51
|
Brance ML, Pons-Estel BA, Quagliato NJ, Jorfen M, Berbotto G, Cortese N, Raggio JC, Palatnik M, Chavero I, Soldano J, Dieguez C, Sánchez A, Del Rio L, Di Gregorio S, Brun LR. Trabecular and cortical bone involvement in rheumatoid arthritis by DXA and DXA-based 3D modelling. Osteoporos Int 2021; 32:705-714. [PMID: 32974730 DOI: 10.1007/s00198-020-05641-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
UNLABELLED Rheumatoid arthritis (RA) patients had a higher risk of developing low bone mineral density (BMD) or osteoporosis. RA patients on classic disease-modifying antirheumatic drug (c-DMARD) therapy showed significantly lower BMD than controls, while no significant differences in most parameters were found between RA patients receiving biological disease-modifying antirheumatic drugs (b-DMARDs) and controls. The 3D analysis allowed us to find changes in the trabecular and cortical compartments. INTRODUCTION To evaluate cortical and trabecular bone involvement of the hip in RA patients by dual-energy X-ray absorptiometry (DXA) and 3D analysis. The secondary end-point was to evaluate bone involvement in patients treated with classic (c-DMARD) or biological (b-DMARD) disease-modifying antirheumatic drug therapies and the effect of the duration of the disease and corticosteroid therapy on 3D parameters. METHODS A cross-sectional study of 105 RA patients and 100 subjects as a control group (CG) matched by age, sex, and BMI was carried out. BMD was measured by DXA of the bilateral femoral neck (FN) and total hip (TH). The 3D analyses including trabecular and cortical BMD were performed on hip scans with the 3D-Shaper software. RESULTS FN and TH BMD and trabecular and cortical vBMD were significantly lower in RA patients. The c-DMARD (n = 75) group showed significantly lower trabecular and cortical vBMD than the CG. Despite the lower values, the b-DMARD group (n = 30) showed no significant differences in most parameters compared with the CG. The trabecular and cortical 3D parameters were significantly lower in the group with an RA disease duration of 1 to 5 years than in the CG, and the trabecular vBMD was significantly lower in the group with a duration of corticosteroid therapy of 1 to 5 years than in the CG, while no significant differences were found by standard DXA in the same period. CONCLUSIONS RA patients had a higher risk of developing low BMD or osteoporosis than controls. RA patients receiving c-DMARD therapy showed significantly lower BMD than controls, while no significant differences in most parameters were found between RA patients receiving b-DMARDs and controls. 3D-DXA allowed us to find changes in trabecular and cortical bone compartments in RA patients.
Collapse
Affiliation(s)
- M L Brance
- Reumatología y Enfermedades Óseas, Rosario, Argentina
- Bone Biology Laboratory, School of Medicine, Rosario National University, Rosario, Argentina
- National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - B A Pons-Estel
- Centro Regional de Enfermedades Autoinmunes y Reumáticas (GO-CREAR), Rosario, Argentina
| | | | - M Jorfen
- Reumatología y Enfermedades Óseas, Rosario, Argentina
| | - G Berbotto
- Reumatología y Enfermedades Óseas, Rosario, Argentina
| | - N Cortese
- School of Medicine, Rosario National University, Rosario, Argentina
| | - J C Raggio
- Reumatología y Enfermedades Óseas, Rosario, Argentina
| | - M Palatnik
- Centro de Reumatología, Rosario, Argentina
| | - I Chavero
- Reumatología y Enfermedades Óseas, Rosario, Argentina
| | - J Soldano
- School of Medicine, Rosario National University, Rosario, Argentina
| | - C Dieguez
- Reumatología y Enfermedades Óseas, Rosario, Argentina
| | - A Sánchez
- Centro de Endocrinología, Rosario, Argentina
| | | | | | - L R Brun
- Bone Biology Laboratory, School of Medicine, Rosario National University, Rosario, Argentina.
- National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
52
|
Winzenrieth R, Ominsky MS, Wang Y, Humbert L, Weiss RJ. Differential effects of abaloparatide and teriparatide on hip cortical volumetric BMD by DXA-based 3D modeling. Osteoporos Int 2021; 32:575-583. [PMID: 33496831 PMCID: PMC7929959 DOI: 10.1007/s00198-020-05806-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/17/2020] [Indexed: 11/24/2022]
Abstract
UNLABELLED In postmenopausal osteoporotic women in ACTIVE, abaloparatide reduced fracture risk and increased areal bone mineral density (BMD) more than teriparatide at the hip and wrist. DXA-based 3D modeling showed significantly greater increases in hip cortical volumetric BMD with abaloparatide versus teriparatide. This may explain differences reported in aBMD by DXA. INTRODUCTION In ACTIVE, abaloparatide (ABL) increased bone mineral density (BMD) shown by dual-energy X-ray absorptiometry (DXA) while reducing fracture incidence in postmenopausal osteoporotic women. Changes in DXA BMD with ABL, 80 μg, were significantly greater than with open-label teriparatide (TPTD), 20 μg, at cortical sites including total hip, femoral neck, and 1/3 distal radius. The purpose of this study was to better understand the relative effects of ABL and TPTD on cortical and cancellous compartments in the proximal femur. METHODS Hip DXA images from a subset of randomly selected patients in the ACTIVE trial (n = 250/arm) were retrospectively analyzed using three-dimensional modeling methods (3D-SHAPER software) to evaluate changes from baseline at months 6 and 18. RESULTS Similar significant increases in trabecular volumetric BMD (vBMD, + 9%) and cortical thickness (+ 1.5%) were observed with ABL and TPTD by 3D-DXA at 18 months. In contrast, only ABL significantly increased cortical vBMD versus baseline (+ 1.3%), and changes in both cortical vBMD and cortical surface BMD were significantly greater with ABL versus TPTD. In the TPTD group, changes in cortical vBMD were inversely correlated with changes in serum CTX (carboxy-terminal telopeptide of type I collagen) and PINP (procollagen type I N-terminal propeptide), suggesting that higher bone turnover may have attenuated cortical gains. CONCLUSION These results suggest previously reported differences in areal BMD increases between ABL and TPTD may be due to differential effects on cortical vBMD. Further studies are warranted to investigate how these differences affect therapeutic impact on hip strength in postmenopausal women with osteoporosis.
Collapse
Affiliation(s)
- R Winzenrieth
- Galgo Medical, Carrer de París, 179 2°, Barcelona, 08036, Spain
| | - M S Ominsky
- Radius Health, Inc., 950 Winter Street, Waltham, MA, 02451, USA
| | - Y Wang
- Radius Health, Inc., 950 Winter Street, Waltham, MA, 02451, USA
| | - L Humbert
- Galgo Medical, Carrer de París, 179 2°, Barcelona, 08036, Spain
| | - R J Weiss
- Radius Health, Inc., 950 Winter Street, Waltham, MA, 02451, USA.
| |
Collapse
|
53
|
Gracia-Marco L, Gonzalez-Salvatierra S, Garcia-Martin A, Ubago-Guisado E, Garcia-Fontana B, Gil-Cosano JJ, Muñoz-Torres M. 3D DXA Hip Differences in Patients with Acromegaly or Adult Growth Hormone Deficiency. J Clin Med 2021; 10:jcm10040657. [PMID: 33572103 PMCID: PMC7914467 DOI: 10.3390/jcm10040657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
The skeleton is regulated by and responds to pituitary hormones, especially when the circulating levels are perturbed in disease. This study aims to analyse the between-group differences in 3D dual-energy X-ray absorptiometry (DXA) parameters at the hip site among patients with acromegaly or adult growth hormone deficiency (AGHD) and a healthy control group. The current cross-sectional study includes data for 67 adults, 20 with acromegaly, 14 with AGHD and 33 healthy controls. We obtained the areal bone mineral density (aBMD) outcomes using DXA and cortical and trabecular parameters using 3D-DXA software (3D-SHAPER). The mean-adjusted 3D-DXA parameters did not differ between acromegaly patients and the controls (p > 0.05); however, we found cortical bone impairment (−7.3% to −8.4%; effect size (ES) = 0.78) in AGHD patients (p < 0.05). Differences in the cortical bone parameters were more evident when comparing AGHD patients (−8.5% to −16.2%; ES = 1.22 to 1.24) with acromegaly patients (p < 0.05). In brief, the 3D mapping highlighted the trochanter as the site with greater cortical bone differences between acromegaly patients and the controls. Overall, AGHD patients displayed lower cortical parameters at the trochanter, femoral neck and intertrochanter compared to the controls and acromegaly patients. To sum up, 3D-DXA provided useful information about the characteristics of bone involvement in growth hormone (GH)-related disorders. Patients with AGHD showed distinct involvement of the cortical structure.
Collapse
Affiliation(s)
- Luis Gracia-Marco
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Camino de Alfacar 21, 18071 Granada, Spain; (L.G.-M.); (J.J.G.-C.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
| | - Sheila Gonzalez-Salvatierra
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Av. de la Ilustración s/n, 18016 Granada, Spain; (S.G.-S.); (A.G.-M.); (B.G.-F.); (M.M.-T.)
- Department of Medicine, University of Granada, Av. de la Investigación 11, 18016 Granada, Spain
| | - Antonia Garcia-Martin
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Av. de la Ilustración s/n, 18016 Granada, Spain; (S.G.-S.); (A.G.-M.); (B.G.-F.); (M.M.-T.)
- CIBERFES, Instituto de Salud Carlos III, C/Sinesio Delgado 4, 28029 Madrid, Spain
| | - Esther Ubago-Guisado
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Camino de Alfacar 21, 18071 Granada, Spain; (L.G.-M.); (J.J.G.-C.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain
- Correspondence:
| | - Beatriz Garcia-Fontana
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Av. de la Ilustración s/n, 18016 Granada, Spain; (S.G.-S.); (A.G.-M.); (B.G.-F.); (M.M.-T.)
- CIBERFES, Instituto de Salud Carlos III, C/Sinesio Delgado 4, 28029 Madrid, Spain
| | - José Juan Gil-Cosano
- PROFITH “PROmoting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Camino de Alfacar 21, 18071 Granada, Spain; (L.G.-M.); (J.J.G.-C.)
| | - Manuel Muñoz-Torres
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Av. de la Ilustración s/n, 18016 Granada, Spain; (S.G.-S.); (A.G.-M.); (B.G.-F.); (M.M.-T.)
- Department of Medicine, University of Granada, Av. de la Investigación 11, 18016 Granada, Spain
- CIBERFES, Instituto de Salud Carlos III, C/Sinesio Delgado 4, 28029 Madrid, Spain
| |
Collapse
|
54
|
O'Rourke D, Beck BR, Harding AT, Watson SL, Pivonka P, Martelli S. Assessment of femoral neck strength and bone mineral density changes following exercise using 3D-DXA images. J Biomech 2021; 119:110315. [PMID: 33636460 DOI: 10.1016/j.jbiomech.2021.110315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 11/27/2022]
Abstract
Physical exercise induces spatially heterogeneous bone changes in the proximal femur. Recent advances have enabled 3D dual-energy X-ray Absorptiometry (DXA)-based finite element (FE) models to estimate bone strength. However, its ability to detect exercise-induced BMD and strength changes is unclear. The aim of this study was to quantify the repeatability of vBMD and femoral neck strength obtained from 3D-DXA images and determine the changes due an exercise intervention. The DXA scans included pairs of same-day repeated scans from ten healthy females and pre- and post-exercise intervention scans of 26 males. FE models with element-by-element correspondence were generated by morphing a template mesh to each bone. BMD and femoral strength under single-leg-stance and sideways fall loading configurations were obtained for both groups and compared. In the repeated images, the total hip vBMD difference was 0.5 ± 2.5%. Element-by-element BMD differences reached 30 ± 50%. The strength difference in single-leg stance was 2.8 ± 13% and in sideways fall was 4.5% ± 19%. In the exercise group, strength changes were 6 ± 19% under single-leg stance and 1 ± 18% under sideways fall. vBMD parameters were weakly correlated to strength (R2 < 0.31). The exercise group had a mean bone accrual exceeding repeatability values in the femoral head and cortical regions. The case with the highest vBMD change (6.4%) caused 18% and -7% strength changes under single-leg stance and sideways fall. 3D-DXA technology can assess the effect of exercise interventions in large cohorts but its validity in individual cases should be interpreted with caution.
Collapse
Affiliation(s)
- Dermot O'Rourke
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, Australia.
| | - Belinda R Beck
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia; School of Allied Health Sciences, Griffith University, Gold Coast, Australia; The Bone Clinic, Brisbane, Australia
| | - Amy T Harding
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia; School of Allied Health Sciences, Griffith University, Gold Coast, Australia
| | - Steven L Watson
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia; School of Allied Health Sciences, Griffith University, Gold Coast, Australia
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - Saulo Martelli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, Australia; School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
55
|
Grassi L, Fleps I, Sahlstedt H, Väänänen SP, Ferguson SJ, Isaksson H, Helgason B. Validation of 3D finite element models from simulated DXA images for biofidelic simulations of sideways fall impact to the hip. Bone 2021; 142:115678. [PMID: 33022451 DOI: 10.1016/j.bone.2020.115678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
Computed tomography (CT)-derived finite element (FE) models have been proposed as a tool to improve the current clinical assessment of osteoporosis and personalized hip fracture risk by providing an accurate estimate of femoral strength. However, this solution has two main drawbacks, namely: (i) 3D CT images are needed, whereas 2D dual-energy x-ray absorptiometry (DXA) images are more generally available, and (ii) quasi-static femoral strength is predicted as a surrogate for fracture risk, instead of predicting whether a fall would result in a fracture or not. The aim of this study was to combine a biofidelic fall simulation technique, based on 3D computed tomography (CT) data with an algorithm that reconstructs 3D femoral shape and BMD distribution from a 2D DXA image. This approach was evaluated on 11 pelvis-femur constructs for which CT scans, ex vivo sideways fall impact experiments and CT-derived biofidelic FE models were available. Simulated DXA images were used to reconstruct the 3D shape and bone mineral density (BMD) distribution of the left femurs by registering a projection of a statistical shape and appearance model with a genetic optimization algorithm. The 2D-to-3D reconstructed femurs were meshed, and the resulting FE models inserted into a biofidelic FE modeling pipeline for simulating a sideways fall. The median 2D-to-3D reconstruction error was 1.02 mm for the shape and 0.06 g/cm3 for BMD for the 11 specimens. FE models derived from simulated DXAs predicted the outcome of the falls in terms of fracture versus non-fracture with the same accuracy as the CT-derived FE models. This study represents a milestone towards improved assessment of hip fracture risk based on widely available clinical DXA images.
Collapse
Affiliation(s)
- Lorenzo Grassi
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Ingmar Fleps
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | - Sami P Väänänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | | |
Collapse
|
56
|
Gil-Cosano JJ, Ubago-Guisado E, Sánchez MJ, Ortega-Acosta MJ, Mateos ME, Benito-Bernal AI, Llorente-Cantarero FJ, Ortega FB, Ruiz JR, Labayen I, Martinez-Vizcaino V, Vlachopoulos D, Arroyo-Morales M, Muñoz-Torres M, Pascual-Gázquez JF, Vicho-González MC, Gracia-Marco L. The effect of an online exercise programme on bone health in paediatric cancer survivors (iBoneFIT): study protocol of a multi-centre randomized controlled trial. BMC Public Health 2020; 20:1520. [PMID: 33032564 PMCID: PMC7545891 DOI: 10.1186/s12889-020-09607-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND New approaches on paediatric cancer treatment aim to maintain long-term health. As a result of radiotherapy, chemotherapy or surgery, paediatric cancer survivors tend to suffer from any chronic health condition. Endocrine dysfunction represents one of the most common issues and affects bone health. Exercise is key for bone mass accrual during growth, specifically plyometric jump training. The iBoneFIT study will investigate the effect of a 9-month online exercise programme on bone health in paediatric cancer survivors. This study will also examine the effect of the intervention on body composition, physical fitness, physical activity, calcium intake, vitamin D, blood samples quality of life and mental health. METHODS A minimum of 116 participants aged 6 to 18 years will be randomized into an intervention (n = 58) or control group (n = 58). The intervention group will receive an online exercise programme and diet counselling on calcium and vitamin D. In addition, five behaviour change techniques and a gamification design will be implemented in order to increase the interest of this non-game programme. The control group will only receive diet counselling. Participants will be assessed on 3 occasions: 1) at baseline; 2) after the 9 months of the intervention; 3) 4 months following the intervention. The primary outcome will be determined by dual energy X-ray absorptiometry (DXA) and the hip structural analysis, trabecular bone score and 3D-DXA softwares. Secondary outcomes will include anthropometry, body composition, physical fitness, physical activity, calcium and vitamin D intake, blood samples, quality of life and mental health. DISCUSSION Whether a simple, feasible and short in duration exercise programme can improve bone health has not been examined in paediatric cancer survivors. This article describes the design, rationale and methods of a study intended to test the effect of a rigorous online exercise programme on bone health in paediatric cancer survivors. If successful, the iBoneFIT study will contribute to decrease chronic health conditions in this population and will have a positive impact in the society. TRIAL REGISTRATION Prospectively registered in isrctn.com: isrctn61195625 . Registered 2 April 2020.
Collapse
Affiliation(s)
- Jose J Gil-Cosano
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071, Granada, Spain
| | - Esther Ubago-Guisado
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071, Granada, Spain
| | - Maria J Sánchez
- Andalusian School of Health (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Maria J Ortega-Acosta
- Servicio de Pediatría y Oncohematología Pediátricas, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Maria E Mateos
- Pediatric Oncology Unit, Department of Pediatrics, Reina Sofia University Hospital, Córdoba, Spain
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Córdoba, Spain
| | | | - Francisco J Llorente-Cantarero
- Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), Córdoba, Spain
- CIBEROBN, (Physiopathology of Obesity and Nutrition) Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
- Department of Specific Didactics, Faculty of Education, University of Córdoba, 14071, Córdoba, Spain
| | - Francisco B Ortega
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071, Granada, Spain
| | - Jonatan R Ruiz
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071, Granada, Spain
| | - Idoia Labayen
- Institute for Innovation and Sustainable Development in Food Chain (IS-FOOD), Navarra's Health Research Institute (IdiSNA), Department of Health Sciences, Public University of Navarra, Calle Tajonar 22, 31006, Pamplona, Navarra, Spain
| | - Vicente Martinez-Vizcaino
- Universidad de Castilla-La Mancha, Health and Social Research Center, Cuenca, Spain
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile
| | - Dimitris Vlachopoulos
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter, UK
| | - Manuel Arroyo-Morales
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012, Granada, Spain
- Department of Physiotherapy, University of Granada, E-18016, Granada, Spain
- "Cuídate" Support Unit for Oncology Patients (UAPO), Sport and Health University Research Institute (iMUDS), E-18016, Granada, Spain
| | - Manuel Muñoz-Torres
- Bone Metabolic Unit, Endocrinology and Nutrition Division, Hospital Universitario San Cecilio, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, Spain
- CIBERFES, Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Universidad de Granada, Granada, Spain
| | - Juan F Pascual-Gázquez
- Servicio de Pediatría y Oncohematología Pediátricas, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Maria C Vicho-González
- Pediatric Oncology Unit, Department of Pediatrics, Reina Sofia University Hospital, Córdoba, Spain
| | - Luis Gracia-Marco
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
57
|
Villamor E, Monserrat C, Del Río L, Romero-Martín JA, Rupérez MJ. Prediction of osteoporotic hip fracture in postmenopausal women through patient-specific FE analyses and machine learning. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 193:105484. [PMID: 32278980 DOI: 10.1016/j.cmpb.2020.105484] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
A great challenge in osteoporosis clinical assessment is identifying patients at higher risk of hip fracture. Bone Mineral Density (BMD) measured by Dual-Energy X-Ray Absorptiometry (DXA) is the current gold-standard, but its classification accuracy is limited to 65%. DXA-based Finite Element (FE) models have been developed to predict the mechanical failure of the bone. Yet, their contribution has been modest. In this study, supervised machine learning (ML) is applied in conjunction with clinical and computationally driven mechanical attributes. Through this multi-technique approach, we aimed to obtain a predictive model that outperforms BMD and other clinical data alone, as well as to identify the best-learned ML classifier within a group of suitable algorithms. A total number of 137 postmenopausal women (81.4 ± 6.95 years) were included in the study and separated into a fracture group (n = 89) and a control group (n = 48). A semi-automatic and patient-specific DXA-based FE model was used to generate mechanical attributes, describing the geometry, the impact force, bone structure and mechanical response of the bone after a sideways-fall. After preprocessing the whole dataset, 19 attributes were selected as predictors. Support Vector Machine (SVM) with radial basis function (RBF), Logistic Regression, Shallow Neural Networks and Random Forest were tested through a comprehensive validation procedure to compare their predictive performance. Clinical attributes were used alone in another experimental setup for the sake of comparison. SVM was confirmed to generate the best-learned algorithm for both experimental setups, including 19 attributes and only clinical attributes. The first, generated the best-learned model and outperformed BMD by 14pp. The results suggests that this approach could be easily integrated for effective prediction of hip fracture without interrupting the actual clinical workflow.
Collapse
Affiliation(s)
- E Villamor
- Valencian Research Institute for Artificial Intelligence (VRAIN), Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain
| | - C Monserrat
- Valencian Research Institute for Artificial Intelligence (VRAIN), Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain
| | - L Del Río
- ASCIRES Grupo Biomédico, Valencia, Spain
| | | | - M J Rupérez
- Centro de Investigación en Ingeniería Mecánica, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
| |
Collapse
|
58
|
Falcinelli C, Whyne C. Image-based finite-element modeling of the human femur. Comput Methods Biomech Biomed Engin 2020; 23:1138-1161. [PMID: 32657148 DOI: 10.1080/10255842.2020.1789863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fracture is considered a critical clinical endpoint in skeletal pathologies including osteoporosis and bone metastases. However, current clinical guidelines are limited with respect to identifying cases at high risk of fracture, as they do not account for many mechanical determinants that contribute to bone fracture. Improving fracture risk assessment is an important area of research with clear clinical relevance. Patient-specific numerical musculoskeletal models generated from diagnostic images are widely used in biomechanics research and may provide the foundation for clinical tools used to quantify fracture risk. However, prior to clinical translation, in vitro validation of predictions generated from such numerical models is necessary. Despite adopting radically different models, in vitro validation of image-based finite element (FE) models of the proximal femur (predicting strains and failure loads) have shown very similar, encouraging levels of accuracy. The accuracy of such in vitro models has motivated their application to clinical studies of osteoporotic and metastatic fractures. Such models have demonstrated promising but heterogeneous results, which may be explained by the lack of a uniform strategy with respect to FE modeling of the human femur. This review aims to critically discuss the state of the art of image-based femoral FE modeling strategies, highlighting principal features and differences among current approaches. Quantitative results are also reported with respect to the level of accuracy achieved from in vitro evaluations and clinical applications and are used to motivate the adoption of a standardized approach/workflow for image-based FE modeling of the femur.
Collapse
Affiliation(s)
- Cristina Falcinelli
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, Canada
| | - Cari Whyne
- Orthopaedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, Canada
| |
Collapse
|
59
|
Humbert L, Bagué A, Di Gregorio S, Winzenrieth R, Sevillano X, González Ballester MÁ, Del Rio L. DXA-Based 3D Analysis of the Cortical and Trabecular Bone of Hip Fracture Postmenopausal Women: A Case-Control Study. J Clin Densitom 2020; 23:403-410. [PMID: 30503030 DOI: 10.1016/j.jocd.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
Methods using statistical shape and appearance models have been proposed to analyze bone mineral density (BMD) in 3D from dual energy X-ray absorptiometry (DXA) scans. This paper presents a retrospective case-control study assessing the association of DXA-derived 3D measurements with osteoporotic hip fracture in postmenopausal women. Patients who experienced a hip fracture between 1 and 6 years from baseline and age-matched controls were included in this study. The 3D-SHAPER software (version 2.7, Galgo Medical, Barcelona, Spain) was used to derive 3D analysis from hip DXA scans at baseline. DXA and 3D measurements were compared between groups. Total hip areal BMD of hip fracture group as measured by DXA was 10.7% lower compared to control group. Differences in volumetric BMD (total hip) as measured by 3D-SHAPER were more pronounced in the trabecular compartment (-23.3%) than in the cortex (-8.2%). The area under the receiver operating curve was 0.742 for trabecular volumetric BMD, 0.706 for cortical volumetric BMD, and 0.712 for total hip areal BMD. Differences in the cortex were locally more pronounced at the medial aspect of the shaft, the lateral aspect of the greater trochanter, and the superolateral aspect of the neck. Marked differences in volumetric BMD were observed in the greater trochanter. This case-control study showed the association of DXA-derived 3D measurements with hip fracture. Analysis of large cohorts will be performed in future work to determine if DXA-derived 3D measurements could improve fracture risk prediction in clinical practice.
Collapse
Affiliation(s)
| | - Alexis Bagué
- Musculoskeletal Unit, Galgo Medical, Barcelona, Spain; BCN Medtech, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Xavier Sevillano
- Grup de Recerca en Tecnologies Mèdia, La Salle-Universitat Ramon Llull, Barcelona, Spain
| | | | | |
Collapse
|
60
|
Harding AT, Weeks BK, Lambert C, Watson SL, Weis LJ, Beck BR. Effects of supervised high-intensity resistance and impact training or machine-based isometric training on regional bone geometry and strength in middle-aged and older men with low bone mass: The LIFTMOR-M semi-randomised controlled trial. Bone 2020; 136:115362. [PMID: 32289518 DOI: 10.1016/j.bone.2020.115362] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Few data exist on the effects of bone-targeted exercise on geometric and biomechanical indices of bone strength in men. The Lifting Intervention For Training Muscle and Osteoporosis Rehabilitation for Men (LIFTMOR-M) trial was designed to compare the efficacy and safety of two novel, supervised, twice-weekly, high-intensity exercise programs in middle-aged and older men with osteopenia and osteoporosis on musculoskeletal health and risk factors related to falls and fractures. The current report includes secondary outcomes of the LIFTMOR-M exercise intervention trial. PURPOSE Our goal was to determine the effects of two supervised, twice-weekly, high-intensity exercise programs on bone geometry and strength of the proximal femur, and distal and proximal sites of the tibia and radius in middle-aged and older men with osteopenia and osteoporosis. METHODS Generally-healthy men (≥45 years), with low lumbar spine (LS) and/or proximal femur areal bone mineral density (aBMD), were recruited from the community. Eligible participants were randomised to either eight months of twice-weekly supervised high-intensity progressive resistance and impact training (HiRIT) or supervised machine-based isometric axial compression (IAC) exercise training. Intervention group outcomes were compared at baseline and eight months with a matched but non-randomised control group (CON) who self-selected to usual activities. DXA scans (Medix DR, Medilink, France) of the skeletally non-dominant proximal femur were analysed using 3D hip software (DMS Group, France) to derive femoral neck (FN) and total hip (TH) bone mineral content (BMC), volume, and volumetric bone mineral density (vBMD) for total, trabecular and cortical bone compartments. Total FN cortical thickness was determined as well as anterior, posterior, lateral and medial subregions. pQCT scans (XCT-3000, Stratec, Germany) of the 4 and 38% sites of the tibia, and 4 and 66% sites of the radius were conducted to determine a range of geometric and bone structural strength indices. Intervention effects were examined using univariate ANCOVA of percent change, and repeated measures ANCOVA of raw baseline and follow-up data, controlling for initial values, using intention-to-treat and per-protocol approaches. RESULTS Ninety-three men (67.1 ± 7.5 yrs, 175.2 ± 6.7 cm, 82.1 ± 11.6 kg, 26.7 ± 3.5 kg/m2) with lower than average aBMD (LS T-score -0.06 ± 1.04, FN T-score -1.58 ± 0.58, TH T-score -1.00 ± 0.58) were recruited, and designated CON (n = 26) or randomised to HiRIT (n = 34) or IAC (n = 33). Compliance to the supervised exercise programs did not differ (HiRIT 77.8 ± 16.6% versus IAC 78.5 ± 14.8%, p = 0.872). HiRIT improved medial FN cortical thickness compared with CON (5.6 ± 1.7% versus -0.1 ± 1.9%, p = 0.028) and IAC (5.6 ± 1.7% versus 0.7 ± 1.7%, p = 0.044). Distal tibia total BMC, vBMD, area and bone strength index, and trabecular BMC and bone strength index all declined for CON compared with maintenance for both HiRIT and IAC (all p < 0.05). HiRIT maintained distal tibia trabecular area compared with a loss in CON (0.2 ± 0.5% versus -1.6 ± 0.5%, p = 0.013). HiRIT and IAC maintained distal radius total BMC compared with loss in CON (-0.1 ± 0.7% versus -3.7 ± 0.8%, p = 0.001; 1.3 ± 0.7% versus -3.7 ± 0.8%, p < 0.001, respectively). HiRIT and IAC maintained distal radius total bone strength index compared with loss in CON (1.4 ± 1.4% versus -6.0 ± 1.6%, p = 0.001; 0.2 ± 1.3% versus -6.0 ± 1.6%, p = 0.004, respectively). HiRIT reduced proximal radius cortical area compared with CON (-3.1 ± 1.0% versus 1.1 ± 1.2%, p = 0.011) and IAC (-3.1 ± 1.0% versus -0.2 ± 1.0%, p = 0.042). No between-group differences were detected in any pQCT-derived bone outcome at the diaphyseal tibia 38% site. CONCLUSION Findings indicate that supervised HiRIT provides a positive stimulus to cortical bone at the medial FN compared with supervised IAC exercise, and both HiRIT and IAC preserve bone strength at the distal tibia and distal radius. These effects may translate into a reduced risk of lower and upper extremity fracture in middle-aged and older men with low bone mass.
Collapse
Affiliation(s)
- Amy T Harding
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Benjamin K Weeks
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Conor Lambert
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Steven L Watson
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Lisa J Weis
- The Bone Clinic, Brisbane, Queensland, Australia
| | - Belinda R Beck
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; School of Allied Health Sciences, Griffith University, Gold Coast, Queensland, Australia; The Bone Clinic, Brisbane, Queensland, Australia.
| |
Collapse
|
61
|
Campillo-Sánchez F, Usategui-Martín R, Ruiz -de Temiño Á, Gil J, Ruiz-Mambrilla M, Fernández-Gómez JM, Dueñas-Laita A, Pérez-Castrillón JL. Relationship between Insulin Resistance (HOMA-IR), Trabecular Bone Score (TBS), and Three-Dimensional Dual-Energy X-ray Absorptiometry (3D-DXA) in Non-Diabetic Postmenopausal Women. J Clin Med 2020; 9:jcm9061732. [PMID: 32503328 PMCID: PMC7355807 DOI: 10.3390/jcm9061732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/16/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Insulin may play a key role in bone metabolism, where the anabolic effect predominates. This study aims to analyze the relationship between insulin resistance and bone quality using the trabecular bone score (TBS) and three-dimensional dual-energy X-ray absorptiometry (3D-DXA) in non-diabetic postmenopausal women by determining cortical and trabecular compartments. METHODS A cross-sectional study was conducted in non-diabetic postmenopausal women with suspected or diagnosed osteoporosis. The inclusion criteria were no menstruation for more than 12 months and low bone mass or osteoporosis as defined by DXA. Glucose was calculated using a Hitachi 917 auto-analyzer. Insulin was determined using an enzyme-linked immunosorbent assay (EIA). Insulin resistance was estimated using a homeostasis model assessment of insulin resistance (HOMA-IR). DXA, 3D-DXA, and TBS were thus collected. Moreover, we examined bone parameters according to quartile of insulin, hemoglobin A1C (HbA1c), and HOMA-IR. RESULTS In this study, we included 381 postmenopausal women. Women located in quartile 4 (Q4) of HOMA-IR had higher values of volumetric bone mineral density (vBMD) but not TBS. The increase was higher in the trabecular compartment (16.4%) than in the cortical compartment (6.4%). Similar results were obtained for insulin. Analysis of the quartiles by HbA1c showed no differences in densitometry values, however women in Q4 had lower levels of TBS. After adjusting for BMI, statistical significance was maintained for TBS, insulin, HOMA-IR, and HbA1c. CONCLUSIONS In non-diabetic postmenopausal women there was a direct relationship between insulin resistance and vBMD, whose effect is directly related to greater weight. TBS had an inverse relationship with HbA1c, insulin, and insulin resistance unrelated to weight. This might be explained by the formation of advanced glycosylation products (AGEs) in the bone matrix, which reduces bone deformation capacity and resistance, as well as increases fragility.
Collapse
Affiliation(s)
| | - Ricardo Usategui-Martín
- IOBA, University of Valladolid, 47011 Valladolid, Spain
- Correspondence: (R.U.-M.); (J.L.P.-C.); Tel./Fax: +34-98-342-3184 (R.U.-M. & J.L.P.-C.)
| | - Ángela Ruiz -de Temiño
- Department Medicine, University of Valladolid, 47005 Valladolid, Spain; (Á.R.-d.T.); (M.R.-M.); (A.D.-L.)
| | - Judith Gil
- Hospital Nuestra Señora de Sonsoles, 05004 Avila, Spain;
| | - Marta Ruiz-Mambrilla
- Department Medicine, University of Valladolid, 47005 Valladolid, Spain; (Á.R.-d.T.); (M.R.-M.); (A.D.-L.)
| | | | - Antonio Dueñas-Laita
- Department Medicine, University of Valladolid, 47005 Valladolid, Spain; (Á.R.-d.T.); (M.R.-M.); (A.D.-L.)
- Department of Medicine, University of Valladolid Service of Clinical Toxicology, Río Hortega University Hospital, 47012 Valladolid, Spain
| | - José Luis Pérez-Castrillón
- Department Medicine, University of Valladolid, 47005 Valladolid, Spain; (Á.R.-d.T.); (M.R.-M.); (A.D.-L.)
- Department of Internal Medicine, Department of Medicine, University of Valladolid, Río Hortega University Hospital, 47012 Valladolid, Spain
- Correspondence: (R.U.-M.); (J.L.P.-C.); Tel./Fax: +34-98-342-3184 (R.U.-M. & J.L.P.-C.)
| |
Collapse
|
62
|
García Martín A, de la Higuera López-Frías M, Cortés Berdonces M, Jodar Gimeno E, Ávila Rubio V, Alhambra MR, Muñoz Torres M. New technologies in the evaluation of bone fragility and its application in Endocrinology. ACTA ACUST UNITED AC 2020; 67:602-610. [PMID: 32439320 DOI: 10.1016/j.endinu.2020.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 10/24/2022]
Abstract
Bone mineral density using dual-energy X-ray absorptiometry is the gold standard for the assessment of bone and an important predictor of fracture risk. However, most fragility fractures occur in people without densitometric osteoporosis, especially in endocrinological diseases. Fracture risk estimation tools such as FRAX have improved diagnostic sensitivity but do not include additional skeletal features. Bone microarchitecture research represents an improvement in the treatment of these patients. In this document members of the Mineral and Bone Metabolism Working Group of the Spanish Society of Endocrinology and Nutrition review new advances in dual-energy X-ray absorptiometry and other complex techniques for the study of bone microarchitecture as well as the available data on type 2 diabetes and parathyroid pathology.
Collapse
Affiliation(s)
- Antonia García Martín
- Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario San Cecilio, CIBERFES, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, España.
| | | | - María Cortés Berdonces
- Servicio de Endocrinología y Nutrición, Complejo Hospitalario Ruber Juan Bravo, Madrid, España
| | - Esteban Jodar Gimeno
- Departamento de Endocrinología y Nutrición Clínica, Hospital Universitario Quirón Salud Madrid y Hospital Ruber Juan Bravo, Universidad Europea de Madrid, Madrid, España
| | - Verónica Ávila Rubio
- Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario San Cecilio, CIBERFES, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, España
| | - María Rosa Alhambra
- UGC de Endocrinología y Nutrición, Hospital Universitario Reina Sofía, Córdoba, España
| | - Manuel Muñoz Torres
- Unidad de Gestión Clínica (UGC) de Endocrinología y Nutrición, Hospital Universitario San Cecilio, CIBERFES, Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Granada, España; Departamento de Medicina, Universidad de Granada, Granada, España
| |
Collapse
|
63
|
Abstract
PURPOSE OF REVIEW Patients with inflammatory arthropathies have a high rate of fragility fractures. Diagnostic assessment and monitoring of bone density and quality are therefore critically important. Here, we review standard and advanced techniques to measure bone density and quality, specifically focusing on patients with inflammatory arthropathies. RECENT FINDINGS Current standard procedures are dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT). DXA-based newer methods include trabecular bone score (TBS) and vertebral fracture assessment (VFA). More advanced imaging methods to measure bone quality include high-resolution peripheral quantitative computed tomography (HR-pQCT) as well as multi-detector CT (MD-CT) and magnetic resonance imaging (MRI). Quantitative ultrasound has shown promise but is not standard to assess bone fragility. While there are limitations, DXA remains the standard technique to measure density in patients with rheumatological disorders. Newer modalities to measure bone quality may allow better characterization of bone fragility but currently are not standard of care procedures.
Collapse
|
64
|
Ng CA, McMillan LB, Beck B, Humbert L, Ebeling PR, Scott D. Associations between physical activity and bone structure in older adults: does the use of self-reported versus objective assessments of physical activity influence the relationship? Osteoporos Int 2020; 31:493-503. [PMID: 31720706 DOI: 10.1007/s00198-019-05208-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022]
Abstract
UNLABELLED Associations of current and previous physical activity (PA) with bone health are unclear. In postmenopausal women with low bone mineral density (BMD), current PA was positively associated with femoral neck BMD and microarchitecture. Past PA was positively associated with tibial microarchitecture. PA appears beneficial for bone health throughout the lifespan. INTRODUCTION To compare associations of current and past self-reported bone-specific physical activity, and current accelerometer-determined physical activity (PA), with bone structure (bone mineral density [BMD] and microarchitecture) in postmenopausal women with osteopenia or osteoporosis. METHODS Fifty community-dwelling postmenopausal women (mean age 64.4 ± 7.7) with hip or spine BMD T-score < - 1.0 SD were recruited for an exercise intervention. At baseline, current, past and total Bone-specific Physical Questionnaire (BPAQ) scores were self-reported, and percentages of sedentary, light and moderate to vigorous PA (MVPA) were objectively determined by accelerometer measurements. Bone structure was assessed by lumbar spine and hip dual-energy X-ray absorptiometry (DXA), 3D modelling algorithms (3D-SHAPER) of hip DXA scans and distal tibial high-resolution peripheral quantitative computed tomography (HR-pQCT) scans. RESULTS Current BPAQ scores and MVPA were significantly positively associated with femoral neck areal BMD (β = 0.315, p = 0.031 and β = 0.311, p = 0.042, respectively) following multivariable adjustments. MVPA was also positively associated with femoral cortical surface BMD (β = 0.333, p = 0.028) and mean cortical thickness (β = 0.374, p = 0.013). Past and total BPAQ scores demonstrated positive associations with tibial trabecular number (β = 0.391, p = 0.008 and β = 0.381, p = 0.010, respectively), and negative associations with trabecular separation (β = - 0.396, p = 0.006 and β = - 0.380, p = 0.009, respectively) and distribution (β = - 0.411, p = 0.004 and β = - 0.396, p = 0.006, respectively). Current BPAQ score was positively associated with tibial cortical periosteal perimeter (β = 0.278, p = 0.014). CONCLUSION BPAQ scores were most consistently associated with tibial bone parameters in older women, with past PA having lasting benefits for trabecular microarchitecture, and current PA positively associated with cortical bone.
Collapse
Affiliation(s)
- C-A Ng
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia.
| | - L B McMillan
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
| | - B Beck
- Menzies Health Institute Queensland, School of Allied Health Sciences, Griffith University, Gold Coast, Australia
- The Bone Clinic, Brisbane, Australia
| | - L Humbert
- Musculoskeletal Unit, Galgo Medical, Barcelona, Spain
| | - P R Ebeling
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
| | - D Scott
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 3168, Australia
| |
Collapse
|
65
|
Bouxsein ML, Zysset P, Glüer CC, McClung M, Biver E, Pierroz DD, Ferrari SL. Perspectives on the non-invasive evaluation of femoral strength in the assessment of hip fracture risk. Osteoporos Int 2020; 31:393-408. [PMID: 31900541 DOI: 10.1007/s00198-019-05195-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
Abstract
UNLABELLED We reviewed the experimental and clinical evidence that hip bone strength estimated by BMD and/or finite element analysis (FEA) reflects the actual strength of the proximal femur and is associated with hip fracture risk and its changes upon treatment. INTRODUCTION The risk of hip fractures increases exponentially with age due to a progressive loss of bone mass, deterioration of bone structure, and increased incidence of falls. Areal bone mineral density (aBMD), measured by dual-energy X-ray absorptiometry (DXA), is the most used surrogate marker of bone strength. However, age-related declines in bone strength exceed those of aBMD, and the majority of fractures occur in those who are not identified as osteoporotic by BMD testing. With hip fracture incidence increasing worldwide, the development of accurate methods to estimate bone strength in vivo would be very useful to predict the risk of hip fracture and to monitor the effects of osteoporosis therapies. METHODS We reviewed experimental and clinical evidence regarding the association between aBMD and/orCT-finite element analysis (FEA) estimated femoral strength and hip fracture risk as well as their changes with treatment. RESULTS Femoral aBMD and bone strength estimates by CT-FEA explain a large proportion of femoral strength ex vivo and predict hip fracture risk in vivo. Changes in femoral aBMD are strongly associated with anti-fracture efficacy of osteoporosis treatments, though comparable data for FEA are currently not available. CONCLUSIONS Hip aBMD and estimated femoral strength are good predictors of fracture risk and could potentially be used as surrogate endpoints for fracture in clinical trials. Further improvements of FEA may be achieved by incorporating trabecular orientations, enhanced cortical modeling, effects of aging on bone tissue ductility, and multiple sideway fall loading conditions.
Collapse
Affiliation(s)
- M L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, and Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - P Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - C C Glüer
- Section of Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - M McClung
- Oregon Osteoporosis Center, Portland, OR, USA
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - E Biver
- Division of Bone Disease, Department of Internal Medicine Specialties, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - D D Pierroz
- International Osteoporosis Foundation (IOF), Nyon, Switzerland
| | - S L Ferrari
- Division of Bone Disease, Department of Internal Medicine Specialties, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland.
| | | |
Collapse
|
66
|
Jazinizadeh F, Quenneville CE. Enhancing hip fracture risk prediction by statistical modeling and texture analysis on DXA images. Med Eng Phys 2020; 78:14-20. [PMID: 32057626 DOI: 10.1016/j.medengphy.2020.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/14/2020] [Accepted: 01/26/2020] [Indexed: 01/09/2023]
Abstract
Each year in the US more than 300,000 older adults suffer from hip fractures. While protective measures exist, identification of those at greatest risk by DXA scanning has proved inadequate. This study proposed a new technique to enhance hip fracture risk prediction by accounting for many contributing factors to the strength of the proximal femur. Twenty-two isolated cadaveric femurs were DXA scanned, 16 of which had been mechanically tested to failure. A function consisting of the calculated modes from the statistical shape and appearance modeling (to consider the shape and BMD distribution), homogeneity index (representing trabecular quality), BMD, age and sex of the donor was created in a training set and used to predict the fracture load in a test group. To classify patients as "high risk" or "low risk", fracture load thresholds were investigated. Hip fracture load estimation was significantly enhanced using the new technique in comparison to using t-score or BMD alone (average R² of 0.68, 0.32, and 0.50, respectively) (P < 0.05). Using a fracture cut-off of 3400 N correctly predicted risk in 94% of specimens, a substantial improvement over t-score classification (38%). Ultimately, by identifying patients at high risk more accurately, devastating hip fractures can be prevented through applying protective measures.
Collapse
Affiliation(s)
- Fatemeh Jazinizadeh
- Department of Mechanical Engineering, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4L8, Canada
| | - Cheryl E Quenneville
- Department of Mechanical Engineering, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4L8, Canada; School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
67
|
Association between osteoporotic femoral neck fractures and DXA-derived 3D measurements at lumbar spine: a case-control study. Arch Osteoporos 2020; 15:8. [PMID: 31897775 DOI: 10.1007/s11657-019-0680-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/15/2019] [Indexed: 02/03/2023]
Abstract
UNLABELLED A case-control study assessing the association of DXA-derived 3D measurements at lumbar spine with osteoporotic hip fractures was performed. Stronger association was found between transcervical hip fractures and integral (AUC = 0.726), and cortical (AUC = 0.696) measurements at the lumbar spine compared with measurements at the trabecular bone (AUC = 0.617); although femur areal bone mineral density (aBMD) remains the referent measurement for hip fracture risk evaluation (AUC = 0.838). PURPOSE The aim of the present study was to evaluate the association between DXA-derived 3D measurements at lumbar spine and osteoporotic hip fractures. METHODS We analyzed a case-control database composed by 61 women with transcervical hip fractures and 61 age-matched women without any type of fracture. DXA scans at lumbar spine were acquired, and areal bone mineral density (aBMD) was measured. Integral, trabecular and cortical volumetric BMD (vBMD), cortical thickness, and cortical surface BMD (sBMD) at different regions of interest were assessed using a DXA-based 3D modeling software. Descriptive statistics, tests of difference, odds ratio (OR), and area under the receiver operating curve (AUC) were used to compare hip fracture and control groups. RESULTS Integral vBMD, cortical vBMD, cortical sBMD, and cortical thickness were the DXA-derived 3D measurements at lumbar spine that showed the stronger association with transcervical hip fractures, with AUCs in the range of 0.685-0.726, against 0.670 for aBMD. The highest AUC (0.726) and OR (2.610) at the lumbar spine were found for integral vBMD at the posterior vertebral elements. Significantly, lower AUC (0.617) and OR (1.607) were found for trabecular vBMD at the vertebral body. Overall, total femur aBMD remains the DXA-derived measurement showing the highest AUC (0.838) and OR (6.240). CONCLUSION This study showed the association of DXA-derived measurements at lumbar spine with transcervical hip fractures. A strong association between vBMD at the posterior vertebral elements and transcervical hip fractures was observed, probably because of global deterioration of the cortical bone. Further studies should be carried out to investigate on the relative risk of transcervical fracture in patients with long-term cortical structural deterioration.
Collapse
|
68
|
Gracia-Marco L, García-Fontana B, Ubago-Guisado E, Vlachopoulos D, García-Martín A, Muñoz-Torres M. Analysis of Bone Impairment by 3D DXA Hip Measures in Patients With Primary Hyperparathyroidism: A Pilot Study. J Clin Endocrinol Metab 2020; 105:5582038. [PMID: 31588503 DOI: 10.1210/clinem/dgz060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/07/2019] [Accepted: 09/27/2019] [Indexed: 11/19/2022]
Abstract
CONTEXT Primary hyperparathyroidism (PHPT) has been related to bone loss. Dual-energy x-ray absorptiometry (DXA) cannot distinguish between trabecular and cortical bone compartments but the recently developed three-dimensional (3D)-DXA software might overcome this issue. OBJECTIVE To examine the differences in DXA-derived areal bone mineral density (aBMD) and 3D-DXA parameters at the hip site between patients with PHPT and a healthy control group. DESIGN Cross-sectional pilot study. SETTING Hospital. PATIENTS 80 adults (59.5 ± 9.1 yrs), 40 with PHPT and 40 age- and sex-matched healthy controls. MEASURES aBMD (g/cm2) of the femoral neck, trochanter, shaft, and total hip was assessed using DXA. Cortical surface (sBMD, mg/cm2), cortical volumetric BMD (vBMD, mg/cm3), trabecular vBMD (mg/cm3), integral vBMD (mg/cm3) and cortical thickness (mm) was assessed using 3D-DXA software. RESULTS Mean-adjusted values showed lower aBMD (7.5%-12.2%, effect size: 0.51-1.01) in the PHPT group compared with the control group (all P < 0.05). 3D-DXA revealed bone impairment (3.7%-8.5%, effect size: 0.47-0.65) in patients with PHPT, mainly in cortical parameters (all P < 0.05). However, differences in trabecular vBMD were not statistically significant (P = 0.055). The 3D mapping showed lower cortical sBMD, cortical vBMD, and cortical thickness at the trochanter and diaphysis in the PHPT group (P < 0.05) compared with the control group. In both groups, the presence of osteopenia or osteoporosis is related to lower cortical bone. CONCLUSIONS aBMD and cortical 3D parameters are impaired in patients with PHPT versus healthy controls. The vBMD of the trabecular compartment seems to be affected, although to a lesser extent.
Collapse
Affiliation(s)
- Luis Gracia-Marco
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Growth, Exercise, Nutrition and Development Research Group, Universidad de Zaragoza, Zaragoza, Spain
| | - Beatriz García-Fontana
- Bone Metabolic Unit, Endocrinology and Nutrition Division. Hospital Universitario San Cecilio. Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA). Granada, Spain
- CIBERFES, Instituto de Salud Carlos III. Madrid, Spain
| | - Esther Ubago-Guisado
- Universidad de Castilla-La Mancha, Health and Social Research Center, Cuenca, Spain
| | - Dimitris Vlachopoulos
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Antonia García-Martín
- Bone Metabolic Unit, Endocrinology and Nutrition Division. Hospital Universitario San Cecilio. Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA). Granada, Spain
- CIBERFES, Instituto de Salud Carlos III. Madrid, Spain
| | - Manuel Muñoz-Torres
- Bone Metabolic Unit, Endocrinology and Nutrition Division. Hospital Universitario San Cecilio. Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA). Granada, Spain
- CIBERFES, Instituto de Salud Carlos III. Madrid, Spain
- Department of Medicine. Universidad de Granada, Granada, Spain
| |
Collapse
|
69
|
Alcântara ACS, Assis I, Prada D, Mehle K, Schwan S, Costa-Paiva L, Skaf MS, Wrobel LC, Sollero P. Patient-Specific Bone Multiscale Modelling, Fracture Simulation and Risk Analysis-A Survey. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E106. [PMID: 31878356 PMCID: PMC6981613 DOI: 10.3390/ma13010106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/26/2022]
Abstract
This paper provides a starting point for researchers and practitioners from biology, medicine, physics and engineering who can benefit from an up-to-date literature survey on patient-specific bone fracture modelling, simulation and risk analysis. This survey hints at a framework for devising realistic patient-specific bone fracture simulations. This paper has 18 sections: Section 1 presents the main interested parties; Section 2 explains the organzation of the text; Section 3 motivates further work on patient-specific bone fracture simulation; Section 4 motivates this survey; Section 5 concerns the collection of bibliographical references; Section 6 motivates the physico-mathematical approach to bone fracture; Section 7 presents the modelling of bone as a continuum; Section 8 categorizes the surveyed literature into a continuum mechanics framework; Section 9 concerns the computational modelling of bone geometry; Section 10 concerns the estimation of bone mechanical properties; Section 11 concerns the selection of boundary conditions representative of bone trauma; Section 12 concerns bone fracture simulation; Section 13 presents the multiscale structure of bone; Section 14 concerns the multiscale mathematical modelling of bone; Section 15 concerns the experimental validation of bone fracture simulations; Section 16 concerns bone fracture risk assessment. Lastly, glossaries for symbols, acronyms, and physico-mathematical terms are provided.
Collapse
Affiliation(s)
- Amadeus C. S. Alcântara
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| | - Israel Assis
- Department of Integrated Systems, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil;
| | - Daniel Prada
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| | - Konrad Mehle
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, 06217 Merseburg, Germany;
| | - Stefan Schwan
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120 Halle/Saale, Germany;
| | - Lúcia Costa-Paiva
- Department of Obstetrics and Gynecology, School of Medical Sciences, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-887, Brazil;
| | - Munir S. Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil;
| | - Luiz C. Wrobel
- Institute of Materials and Manufacturing, Brunel University London, Uxbridge UB8 3PH, UK;
- Department of Civil and Environmental Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil
| | - Paulo Sollero
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas—UNICAMP, Campinas, Sao Paulo 13083-860, Brazil; (A.C.S.A.); (D.P.)
| |
Collapse
|
70
|
García Hoyos M, Humbert L, Salmón Z, Riancho JA, Valero C. Analysis of volumetric BMD in people with Down syndrome using DXA-based 3D modeling. Arch Osteoporos 2019; 14:98. [PMID: 31494745 DOI: 10.1007/s11657-019-0645-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/16/2019] [Indexed: 02/03/2023]
Abstract
UNLABELLED We analyzed volumetric bone mineral density, by 3D analysis, in 76 people with Down syndrome and 76 controls. People with Down syndrome, particularly men, have a lower hip volumetric bone mineral density than the general population. Besides, volumetric bone mineral density declines more rapidly in Down syndrome. INTRODUCTION People with Down syndrome (DS) have a lower areal bone mineral density (aBMD) estimated by dual-energy X-ray absorptiometry (DXA). However, they have smaller-sized bones, which could influence the measurements. Therefore, our objective was to determine volumetric BMD in these patients. MATERIALS AND METHODS We included 76 outpatients with DS and 76 control healthy volunteers matched for age and sex distribution. Clinical data were obtained with a standardized interview and physical exam, including age, sex, height, weight, and body mass index (BMI). aBMD was measured by dual-energy X-ray at the femoral neck (FN) and total hip (TH). The 3D-SHAPER® software (version 2.8, Galgo Medical, Barcelona, Spain) was used to derive 3D analysis from participants' hip DXA scans. RESULTS DS femurs had a similar 3D geometry, compared with the femurs of controls. However, 3D analysis showed that participants with DS had smaller cortical thickness (1.84 mm ± 0.17 vs. 2.02 ± 0.20 mm; p < 0.0001), cortical vBMD (777 ± 49 mg/cm3 vs. 809 ± 43 mg/cm3; p < 0.0001), and cortical sBMD (143 ± 19 mg/cm2 vs. 164 ± 22 mg/cm2; p < 0.0001). After adjustment for age and BMI, all 3D measurements remained lower in DS than in controls. These differences were more marked in men than in women. vBMD decreased with age in controls and DS, but the decline was greater in DS for all 3D parameters. CONCLUSION People with DS, particularly men, have a lower hip vBMD than the general population. Besides, vBMD declines more rapidly in DS.
Collapse
Affiliation(s)
- Marta García Hoyos
- Department of Internal Medicine, University Hospital Marqués de Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | | | - Zaida Salmón
- Department of Internal Medicine, University Hospital Marqués de Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - José A Riancho
- Department of Internal Medicine, University Hospital Marqués de Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Carmen Valero
- Department of Internal Medicine, University Hospital Marqués de Valdecilla, University of Cantabria, IDIVAL, Santander, Spain.
| |
Collapse
|
71
|
Associations of Health-Related Quality of Life, Fear of Falling and Objective Measures of Physical Function with Bone Health in Postmenopausal Women with Low Bone Mass. J Clin Med 2019; 8:jcm8091370. [PMID: 31480742 PMCID: PMC6780346 DOI: 10.3390/jcm8091370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 11/17/2022] Open
Abstract
Health-related quality of life (HRQoL) and physical function deteriorate with age and may adversely impact bone health in older adults. We determined associations of objective measures of physical function and HRQoL with bone health in postmenopausal women with low areal bone mineral density (aBMD). Fifty postmenopausal women (64.4 7.7 years old, mean standard deviation) with low spine, hip or femoral neck aBMD (T- or Z-score < -1.0) on dual-energy X-ray absorptiometry (DXA) participated. Femoral surface BMD, trabecular, integral and cortical volumetric BMD (vBMD) measurements were obtained using 3D-SHAPER software on DXA. Distal tibial vBMD and microarchitecture were assessed using high-resolution peripheral quantitative computed tomography (HRpQCT). Participants completed self-administered EuroQol-5D (EQ-5D) and modified falls efficacy scale (MFES) questionnaires, and physical function assessments. Stair climb power was positively associated with bone parameters at the hip, femoral neck, and distal tibia (all p < 0.05) in multivariable linear regression. EQ-5D demonstrated no significant associations with bone parameters and MFES was positively associated only with distal tibial cortical vBMD and cortical von Mises stress (both p < 0.05). Objective measures of physical function, particularly muscle power, are more consistently associated with bone parameters compared with self-administered HRQoL questionnaires.
Collapse
|
72
|
López Picazo M, Humbert L, Di Gregorio S, González Ballester MA, Del Río Barquero LM. Discrimination of osteoporosis-related vertebral fractures by DXA-derived 3D measurements: a retrospective case-control study. Osteoporos Int 2019; 30:1099-1110. [PMID: 30770938 DOI: 10.1007/s00198-019-04894-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/08/2019] [Indexed: 01/30/2023]
Abstract
UNLABELLED A retrospective case-control study assessing the association of DXA-derived 3D measurements with osteoporosis-related vertebral fractures was performed. Trabecular volumetric bone mineral density was the measurement that best discriminates between fracture and control groups. INTRODUCTION The aim of the present study was to evaluate the association of DXA-derived 3D measurements at the lumbar spine with osteoporosis-related vertebral fractures. METHODS We retrospectively analyzed a database of 74 postmenopausal women: 37 subjects with incident vertebral fractures and 37 age-matched controls without any type of fracture. DXA scans at the lumbar spine were acquired at baseline (i.e., before the fracture event for subjects in the fracture group), and areal bone mineral density (aBMD) was measured. DXA-derived 3D measurements, such as volumetric BMD (vBMD), were assessed using a DXA-based 3D modeling software (3D-SHAPER). vBMD was computed at the trabecular, cortical, and integral bone. Cortical thickness and cortical surface BMD were also measured. Differences in DXA-derived measurements between fracture and control groups were evaluated using unpaired t test. Odds ratio (OR) and area under the receiver operating curve (AUC) were also computed. Subgroup analyses according to fractured vertebra were performed. RESULTS aBMD of fracture group was 9.3% lower compared with control group (p < 0.01); a higher difference was found for trabecular vBMD in the vertebral body (- 16.1%, p < 0.001). Trabecular vBMD was the measurement that best discriminates between fracture and control groups, with an AUC of 0.733, against 0.682 for aBMD. Overall, similar findings were observed within the subgroup analyses. The L1 vertebral fractures subgroup had the highest AUC at trabecular vBMD (0.827), against aBMD (0.758). CONCLUSION This study showed the ability of cortical and trabecular measurements from DXA-derived 3D models to discriminate between fracture and control groups. Large cohorts need to be analyzed to determine if these measurements could improve fracture risk prediction in clinical practice.
Collapse
Affiliation(s)
- M López Picazo
- Musculoskeletal Unit, Galgo Medical, Barcelona, Spain.
- BCN Medtech, Universitat Pompeu Fabra, Barcelona, Spain.
| | - L Humbert
- Musculoskeletal Unit, Galgo Medical, Barcelona, Spain
| | | | | | | |
Collapse
|
73
|
Ruiz Wills C, Olivares AL, Tassani S, Ceresa M, Zimmer V, González Ballester MA, Del Río LM, Humbert L, Noailly J. 3D patient-specific finite element models of the proximal femur based on DXA towards the classification of fracture and non-fracture cases. Bone 2019; 121:89-99. [PMID: 30611923 DOI: 10.1016/j.bone.2019.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/21/2018] [Accepted: 01/01/2019] [Indexed: 11/18/2022]
Abstract
Osteoporotic bone fractures reduce quality of life and drastically increase mortality. Minimally irradiating imaging techniques such as dual-energy X-ray absorptiometry (DXA) allow assessment of bone loss through the use of bone mineral density (BMD) as descriptor. Yet, the accuracy of fracture risk predictions remains limited. Recently, DXA-based 3D modelling algorithms were proposed to analyse the geometry and BMD spatial distribution of the proximal femur. This study hypothesizes that such approaches can benefit from finite element (FE)-based biomechanical analyses to improve fracture risk prediction. One hundred and eleven subjects were included in this study and stratified in two groups: (a) 62 fracture cases, and (b) 49 non-fracture controls. Side fall was simulated using a static peak load that depended on patient mass and height. Local mechanical fields were calculated based on relationships between tissue stiffness and BMD. The area under the curve (AUC) of the receiver operating characteristic method evaluated the ability of calculated biomechanical descriptors to discriminate fracture and control cases. The results showed that the major principal stress was better discriminator (AUC > 0.80) than the volumetric BMD (AUC ≤ 0.70). High discrimination capacity was achieved when the analysis was performed by bone type, zone of fracture and gender/sex (AUC of 0.91 for women, trabecular bone and trochanter area), and outcomes suggested that the trabecular bone is critical for fracture discrimination. In conclusion, 3D FE models derived from DXA scans might significantly improve the prediction of hip fracture risk; providing a new insight for clinicians to use FE simulations in clinical practice for osteoporosis management.
Collapse
Affiliation(s)
| | | | - Simone Tassani
- BCN MedTech, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Mario Ceresa
- BCN MedTech, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Veronika Zimmer
- BCN MedTech, Universitat Pompeu Fabra (UPF), Barcelona, Spain; School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | | | | | | | - Jérôme Noailly
- BCN MedTech, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
74
|
Humbert L, Winzenrieth R, Di Gregorio S, Thomas T, Vico L, Malouf J, Del Río Barquero LM. 3D Analysis of Cortical and Trabecular Bone From Hip DXA:Precision and Trend Assessment Interval in PostmenopausalWomen. J Clin Densitom 2019; 22:214-218. [PMID: 30017573 DOI: 10.1016/j.jocd.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/02/2018] [Indexed: 11/20/2022]
Abstract
The 3D distribution of the cortical and trabecular bone mass is a critical component in determining the resistance of a bone to fracture that is not assessed in standard dual-energy X-ray absorptiometry (DXA) exams. In this work, we assessed in vivo short-term precision of measurements provided by 3D modeling techniques from DXA scans and trend assessment intervals (TAIs) in postmenopausal women. Subjects included to study precision errors were scanned twice, with repositioning for duplicate hip scans, using either a Lunar iDXA scanner (GE Healthcare, Madison, WI) or a Discovery W scanner (Hologic, Inc., Waltham, MA). Postmenopausal women having baseline and 18-mo follow-up visit were scanned using a Lunar iDXA device to assess TAIs. TAIs indicate what time intervals are required to allow accurate assessment of response to treatment or progression of disease. The 3D-SHAPER software (Galgo Medical, Barcelona, Spain) was used to derive 3D measurements from hip DXA scans. Least significant changes were 10.39 and 8.72 mg/cm3 for integral volumetric bone mineral density (BMD), 9.64 and 9.59 mg/cm3 for trabecular volumetric BMD, and 6.25 and 5.99 mg/cm2 for cortical surface BMD, using the Lunar iDXA and Discovery W scanners, respectively. TAIs in postmenopausal women were 2.9 yr (integral volumetric BMD), 2.6 yr (trabecular volumetric BMD), and 3.5 yr (cortical surface BMD), using the Lunar iDXA scanner. As a comparison, TAIs for areal BMD were 2.8 yr at neck and 2.7 yr at total femur. Least significant changes of measurements provided by 3D modeling techniques from DXA were assessed. TAIs in postmenopausal women were similar to those measured for areal BMD measurements. DXA-derived 3D measurements could potentially provide additional indicators to improve patient monitoring in clinical practices.
Collapse
Affiliation(s)
| | | | | | - Thierry Thomas
- INSERM U1059, Rheumatology Department, University Hospital of Saint-Etienne, Saint-Etienne Cedex 2, France; INSERM U1059, Lab Biologie Intégrée du Tissu Osseux, Université de Lyon, Saint-Etienne, France
| | - Laurence Vico
- INSERM U1059, Lab Biologie Intégrée du Tissu Osseux, Université de Lyon, Saint-Etienne, France
| | - Jorge Malouf
- Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | |
Collapse
|
75
|
Lopez Picazo M, Magallon Baro A, Del Rio Barquero LM, Di Gregorio S, Martelli Y, Romera J, Steghofer M, Gonzalez Ballester MA, Humbert L. 3-D Subject-Specific Shape and Density Estimation of the Lumbar Spine From a Single Anteroposterior DXA Image Including Assessment of Cortical and Trabecular Bone. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2651-2662. [PMID: 29994113 DOI: 10.1109/tmi.2018.2845909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dual Energy X-ray Absorptiometry (DXA) is the standard exam for osteoporosis diagnosis and fracture risk evaluation at the spine. However, numerous patients with bone fragility are not diagnosed as such. In fact, standard analysis of DXA images does not differentiate between trabecular and cortical bone; neither specifically assess of the bone density in the vertebral body, which is where most of the osteoporotic fractures occur. Quantitative computed tomography (QCT) is an alternative technique that overcomes limitations of DXA-based diagnosis. However, due to the high cost and radiation dose, QCT is not used for osteoporosis management. We propose a method that provides a 3-D subject-specific shape and density estimation of the lumbar spine from a single anteroposterior (AP) DXA image. A 3-D statistical shape and density model is built, using a training set of QCT scans, and registered onto the AP DXA image so that its projection matches it. Cortical and trabecular bone compartments are segmented using a model-based algorithm. Clinical measurements are performed at different bone compartments. Accuracy was evaluated by comparing DXA-derived to QCT-derived 3-D measurements for a validation set of 180 subjects. The shape accuracy was 1.51 mm at the total vertebra and 0.66 mm at the vertebral body. Correlation coefficients between DXA and QCT-derived measurements ranged from 0.81 to 0.97. The method proposed offers an insightful 3-D analysis of the lumbar spine, which could potentially improve osteoporosis and fracture risk assessment in patients who had an AP DXA scan of the lumbar spine without any additional examination.
Collapse
|
76
|
Winzenrieth R, Humbert L, Di Gregorio S, Bonel E, García M, Del Rio L. Effects of osteoporosis drug treatments on cortical and trabecular bone in the femur using DXA-based 3D modeling. Osteoporos Int 2018; 29:2323-2333. [PMID: 29974136 DOI: 10.1007/s00198-018-4624-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022]
Abstract
UNLABELLED Effects of osteoporosis drugs on proximal femur cortical and trabecular bone were studied using dual-energy x-ray absorptiometry (DXA)-based 3D modeling method. Changes observed in this head-to-head study were consistent with those obtained using computed tomography in the literature. INTRODUCTION The aim of the present study was to assess the effects of osteoporosis drugs on cortical and trabecular bone at the proximal femur using DXA-based 3D modeling. METHODS We retrospectively analyzed 155 patients stratified by treatments: naive of treatment (NAIVE), alendronate (AL), denosumab (DMAB), and teriparatide (TPTD). DXA scans were performed at baseline and after treatment, and areal bone mineral density at spine and femur were measured. A software algorithm (3D-SHAPER) was used to derive 3D models from hip DXA scans and compute: trabecular and cortical volumetric BMD (vBMD), cortical thickness (Cth), and cortical surface BMD (cortical sBMD). Changes from baseline were normalized at 24 months and evaluated in terms or percentage. RESULTS After 24 months, a non-significant decrease was observed for trabecular vBMD, Cortical sBMD, Cth, and cortical vBMD (- 2.3, - 0.8, - 0.3, and - 0.5%) in the NAIVE group. Under AL and DMAB, significant increases were observed in trabecular vBMD (3.8 and 7.3%), cortical vBMD (1.4 and 2.0%), and cortical sBMD (1.5 and 3.6%). An increase in Cth was observed in patients under DMAB (1.8%). Under TPTD, a significant increase in Trabecular vBMD was observed (5.9%) associated with a non-significant increase of Cth (+ 1%) concomitant with a decrease in cortical vBMD (- 1.1%). CONCLUSION Results obtained in this head-to-head study are consistent with those obtained using computed tomography in the literature. DXA-based modeling techniques could complement standard DXA examination to monitor treatment effects on trabecular and cortical compartments.
Collapse
Affiliation(s)
- R Winzenrieth
- Musculoskeletal Unit, Galgo Medical, Carrer del Comte d'Urgell, 143, 08036, Barcelona, Spain.
- Department of Urology, Hospital Universitario de Bellvitge, l'Hospitalet, Spain.
| | - L Humbert
- Musculoskeletal Unit, Galgo Medical, Carrer del Comte d'Urgell, 143, 08036, Barcelona, Spain
- Department of Urology, Hospital Universitario de Bellvitge, l'Hospitalet, Spain
| | - S Di Gregorio
- Department of Urology, Hospital Universitario de Bellvitge, l'Hospitalet, Spain
- Cetir Grup Mèdic, Barcelona, Spain
| | - E Bonel
- Department of Urology, Hospital Universitario de Bellvitge, l'Hospitalet, Spain
- Cetir Grup Mèdic, Barcelona, Spain
| | - M García
- Department of Urology, Hospital Universitario de Bellvitge, l'Hospitalet, Spain
- Cetir Grup Mèdic, Barcelona, Spain
| | - L Del Rio
- Department of Urology, Hospital Universitario de Bellvitge, l'Hospitalet, Spain
- Cetir Grup Mèdic, Barcelona, Spain
| |
Collapse
|
77
|
Clotet J, Martelli Y, Di Gregorio S, Del Río Barquero LM, Humbert L. Structural Parameters of the Proximal Femur by 3-Dimensional Dual-Energy X-ray Absorptiometry Software: Comparison With Quantitative Computed Tomography. J Clin Densitom 2018. [PMID: 28624339 DOI: 10.1016/j.jocd.2017.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Structural parameters of the proximal femur evaluate the strength of the bone and its susceptibility to fracture. These parameters are computed from dual-energy X-ray absorptiometry (DXA) or from quantitative computed tomography (QCT). The 3-dimensional (3D)-DXA software solution provides 3D models of the proximal femur shape and bone density from anteroposterior DXA scans. In this paper, we present and evaluate a new approach to compute structural parameters using 3D-DXA software. A cohort of 60 study subjects (60.9 ± 14.7 yr) with DXA and QCT examinations was collected. 3D femoral models obtained by QCT and 3D-DXA software were aligned using rigid registration techniques for comparison purposes. Geometric, cross-sectional, and volumetric structural parameters were computed at the narrow neck, intertrochanteric, and lower shaft regions for both QCT and 3D-DXA models. The accuracy of 3D-DXA structural parameters was evaluated in comparison with QCT. Correlation coefficients (r) between geometric parameters computed by QCT and 3D-DXA software were 0.86 for the femoral neck axis length and 0.71 for the femoral neck shaft angle. Correlation coefficients ranged from 0.86 to 0.96 for the cross-sectional parameters and from 0.84 to 0.97 for the volumetric structural parameters. Our study demonstrated that accurate estimates of structural parameters for the femur can be obtained from 3D-DXA models. This provides clinicians with 3D indexes related to the femoral strength from routine anteroposterior DXA scans, which could potentially improve osteoporosis management and fracture prevention.
Collapse
Affiliation(s)
- Jordi Clotet
- Musculoskeletal Unit, Galgo Medical, Barcelona, Spain
| | - Yves Martelli
- Musculoskeletal Unit, Galgo Medical, Barcelona, Spain
| | | | | | | |
Collapse
|
78
|
Orduna G, Humbert L, Fonolla R, Romera J, Cos ML, Rial A, Nogués X, Diez-Perez A, Mellibovsky L. Cortical and Trabecular Bone Analysis of Patients With High Bone Mass From the Barcelona Osteoporosis Cohort Using 3-Dimensional Dual-Energy X-ray Absorptiometry: A Case-Control Study. J Clin Densitom 2018. [PMID: 28648836 DOI: 10.1016/j.jocd.2017.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
High bone mass (HBM), a rare phenotype, can be detected by dual-energy X-ray absorptiometry (DXA) scanning. Measurements with peripheral quantitative computed tomography at the tibia have found increased trabecular bone mineral density and changes in cortical bone density and structure, all of which lead to increased bone strength. However, no studies on cortical and trabecular bone have been performed at the femur. The recently developed 3-dimensional (3D)-DXA software algorithm quantifies the trabecular and cortical volumetric bone mineral density (vBMD) and the anatomical distribution of cortical thickness using routine hip DXA scans. We analyzed the femurs of 15 women with HBM and 15 controls from the Barcelona Osteoporosis (BARCOS) cohort using the 3D-DXA technique. The mean vBMD of proximal femur was 29.7% higher in HBM cases than in controls for the integral bone, 41.3% higher for the trabecular bone, and 7.3% higher for the cortical bone (p < 0.001). No differences in bone size were detected between cases and controls. Patients with HBM had a thicker cortex and higher trabecular and cortical vBMDs, as measured by 3D-DXA at the femur and compared to controls; bone size was similar in both groups. To the best of our knowledge, this is the first description of trabecular and cortical characteristics of the hip in patients with HBM.
Collapse
Affiliation(s)
- Guillermina Orduna
- Internal Medicine Department, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain; IMIM (Hospital del Mar Research Institute), CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III FEDER, Barcelona, Spain
| | | | | | | | - M Lourdes Cos
- Internal Medicine Department, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain; IMIM (Hospital del Mar Research Institute), CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III FEDER, Barcelona, Spain
| | - Aboro Rial
- Internal Medicine Department, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain; IMIM (Hospital del Mar Research Institute), CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III FEDER, Barcelona, Spain
| | - Xavier Nogués
- Internal Medicine Department, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain; IMIM (Hospital del Mar Research Institute), CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III FEDER, Barcelona, Spain
| | - Adolfo Diez-Perez
- Internal Medicine Department, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain; IMIM (Hospital del Mar Research Institute), CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III FEDER, Barcelona, Spain.
| | - Leonardo Mellibovsky
- Internal Medicine Department, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain; IMIM (Hospital del Mar Research Institute), CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III FEDER, Barcelona, Spain
| |
Collapse
|
79
|
Freitas L, Amorim T, Humbert L, Fonollá R, Flouris AD, Metsios GS, Jamurtas AZ, Koutedakis Y. Cortical and trabecular bone analysis of professional dancers using 3D-DXA: a case–control study. J Sports Sci 2018; 37:82-89. [DOI: 10.1080/02640414.2018.1483178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Laura Freitas
- Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sports, University of Porto, Porto, Portugal
| | - Tânia Amorim
- Centre of Research, Education, Innovation and Intervention in Sport, Faculty of Sports, University of Porto, Porto, Portugal
- The Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, United Kingdom
| | | | - Roger Fonollá
- Musculoskeletal Unit, Galgo Medical, Barcelona, Spain
| | - Andreas D. Flouris
- School of Sports and Exercise Sciences, University of Thessaly, Trikala, Greece
| | - George S. Metsios
- The Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, United Kingdom
- School of Sports and Exercise Sciences, University of Thessaly, Trikala, Greece
| | | | - Yiannis Koutedakis
- The Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, United Kingdom
- School of Sports and Exercise Sciences, University of Thessaly, Trikala, Greece
| |
Collapse
|
80
|
Gifre L, Humbert L, Muxi A, Del Rio L, Vidal J, Portell E, Monegal A, Guañabens N, Peris P. Analysis of the evolution of cortical and trabecular bone compartments in the proximal femur after spinal cord injury by 3D-DXA. Osteoporos Int 2018; 29:201-209. [PMID: 29043391 DOI: 10.1007/s00198-017-4268-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/11/2017] [Indexed: 01/18/2023]
Abstract
UNLABELLED Marked trabecular and cortical bone loss was observed at the proximal femur short-term after spinal cord injury (SCI). 3D-DXA provided measurement of vBMD evolution at both femoral compartments and cortical thinning, thereby suggesting that this technique could be useful for bone analysis in these patients. INTRODUCTION SCI is associated with a marked increase in bone loss and risk of osteoporosis development short-term after injury. 3D-DXA is a new imaging analysis technique providing 3D analysis of the cortical and trabecular bone from DXA scans. The aim of this study was to assess the evolution of trabecular macrostructure and cortical bone using 3D-DXA in patients with recent SCI followed over 12 months. METHODS Sixteen males with recent SCI (< 3 months since injury) and without antiosteoporotic treatment were included. Clinical assessment, bone mineral density (BMD) measurements by DXA, and 3D-DXA evaluation at proximal femur (analyzing the integral, trabecular and cortical volumetric BMD [vBMD] and cortical thickness) were performed at baseline and at 6 and 12 months of follow-up. RESULTS vBMD significantly decreased at integral, trabecular, and cortical compartments at 6 months (- 8.8, - 11.6, and - 2.4%), with a further decrease at 12 months, resulting in an overall decrease of - 16.6, - 21.9, and - 5.0%, respectively. Cortical thickness also decreased at 6 and 12 months (- 8.0 and - 11.4%), with the maximal decrease being observed during the first 6 months. The mean BMD losses by DXA at femoral neck and total femur were - 17.7 and - 21.1%, at 12 months, respectively. CONCLUSIONS Marked trabecular and cortical bone loss was observed at the proximal femur short-term after SCI. 3D-DXA measured vBMD evolution at both femoral compartments and cortical thinning, providing better knowledge of their differential contributory role to bone strength and probably of the effect of therapy in these patients.
Collapse
Affiliation(s)
- L Gifre
- Rheumatology Department, Hospital Clinic of Barcelona, IDIBAPS, CIBERehd, Metabolic Bone Diseases Unit, Service of Rheumatology, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
- Rheumatology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - A Muxi
- Nuclear Medicine Department, Hospital Clínic of Barcelona, Barcelona, Spain
| | | | - J Vidal
- Guttmann Neurorehabilitation Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - E Portell
- Guttmann Neurorehabilitation Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - A Monegal
- Rheumatology Department, Hospital Clinic of Barcelona, IDIBAPS, CIBERehd, Metabolic Bone Diseases Unit, Service of Rheumatology, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - N Guañabens
- Rheumatology Department, Hospital Clinic of Barcelona, IDIBAPS, CIBERehd, Metabolic Bone Diseases Unit, Service of Rheumatology, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - P Peris
- Rheumatology Department, Hospital Clinic of Barcelona, IDIBAPS, CIBERehd, Metabolic Bone Diseases Unit, Service of Rheumatology, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain.
| |
Collapse
|
81
|
Shepherd JA, Ng BK, Fan B, Schwartz AV, Cawthon P, Cummings SR, Kritchevsky S, Nevitt M, Santanasto A, Cootes TF. Modeling the shape and composition of the human body using dual energy X-ray absorptiometry images. PLoS One 2017; 12:e0175857. [PMID: 28423041 PMCID: PMC5397033 DOI: 10.1371/journal.pone.0175857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/31/2017] [Indexed: 12/11/2022] Open
Abstract
There is growing evidence that body shape and regional body composition are strong indicators of metabolic health. The purpose of this study was to develop statistical models that accurately describe holistic body shape, thickness, and leanness. We hypothesized that there are unique body shape features that are predictive of mortality beyond standard clinical measures. We developed algorithms to process whole-body dual-energy X-ray absorptiometry (DXA) scans into body thickness and leanness images. We performed statistical appearance modeling (SAM) and principal component analysis (PCA) to efficiently encode the variance of body shape, leanness, and thickness across sample of 400 older Americans from the Health ABC study. The sample included 200 cases and 200 controls based on 6-year mortality status, matched on sex, race and BMI. The final model contained 52 points outlining the torso, upper arms, thighs, and bony landmarks. Correlation analyses were performed on the PCA parameters to identify body shape features that vary across groups and with metabolic risk. Stepwise logistic regression was performed to identify sex and race, and predict mortality risk as a function of body shape parameters. These parameters are novel body composition features that uniquely identify body phenotypes of different groups and predict mortality risk. Three parameters from a SAM of body leanness and thickness accurately identified sex (training AUC = 0.99) and six accurately identified race (training AUC = 0.91) in the sample dataset. Three parameters from a SAM of only body thickness predicted mortality (training AUC = 0.66, validation AUC = 0.62). Further study is warranted to identify specific shape/composition features that predict other health outcomes.
Collapse
Affiliation(s)
- John A. Shepherd
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
- Graduate Program in Bioengineering, University of California San Francisco, San Francisco, California, United States of America
- Graduate Program in Bioengineering, University of California, Berkeley, California, United States of America
| | - Bennett K. Ng
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
- Graduate Program in Bioengineering, University of California San Francisco, San Francisco, California, United States of America
- Graduate Program in Bioengineering, University of California, Berkeley, California, United States of America
| | - Bo Fan
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, United States of America
| | - Ann V. Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Peggy Cawthon
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, United States of America
| | - Steven R. Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, United States of America
| | - Stephen Kritchevsky
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, California, United States of America
| | - Michael Nevitt
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Adam Santanasto
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Timothy F. Cootes
- Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|