains for 41940 force voxels at 0.22 seconds per displacement evaluation. A convergence study showed that the average difference could be further decreased to 1.0 % and 0.15 % for the displacements and strains, respectively, if force resolution is increased. SWV fields, as calculated with the FEM and the analytical model, have regional differences in velocities up to 0.57 m/s with an average absolute difference of 0.11±0.07 m/s, primarily due to imperfections in the non-reflecting FEM boundary conditions. The apparent SWV differed from the commonly used plane-wave approximation by up to 1.2 m/s due to near and intermediate field effects. Maximum displacement amplitudes for a model with an inclusion stabilize within 10 % of the homogeneous model at an inclusion radius of 10 mm while the maximum strain reacts faster, stabilizing at an inclusion radius of 3 mm. In conclusion, an analytical model for HMI stiffness estimation is presented in this paper. The analytical model has advantages over FEM as the full-field displacements do not need to be calculated to evaluate the model at a single measurement point. This advantage, together with the computational speed, makes the analytical model useful for real-time imaging applications. However, the analytical model was found to have restrictive assumptions on tissue homogeneity and infinite dimensions, while the FEM approaches were shown adaptable to variable geometry and non-homogeneous properties.
Collapse
Affiliation(s)
- Matthew D J McGarry
- Biomedical Engineering, Columbia University, New York, New York, 10027-6902, UNITED STATES
| | - Adriaan Campo
- Faculty of Science, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerp, antwerpen, BELGIUM
| | - Thomas Payen
- Biomedical engineering, Columbia University, 630 w 168th street, New York, New York, 10032, UNITED STATES
| | - Yang Han
- Biomedical Engineering, Columbia Univerisity, 630 West 168th Street Physicians & Surgeons 19-418, New York, New York, 10032, UNITED STATES
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, MC 8904, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA, New York, New York, UNITED STATES
| |
Collapse
|
62
|
Miller T, Ying M, Sau Lan Tsang C, Huang M, Pang MYC. Reliability and Validity of Ultrasound Elastography for Evaluating Muscle Stiffness in Neurological Populations: A Systematic Review and Meta-Analysis. Phys Ther 2021; 101:5928445. [PMID: 33508855 DOI: 10.1093/ptj/pzaa188] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/04/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Ultrasound elastography is an emerging diagnostic technology used to investigate the biomechanical properties of the musculoskeletal system. The purpose of this study was to systematically review the psychometric properties of ultrasound elastography techniques for evaluating muscle stiffness in people with neurological conditions. METHODS A systematic search of MEDLINE, EMBASE, CINAHL, and Cochrane Library databases was performed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Using software, reviewers independently screened citations for inclusion. Peer-reviewed studies that evaluated in vivo muscle stiffness in people with neurological conditions and reported relevant psychometric properties were considered for inclusion. Twenty-one articles were included for final review. Data relevant to measurement technique, site, and neurological condition were extracted. The Consensus-Based Standards for the Selection of Health Measurement Instruments checklist was used to rate the methodological quality of included studies. The level of evidence for specific measurement outcomes was determined using a best-evidence synthesis approach. RESULTS Reliability varied across populations, ultrasound systems, and assessment conditions (ie, joint/body positions, active/passive muscle conditions, probe orientation), with most studies indicating moderate to good reliability (ICC = 0.5-0.9, n = 13). Meta-analysis results showed a good overall correlation across studies (r = 0.78, 95% confidence interval = 0.64-0.86), with no between-group difference based on population (Q1 = 0.00). Convergent validity was demonstrated by strong correlations between stiffness values and measures of spasticity (n = 5), functional motor recovery or impairment (n = 5), and grayscale or color histogram pixel intensities (n = 3). Discriminant or known-groups validity was also established for multiple studies and indicated either significant between-group differences in stiffness values (n = 12) or within-group differences between more and less affected limbs (n = 6). Responsiveness was observed in all intervention studies reporting posttreatment stiffness changes (n = 6). CONCLUSIONS Overall, ultrasound elastography techniques showed moderate reliability in evaluating in vivo muscle stiffness, good convergent validity with relevant clinical assessments, and good divergent validity in discriminating tissue changes within and between groups. IMPACT Ultrasound elastography has clinical utility in assessing muscle stiffness, monitoring its temporal changes, and measuring the response to intervention in people with neurological conditions.
Collapse
Affiliation(s)
- Tiev Miller
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hong Kong, S.A.R
| | - Michael Ying
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, S.A.R
| | - Charlotte Sau Lan Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hong Kong, S.A.R
| | - Meizhen Huang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hong Kong, S.A.R
| | - Marco Y C Pang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hong Kong, S.A.R
| |
Collapse
|
63
|
Kijanka P, Urban MW. Dispersion curve calculation in viscoelastic tissue-mimicking materials using non-parametric, parametric, and high-resolution methods. ULTRASONICS 2021; 109:106257. [PMID: 32980784 PMCID: PMC7850297 DOI: 10.1016/j.ultras.2020.106257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/25/2020] [Accepted: 09/11/2020] [Indexed: 05/20/2023]
Abstract
Ultrasound shear wave elastography is a modality used for noninvasive, quantitative evaluation of soft tissue mechanical properties. A common way of exploring the tissue viscoelasticity is through analyzing the shear wave velocity dispersion curves. The variation of phase velocity with frequency or wavelength is called the dispersion curve. An increase of the available spectrum to be used for phase velocity estimation is meaningful for a tissue dispersion analysis in vivo. A number of available methods for dispersion relation estimation exist which can give diffuse results due the presence of noise in the measured data. In this work we compare six selected methods used for dispersion curve calculation in viscoelastic materials. Non-parametric, parametric and high-resolution methods were examined and compared. We tested selected methods on digital phantom data created using finite-difference-based method in tissue-mimicking viscoelastic media as well as on the experimental custom tissue-mimicking phantoms. In addition, we evaluated the algorithms with different levels of added white Gaussian noise to the shear wave particle velocity from numerical phantoms. Tests conducted showed that more advanced methods can offer better frequency resolution, and less variance than the fast Fourier transform. In addition, the non-parametric Blackman-Tukey approach exhibits similar performance and can be interchangeably used for shear wave phase velocity dispersion curves calculation.
Collapse
Affiliation(s)
- Piotr Kijanka
- Department of Robotics and Mechatronics, AGH University of Science and Technology, 30-059 Krakow, Poland.
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
64
|
Ormachea J, Parker KJ. Comprehensive Viscoelastic Characterization of Tissues and the Inter-relationship of Shear Wave (Group and Phase) Velocity, Attenuation and Dispersion. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3448-3459. [PMID: 32988669 DOI: 10.1016/j.ultrasmedbio.2020.08.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
We report shear wave phase and group velocity, dispersion and attenuation in oil-in-gelatin viscoelastic phantoms and in vivo liver data. Moreover, we measured the power law coefficient from each dispersion curve and used it, together with the shear wave velocity, to calculate an approximate value for attenuation that agrees with independent attenuation measurements. Results in phantoms exhibit good agreement for all parameters with respect to independent mechanical measurements. For in vivo data, the livers of 20 patients were scanned. Results were compared with pathology scores obtained from liver biopsies. Across these cases, increases in shear wave dispersion and attenuation were related to increased steatosis score. It was found that shear wave dispersion and attenuation are experimentally linked, consistent with simple predictions based on the rheology of tissues, and can be used individually or jointly to assess tissue viscosity. Thus, this study indicates the possible utility of using shear wave dispersion and attenuation to non-invasively and quantitatively assess steatosis.
Collapse
Affiliation(s)
- Juvenal Ormachea
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA.
| | - Kevin J Parker
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA
| |
Collapse
|
65
|
Son J, Rymer WZ. Longer electromechanical delay in paretic triceps surae muscles during voluntary isometric plantarflexion torque generation in chronic hemispheric stroke survivors. J Electromyogr Kinesiol 2020; 56:102475. [PMID: 33242750 DOI: 10.1016/j.jelekin.2020.102475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/16/2020] [Accepted: 09/17/2020] [Indexed: 11/28/2022] Open
Abstract
Electromechanical delay (EMD) is the time delay between the onset of muscle activity and the onset of force/joint torque. This delay appears to be linked to muscular contraction efficiency. However, to our knowledge, limited evidence is available regarding the magnitude of the EMD in stroke-impaired muscles. Accordingly, this study aims to quantify the EMD in both paretic and non-paretic triceps surae muscles of chronic hemispheric stroke survivors, and to investigate whether the EMD is related to voluntary force-generating capacity in this muscle group. Nine male chronic stroke survivors were asked to perform isometric plantarflexion contractions at different force levels and at different ankle joint angles ranging from maximum plantarflexion to maximum dorsiflexion. The surface electromyograms were recorded from triceps surae muscles. The longest EMD among triceps surae muscles was chosen as the EMD for each side. Our results revealed that the EMD in paretic muscles was significantly longer than in non-paretic muscles. Moreover, both paretic and non-paretic muscles showed a negative correlation between the EMD and maximum torque-generating capacity. In addition, there was a strong positive relationship between the EMD and shear wave speed in paretic muscles as well as a negative relationship between the EMD and passive ankle joint range of motion. These findings imply that the EMD may be a useful biomarker, in part, associated with contractile and material properties in stroke-impaired muscles.
Collapse
Affiliation(s)
- Jongsang Son
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago), Chicago, IL, United States; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - William Zev Rymer
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago), Chicago, IL, United States; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
66
|
Keijzer LBH, Caenen A, Voorneveld J, Strachinaru M, Bowen DJ, van de Wouw J, Sorop O, Merkus D, Duncker DJ, van der Steen AFW, de Jong N, Bosch JG, Vos HJ. A direct comparison of natural and acoustic-radiation-force-induced cardiac mechanical waves. Sci Rep 2020; 10:18431. [PMID: 33116234 PMCID: PMC7595170 DOI: 10.1038/s41598-020-75401-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
Natural and active shear wave elastography (SWE) are potential ultrasound-based techniques to non-invasively assess myocardial stiffness, which could improve current diagnosis of heart failure. This study aims to bridge the knowledge gap between both techniques and discuss their respective impacts on cardiac stiffness evaluation. We recorded the mechanical waves occurring after aortic and mitral valve closure (AVC, MVC) and those induced by acoustic radiation force throughout the cardiac cycle in four pigs after sternotomy. Natural SWE showed a higher feasibility than active SWE, which is an advantage for clinical application. Median propagation speeds of 2.5-4.0 m/s and 1.6-4.0 m/s were obtained after AVC and MVC, whereas ARF-based median speeds of 0.9-1.2 m/s and 2.1-3.8 m/s were reported for diastole and systole, respectively. The different wave characteristics in both methods, such as the frequency content, complicate the direct comparison of waves. Nevertheless, a good match was found in propagation speeds between natural and active SWE at the moment of valve closure, and the natural waves showed higher propagation speeds than in diastole. Furthermore, the results demonstrated that the natural waves occur in between diastole and systole identified with active SWE, and thus represent a myocardial stiffness in between relaxation and contraction.
Collapse
Affiliation(s)
- Lana B H Keijzer
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands.
| | - Annette Caenen
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands.
- IBiTech-bioMMeda, Ghent University, Ghent, Belgium.
- Cardiovascular Imaging and Dynamics Lab, Catholic University of Leuven, Leuven, Belgium.
| | - Jason Voorneveld
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Daniel J Bowen
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Jens van de Wouw
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Oana Sorop
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Daphne Merkus
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Dirk J Duncker
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Nico de Jong
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Johan G Bosch
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - Hendrik J Vos
- Department of Cardiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
67
|
Samson C, Adamson R, Brown JA. Ultrafast Phased-Array Imaging Using Sparse Orthogonal Diverging Waves. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2033-2045. [PMID: 32746164 DOI: 10.1109/tuffc.2020.2996076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a new transmit pulse encoding scheme for ultrafast phased-array imaging called sparse orthogonal diverging wave imaging (SODWI). In SODWI, Hadamard encoding is used to selectively invert transmit pulse phases beamformed with a diverging wave delay profile. This approach has the advantage of delivering energy to a much wider field of view than conventional Hadamard-encoded multielement synthetic transmit aperture (HMSTA), making it more suitable for phased-array applications. With SODWI, we use a synthetic transmit element delay insertion (STEDI) approach which produces significant improvements in resolution, grating lobe level, and signal-to-noise ratio (SNR) over HMSTA. We also show how in SODWI a subset of the Hadamard codes can be sparsely selected to increase the imaging frame rate at the expense of image quality. SODWI is then compared with a variety of beamforming schemes for phased-array applications, including HMSTA, STEDI-HMSTA, diverging wave imaging (DWI), synthetic aperture (SA), and focused imaging. We present the results by implementing this technique on a 64-channel custom beamforming platform with a 40-MHz phased array. When a full set of codes is used, SODWI outperforms focused imaging contrast and SNR by 2.7 and 1.8 dB in addition to an 8× increase in frame rate, respectively.
Collapse
|
68
|
Dong Y, Qiu Y, Zhang Q, Yang D, Yu L, Wang WP, Dietrich CF. Preliminary Clinical Experience with Shear Wave Dispersion Imaging for Liver Viscosity in Preoperative Diagnosis of Focal Liver Lesions. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2020; 58:847-854. [PMID: 32947630 DOI: 10.1055/a-1217-7465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The aim of our study is to analyze viscosity characteristics of focal liver lesions (FLLs) and the diagnostic performance of shear wave dispersion (SWD) in differentiating benign and malignant FLLs. METHODS Between January 2018 and April 2018, 58 consecutive patients (median age 57, age range 21-74 years, 37 males) with 58 FLLs located on the right lobe of liver were prospectively studied. The Aplio i900 series diagnostic ultrasound system (Canon Medical systems) equipped with a curvilinear PV1-475BX transducer (1-8 MHz) was used. SWD slope and viscosity measurements were expressed as mean ± standard deviation for both liver tumors and background liver parenchyma. Histopathological results after surgery were regarded as the gold standard for diagnosis. RESULTS Final diagnosis included 40 cases of malignant and 18 cases of benign FLLs. The mean viscosity value were 14.78 ± 1.86 m/s/kHz for hepatocellular carcinoma (n = 30), 14.81 ± 2.35 m/s/kHz for liver metastasis lesions (n = 10), 13.23 ± 1.31 m/s/kHz for hemangioma (n = 13), and 13.67 ± 2.72 m/s/kHz for focal nodular hyperplasia (n = 5). Malignant FLLs showed higher mean viscosity values (14.79 ± 3.15 m/s/KHz) than benign FLLs (13.36 ± 2.76 m/s/KHz) (p < 0.05). The best performing cut-off value of lesion viscosity was 13.15 m/s/kHz (sensitivity 83.3 %; specificity 56.5 %; area under the curve (AUC) 0.71) for malignancy) (p < 0.05). CONCLUSIONS The analysis of SWD slope and liver viscosity parameters provide additional viscoelastic information about FLLs before operation.
Collapse
Affiliation(s)
- Yi Dong
- Ultrasound Department, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yijie Qiu
- Ultrasound Department, Zhongshan Hospital Fudan University, Shanghai, China
| | - Qi Zhang
- Ultrasound Department, Zhongshan Hospital Fudan University, Shanghai, China
| | - Daohui Yang
- Ultrasound Department, Zhongshan Hospital Fudan University, Shanghai, China
| | - Lingyun Yu
- Ultrasound Department, Zhongshan Hospital Fudan University, Shanghai, China
| | - Wen-Ping Wang
- Ultrasound Department, Zhongshan Hospital Fudan University, Shanghai, China
| | | |
Collapse
|
69
|
Lin CY. Ramp-Creep Ultrasound Viscoelastography for Measuring Viscoelastic Parameters of Materials. MATERIALS 2020; 13:ma13163593. [PMID: 32823881 PMCID: PMC7475984 DOI: 10.3390/ma13163593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022]
Abstract
Several ultrasound-based methods have been developed to evaluate the viscoelastic properties of materials. The purpose of this study is to introduce a novel viscoelastography method based on ultrasound acoustic radiation force for measuring the parameters relevant to the viscoelastic properties of materials, named ramp-creep ultrasound viscoelastography (RC viscoelastography). RC viscoelastography uses two different ultrasound excitation modes to cause ramp and creep strain responses in the material. By combining and analyzing the information obtained from these two modes of excitation, the viscoelastic parameters of the material can be quantitatively evaluated. Finite element computer simulation demonstrated that RC viscoelastography can accurately evaluate the viscoelastic parameters of the material, including the relaxation and creep time constants as well as the ratio of viscous fluids to solids in the material, except for the region near the top surface of the material. The novelty of RC viscoelastography is that there is no need to know the magnitude of acoustic radiation force and induced stress in the material in order to evaluate the viscoelastic parameters. In the future, experiments are necessary to test the performance of RC viscoelastography in real biomaterials and biological tissues.
Collapse
Affiliation(s)
- Che-Yu Lin
- Institute of Applied Mechanics, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
70
|
Gesnik M, Bhatt M, Roy Cardinal MH, Destrempes F, Allard L, Nguyen BN, Alquier T, Giroux JF, Tang A, Cloutier G. In vivo Ultrafast Quantitative Ultrasound and Shear Wave Elastography Imaging on Farm-Raised Duck Livers during Force Feeding. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1715-1726. [PMID: 32381381 DOI: 10.1016/j.ultrasmedbio.2020.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/05/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Shear wave elastography (speed and dispersion), local attenuation coefficient slope and homodyned-K parametric imaging were used for liver steatosis grading. These ultrasound biomarkers rely on physical interactions between shear and compression waves with tissues at both macroscopic and microscopic scales. These techniques were applied in a context not yet studied with ultrasound imaging, that is, monitoring steatosis of force-fed duck livers from pre-force-fed to foie gras stages. Each estimated feature presented a statistically significant trend along the feeding process (p values <10-3). However, whereas a monotonic increase in the shear wave speed was observed along the process, most quantitative ultrasound features exhibited an absolute maximum value halfway through the process. As the liver fat fraction in foie gras is much higher than that seen clinically, we hypothesized that a change in the ultrasound scattering regime is encountered for high-fat fractions, and consequently, care has to be taken when applying ultrasound biomarkers to grading of severe states of steatosis.
Collapse
Affiliation(s)
- Marc Gesnik
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada
| | - Manish Bhatt
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada
| | - Marie-Hélène Roy Cardinal
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada
| | - François Destrempes
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada
| | - Louise Allard
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada
| | - Bich N Nguyen
- Service of Pathology, University of Montreal Hospital (CHUM), Montréal, QC, Canada
| | - Thierry Alquier
- CRCHUM and Montreal Diabetes Research Center, Montréal, QC, Canada; Department of Medicine, University of Montreal, Montréal, QC, Canada
| | - Jean-François Giroux
- Department of Biological Sciences, University of Quebec in Montreal, Montréal, QC, Canada
| | - An Tang
- Service of Radiology, University of Montreal Hospital (CHUM), Montréal, QC, Canada; Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montréal, QC, Canada; Laboratory of Medical Image Analysis, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada; Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics, University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, Canada; Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montréal, QC, Canada; Institute of Biomedical Engineering, University of Montreal, Montréal, QC, Canada.
| |
Collapse
|
71
|
Hossain MM, Gallippi CM. Viscoelastic Response Ultrasound Derived Relative Elasticity and Relative Viscosity Reflect True Elasticity and Viscosity: In Silico and Experimental Demonstration. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1102-1117. [PMID: 31899421 PMCID: PMC7341692 DOI: 10.1109/tuffc.2019.2962789] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Viscoelastic response (VisR) ultrasound characterizes the viscoelastic properties of tissue by fitting acoustic radiation force (ARF)-induced displacements in the region of ARF excitation to a 1-D mass-spring-damper (MSD) model. Elasticity and viscosity are calculated separately but relative to the applied ARF amplitude. We refer to these parameters as "relative elasticity (RE)" and "relative viscosity (RV)." We herein test the hypothesis that RE and RV linearly correlate to true elasticity and viscosity in tissue. VisR imaging was simulated in 144 homogeneous viscoelastic materials with varying elasticities and viscosities. Derived RE linearly correlated with material elasticity and varied by an average of 2.52% when the material viscosity changed from 0.1 to 1.3 Pa · s. Derived RV linearly correlated with material viscosity but varied by an average of 102.5% when material elasticity changed from 3.33 to 20 kPa. The effect of elasticity on RV measurement was compensated using the slope of the linear relationship between RV and natural frequency ( ωtextn ). After compensation, RV [Formula: see text] (elasticity compensated RV) linearly correlated with material viscosity and varied by less than 1.00% on average when the modeled shear elastic modulus changed from 3.3 to 20 kPa. In addition to elasticity compensation, variation in ARF amplitude over depth was compensated, yielding REDC and [Formula: see text]. REDC and [Formula: see text] successfully contrasted elastic and viscous inclusions, respectively, in three simulated phantoms. Experimentally, in the homogeneous oil-in-gelatin phantoms and excised livers, REDC linearly correlated with shear wave dispersion ultrasound vibrometry (SDUV) derived shear elastic modulus, and [Formula: see text] linearly correlated with SDUV-derived shear viscosity. In excised livers containing viscoelastic oil-in-gelatin inclusions, the inclusions were successfully contrasted from the liver background by both REDC and [Formula: see text]. These results suggest that RE and RV are relevant for qualitatively assessing the elastic and viscous properties of tissue.
Collapse
|
72
|
Kooiman K, Roovers S, Langeveld SAG, Kleven RT, Dewitte H, O'Reilly MA, Escoffre JM, Bouakaz A, Verweij MD, Hynynen K, Lentacker I, Stride E, Holland CK. Ultrasound-Responsive Cavitation Nuclei for Therapy and Drug Delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1296-1325. [PMID: 32165014 PMCID: PMC7189181 DOI: 10.1016/j.ultrasmedbio.2020.01.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 05/03/2023]
Abstract
Therapeutic ultrasound strategies that harness the mechanical activity of cavitation nuclei for beneficial tissue bio-effects are actively under development. The mechanical oscillations of circulating microbubbles, the most widely investigated cavitation nuclei, which may also encapsulate or shield a therapeutic agent in the bloodstream, trigger and promote localized uptake. Oscillating microbubbles can create stresses either on nearby tissue or in surrounding fluid to enhance drug penetration and efficacy in the brain, spinal cord, vasculature, immune system, biofilm or tumors. This review summarizes recent investigations that have elucidated interactions of ultrasound and cavitation nuclei with cells, the treatment of tumors, immunotherapy, the blood-brain and blood-spinal cord barriers, sonothrombolysis, cardiovascular drug delivery and sonobactericide. In particular, an overview of salient ultrasound features, drug delivery vehicles, therapeutic transport routes and pre-clinical and clinical studies is provided. Successful implementation of ultrasound and cavitation nuclei-mediated drug delivery has the potential to change the way drugs are administered systemically, resulting in more effective therapeutics and less-invasive treatments.
Collapse
Affiliation(s)
- Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Silke Roovers
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Simone A G Langeveld
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert T Kleven
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Heleen Dewitte
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Laboratory for Molecular and Cellular Therapy, Medical School of the Vrije Universiteit Brussel, Jette, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Martin D Verweij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Lab for General Biochemistry and Physical Pharmacy, Department of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Christy K Holland
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA; Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
73
|
Chalchat E, Gennisson JL, Peñailillo L, Oger M, Malgoyre A, Charlot K, Bourrilhon C, Siracusa J, Garcia-Vicencio S. Changes in the Viscoelastic Properties of the Vastus Lateralis Muscle With Fatigue. Front Physiol 2020; 11:307. [PMID: 32390859 PMCID: PMC7194212 DOI: 10.3389/fphys.2020.00307] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/19/2020] [Indexed: 12/31/2022] Open
Abstract
We investigated the in vivo effects of voluntary fatiguing isometric contractions of the knee extensor muscles on the viscoelastic properties of the vastus lateralis (VL). Twelve young males (29.0 ± 4.5 years) performed an intermittent voluntary fatigue protocol consisting of 6 sets × 10 repetitions of 5-s voluntary maximal isometric contractions with 5-s passive recovery periods between repetitions. Voluntary and evoked torque were assessed before, immediately after, and 20 min after exercise. The shear modulus (μ) of the VL muscle was estimated at rest and during a ramped isometric contraction using a conventional elastography technique. An index of active muscle stiffness was then calculated (slope from the relationship between shear modulus and absolute torque). Resting muscle viscosity (η) was quantified using a shear-wave spectroscopy sequence to measure the shear-wave dispersion. Voluntary and evoked torque decreased by ∼37% (P < 0.01) immediately after exercise. The resting VL μ was lower at the end of the fatigue protocol (-57.9 ± 5.4%, P < 0.001), whereas the resting VL η increased (179.0 ± 123%, P < 0.01). The active muscle stiffness index also decreased with fatigue (P < 0.05). By 20 min post-fatigue, there were no significant differences from the pre-exercise values for VL η and the active muscle stiffness index, contrary to the resting VL μ. We show that the VL μ is greatly reduced and η greatly enhanced by fatigue, reflecting a more compliant and viscous muscle. The quantification of both shear μ and η moduli in vivo may contribute to a better understanding of the mechanical behavior of muscles during fatigue in sports medicine, as well as in clinical situations.
Collapse
Affiliation(s)
- Emeric Chalchat
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Jean-Luc Gennisson
- BIOMAPS, Laboratoire d'Imagerie Biomédicale Multi-Modale, CEA, Université Paris-Saclay, CNRS UMR 9011, INSERM UMR 1281, Orsay, France
| | - Luis Peñailillo
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Finis Terrae University, Santiago, Chile
| | - Myriam Oger
- Unité Imagerie, Département des Plateformes et Recherche Technologique, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Alexandra Malgoyre
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Keyne Charlot
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Cyprien Bourrilhon
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Julien Siracusa
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| | - Sebastian Garcia-Vicencio
- Unité de Physiologie de l'Exercice et des Activités en Conditions Extrêmes, Département Environnements Opérationnels, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France.,LBEPS, Univ Evry, IRBA, Université Paris Saclay, Evry, France
| |
Collapse
|
74
|
Rus G, Faris IH, Torres J, Callejas A, Melchor J. Why Are Viscosity and Nonlinearity Bound to Make an Impact in Clinical Elastographic Diagnosis? SENSORS (BASEL, SWITZERLAND) 2020; 20:E2379. [PMID: 32331295 PMCID: PMC7219338 DOI: 10.3390/s20082379] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022]
Abstract
The adoption of multiscale approaches by the biomechanical community has caused a major improvement in quality in the mechanical characterization of soft tissues. The recent developments in elastography techniques are enabling in vivo and non-invasive quantification of tissues' mechanical properties. Elastic changes in a tissue are associated with a broad spectrum of pathologies, which stems from the tissue microstructure, histology and biochemistry. This knowledge is combined with research evidence to provide a powerful diagnostic range of highly prevalent pathologies, from birth and labor disorders (prematurity, induction failures, etc.), to solid tumors (e.g., prostate, cervix, breast, melanoma) and liver fibrosis, just to name a few. This review aims to elucidate the potential of viscous and nonlinear elastic parameters as conceivable diagnostic mechanical biomarkers. First, by providing an insight into the classic role of soft tissue microstructure in linear elasticity; secondly, by understanding how viscosity and nonlinearity could enhance the current diagnosis in elastography; and finally, by compounding preliminary investigations of those elastography parameters within different technologies. In conclusion, evidence of the diagnostic capability of elastic parameters beyond linear stiffness is gaining momentum as a result of the technological and imaging developments in the field of biomechanics.
Collapse
Affiliation(s)
- Guillermo Rus
- Ultrasonics Group (TEP-959), Department of Structural Mechanics, University of Granada, 18071 Granada, Spain; (G.R.); (I.H.F.); (A.C.)
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
- Excellence Research Unit “ModelingNature” MNat UCE.PP2017.03, University of Granada, 18071 Granada, Spain
| | - Inas H. Faris
- Ultrasonics Group (TEP-959), Department of Structural Mechanics, University of Granada, 18071 Granada, Spain; (G.R.); (I.H.F.); (A.C.)
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
| | - Jorge Torres
- Ultrasonics Group (TEP-959), Department of Structural Mechanics, University of Granada, 18071 Granada, Spain; (G.R.); (I.H.F.); (A.C.)
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
| | - Antonio Callejas
- Ultrasonics Group (TEP-959), Department of Structural Mechanics, University of Granada, 18071 Granada, Spain; (G.R.); (I.H.F.); (A.C.)
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
| | - Juan Melchor
- Biomechanics Group (TEC-12), Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain;
- Excellence Research Unit “ModelingNature” MNat UCE.PP2017.03, University of Granada, 18071 Granada, Spain
- Department of Statistics and Operations Research, University of Granada, 18071 Granada, Spain
| |
Collapse
|
75
|
Kijanka P, Urban MW. Fast Local Phase Velocity-Based Imaging: Shear Wave Particle Velocity and Displacement Motion Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:526-537. [PMID: 31634830 PMCID: PMC7123440 DOI: 10.1109/tuffc.2019.2948512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Fast and precise noninvasive evaluation of tissue mechanical properties is of high importance in ultrasound shear wave elastography. In this study, we present an updated, faster version of the local phase velocity-based imaging (LPVI) method used to create images of local phase velocity in soft tissues. The updated LPVI implementation uses 1-D Fourier transforms in spatial dimensions separately in comparison to its original implementation. A directional filter is applied upon the shear wave field to extract the left-to-right (LR) and right-to-left (RL) propagating shear waves. A local shear wave phase velocity map is recovered based on both LR and RL waves. Finally, a 2-D shear wave velocity map is reconstructed by combining the LR and RL phase velocity maps. LPVI performance for shear wave displacement and velocity-wave motion data is examined. A study of LPVI used for only one data acquisition with multiple focused ultrasound push beams is presented. The lesion placement with respect to the pushes and whether two sequential pushes provided different results from two simultaneous radiation force pushes was investigated. The addition of white Gaussian noise to the wave motion data was also tested to examine the LPVI method's performance. Robust and accurate shear wave phase velocity maps are reconstructed using the proposed LPVI method using numerical tissue-mimicking phantoms with inclusions. Results from the numerical phantom study showed that the reconstructed, asymmetric inclusions, for various axial locations, are better preserved for shear wave particle velocity signals compared with particle displacement motion data.
Collapse
|
76
|
Jin Y, Walker E, Krokhin A, Heo H, Choi TY, Neogi A. Enhanced Instantaneous Elastography in Tissues and Hard Materials Using Bulk Modulus and Density Determined Without Externally Applied Material Deformation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:624-634. [PMID: 31675326 DOI: 10.1109/tuffc.2019.2950343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ultrasound is a continually developing technology that is broadly used for fast, non-destructive mechanical property detection of hard and soft materials in applications ranging from manufacturing to biomedical. In this study, a novel monostatic longitudinal ultrasonic pulsing elastography imaging method is introduced. The existing elastography methods require an acoustic radiational or dynamic compressive externally applied force to determine the effective bulk modulus or density. This new, passive M-mode imaging technique does not require an external stress and can be effectively used for both soft and hard materials. Strain map imaging and shear wave elastography are two current categories of M-mode imaging that show both relative and absolute elasticity information. The new technique is applied to hard materials and soft material tissue phantoms for demonstrating effective bulk modulus and effective density mapping. When compared with standard techniques, the effective parameters fall within 10% of standard characterization methods for both hard and soft materials. As neither the standard A-mode imaging technique nor the presented technique require an external applied force, the techniques are applied to composite heterostructures and the findings presented for comparison. The presented passive M-mode technique is found to have enhanced resolution over standard A-mode modalities.
Collapse
|
77
|
Kijanka P, Urban MW. Two-Point Frequency Shift Method for Shear Wave Attenuation Measurement. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:483-496. [PMID: 31603777 PMCID: PMC7138459 DOI: 10.1109/tuffc.2019.2945620] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ultrasound shear wave elastography (SWE) is an increasingly used noninvasive modality for quantitative evaluation of tissue mechanical properties. SWE typically uses an acoustic radiation force to produce laterally propagating shear waves that are tracked in the spatial and temporal domains, in order to obtain the wave velocity. One of the ways to study the viscoelasticity is through studying the shear wave phase velocity dispersion curves. Shear wave attenuation can be also characterized in viscoelastic tissues with methods that use multiple lateral data samples. In this article, we present an alternative method for measuring the shear wave attenuation without using a rheological model two-point frequency shift (2P-FS). The technique uses information related to the amplitude spectra FS of shear waves measured at only two lateral locations. The theoretical basis for the 2P-FS is derived and validated. We examined how the first signal position and the distance between the two locations affect the shear wave attenuation estimation in the 2P-FS method. We tested this new method on digital phantom data created using the local interaction simulation approach (LISA) in viscoelastic media. Moreover, we tested data acquired from custom-made tissue-mimicking viscoelastic phantom experiments and ex vivo porcine liver measurements. We compared results from the 2P-FS method with the other two techniques used for assessing a shear wave attenuation: the FS-based method and the attenuation-measuring ultrasound shear wave elastography (AMUSE) technique. In addition, we evaluated the 2P-FS algorithm with different levels of added white Gaussian noise to the shear wave particle velocity using numerical phantoms. Tests conducted showed that the 2P-FS method gives robust results based on only two measurements and can be used to measure attenuation of viscoelastic soft tissues.
Collapse
|
78
|
Viscoelastic Biomarkers of Ex Vivo Liver Samples via Torsional Wave Elastography. Diagnostics (Basel) 2020; 10:diagnostics10020111. [PMID: 32092900 PMCID: PMC7168906 DOI: 10.3390/diagnostics10020111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/15/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022] Open
Abstract
The clinical ultrasound community demands mechanisms to obtain the viscoelastic biomarkers of soft tissue in order to quantify the tissue condition and to be able to track its consistency. Torsional Wave Elastography (TWE) is an emerging technique proposed for interrogating soft tissue mechanical viscoelastic constants. Torsional waves are a particular configuration of shear waves, which propagate asymmetrically in-depth and are radially transmitted by a disc and received by a ring. This configuration is shown to be particularly efficient in minimizing spurious p-waves components and is sensitive to mechanical constants, especially in cylinder-shaped organs. The objective of this work was to validate (TWE) technique against Shear Wave Elasticity Imaging (SWEI) technique through the determination of shear wave velocity, shear moduli, and viscosity of ex vivo chicken liver samples and tissue mimicking hydrogel phantoms. The results of shear moduli for ex vivo liver tissue vary 1.69–4.0kPa using TWE technique and 1.32–4.48kPa using SWEI technique for a range of frequencies from 200 to 800Hz. Kelvin–Voigt viscoelastic parameters reported values of μ = 1.51kPa and η = 0.54Pa·s using TWE and μ = 1.02kPa and η = 0.63Pa·s using SWEI. Preliminary results show that the proposed technique successfully allows reconstructing shear wave velocity, shear moduli, and viscosity mechanical biomarkers from the propagated torsional wave, establishing a proof of principle and warranting further studies.
Collapse
|
79
|
Trutna CA, Rouze NC, Palmeri ML, Nightingale KR. Measurement of Viscoelastic Material Model Parameters Using Fractional Derivative Group Shear Wave Speeds in Simulation and Phantom Data. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:286-295. [PMID: 31562083 PMCID: PMC7029806 DOI: 10.1109/tuffc.2019.2944126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
While ultrasound shear wave elastography originally focused on tissue stiffness under the assumption of elasticity, recent work has investigated the higher order, viscoelastic properties of the tissue. This article presents a method to use group shear wave speeds (gSWSs) at a series of derivative orders to characterize viscoelastic materials. This method uses a least squares fitting algorithm to match the experimental data to the calculated gSWS data, using an assumed material model and excitation geometry matched to the experimental imaging configuration. Building on a previous study that used particle displacement, velocity, and acceleration signals, this study extends the analysis to a continuous range of fractional derivative orders between 0 and 2. The method can be applied to any material model. Herein, material characterization was performed for three different two-parameter models and three different three-parameter models. This group speed-based method was applied to both shear wave simulations with ultrasonic tracking and experimental acquisitions in viscoelastic phantoms [similar to the Phase II Quantitative Imaging Biomarkers Alliance (QIBA) phantoms]. In both the cases, the group speed method produced more repeatable characterization overall than fitting the phase velocity results from the peak of the 2-D Fourier transform. Results suggest that the linear attenuation model is a better fit than the Voigt model for the viscoelastic QIBA phantoms.
Collapse
|
80
|
Otesteanu CF, Chintada BR, Rominger MB, Sanabria SJ, Goksel O. Spectral Quantification of Nonlinear Elasticity Using Acoustoelasticity and Shear-Wave Dispersion. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1845-1855. [PMID: 31398118 DOI: 10.1109/tuffc.2019.2933952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tissue biomechanical properties are known to be sensitive to pathological changes. Accordingly, various techniques have been developed to estimate tissue mechanical properties. Shear-wave elastography (SWE) measures shear-wave speed (SWS) in tissues, which can be related to shear modulus. Although viscosity or stress-strain nonlinearity may act as confounder of SWE, their explicit characterization may also provide additional information about tissue composition as a contrast modality. Viscosity can be related to frequency dispersion of SWS, which can be characterized using multi-frequency measurements, herein called spectral SWE (SSWE). Additionally, nonlinear shear modulus can be quantified and parameterized based on SWS changes with respect to applied stress, a phenomenon called acoustoelasticity (AE). In this work, we characterize the nonlinear parameters of tissue as a function of excitation frequency by utilizing both AE and SSWE together. For this, we apply incremental amounts of quasi-static stress on a medium, while imaging and quantifying SWS dispersion via SSWE. Results from phantom and ex vivo porcine liver experiments demonstrate the feasibility of measuring frequency-dependent nonlinear parameters using the proposed method. SWS propagation in porcine liver tissue was observed to change from 1.8 m/s at 100 Hz to 3.3 m/s at 700 Hz, while increasing by approximately 25% from a strain of 0% to 12% across these frequencies.
Collapse
|
81
|
Schrank F, Warmuth C, Görner S, Meyer T, Tzschätzsch H, Guo J, Uca YO, Elgeti T, Braun J, Sack I. Real‐time MR elastography for viscoelasticity quantification in skeletal muscle during dynamic exercises. Magn Reson Med 2019; 84:103-114. [DOI: 10.1002/mrm.28095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/29/2019] [Accepted: 11/03/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Felix Schrank
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Carsten Warmuth
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Steffen Görner
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Tom Meyer
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Heiko Tzschätzsch
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Jing Guo
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Yavuz Oguz Uca
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Thomas Elgeti
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| | - Jürgen Braun
- Institute of Medical Informatics Charité–Universitätsmedizin Berlin Berlin Germany
| | - Ingolf Sack
- Department of Radiology Charité–Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
82
|
Mackintosh S, Young A, Lee A, Sim J. Considerations in the application of two dimensional shear wave elastography in muscle. SONOGRAPHY 2019. [DOI: 10.1002/sono.12204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- S. Mackintosh
- Department of Anatomy and Medical Imaging, School of Medical SciencesThe University of Auckland Auckland New Zealand
- Pacific Radiology Group Wellington and Manawatu New Zealand
| | - A. Young
- Department of Anatomy and Medical Imaging, School of Medical SciencesThe University of Auckland Auckland New Zealand
| | - A. Lee
- Section of Epidemiology and Biostatistics, School of Population HealthThe University of Auckland Auckland New Zealand
| | - J. Sim
- Department of Anatomy and Medical Imaging, School of Medical SciencesThe University of Auckland Auckland New Zealand
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health CareMonash University Melbourne Australia
| |
Collapse
|
83
|
Sadeghi S, Cortes DH. Measurement of the shear modulus in thin-layered tissues using numerical simulations and shear wave elastography. J Mech Behav Biomed Mater 2019; 102:103502. [PMID: 31654990 DOI: 10.1016/j.jmbbm.2019.103502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/18/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022]
Abstract
Measurement of mechanical properties of thin-layered tissues has broad applications in the diagnosis of several pathologies. Ultrasound shear wave elastography (SWE) measures the shear wave speed as a means of estimating the mechanical properties of tissues. However, the wave speed in thin-layered tissues is affected by their thickness and the properties of surrounding tissues. The objective of this study is to introduce a method that combines numerical simulations and SWE measurements to provide a more accurate calculation of shear modulus in layered tissues. In the proposed method, the spatial distribution of the acoustic radiation force (ARF) emitted by the transducer was first computed. The ARF was then used as input for simulating the guided wave propagation in the thin layer with its surroundings. The simulations were repeated for several values of the shear modulus of the layer to obtain the corresponding simulated wave speed. By comparing the measured and simulated wave speeds, a more accurate (corrected) shear modulus can be obtained. The proposed method was validated using experiments in agarose gels. In-vivo SWE measurements were also performed for the fascia of the tibialis anterior (TA) muscle and the aponeurosis of musculotendinous junction (MTJ) in medial gastrocnemius (MG) head in a group of healthy individuals. The simulated and measured wave speed in gel constructs were in good agreement with a maximum error of 7.22%. The average of measured wave speed of fascia and aponeurosis was 3.90 ± 0.16 m/s and 2.33 ± 0.60 m/s, while the corresponding corrected shear modulus was 95.63 ± 17.89 kPa and 6.36 ± 8.98 kPa, respectively. Thickness had a substantial effect on the wave speed in thin-layered tissues with decreasing speed for thinner tissues. The SWE-based simulation method presented in this study has the potential of enhancing clinical assessment for several musculoskeletal conditions involving thin-layered tissues.
Collapse
Affiliation(s)
- Seyedali Sadeghi
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Daniel H Cortes
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
84
|
Wood BG, Ireson ME, Urban MW, Nenadic IZD. Attenuation Measuring Ultrasound Shearwave Elastography as a Method for Evaluating Pancreatic Viscoelasticity. Biomed Phys Eng Express 2019; 5:10.1088/2057-1976/ab4c05. [PMID: 32123575 PMCID: PMC7051008 DOI: 10.1088/2057-1976/ab4c05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pancreatic cancer is the fourth most common cause of cancer-related fatalities as there are a limited number of tools to diagnose this disease in its early stages. Pancreatitis is characterized as an inflammation of the pancreatic tissue due to an excess amount of pancreatic enzymes remaining in the organ. Both of these diseases result in a stiffening of the tissue which makes them suitable for the use of elastography techniques as a diagnostic method. However, these methods typically assume that the tissue is purely elastic when biological tissue is inherently viscoelastic. The attenuation measuring ultrasound shear elastography (AMUSE) method, which measures both attenuation and shear wave velocity was used to characterize the viscoelasticity of pancreatic tissue. This method was tested in ex vivo normal porcine samples that were also stiffened in formalin and in vivo by conducting studies in healthy human subjects. Ex vivo testing showed ranges of phase velocity, group velocity, and phase attenuation values of 1.05 - 1.33 m/s, 0.83 - 1.12 m/s, and 183 - 210 Np/m. After immersing the ex vivo tissue in formalin there was a distinguishable difference between normal and stiffened tissue. This study produced percent difference ranges of phase velocity, group velocity, and phase attenuation from 0 to 100 minutes in formalin of 30.0% - 56.5%, 38.2% - 58.6%, and 55.8% - 64.8%, respectively. The ranges of phase velocity, group velocity, and phase attenuation results in human subjects were 1.53 - 1.60 m/s, 1.76 - 1.91 m/s, and 196 - 204 Np/m, respectively. These results were within a similar range reported by other elastography techniques. Further work with the AMUSE method in subjects with pancreatitis and cancer is needed to determine its effectiveness in showing a difference between healthy and diseased tissue in humans.
Collapse
Affiliation(s)
- Benjamin G Wood
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Mollie E Ireson
- Mayo Clinic Alix School of Medicine, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Ivan Z D Nenadic
- Mayo Clinic Alix School of Medicine, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| |
Collapse
|
85
|
Bernabei M, Lee SSM, Perreault EJ, Sandercock TG. Shear wave velocity is sensitive to changes in muscle stiffness that occur independently from changes in force. J Appl Physiol (1985) 2019; 128:8-16. [PMID: 31556833 DOI: 10.1152/japplphysiol.00112.2019] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Clinical assessments for many musculoskeletal disorders involve evaluation of muscle stiffness, although it is not yet possible to obtain quantitative estimates from individual muscles. Ultrasound elastography can be used to estimate the material properties of unstressed, homogeneous, and isotropic materials by tracking the speed of shear wave propagation; these waves propagate faster in stiffer materials. Although elastography has been applied to skeletal muscle, there is little evidence that shear wave velocity (SWV) can directly estimate muscle stiffness since this tissue violates many of the assumptions required for there to be a direct relationship between SWV and stiffness. The objective of this study was to evaluate the relationship between SWV and direct measurements of muscle force and stiffness in contracting muscle. Data were collected from six isoflurane-anesthetized cats. We measured the short-range stiffness in the soleus via direct mechanical testing in situ and SWV via ultrasound imaging. Measurements were taken during supramaximal activation at optimum muscle length, with muscle temperature varying between 26°C and 38°C. An increase in temperature causes a decrease in muscle stiffness at a given force, thus decoupling the tension-stiffness relationship normally present in muscle. We found that increasing muscle temperature decreased active stiffness from 4.0 ± 0.3 MPa to 3.3 ± 0.3 MPa and SWV from 16.9 ± 1.5 m/s to 15.9 ± 1.6 m/s while force remained unchanged (mean ± SD). These results demonstrate that SWV is sensitive to changes in muscle stiffness during active contractions. Future work is needed to determine how this relationship is influenced by changes in muscle structure and tension.NEW & NOTEWORTHY Shear wave ultrasound elastography is a noninvasive tool for characterizing the material properties of muscle. This study is the first to compare direct measurements of stiffness with ultrasound measurements of shear wave velocity (SWV) in a contracting muscle. We found that SWV is sensitive to changes in muscle stiffness, even when controlling for muscle tension, another factor that influences SWV. These results are an important step toward developing noninvasive tools for characterizing muscle structure and function.
Collapse
Affiliation(s)
- Michel Bernabei
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois.,Shirley Ryan AbilityLab, Chicago, Illinois
| | - Sabrina S M Lee
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois
| | - Eric J Perreault
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois.,Shirley Ryan AbilityLab, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| | | |
Collapse
|
86
|
Rasool G, Wang AB, Rymer WZ, Lee SSM. Shear Waves Reveal Viscoelastic Changes in Skeletal Muscles After Hemispheric Stroke. IEEE Trans Neural Syst Rehabil Eng 2019; 26:2006-2014. [PMID: 30334740 DOI: 10.1109/tnsre.2018.2870155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated alterations in material properties such as elasticity and viscoelasticity of stroke-affected muscles using ultrasound induced shear waves and mechanical models. We used acoustic radiation force to generate shear waves along fascicles of biceps muscles and measured their propagation velocity. The shear wave data were collected in muscles of 13 hemiplegic stroke survivors under passive conditions at 90°, 120°, and 150° elbow flexion angles. In a viscoelastic medium, as opposed to a purely elastic medium, the shear wave propagation velocity depends on the frequency content of the induced wave. Therefore, in addition to the shear wave group velocity (GpV), we also estimated a frequency-dependent phase velocity (PhV). We found significantly higher GpVs and PhVs in stroke-affected muscles ( ). The velocity data were used to estimate shear elasticity and viscosity using an elastic and viscoelastic material models. A pure elastic model showed increased shear elasticity in stroke-affected muscles ( ). The Voigt model estimates of viscoelastic properties were also significantly different between the stroke-impaired and non-impaired muscles. We observed significantly larger model-estimated viscosity values on the stroke-affected side at elbow flexion angles of 120° and 150°. Furthermore, the creep behavior (tissue strain resulting from the application of sudden constant stress) of the model was also different between muscles of the paretic and non-paretic side. We speculate that these changes are associated with the structural disruption of muscles after stroke and may potentially affect force generation from muscle fibers as well as transmission of force to tendons.
Collapse
|
87
|
Kijanka P, Ambrozinski L, Urban MW. Two Point Method For Robust Shear Wave Phase Velocity Dispersion Estimation of Viscoelastic Materials. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2540-2553. [PMID: 31230912 PMCID: PMC6689264 DOI: 10.1016/j.ultrasmedbio.2019.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 05/03/2023]
Abstract
Ultrasound shear wave elastography (SWE) is an imaging modality used for noninvasive, quantitative evaluation of tissue mechanical properties. SWE uses an acoustic radiation force to produce laterally propagating shear waves that can be tracked in spatial and temporal domains in order to obtain the wave velocity. One of the ways to study the viscoelasticity is through examining the shear wave velocity dispersion curves. In this paper, we present an alternative method to two-dimensional Fourier transform (2D-FT). Our unique approach (2P-CWT) considers shear wave propagation measured in two lateral locations only and uses wavelet transformation analysis. We used the complex Morlet wavelet function as the mother wavelet to filter two shear waves at different locations. We examined how the first signal position and the distance between the two locations affect the shear wave velocity dispersion estimation in 2P-CWT. We tested this new method on a digital phantom data created using the local interaction simulation approach (LISA) in viscoelastic media with and without added white Gaussian noise to the wave motion. Moreover, we tested data acquired from custom made tissue mimicking viscoelastic phantom experiments and ex vivo porcine liver measurements. We compared results from 2P-CWT with the 2D-FT technique. 2P-CWT provided dispersion curves estimation with lower errors over a wider frequency band in comparison to 2D-FT. Tests conducted showed that the two-point technique gives results with better accuracy in simulation results and can be used to measure phase velocity of viscoelastic materials.
Collapse
Affiliation(s)
- Piotr Kijanka
- Department of Radiology, Mayo Clinic, Rochester, MN 55905 USA; Department of Robotics and Mechatronics, AGH University of Science and Technology, Krakow 30-059, Poland.
| | - Lukasz Ambrozinski
- Department of Robotics and Mechatronics, AGH University of Science and Technology, Krakow 30-059, Poland
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, MN 55905 USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
88
|
Sofue K, Onoda M, Tsurusaki M, Morimoto D, Yada N, Kudo M, Murakami T. Dual-frequency MR elastography to differentiate between inflammation and fibrosis of the liver: Comparison with histopathology. J Magn Reson Imaging 2019; 51:1053-1064. [PMID: 31423702 DOI: 10.1002/jmri.26903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Differentiation between inflammation and fibrosis is an important clinical distinction in patients with chronic liver disease, which has been difficult so far with MR elastography. PURPOSE To investigate whether dual-frequency MR elastography can estimate necroinflammation of the liver and improve diagnostic performance for the staging of liver fibrosis. STUDY TYPE Retrospective. SUBJECTS In all, 30 patients (14 males, 16 females) with chronic liver disease. FIELD STRENGTH/SEQUENCE 1.5T/dual-frequency MR elastography at 60-Hz and 80-Hz vibration frequencies. [Correction added on November 12, 2019, after first online publication: The field strength in the preceding sentence was corrected.] ASSESSMENT: Necroinflammation activity and fibrosis were assessed using the METAVIR scoring system. Stiffness values at 60-Hz (G60-Hz ) and 80-Hz (G80-Hz ) were obtained with an MR elastogram. The difference value between G80-Hz and G60-Hz (ΔG) was calculated. Four values (G60-Hz , G80-Hz , G60-Hz - ΔG, and G80-Hz + ΔG) were generated to estimate necroinflammation and fibrosis. STATISTICAL TESTS The ΔG were correlated with necroinflammation activity grade and fibrosis stage using Spearman's rank correlation. Diagnostic performance of the four values for necroinflammation activity grade and fibrous stage was assessed by using area under the receiver operating characteristic curve (AUC). RESULTS The mean value of G80-Hz (6.23 ± 3.67 kPa) was significantly higher than that of G60-Hz (5.27 ± 3.14 kPa) (P < 0.0001). The ΔG demonstrated a strong correlation with necroinflammation grade (ρ = 0.625, P < 0.001) and no correlation with fibrosis stage (ρ = 0.306, P = 0.113). The AUC of the G80-Hz and G80-Hz + ΔG showed higher accuracy for necroinflammation, and optimal cutoff values yielded better discrimination of ≥A1, ≥A2, and = A3. The AUC demonstrated that all the generated values had high diagnostic performance (≥0.87 for all) for fibrosis. DATA CONCLUSION Dual-frequency MR elastography shows potential in estimating necroinflammation of the liver and may improve diagnostic performance for staging liver fibrosis. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:1053-1064.
Collapse
Affiliation(s)
- Keitaro Sofue
- The Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Radiology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Minori Onoda
- Department of Radiological Technology, Kindai University Hospital, Osaka-sayama, Japan.,Division of Health Sciences, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Masakatsu Tsurusaki
- Department of Radiology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Daisuke Morimoto
- Department of Radiological Technology, Kindai University Hospital, Osaka-sayama, Japan
| | - Norihisa Yada
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Takamichi Murakami
- The Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Radiology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| |
Collapse
|
89
|
Nair A, Liu CH, Singh M, Das S, Le T, Du Y, Soomro S, Aglyamov S, Mohan C, Larin KV. Assessing colitis ex vivo using optical coherence elastography in a murine model. Quant Imaging Med Surg 2019; 9:1429-1440. [PMID: 31559172 PMCID: PMC6732062 DOI: 10.21037/qims.2019.06.03] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) that causes regions of ulceration within the interior of the colon. UC is estimated to afflict hundreds of thousands of people in the United States alone. In addition to traditional colonoscopy, ultrasonic techniques can detect colitis, but have limited spatial resolution, which frequently results in underdiagnoses. Nevertheless, clinical diagnosis of colitis is still generally performed via colonoscopy. Optical techniques such as confocal microscopy and optical coherence tomography (OCT) have been proposed to detect UC with higher resolution. However, UC can potentially alter tissue biomechanical properties, providing additional contrast for earlier and potentially more accurate detection. Although clinically available elastography techniques have been immensely useful, they do not have the resolution for imaging small tissues, such as in small mammalian disease models. However, OCT-based elastography, optical coherence elastography (OCE), is well-suited for imaging the biomechanical properties of small mammal colon tissue. METHODS In this work, we induced elastic waves in ex vivo mouse colon tissue using a focused air-pulse. The elastic waves were detected using a phase-stabilized swept source OCE system, and the wave velocity was translated into stiffness. Measurements were taken at six positions for each sample to assess regional sample elasticity. Additional contrast between the control and diseased tissue was detected by analyzing the dispersion of the elastic wave and tissue optical properties obtained from the OCT structural image. RESULTS The results show distinct differences (P<0.05) in the stiffness between control and colitis disease samples, with a Young's modulus of 11.8±8.0 and 5.1±1.5 kPa, respectively. The OCT signal standard deviations for control and diseased samples were 5.8±0.3 and 5.5±0.2 dB, respectively. The slope of the OCT signal spatial frequency decay in the control samples was 92.7±10.0 and 87.3±4.7 dB∙µm in the colitis samples. The slope of the linearly fitted dispersion curve in the control samples was 1.5 mm, and 0.8 mm in the colitis samples. CONCLUSIONS Our results show that OCE can be utilized to distinguish tissue based on stiffness and optical properties. Our estimates of tissue stiffness suggest that the healthy colon tissue was stiffer than diseased tissue. Furthermore, structural analysis of the tissue indicates a distinct difference in tissue optical properties between the healthy and UC-like diseased tissue.
Collapse
Affiliation(s)
- Achuth Nair
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Chih Hao Liu
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Susobhan Das
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Triet Le
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Yong Du
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Sanam Soomro
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Salavat Aglyamov
- Department of Mechanical Engineering, University of Houston, Houston, TX, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
90
|
Sugimoto K, Moriyasu F, Oshiro H, Takeuchi H, Yoshimasu Y, Kasai Y, Itoi T. Clinical utilization of shear wave dispersion imaging in diffuse liver disease. Ultrasonography 2019; 39:3-10. [PMID: 31645092 PMCID: PMC6920618 DOI: 10.14366/usg.19031] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022] Open
Abstract
Shear wave (SW) dispersion imaging is a newly developed imaging technology for assessing the dispersion slope of SWs, which is related to tissue viscosity in diffuse liver disease. Our preclinical and preliminary clinical studies have shown that SW speed is more useful than dispersion slope for predicting the degree of fibrosis and that dispersion slope is more useful than SW speed for predicting the degree of necroinflammation. Thus, dispersion slope, which reflects viscosity, may provide additional pathophysiological insight into diffuse liver disease.
Collapse
Affiliation(s)
- Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Fuminori Moriyasu
- Department of Gastroenterology and Hepatology, International University of Health and Welfare, Sanno Hospital, Tokyo, Japan
| | - Hisashi Oshiro
- Department of Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Hirohito Takeuchi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Yu Yoshimasu
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Yoshitaka Kasai
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
91
|
Ormachea J, Parker KJ, Barr RG. An initial study of complete 2D shear wave dispersion images using a reverberant shear wave field. ACTA ACUST UNITED AC 2019; 64:145009. [DOI: 10.1088/1361-6560/ab2778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
92
|
Ahmed R, Doyley MM. Distributing Synthetic Focusing Over Multiple Push-Detect Events Enhances Shear Wave Elasticity Imaging Performance. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1170-1184. [PMID: 30990427 PMCID: PMC6701192 DOI: 10.1109/tuffc.2019.2911036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plane wave (PW) imaging is a commonly used method for tracking waves during shear wave elasticity imaging (SWEI), but its unfocused transmission beam reduces tracking accuracy and precision. Coherent compounding minimizes this problem, but SWEI's stringent frame rate requirement and the coarse pitch of most clinical transducers limit its effectiveness. Synthetic aperture imaging (SAI) is an alternate ultrasound imaging approach with a much tighter focus than PW imaging, but its lower transmission power has deterred researchers from using SAI in SWEI. Hadamard-encoded multielement SAI can overcome this limitation. However, only a limited number of subapertures (3-5) can be transmitted in a single push-detect event. We have developed methods to distribute more subapertures or more compounding angles over multiple push-detect events. In this paper, we report the results of experiments conducted on phantoms to assess SWEI's performance when using Hadamard-encoded distributed-multielement synthetic aperture (HDMSA) imaging or distributed plane wave compounding (DPWC) to track shear waves. Tracking shear waves with HDMSA improved the elastographic signal-to-noise ratio (SNRe) by 61.6%-89.5% depending on the phantom employed. Similarly, DPWC tracking improved SNRe by 56.2%-93.3% for the same group of phantoms. Compared to focused ultrasound tracking (at the focus), SNRe improved by 28.6% and 32.5% when tracking shear waves with HDMSA and DPWC, respectively. Long acquisitions could introduce decoding errors that decrease the performance when performing HDMSA tracking within the clinical setting. Nevertheless, the results of studies performed on the bicep muscle of three healthy volunteers demonstrate that for stationary organs, tracking shear waves with HDMSA yielded repeatable elastograms that offer better elastographic performance than those produced with current tracking methods.
Collapse
|
93
|
Tripathi BB, Espíndola D, Pinton GF. Piecewise parabolic method for propagation of shear shock waves in relaxing soft solids: One-dimensional case. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3187. [PMID: 30861631 DOI: 10.1002/cnm.3187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/30/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Shear shock waves can be generated spontaneously deep within the brain during a traumatic injury. This recently observed behavior could be a primary mechanism for the generation of traumatic brain injuries. However, shear shock wave physics and its numerical modeling are relatively unstudied. Existing numerical solvers used in biomechanics are not designed for the extremely large Mach numbers (greater than 1) observed in the brain. Furthermore, soft solids, such as the brain, have a complex nonclassical viscoleastic response, which must be accurately modeled to capture the nonlinear wave behavior. Here, we develop a 1D inviscid velocity-stress-like system to model the propagation of shear shock waves in a homogeneous medium. Then a generalized Maxwell body is used to model a relaxing medium that can describe experimentally determined attenuation laws. Finally, the resulting system is solved numerically with the piecewise parabolic method, a high-order finite volume method. The nonlinear and the relaxing components of this method are validated with theoretical predictions. Comparisons between numerical solutions obtained for the proposed model and the experiments of plane shear shock wave propagation based on high frame-rate ultrasound imaging and tracking are shown to be in excellent agreement.
Collapse
Affiliation(s)
- Bharat B Tripathi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| | - David Espíndola
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| | - Gianmarco F Pinton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| |
Collapse
|
94
|
Hofstetter LW, Odéen H, Bolster BD, Mueller A, Christensen DA, Payne A, Parker DL. Efficient shear wave elastography using transient acoustic radiation force excitations and MR displacement encoding. Magn Reson Med 2019; 81:3153-3167. [PMID: 30663806 PMCID: PMC6414262 DOI: 10.1002/mrm.27647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/21/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE To present a novel MR shear wave elastography (MR-SWE) method that efficiently measures the speed of propagating wave packets generated using acoustic radiation force (ARF) impulses. METHODS ARF impulses from a focused ultrasound (FUS) transducer were applied sequentially to a preselected set of positions and motion encoded MRI was used to acquire volumetric images of the propagating shear wavefront emanating from each point. The wavefront position at multiple propagation times was encoded in the MR phase image using a train of motion encoding gradient lobes. Generating a transient propagating wavefront at multiple spatial positions and sampling each at multiple time-points allowed for shear wave speed maps to be efficiently created. MR-SWE was evaluated in tissue mimicking phantoms and ex vivo bovine liver tissue before and after ablation. RESULTS MR-SWE maps, covering an in-plane area of ~5 × 5 cm, were acquired in 12 s for a single slice and 144 s for a volumetric scan. MR-SWE detected inclusions of differing stiffness in a phantom experiment. In bovine liver, mean shear wave speed significantly increased from 1.65 ± 0.18 m/s in normal to 2.52 ± 0.18 m/s in ablated region (n = 581 pixels; P-value < 0.001). CONCLUSION MR-SWE is an elastography technique that enables precise targeting and excitation of the desired tissue of interest. MR-SWE may be particularly well suited for treatment planning and endpoint assessment of MR-guided FUS procedures because the same device used for therapy can be used as an excitation source for tissue stiffness quantification.
Collapse
Affiliation(s)
- Lorne W Hofstetter
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | | | - Alexander Mueller
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Douglas A Christensen
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
- Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
95
|
Bhatt M, Moussu MAC, Chayer B, Destrempes F, Gesnik M, Allard L, Tang A, Cloutier G. Reconstruction of Viscosity Maps in Ultrasound Shear Wave Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1065-1078. [PMID: 30990181 DOI: 10.1109/tuffc.2019.2908550] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Change in viscoelastic properties of biological tissues may often be symptomatic of a dysfunction that can be correlated to tissue pathology. Shear wave elastography is an imaging method mainly used to assess stiffness but with the potential to measure viscoelasticity of biological tissues. This can enable tissue characterization; and thus, can be used as a marker to improve diagnosis of pathological lesions. In this study, a frequency-shift method based framework is presented for the reconstruction of viscosity by analyzing the spectral properties of acoustic radiation force-induced shear waves. The aim of the study was to investigate the feasibility of viscosity reconstruction maps in homogeneous as well as heterogeneous samples. Experiments were performed in four in vitro phantoms, two ex vivo porcine liver samples, two ex vivo fatty duck liver samples, and one in vivo fatty goose liver. Successful viscosity maps were reconstructed in homogeneous and heterogeneous phantoms with embedded mechanical inclusions having different geometries. Quantitative values of viscosity obtained for two porcine liver tissues, two fatty duck liver samples, and one goose fatty liver were (mean ± SD) 0.61 ± 0.21, 0.52 ± 0.35; 1.28 ± 0.54, 1.36 ± 0.73, and 1.67 ± 0.70 Pa.s, respectively.
Collapse
|
96
|
Nabavizadeh A, Bayat M, Kumar V, Gregory A, Webb J, Alizad A, Fatemi M. Viscoelastic biomarker for differentiation of benign and malignant breast lesion in ultra- low frequency range. Sci Rep 2019; 9:5737. [PMID: 30952880 PMCID: PMC6450913 DOI: 10.1038/s41598-019-41885-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
Benign and malignant tumors differ in the viscoelastic properties of their cellular microenvironments and in their spatiotemporal response to very low frequency stimuli. These differences can introduce a unique viscoelastic biomarker in differentiation of benign and malignant tumors. This biomarker may reduce the number of unnecessary biopsies in breast patients. Although different methods have been developed so far for this purpose, none of them have focused on in vivo and in situ assessment of local viscoelastic properties in the ultra-low (sub-Hertz) frequency range. Here we introduce a new, noninvasive model-free method called Loss Angle Mapping (LAM). We assessed the performance results on 156 breast patients. The method was further improved by detection of out-of-plane motion using motion compensation cross correlation method (MCCC). 45 patients met this MCCC criterion and were considered for data analysis. Among this population, we found 77.8% sensitivity and 96.3% specificity (p < 0.0001) in discriminating between benign and malignant tumors using logistic regression method regarding the pre known information about the BIRADS number and size. The accuracy and area under the ROC curve, AUC, was 88.9% and 0.94, respectively. This method opens new avenues to investigate the mechanobiology behavior of different tissues in a frequency range that has not yet been explored in any in vivo patient studies.
Collapse
Affiliation(s)
- Alireza Nabavizadeh
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Biomedical Informatics and Computational Biology, University of Minnesota Rochester, Rochester, Minnesota, USA
| | - Mahdi Bayat
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Viksit Kumar
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Adriana Gregory
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jeremy Webb
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Azra Alizad
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
| |
Collapse
|
97
|
Yengul SS, Barbone PE, Madore B. Dispersion in Tissue-Mimicking Gels Measured with Shear Wave Elastography and Torsional Vibration Rheometry. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:586-604. [PMID: 30473175 PMCID: PMC6325023 DOI: 10.1016/j.ultrasmedbio.2018.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 06/28/2018] [Accepted: 07/05/2018] [Indexed: 06/09/2023]
Abstract
Dispersion, or the frequency dependence of mechanical parameters, is a primary confounding factor in elastography comparisons. We present a study of dispersion in tissue-mimicking gels over a wide frequency band using a combination of ultrasound shear wave elastography (SWE), and a novel torsional vibration rheometry which allows independent mechanical measurement of SWE samples. Frequency-dependent complex shear modulus was measured in homogeneous gelatin hydrogels of two different bloom strengths while controlling for confounding factors such as temperature, water content and material aging. Furthermore, both techniques measured the same physical samples, thereby eliminating possible variation caused by batch-to-batch gel variation, sample geometry differences and boundary artifacts. The wide-band measurement, from 1 to 1800 Hz, captured a 30%-50% increase in the storage modulus and a nearly linear increase with frequency of the loss modulus. The magnitude of the variation suggests that accounting for dispersion is essential for meaningful comparisons between SWE implementations.
Collapse
Affiliation(s)
- Sanjay S Yengul
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | - Paul E Barbone
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts, USA
| | - Bruno Madore
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
98
|
Moore CJ, Caughey MC, Meyer DO, Emmett R, Jacobs C, Chopra M, Howard JF, Gallippi CM. In Vivo Viscoelastic Response (VisR) Ultrasound for Characterizing Mechanical Anisotropy in Lower-Limb Skeletal Muscles of Boys with and without Duchenne Muscular Dystrophy. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2519-2530. [PMID: 30174231 PMCID: PMC6215506 DOI: 10.1016/j.ultrasmedbio.2018.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/13/2018] [Accepted: 07/05/2018] [Indexed: 05/03/2023]
Abstract
Our group has previously found that in silico, mechanical anisotropy may be interrogated by exciting transversely isotropic materials with geometrically asymmetric acoustic radiation force excitations and then monitoring the associated induced displacements in the region of excitation. We now translate acoustic radiation force-based anisotropy assessment to human muscle in vivo and investigate its clinical relevance to monitoring muscle degeneration in Duchenne muscular dystrophy (DMD). Clinical anisotropy assessments were performed using Viscoelastic Response ultrasound, with a degree of anisotropy reflected by the ratios of Viscoelastic Response relative elasticity (RE) or relative viscosity (RV) measured with the asymmetric radiation force oriented parallel versus perpendicular to muscle fiber alignment. In vivo results from rectus femoris and gastrocnemius muscles of boys aged ∼7.9-10.4 y indicate that RE and RV anisotropy ratios in rectus femoris muscles of boys with DMD were significantly higher than those of healthy control boys (RE: DMD = 1.51 ± 0.87, control = 0.99 ± 0.69, p = 0.04, Wilcoxon rank sum test; RV: DMD = 1.04 ± 0.71, control = 0.74 ± 0.22, p = 0.02). In the gastrocnemius muscle, only the RV anisotropy ratio was significantly higher in dystrophic than control patients (DMD = 1.23 ± 0.35, control = 0.88 ± 0.31, p = 0.04). In the dystrophic rectus femoris muscle, the RE anisotropy ratio was inversely correlated (slope = -0.03/lbf, r = -0.43, p = 0.07, Pearson correlation) with quantitative muscle testing functional output measures but was not correlated with quantitative muscle testing in the dystrophic gastrocnemius. These results suggest that Viscoelastic Response RE and RV measures reflect differences in mechanical anisotropy associated with functional impairment with dystrophic degeneration that are relevant to monitoring DMD clinically.
Collapse
Affiliation(s)
- Christopher J Moore
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Melissa C Caughey
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Diane O Meyer
- Rehabilitation Services, University of North Carolina Hospital, Chapel Hill, North Carolina, USA
| | - Regina Emmett
- Rehabilitation Services, University of North Carolina Hospital, Chapel Hill, North Carolina, USA
| | - Catherine Jacobs
- Rehabilitation Services, University of North Carolina Hospital, Chapel Hill, North Carolina, USA
| | - Manisha Chopra
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James F Howard
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Caterina M Gallippi
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, USA; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA.
| |
Collapse
|
99
|
Saadat F, Son J, Rymer WZ, Lee SSM. Frequency Dependence of Shear Wave Velocity in Stroke-Affected Muscles During Isometric Contraction- Preliminary Data .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:2292-2295. [PMID: 30440864 DOI: 10.1109/embc.2018.8512857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In addition to changes in the central nervous system, many changes can occur in the composition and structure of skeletal muscles after a hemispheric stroke. The mechanical behavior of skeletal muscles is linked to the density and structural arrangement of key constituents. Yet, little is known about changes in post-stroke muscle mechanical properties such as viscoelasticity. The aim of this study was to explore the frequency-dependent changes in shear wave (SW) velocity as a potentially informative feature accompanying changes in muscle viscoelastic properties under passive and active conditions in hemiplegic stroke. We used the ultrasound SuperSonic Imaging technique to induce and measure SW propagation in the biceps brachii muscle for both the paretic and contralateral limbs in three hemiplegic stroke survivors during passive and submaximal voluntary muscle contractions. We found that for all subjects, the muscles on both the paretic and non-paretic sides demonstrated large dispersion (i.e., a change in SW phase velocities as a function of frequency within each contraction level) under both passive and active conditions, although muscles on the paretic side displayed larger dispersion. In addition, for a range of frequencies from 108-756 Hz, the SW phase velocity was higher in active nonparetic muscles compared to those of paretic side with an increase of 42% at 756 Hz. This is in contrast with the muscle response under passive condition where the SW phase velocity exhibited a 97 % increase at 765Hz on the paretic side compared to the non-paretic side. These results suggest the mechanical properties are altered for stroke-affected muscles, which may be a result of changes in the muscle extracellular matrix composition. Further, this study provides evidence that there are changes in tissue mechanical properties and that may consequently influence muscle function.
Collapse
|
100
|
Urban MW. Production of acoustic radiation force using ultrasound: methods and applications. Expert Rev Med Devices 2018; 15:819-834. [PMID: 30350736 DOI: 10.1080/17434440.2018.1538782] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Acoustic radiation force (ARF) is used in many biomedical applications. The transfer of momentum in acoustic waves can be used in a multitude of ways to perturb tissue and manipulate cells. AREAS COVERED This review will briefly cover the acoustic theory related to ARF, particularly that related to application in tissues. The use of ARF in measurement of mechanical properties will be treated in detail with emphasis on the spatial and temporal modulation of the ARF. Additional topics covered will be the manipulation of particles with ARF, correction of phase aberration with ARF, modulation of cellular behavior with ARF, and bioeffects related to ARF use. EXPERT COMMENTARY The use of ARF can be tailored to specific applications for measurements of mechanical properties or correction of focusing for ultrasound beams. Additionally, noncontact manipulation of particles and cells with ARF enables a wide array of applications for tissue engineering and biosensing.
Collapse
Affiliation(s)
- Matthew W Urban
- a Department of Radiology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|