51
|
Gray MD, Lyka E, Coussios CC. Diffraction Effects and Compensation in Passive Acoustic Mapping. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:258-268. [PMID: 29389657 DOI: 10.1109/tuffc.2017.2778509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Over the last decade, a variety of noninvasive techniques have been developed to monitor therapeutic ultrasound procedures in support of safety or efficacy assessments. One class of methods employs diagnostic ultrasound arrays to sense acoustic emissions, thereby providing a means to passively detect, localize, and quantify the strength of nonlinear sources, including cavitation. Real array element diffraction patterns may differ substantially from those presumed in existing beamforming algorithms. However, diffraction compensation has received limited treatment in passive and active imaging, and measured diffraction data have yet to be used for array response correction. The objectives of this paper were to identify differences between ideal and real element diffraction patterns, and to quantify the impact of diffraction correction on cavitation mapping beamformer performance. These objectives were addressed by performing calibration measurements on a diagnostic linear array, using the results to calculate diffraction correction terms, and applying the corrections to cavitation emission data collected from soft tissue phantom experiments. Measured diffraction patterns were found to differ significantly from those of ideal element forms, particularly at higher frequencies and shorter distances from the array. Diffraction compensation of array data resulted in cavitation energy estimates elevated by as much as a factor of 5, accompanied by the elimination of a substantial bias between two established beamforming algorithms. These results illustrate the importance of using measured array responses to validate analytical field models and to minimize observation biases in imaging applications where quantitative analyses are critical for assessment of therapeutic safety and efficacy.
Collapse
|
52
|
Jin Q, Lin CY, Chang YC, Yang CM, Yeh CK. Roles of Textural and Surface Properties of Nanoparticles in Ultrasound-Responsive Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1256-1265. [PMID: 29286675 DOI: 10.1021/acs.langmuir.7b02993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Acoustic inertial cavitation (IC) is a crucial phenomenon for many ultrasound (US)-related applications. This study aimed to investigate the roles of textural and surface properties of NPs in IC generation by combining typical IC detection methods with various types of silica model NPs. Acoustic passive cavitation detection, optical high-speed photography, and US imaging have been used to quantify IC activities (referred to as the IC dose, ICD) and describe the physical characteristics of IC activities from NPs. The results showed that the ICDs from NPs were positively correlated to their surface hydrophobicity and that their external surface hydrophobicity plays a much more crucial role than do the textural properties. The high-speed photography revealed that the sizes of IC-generated bubbles from superhydrophobic NPs ranged from 20-40 μm at 4-6 MPa and collapsed in several microseconds. Bubble clouds monitored with US imaging showed that IC from NPs was consistent with the surface hydrophobicity. The simulation results based on the crevice model of cavitation nuclei correlated well with the experimental results. This study has demonstrated that the surface property, instead of the textural property, of NPs dominated the IC generation, and surface nanobubbles adsorbed on the NP surface have been proposed to be cavitation nuclei.
Collapse
Affiliation(s)
| | | | - Yuan-Chih Chang
- Institute of Cellular and Organismic Biology, Academia Sinica , Taipei City, Taiwan 115
| | | | | |
Collapse
|
53
|
Joshi A, Nandi S, Chester D, Brown AC, Muller M. Study of Poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAM) Microgel Particle Induced Deformations of Tissue-Mimicking Phantom by Ultrasound Stimulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1457-1465. [PMID: 29257896 PMCID: PMC5983375 DOI: 10.1021/acs.langmuir.7b02801] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Poly(N-isopropylacrylamide) (pNIPAm) microgels (microgels) are colloidal particles that have been used extensively for biomedical applications. Typically, these particles are synthesized in the presence of an exogenous cross-linker, such as N,N'-methylenebis(acrylamide) (BIS); however, recent studies have demonstrated that pNIPAm microgels can be synthesized in the absence of an exogenous cross-linker, resulting in the formation of ultralow cross-linked (ULC) particles, which are highly deformable. Microgel deformability has been linked in certain cases to enhanced bioactivity when ULC microgels are used for the creation of biomimetic particles. We hypothesized that ultrasound stimulation of microgels would enhance particle deformation and that the degree of enhancement would negatively correlate with the degree of particle cross-linking. Here, we demonstrate in tissue-mimicking phantoms that using ultrasound insonification causes deformations of ULC microgel particles. Furthermore, the amount of deformation depends on the ultrasound excitation frequency and amplitude and on the concentration of ULC microgel particles. We observed that the amplitude of deformation increases with increasing ULC microgel particle concentration up to 2.5 mg/100 mL, but concentrations higher than 2.5 mg/100 mL result in reduced amount of deformation. In addition, we observed that the amplitude of deformation was significantly higher at 1 MHz insonification frequency. We also report that increasing the degree of microgel cross-linking reduces the magnitude of the deformation and increases the optimal concentration required to achieve the largest amount of deformation. Stimulated ULC microgel particle deformation has numerous potential biomedical applications, including enhancement of localized drug delivery and biomimetic activity. These results demonstrate the potential of ultrasound stimulation for such applications.
Collapse
Affiliation(s)
- Aditya Joshi
- Department of Mechanical and Aerospace Engineering, North Carolina State University
| | - Seema Nandi
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University
| | - Daniel Chester
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University
| | - Ashley C. Brown
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University
| | - Marie Muller
- Department of Mechanical and Aerospace Engineering, North Carolina State University
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC
| |
Collapse
|
54
|
Bader KB, Haworth KJ, Maxwell AD, Holland CK. Post Hoc Analysis of Passive Cavitation Imaging for Classification of Histotripsy-Induced Liquefaction in Vitro. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:106-115. [PMID: 28783627 PMCID: PMC5816682 DOI: 10.1109/tmi.2017.2735238] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Histotripsy utilizes focused ultrasound to generate bubble clouds for transcutaneous tissue liquefaction. Bubble activity maps are under development to provide image guidance and monitor treatment progress. The aim of this paper was to investigate the feasibility of using plane wave B-mode and passive cavitation images to be used as binary classifiers of histotripsy-induced liquefaction. Prostate tissue phantoms were exposed to histotripsy pulses over a range of pulse durations (5- ) and peak negative pressures (12-23 MPa). Acoustic emissions were recorded during the insonation and beamformed to form passive cavitation images. Plane wave B-mode images were acquired following the insonation to detect the hyperechoic bubble cloud. Phantom samples were sectioned and stained to delineate the liquefaction zone. Correlation between passive cavitation and plane wave B-mode images and the liquefaction zone was assessed using receiver operating characteristic (ROC) curve analysis. Liquefaction of the phantom was observed for all the insonation conditions. The area under the ROC (0.94 versus 0.82), accuracy (0.90 versus 0.83), and sensitivity (0.81 versus 0.49) was greater for passive cavitation images relative to B-mode images ( ) along the azimuth of the liquefaction zone. The specificity was greater than 0.9 for both imaging modalities. These results demonstrate a stronger correlation between histotripsy-induced liquefaction and passive cavitation imaging compared with the plane wave B-mode imaging, albeit with limited passive cavitation image range resolution.
Collapse
Affiliation(s)
- Kenneth B. Bader
- Department of Radiology, University of Chicago, Chicago, IL 60617 () and also with the Graduate Program in Medical Physics, University of Chicago, Chicago, IL 60617
| | - Kevin J. Haworth
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Cincinnati, OH, 45267, and also with the Biomedical Engineering Program, University of Cincinnati, Cincinnati, OH 45267
| | - Adam D. Maxwell
- Department of Urology, University of Washington, Seattle WA 98195
| | - Christy K. Holland
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Cincinnati, OH, 45267, and also with the Biomedical Engineering Program, University of Cincinnati, Cincinnati, OH 45267
| |
Collapse
|
55
|
Kang W, Chen Y, Bagchi A, O'Shaughnessy TJ. Characterization and detection of acceleration-induced cavitation in soft materials using a drop-tower-based integrated system. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:125113. [PMID: 29289233 DOI: 10.1063/1.5000512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The material response of biologically relevant soft materials, e.g., extracellular matrix or cell cytoplasm, at high rate loading conditions is becoming increasingly important for emerging medical implications including the potential of cavitation-induced brain injury or cavitation created by medical devices, whether intentional or not. However, accurately probing soft samples remains challenging due to their delicate nature, which often excludes the use of conventional techniques requiring direct contact with a sample-loading frame. We present a drop-tower-based method, integrated with a unique sample holder and a series of effective springs and dampers, for testing soft samples with an emphasis on high-rate loading conditions. Our theoretical studies on the transient dynamics of the system show that well-controlled impacts between a movable mass and sample holder can be used as a means to rapidly load soft samples. For demonstrating the integrated system, we experimentally quantify the critical acceleration that corresponds to the onset of cavitation nucleation for pure water and 7.5% gelatin samples. This study reveals that 7.5% gelatin has a significantly higher, approximately double, critical acceleration as compared to pure water. Finally, we have also demonstrated a non-optical method of detecting cavitation in soft materials by correlating cavitation collapse with structural resonance of the sample container.
Collapse
Affiliation(s)
- Wonmo Kang
- Leidos, Inc., Arlington, Virginia 22203, USA
| | - YungChia Chen
- The American Society for Engineering Education-Naval Research Laboratory fellow, Washington, DC 20375, USA
| | - Amit Bagchi
- Naval Research Laboratory, Washington, DC 20375, USA
| | | |
Collapse
|
56
|
Bai C, Xu S, Duan J, Jing B, Yang M, Wan M. Pulse-Inversion Subharmonic Ultrafast Active Cavitation Imaging in Tissue Using Fast Eigenspace-Based Adaptive Beamforming and Cavitation Deconvolution. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:1175-1193. [PMID: 28796605 DOI: 10.1109/tuffc.2017.2710102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pulse-inversion subharmonic (PISH) imaging can display information relating to pure cavitation bubbles while excluding that of tissue. Although plane-wave-based ultrafast active cavitation imaging (UACI) can monitor the transient activities of cavitation bubbles, its resolution and cavitation-to-tissue ratio (CTR) are barely satisfactory but can be significantly improved by introducing eigenspace-based (ESB) adaptive beamforming. PISH and UACI are a natural combination for imaging of pure cavitation activity in tissue; however, it raises two problems: 1) the ESB beamforming is hard to implement in real time due to the enormous amount of computation associated with the covariance matrix inversion and eigendecomposition and 2) the narrowband characteristic of the subharmonic filter will incur a drastic degradation in resolution. Thus, in order to jointly address these two problems, we propose a new PISH-UACI method using novel fast ESB (F-ESB) beamforming and cavitation deconvolution for nonlinear signals. This method greatly reduces the computational complexity by using F-ESB beamforming through dimensionality reduction based on principal component analysis, while maintaining the high quality of ESB beamforming. The degraded resolution is recovered using cavitation deconvolution through a modified convolution model and compressive deconvolution. Both simulations and in vitro experiments were performed to verify the effectiveness of the proposed method. Compared with the ESB-based PISH-UACI, the entire computation of our proposed approach was reduced by 99%, while the axial resolution gain and CTR were increased by 3 times and 2 dB, respectively, confirming that satisfactory performance can be obtained for monitoring pure cavitation bubbles in tissue erosion.
Collapse
|
57
|
Crake C, Meral FC, Burgess MT, Papademetriou IT, McDannold NJ, Porter TM. Combined passive acoustic mapping and magnetic resonance thermometry for monitoring phase-shift nanoemulsion enhanced focused ultrasound therapy. Phys Med Biol 2017; 62:6144-6163. [PMID: 28590938 DOI: 10.1088/1361-6560/aa77df] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Focused ultrasound (FUS) has the potential to enable precise, image-guided noninvasive surgery for the treatment of cancer in which tumors are identified and destroyed in a single integrated procedure. However, success of the method in highly vascular organs has been limited due to heat losses to perfusion, requiring development of techniques to locally enhance energy absorption and heating. In addition, FUS procedures are conventionally monitored using MRI, which provides excellent anatomical images and can map temperature, but is not capable of capturing the full gamut of available data such as the acoustic emissions generated during this inherently acoustically-driven procedure. Here, we employed phase-shift nanoemulsions (PSNE) embedded in tissue phantoms to promote cavitation and hence temperature rise induced by FUS. In addition, we incorporated passive acoustic mapping (PAM) alongside simultaneous MR thermometry in order to visualize both acoustic emissions and temperature rise, within the bore of a full scale clinical MRI scanner. Focal cavitation of PSNE could be resolved using PAM and resulted in accelerated heating and increased the maximum elevated temperature measured via MR thermometry compared to experiments without nanoemulsions. Over time, the simultaneously acquired acoustic and temperature maps show translation of the focus of activity towards the FUS transducer, and the magnitude of the increase in cavitation and focal shift both increased with nanoemulsion concentration. PAM results were well correlated with MRI thermometry and demonstrated greater sensitivity, with the ability to detect cavitation before enhanced heating was observed. The results suggest that PSNE could be beneficial for enhancement of thermal focused ultrasound therapies and that PAM could be a critical tool for monitoring this process.
Collapse
Affiliation(s)
- Calum Crake
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, United States of America
| | | | | | | | | | | |
Collapse
|
58
|
Arvanitis CD, Crake C, McDannold N, Clement GT. Passive Acoustic Mapping with the Angular Spectrum Method. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:983-993. [PMID: 28026755 PMCID: PMC5565398 DOI: 10.1109/tmi.2016.2643565] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the present proof of principle study, we evaluated the homogenous angular spectrum method for passive acoustic mapping (AS-PAM) of microbubble oscillations using simulated and experimental data. In the simulated data we assessed the ability of AS-PAM to form 3D maps of a single and multiple point sources. Then, in the two dimensional limit, we compared the 2D maps from AS-PAM with alternative frequency and time domain passive acoustic mapping (FD- and TD-PAM) approaches. Finally, we assessed the ability of AS-PAM to visualize microbubble activity in vivo with data obtained during 8 different experiments of FUS-induced blood-brain barrier disruption in 3 nonhuman primates, using a clinical MR-guided FUS system. Our in silico results demonstrate AS-PAM can be used to perform 3D passive acoustic mapping. 2D AS-PAM as compared to FD- PAM and TD-PAM is 10 and 200 times faster respectively and has similar sensitivity, resolution, and localization accuracy, even when the noise was 10-fold higher than the signal. In-vivo, the AS-PAM reconstructions of emissions at frequency bands pertinent to the different types of microbubble oscillations were also found to be more sensitive than TD-PAM. AS-PAM of harmonic-only components predicted safe blood-brain barrier disruption, whereas AS-PAM of broadband emissions correctly identified MR-evident tissue damage. The disparity (3.2 mm) in the location of the cavitation activity between the three methods was within their resolution limits. These data clearly demonstrate that AS-PAM is a sensitive and fast approach for PAM, thus providing a clinically relevant method to guide therapeutic ultrasound procedures.
Collapse
|
59
|
Enhancement of High-Intensity Focused Ultrasound Heating by Short-Pulse Generated Cavitation. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7030288] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
60
|
Arnal B, Baranger J, Demene C, Tanter M, Pernot M. In vivo real-time cavitation imaging in moving organs. Phys Med Biol 2017; 62:843-857. [DOI: 10.1088/1361-6560/aa4fe8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
61
|
Haworth KJ, Bader KB, Rich KT, Holland CK, Mast TD. Quantitative Frequency-Domain Passive Cavitation Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:177-191. [PMID: 27992331 PMCID: PMC5344809 DOI: 10.1109/tuffc.2016.2620492] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Passive cavitation detection has been an instrumental technique for measuring cavitation dynamics, elucidating concomitant bioeffects, and guiding ultrasound therapies. Recently, techniques have been developed to create images of cavitation activity to provide investigators with a more complete set of information. These techniques use arrays to record and subsequently beamform received cavitation emissions, rather than processing emissions received on a single-element transducer. In this paper, the methods for performing frequency-domain delay, sum, and integrate passive imaging are outlined. The method can be applied to any passively acquired acoustic scattering or emissions, including cavitation emissions. To compare data across different systems, techniques for normalizing Fourier transformed data and converting the data to the acoustic energy received by the array are described. A discussion of hardware requirements and alternative imaging approaches is additionally outlined. Examples are provided in MATLAB.
Collapse
|
62
|
Lu S, Xu S, Liu R, Hu H, Wan M. High-contrast active cavitation imaging technique based on multiple bubble wavelet transform. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:1000. [PMID: 27586732 DOI: 10.1121/1.4960589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, a unique method that combines the ultrafast active cavitation imaging technique with multiple bubble wavelet transform (MBWT) for improving cavitation detection contrast was presented. The bubble wavelet was constructed by the modified Keller-Miksis equation that considered the mutual effect among bubbles. A three-dimensional spatial model was applied to simulate the spatial distribution of multiple bubbles. The effects of four parameters on the signal-to-noise ratio (SNR) of cavitation images were evaluated, including the following: initial radii of bubbles, scale factor in the wavelet transform, number of bubbles, and the minimum inter-bubble distance. And the other two spatial models and cavitation bubble size distributions were introduced in the MBWT method. The results suggested that in the free-field experiments, the averaged SNR of images acquired by the MBWT method was improved by 7.16 ± 0.09 dB and 3.14 ± 0.14 dB compared with the values of images acquired by the B-mode and single bubble wavelet transform (SBWT) methods. In addition, in the tissue experiments, the averaged cavitation-to-tissue ratio of cavitation images acquired by the MBWT method was improved by 4.69 ± 0.25 dB and 1.74± 0.29 dB compared with that of images acquired by B-mode and SBWT methods.
Collapse
Affiliation(s)
- Shukuan Lu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Runna Liu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hong Hu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
63
|
Ding T, Hu H, Bai C, Guo S, Yang M, Wang S, Wan M. Spatial-temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow. ULTRASONICS 2016; 69:166-181. [PMID: 27111870 DOI: 10.1016/j.ultras.2016.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 03/22/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution, especially in a laboratory environment where more careful analysis may be required under controlled conditions.
Collapse
Affiliation(s)
- Ting Ding
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; National Key Laboratory for Electronic Measurement Technology, Department of Biomedical Engineering, School of Information and Communication Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Hong Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chen Bai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shifang Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Miao Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Supin Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
64
|
Xia J, Tsui PH, Liu HL. Low-Pressure Burst-Mode Focused Ultrasound Wave Reconstruction and Mapping for Blood-Brain Barrier Opening: A Preclinical Examination. Sci Rep 2016; 6:27939. [PMID: 27295608 PMCID: PMC4904799 DOI: 10.1038/srep27939] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/27/2016] [Indexed: 11/25/2022] Open
Abstract
Burst-mode focused ultrasound (FUS) exposure has been shown to induce transient blood-brain barrier (BBB) opening for potential CNS drug delivery. FUS-BBB opening requires imaging guidance during the intervention, yet current imaging technology only enables postoperative outcome confirmation. In this study, we propose an approach to visualize short-burst low-pressure focal beam distribution that allows to be applied in FUS-BBB opening intervention on small animals. A backscattered acoustic-wave reconstruction method based on synchronization among focused ultrasound emission, diagnostic ultrasound receiving and passively beamformed processing were developed. We observed that focal beam could be successfully visualized for in vitro FUS exposure with 0.5–2 MHz without involvement of microbubbles. The detectable level of FUS exposure was 0.467 MPa in pressure and 0.05 ms in burst length. The signal intensity (SI) of the reconstructions was linearly correlated with the FUS exposure level both in-vitro (r2 = 0.9878) and in-vivo (r2 = 0.9943), and SI level of the reconstructed focal beam also correlated with the success and level of BBB-opening. The proposed approach provides a feasible way to perform real-time and closed-loop control of FUS-based brain drug delivery.
Collapse
Affiliation(s)
- Jingjing Xia
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan.,Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Po-Hsiang Tsui
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, Chang Gung University, Taoyuan, Taiwan.,Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
65
|
Jones RM, O'Reilly MA, Hynynen K. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections. Med Phys 2016; 42:4385-400. [PMID: 26133635 DOI: 10.1118/1.4922677] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Experimentally verify a previously described technique for performing passive acoustic imaging through an intact human skull using noninvasive, computed tomography (CT)-based aberration corrections Jones et al. [Phys. Med. Biol. 58, 4981-5005 (2013)]. METHODS A sparse hemispherical receiver array (30 cm diameter) consisting of 128 piezoceramic discs (2.5 mm diameter, 612 kHz center frequency) was used to passively listen through ex vivo human skullcaps (n = 4) to acoustic emissions from a narrow-band fixed source (1 mm diameter, 516 kHz center frequency) and from ultrasound-stimulated (5 cycle bursts, 1 Hz pulse repetition frequency, estimated in situ peak negative pressure 0.11-0.33 MPa, 306 kHz driving frequency) Definity™ microbubbles flowing through a thin-walled tube phantom. Initial in vivo feasibility testing of the method was performed. The performance of the method was assessed through comparisons to images generated without skull corrections, with invasive source-based corrections, and with water-path control images. RESULTS For source locations at least 25 mm from the inner skull surface, the modified reconstruction algorithm successfully restored a single focus within the skull cavity at a location within 1.25 mm from the true position of the narrow-band source. The results obtained from imaging single bubbles are in good agreement with numerical simulations of point source emitters and the authors' previous experimental measurements using source-based skull corrections O'Reilly et al. [IEEE Trans. Biomed. Eng. 61, 1285-1294 (2014)]. In a rat model, microbubble activity was mapped through an intact human skull at pressure levels below and above the threshold for focused ultrasound-induced blood-brain barrier opening. During bursts that led to coherent bubble activity, the location of maximum intensity in images generated with CT-based skull corrections was found to deviate by less than 1 mm, on average, from the position obtained using source-based corrections. CONCLUSIONS Taken together, these results demonstrate the feasibility of using the method to guide bubble-mediated ultrasound therapies in the brain. The technique may also have application in ultrasound-based cerebral angiography.
Collapse
Affiliation(s)
- Ryan M Jones
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada; and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
66
|
Abstract
Like cardiovascular disease and cancer, neurological disorders present an increasing challenge for an ageing population. Whereas nonpharmacological procedures are routine for eliminating cancer tissue or opening a blocked artery, the focus in neurological disease remains on pharmacological interventions. Setbacks in clinical trials and the obstacle of access to the brain for drug delivery and surgery have highlighted the potential for therapeutic use of ultrasound in neurological diseases, and the technology has proved useful for inducing focused lesions, clearing protein aggregates, facilitating drug uptake, and modulating neuronal function. In this Review, we discuss milestones in the development of therapeutic ultrasound, from the first steps in the 1950s to recent improvements in technology. We provide an overview of the principles of diagnostic and therapeutic ultrasound, for surgery and transient opening of the blood-brain barrier, and its application in clinical trials of stroke, Parkinson disease and chronic pain. We discuss the promising outcomes of safety and feasibility studies in preclinical models, including rodents, pigs and macaques, and efficacy studies in models of Alzheimer disease. We also consider the challenges faced on the road to clinical translation.
Collapse
|
67
|
Ikeda T, Yoshizawa S, Koizumi N, Mitsuishi M, Matsumoto Y. Focused Ultrasound and Lithotripsy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:113-29. [PMID: 26486335 DOI: 10.1007/978-3-319-22536-4_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Shock wave lithotripsy has generally been a first choice for kidney stone removal. The shock wave lithotripter uses an order of microsecond pulse durations and up to a 100 MPa pressure spike triggered at approximately 0.5-2 Hz to fragment kidney stones through mechanical mechanisms. One important mechanism is cavitation. We proposed an alternative type of lithotripsy method that maximizes cavitation activity to disintegrate kidney stones using high-intensity focused ultrasound (HIFU). Here we outline the method according to the previously published literature (Matsumoto et al., Dynamics of bubble cloud in focused ultrasound. Proceedings of the second international symposium on therapeutic ultrasound, pp 290-299, 2002; Ikeda et al., Ultrasound Med Biol 32:1383-1397, 2006; Yoshizawa et al., Med Biol Eng Comput 47:851-860, 2009; Koizumi et al., A control framework for the non-invasive ultrasound the ragnostic system. Proceedings of 2009 IEEE/RSJ International Conference on Intelligent Robotics and Systems (IROS), pp 4511-4516, 2009; Koizumi et al., IEEE Trans Robot 25:522-538, 2009). Cavitation activity is highly unpredictable; thus, a precise control system is needed. The proposed method comprises three steps of control in kidney stone treatment. The first step is control of localized high pressure fluctuation on the stone. The second step is monitoring of cavitation activity and giving feedback on the optimized ultrasound conditions. The third step is stone tracking and precise ultrasound focusing on the stone. For the high pressure control we designed a two-frequency wave (cavitation control (C-C) waveform); a high frequency ultrasound pulse (1-4 MHz) to create a cavitation cloud, and a low frequency trailing pulse (0.5 MHz) following the high frequency pulse to force the cloud into collapse. High speed photography showed cavitation collapse on a kidney stone and shock wave emission from the cloud. We also conducted in-vitro erosion tests of model and natural kidney stones. For the model stones, the erosion rate of the C-C waveform showed a distinct advantage with the combined high and low frequency waves over either wave alone. For optimization of the high frequency ultrasound intensity, we investigated the relationship between subharmonic emission from cavitation bubbles and stone erosion volume. For stone tracking we have also developed a non-invasive ultrasound theragnostic system (NIUTS) that compensates for kidney motion. Natural stones were eroded and most of the resulting fragments were less than 1 mm in diameter. The small fragments were small enough to pass through the urethra. The results demonstrate that, with the precise control of cavitation activity, focused ultrasound has the potential to be used to develop a less invasive and more controllable lithotripsy system.
Collapse
Affiliation(s)
| | - Shin Yoshizawa
- Department of Communications Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Norihiro Koizumi
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan
| | - Mamoru Mitsuishi
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan
| | - Yoichiro Matsumoto
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
68
|
Aubry JF, Tanter M. MR-Guided Transcranial Focused Ultrasound. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:97-111. [PMID: 26486334 DOI: 10.1007/978-3-319-22536-4_6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous chapters introduced the ability of using focused ultrasound to ablate tissues. It has led to various clinical applications in the treatment of uterine fibroid, prostate or liver cancers. Nevertheless, treating the brain non-invasively with focused ultrasound has been considered beyond reach for almost a century: The skull bone protects the brain from mechanical injuries, but it also reflects and refracts ultrasound, making it difficult to target the brain with focused ultrasound. Fortunately, aberration correction techniques have been developed recently and thermal lesioning in the thalamus has been achieved clinically. This chapter introduces the aberration effect of the skull bone and how it can be corrected non-invasively. It also presents the latest clinical results obtained with thermal ablation and introduces novel non-thermal approaches that could revolutionize brain therapy in the future.
Collapse
Affiliation(s)
- Jean-François Aubry
- Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, INSERM U979, Paris, France. .,Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA.
| | - Mickael Tanter
- Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, INSERM U979, Paris, France.
| |
Collapse
|
69
|
Alison M, Biran V, Tanase A, Bendavid M, Blouet M, Demené C, Sebag G, Tanter M, Baud O. Quantitative Shear-Wave Elastography of the Liver in Preterm Neonates with Intra-Uterine Growth Restriction. PLoS One 2015; 10:e0143220. [PMID: 26580807 PMCID: PMC4651533 DOI: 10.1371/journal.pone.0143220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/01/2015] [Indexed: 12/17/2022] Open
Abstract
The feasibility and reproducibility of liver stiffness measurements using Supersonic Shear-wave Imaging (SSI) in preterm neonate have not been reported. Our aim was to determine if liver stiffness differs between intra-uterine growth restriction (IUGR) and appropriate for gestational age (AGA) preterm infants with/without cholestasis. We measured liver stiffness (in kPa) in 45 AGA and 18 IUGR preterm infants, and assessed reproducibility in 26 preterms using Intraclass Correlation Coefficients (ICC) and Bland-Altman tests. Liver stiffness values were compared between AGA and IUGR with and without cholestasis and correlated with birth weight. Measurements showed high reproducibility (ICC = 0.94–0.98 for intra-operator, 0.86 for inter-operator) with good agreement (95% limits: -1.24 to 1.24 kPa). During the first postnatal week, liver stiffness was higher in IUGR (7.50 ±1.53 kPa) than in AGA infants (5.11 ±0.80 kPa, p<0.001). After day 8, liver stiffness remained unchanged in AGA but increased progressively in IUGR infants (15.57 ±6.49 kPa after day 21). Liver stiffness was higher in IUGR neonates with cholestasis (19.35 ± 9.80 kPa) than without cholestasis (7.72 ± 1.27 kPa, p<0.001). In conclusion, quantitative liver SSI in preterms is feasible and reproducible. IUGR preterms who will develop cholestasis present high liver stiffness even at birth, before biological cholestasis occurs.
Collapse
Affiliation(s)
- Marianne Alison
- Department of Pediatric Radiology, Robert Debré Children University Hospital and Denis Diderot Paris University, APHP, 75019 Paris, France
- PremUP foundation, 75014 Paris, France
| | - Valérie Biran
- PremUP foundation, 75014 Paris, France
- Neonatal Intensive Care Unit and INSERM U1141, Robert Debré Children University Hospital and Denis Diderot Paris University, APHP, 75019 Paris, France
| | - Anca Tanase
- Department of Pediatric Radiology, Robert Debré Children University Hospital and Denis Diderot Paris University, APHP, 75019 Paris, France
- PremUP foundation, 75014 Paris, France
| | - Matthieu Bendavid
- Neonatal Intensive Care Unit and INSERM U1141, Robert Debré Children University Hospital and Denis Diderot Paris University, APHP, 75019 Paris, France
| | - Marie Blouet
- Department of Pediatric Radiology, Robert Debré Children University Hospital and Denis Diderot Paris University, APHP, 75019 Paris, France
| | - Charlie Demené
- PremUP foundation, 75014 Paris, France
- Institut Langevin, CNRS UMR 7587, INSERM U979, ESPCI ParisTech, 75005 Paris, France
| | - Guy Sebag
- Department of Pediatric Radiology, Robert Debré Children University Hospital and Denis Diderot Paris University, APHP, 75019 Paris, France
- PremUP foundation, 75014 Paris, France
| | - Mickael Tanter
- PremUP foundation, 75014 Paris, France
- Institut Langevin, CNRS UMR 7587, INSERM U979, ESPCI ParisTech, 75005 Paris, France
| | - Olivier Baud
- PremUP foundation, 75014 Paris, France
- Neonatal Intensive Care Unit and INSERM U1141, Robert Debré Children University Hospital and Denis Diderot Paris University, APHP, 75019 Paris, France
- * E-mail:
| |
Collapse
|
70
|
Desailly Y, Pierre J, Couture O, Tanter M. Resolution limits of ultrafast ultrasound localization microscopy. Phys Med Biol 2015; 60:8723-40. [DOI: 10.1088/0031-9155/60/22/8723] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
71
|
Prieur F, Zorgani A, Catheline S, Souchon R, Mestas JL, Lafond M, Lafon C. Observation of a cavitation cloud in tissue using correlation between ultrafast ultrasound images. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:1256-64. [PMID: 26168172 DOI: 10.1109/tuffc.2014.006905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The local application of ultrasound is known to improve drug intake by tumors. Cavitating bubbles are one of the contributing effects. A setup in which two ultrasound transducers are placed confocally is used to generate cavitation in ex vivo tissue. As the transducers emit a series of short excitation bursts, the evolution of the cavitation activity is monitored using an ultrafast ultrasound imaging system. The frame rate of the system is several thousands of images per second, which provides several tens of images between consecutive excitation bursts. Using the correlation between consecutive images for speckle tracking, a decorrelation of the imaging signal appears due to the creation, fast movement, and dissolution of the bubbles in the cavitation cloud. By analyzing this area of decorrelation, the cavitation cloud can be localized and the spatial extent of the cavitation activity characterized.
Collapse
|
72
|
Nightingale KR, Church CC, Harris G, Wear KA, Bailey MR, Carson PL, Jiang H, Sandstrom KL, Szabo TL, Ziskin MC. Conditionally Increased Acoustic Pressures in Nonfetal Diagnostic Ultrasound Examinations Without Contrast Agents: A Preliminary Assessment. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2015; 34:1-41. [PMID: 26112617 PMCID: PMC4822701 DOI: 10.7863/ultra.34.7.15.13.0001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The mechanical index (MI) has been used by the US Food and Drug Administration (FDA) since 1992 for regulatory decisions regarding the acoustic output of diagnostic ultrasound equipment. Its formula is based on predictions of acoustic cavitation under specific conditions. Since its implementation over 2 decades ago, new imaging modes have been developed that employ unique beam sequences exploiting higher-order acoustic phenomena, and, concurrently, studies of the bioeffects of ultrasound under a range of imaging scenarios have been conducted. In 2012, the American Institute of Ultrasound in Medicine Technical Standards Committee convened a working group of its Output Standards Subcommittee to examine and report on the potential risks and benefits of the use of conditionally increased acoustic pressures (CIP) under specific diagnostic imaging scenarios. The term "conditionally" is included to indicate that CIP would be considered on a per-patient basis for the duration required to obtain the necessary diagnostic information. This document is a result of that effort. In summary, a fundamental assumption in the MI calculation is the presence of a preexisting gas body. For tissues not known to contain preexisting gas bodies, based on theoretical predications and experimentally reported cavitation thresholds, we find this assumption to be invalid. We thus conclude that exceeding the recommended maximum MI level given in the FDA guidance could be warranted without concern for increased risk of cavitation in these tissues. However, there is limited literature assessing the potential clinical benefit of exceeding the MI guidelines in these tissues. The report proposes a 3-tiered approach for CIP that follows the model for employing elevated output in magnetic resonance imaging and concludes with summary recommendations to facilitate Institutional Review Board (IRB)-monitored clinical studies investigating CIP in specific tissues.
Collapse
Affiliation(s)
- Kathryn R Nightingale
- Department of Biomedical Engineering, Duke University, PO Box 90281, Durham, NC 27708 USA
| | - Charles C Church
- National Center for Physical Acoustics and Department of Physics and Astronomy, The University of Mississippi, University, MS 38677 USA
| | - Gerald Harris
- US Food and Drug Administration (Retired), Current Address: 132 S Van Buren St, Rockville, MD 20850 USA
| | - Keith A Wear
- US Food and Drug Administration, 10903 New Hampshire Ave, Building 62, Room 2104, Silver Spring, MD 20993-0002 USA
| | - Michael R Bailey
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th St, Seattle WA 98105 USA
| | - Paul L Carson
- Department of Radiology, University of Michigan Health System, 3218C Med Sci I, B Wing SPC 5667, Ann Arbor, MI 48109-5667 USA
| | - Hui Jiang
- Fujifilm SonoSite, 21919 30th Dr SE, Bothell, WA 98021 USA
| | - Kurt L Sandstrom
- Samsung Medison Co, Ltd, Building, 42, Teheran-ro, 108-gil, Gangnam-gu, Seoul 135-851, Korea
| | - Thomas L Szabo
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215 USA
| | - Marvin C Ziskin
- Emeritus Professor of Radiology and Medical Physics, Temple University School of Medicine, Philadelphia, PA 19140 USA
| |
Collapse
|
73
|
Arvanitis CD, Clement GT, McDannold N. Transcranial Assessment and Visualization of Acoustic Cavitation: Modeling and Experimental Validation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1270-81. [PMID: 25546857 PMCID: PMC4481181 DOI: 10.1109/tmi.2014.2383835] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The interaction of ultrasonically-controlled microbubble oscillations with tissues and biological media has been shown to induce a wide range of bioeffects that may have significant impact on therapy and diagnosis of brain diseases and disorders. However, the inherently non-linear microbubble oscillations combined with the micrometer and microsecond scales involved in these interactions and the limited methods to assess and visualize them transcranially hinder both their optimal use and translation to the clinics. To overcome these challenges, we present a framework that combines numerical simulations with multimodality imaging to assess and visualize the microbubble oscillations transcranially. In the present work, microbubble oscillations were studied with an integrated US and MR imaging guided clinical FUS system. A high-resolution brain CT scan was also co-registered to the US and MR images and the derived acoustic properties were used as inputs to two- and three-dimensional Finite Difference Time Domain simulations that matched the experimental conditions and geometry. Synthetic point sources by either a Gaussian function or the output of a microbubble dynamics model were numerically excited and propagated through the skull towards a virtual US imaging array. Using passive acoustic mapping (PAM) that was refined to incorporate variable speed of sound, we were able to correct the aberrations introduced by the skull and substantially improve the PAM resolution. The good agreement between the simulations incorporating microbubble emissions and experimentally-determined PAMs suggest that this integrated approach can provide a clinically-relevant framework and more control over this nonlinear and dynamic process.
Collapse
Affiliation(s)
- Costas D. Arvanitis
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA ()
| | - Gregory T. Clement
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA )
| | - Nathan McDannold
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA ()
| |
Collapse
|
74
|
Liu R, Hu H, Xu S, Huo R, Wang S, Wan M. Ultrafast active cavitation imaging with enhanced cavitation to tissue ratio based on wavelet transform and pulse inversion. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:3099-3106. [PMID: 26093401 DOI: 10.1121/1.4921606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The quality of ultrafast active cavitation imaging (UACI) using plane wave transmission is hindered by low transmission pressure, which is necessary to prevent bubble destruction. In this study, a UACI method that combined wavelet transform with pulse inversion (PI) was proposed to enhance the contrast between the cavitation bubbles and surrounding tissues. The main challenge in using wavelet transform is the selection of the optimum mother wavelet. A mother wavelet named "cavitation bubble wavelet" and constructed according to Rayleigh-Plesset-Noltingk-Neppiras-Poritsky model was expected to obtain a high correlation between the bubbles and beamformed echoes. The method was validated by in vitro experiments. Results showed that the image quality was associated with the initial radius of bubble and the scale. The signal-to-noise ratio (SNR) of the best optimum cavitation bubble wavelet transform (CBWT) mode image was improved by 3.2 dB compared with that of the B-mode image in free-field experiments. The cavitation-to-tissue ratio of the best optimum PI-based CBWT mode image was improved by 2.3 dB compared with that of the PI-based B-mode image in tissue experiments. Furthermore, the SNR versus initial radius curve had the potential to estimate the size distribution of cavitation bubbles.
Collapse
Affiliation(s)
- Runna Liu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hong Hu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Rui Huo
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Supin Wang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
75
|
Hu H, Xu S, Yuan Y, Liu R, Wang S, Wan M. Spatial-temporal ultrasound imaging of residual cavitation bubbles around a fluid-tissue interface in histotripsy. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:2563-2572. [PMID: 25994689 DOI: 10.1121/1.4919286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cavitation is considered as the primary mechanism of soft tissue fragmentation (histotripsy) by pulsed high-intensity focused ultrasound. The residual cavitation bubbles have a dual influence on the histotripsy pulses: these serve as nuclei for easy generation of new cavitation, and act as strong scatterers causing energy "shadowing." To monitor the residual cavitation bubbles in histotripsy, an ultrafast active cavitation imaging method with relatively high signal-to-noise ratio and good spatial-temporal resolution was proposed in this paper, which combined plane wave transmission, minimum variance beamforming, and coherence factor weighting. The spatial-temporal evolutions of residual cavitation bubbles around a fluid-tissue interface in histotripsy under pulse duration (PD) of 10-40 μs and pulse repetition frequency (PRF) of 0.67-2 kHz were monitored by this method. The integrated bubble area curves inside the tissue interface were acquired from the bubble image sequence, and the formation process of histotripsy damage was estimated. It was observed that the histotripsy efficiency decreased with both longer PDs and higher PRFs. A direct relationship with a coefficient of 1.0365 between histotripsy lesion area and inner residual bubble area was found. These results can assist in monitoring and optimization of the histotripsy treatment further.
Collapse
Affiliation(s)
- Hong Hu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yuan Yuan
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Runna Liu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Supin Wang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
76
|
Xu Z, Carlson C, Snell J, Eames M, Hananel A, Lopes MB, Raghavan P, Lee CC, Yen CP, Schlesinger D, Kassell NF, Aubry JF, Sheehan J. Intracranial inertial cavitation threshold and thermal ablation lesion creation using MRI-guided 220-kHz focused ultrasound surgery: preclinical investigation. J Neurosurg 2015; 122:152-61. [PMID: 25380106 DOI: 10.3171/2014.9.jns14541] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT In biological tissues, it is known that the creation of gas bubbles (cavitation) during ultrasound exposure is more likely to occur at lower rather than higher frequencies. Upon collapsing, such bubbles can induce hemorrhage. Thus, acoustic inertial cavitation secondary to a 220-kHz MRI-guided focused ultrasound (MRgFUS) surgery is a serious safety issue, and animal studies are mandatory for laying the groundwork for the use of low-frequency systems in future clinical trials. The authors investigate here the in vivo potential thresholds of MRgFUS-induced inertial cavitation and MRgFUS-induced thermal coagulation using MRI, acoustic spectroscopy, and histology. METHODS Ten female piglets that had undergone a craniectomy were sonicated using a 220-kHz transcranial MRgFUS system over an acoustic energy range of 5600-14,000 J. For each piglet, a long-duration sonication (40-second duration) was performed on the right thalamus, and a short sonication (20-second duration) was performed on the left thalamus. An acoustic power range of 140-300 W was used for long-duration sonications and 300-700 W for short-duration sonications. Signals collected by 2 passive cavitation detectors were stored in memory during each sonication, and any subsequent cavitation activity was integrated within the bandwidth of the detectors. Real-time 2D MR thermometry was performed during the sonications. T1-weighted, T2-weighted, gradient-recalled echo, and diffusion-weighted imaging MRI was performed after treatment to assess the lesions. The piglets were killed immediately after the last series of posttreatment MR images were obtained. Their brains were harvested, and histological examinations were then performed to further evaluate the lesions. RESULTS Two types of lesions were induced: thermal ablation lesions, as evidenced by an acute ischemic infarction on MRI and histology, and hemorrhagic lesions, associated with inertial cavitation. Passive cavitation signals exhibited 3 main patterns identified as follows: no cavitation, stable cavitation, and inertial cavitation. Low-power and longer sonications induced only thermal lesions, with a peak temperature threshold for lesioning of 53°C. Hemorrhagic lesions occurred only with high-power and shorter sonications. The sizes of the hemorrhages measured on macroscopic histological examinations correlated with the intensity of the cavitation activity (R2 = 0.74). The acoustic cavitation activity detected by the passive cavitation detectors exhibited a threshold of 0.09 V·Hz for the occurrence of hemorrhages. CONCLUSIONS This work demonstrates that 220-kHz ultrasound is capable of inducing a thermal lesion in the brain of living swines without hemorrhage. Although the same acoustic energy can induce either a hemorrhage or a thermal lesion, it seems that low-power, long-duration sonication is less likely to cause hemorrhage and may be safer. Although further study is needed to decrease the likelihood of ischemic infarction associated with the 220-kHz ultrasound, the threshold established in this work may allow for the detection and prevention of deleterious cavitations.
Collapse
|
77
|
Ebbini ES, ter Haar G. Ultrasound-guided therapeutic focused ultrasound: current status and future directions. Int J Hyperthermia 2015; 31:77-89. [PMID: 25614047 DOI: 10.3109/02656736.2014.995238] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This paper reviews ultrasound imaging methods for the guidance of therapeutic focused ultrasound (USgFUS), with emphasis on real-time preclinical methods. Guidance is interpreted in the broadest sense to include pretreatment planning, siting of the FUS focus, real-time monitoring of FUS-tissue interactions, and real-time control of exposure and damage assessment. The paper begins with an overview and brief historical background of the early methods used for monitoring FUS-tissue interactions. Current imaging methods are described, and discussed in terms of sensitivity and specificity of the localisation of the FUS effects in both therapeutic and sub-therapeutic modes. Thermal and non-thermal effects are considered. These include cavitation-enhanced heating, tissue water boiling and cavitation. Where appropriate, USgFUS methods are compared with similar methods implemented using other guidance modalities, e.g. magnetic resonance imaging. Conclusions are drawn regarding the clinical potential of the various guidance methods, and the feasibility and current status of real-time implementation.
Collapse
Affiliation(s)
- Emad S Ebbini
- Electrical and Computer Engineering, University of Minnesota Twin Cities , Minneapolis, Minnesota , USA and
| | | |
Collapse
|
78
|
Church CC, Labuda C, Nightingale K. A theoretical study of inertial cavitation from acoustic radiation force impulse imaging and implications for the mechanical index. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:472-85. [PMID: 25592457 PMCID: PMC4297318 DOI: 10.1016/j.ultrasmedbio.2014.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 05/10/2023]
Abstract
The mechanical index (MI) attempts to quantify the likelihood that exposure to diagnostic ultrasound will produce an adverse biological effect by a non-thermal mechanism. The current formulation of the MI implicitly assumes that the acoustic field is generated using the short pulse durations appropriate to B-mode imaging. However, acoustic radiation force impulse (ARFI) imaging employs high-intensity pulses up to several hundred acoustic periods long. The effect of increased pulse durations on the thresholds for inertial cavitation was studied computationally in water, urine, blood, cardiac and skeletal muscle, brain, kidney, liver and skin. The results indicate that, although the effect of pulse duration on cavitation thresholds in the three liquids can be considerable, reducing them by, for example, 6%-24% at 1 MHz, the effect on tissue is minor. More importantly, the frequency dependence of the MI appears to be unnecessarily conservative; that is, the magnitude of the exponent on frequency could be increased to 0.75. Comparison of these theoretical results with experimental measurements suggests that some tissues do not contain the pre-existing, optimally sized bubbles assumed for the MI. This means that in these tissues, the MI is not necessarily a strong predictor of the probability of an adverse biological effect.
Collapse
Affiliation(s)
- Charles C Church
- National Center for Physical Acoustics and Department of Physics and Astronomy, University of Mississippi, University, Mississippi, USA.
| | - Cecille Labuda
- National Center for Physical Acoustics and Department of Physics and Astronomy, University of Mississippi, University, Mississippi, USA
| | - Kathryn Nightingale
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
79
|
Crake C, Victor MDS, Owen J, Coviello C, Collin J, Coussios CC, Stride E. Passive acoustic mapping of magnetic microbubbles for cavitation enhancement and localization. Phys Med Biol 2015; 60:785-806. [DOI: 10.1088/0031-9155/60/2/785] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
80
|
Arvanitis CD, McDannold N. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies. Med Phys 2014; 40:112901. [PMID: 24320468 DOI: 10.1118/1.4823793] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Ultrasound can be used to noninvasively produce different bioeffects via viscous heating, acoustic cavitation, or their combination, and these effects can be exploited to develop a wide range of therapies for cancer and other disorders. In order to accurately localize and control these different effects, imaging methods are desired that can map both temperature changes and cavitation activity. To address these needs, the authors integrated an ultrasound imaging array into an MRI-guided focused ultrasound (MRgFUS) system to simultaneously visualize thermal and mechanical effects via passive acoustic mapping (PAM) and MR temperature imaging (MRTI), respectively. METHODS The system was tested with an MRgFUS system developed for transcranial sonication for brain tumor ablation in experiments with a tissue mimicking phantom and a phantom-filled ex vivo macaque skull. In experiments on cavitation-enhanced heating, 10 s continuous wave sonications were applied at increasing power levels (30-110 W) until broadband acoustic emissions (a signature for inertial cavitation) were evident. The presence or lack of signal in the PAM, as well as its magnitude and location, were compared to the focal heating in the MRTI. Additional experiments compared PAM with standard B-mode ultrasound imaging and tested the feasibility of the system to map cavitation activity produced during low-power (5 W) burst sonications in a channel filled with a microbubble ultrasound contrast agent. RESULTS When inertial cavitation was evident, localized activity was present in PAM and a marked increase in heating was observed in MRTI. The location of the cavitation activity and heating agreed on average after registration of the two imaging modalities; the distance between the maximum cavitation activity and focal heating was -3.4 ± 2.1 mm and -0.1 ± 3.3 mm in the axial and transverse ultrasound array directions, respectively. Distortions and other MRI issues introduced small uncertainties in the PAM∕MRTI registration. Although there was substantial variation, a nonlinear relationship between the average intensity of the cavitation maps, which was relatively constant during sonication, and the peak temperature rise was evident. A fit to the data to an exponential had a correlation coefficient (R(2)) of 0.62. The system was also found to be capable of visualizing cavitation activity with B-mode imaging and of passively mapping cavitation activity transcranially during cavitation-enhanced heating and during low-power sonication with an ultrasound contrast agent. CONCLUSIONS The authors have demonstrated the feasibility of integrating an ultrasound imaging array into an MRgFUS system to simultaneously map localized cavitation activity and temperature. The authors anticipate that this integrated approach can be utilized to develop controllers for cavitation-enhanced ablation and facilitate the optimization and development of this and other ultrasound therapies. The integrated system may also provide a useful tool to study the bioeffects of acoustic cavitation.
Collapse
Affiliation(s)
- Costas D Arvanitis
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115
| | | |
Collapse
|
81
|
Schlesinger D, Benedict S, Diederich C, Gedroyc W, Klibanov A, Larner J. MR-guided focused ultrasound surgery, present and future. Med Phys 2014; 40:080901. [PMID: 23927296 DOI: 10.1118/1.4811136] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MR-guided focused ultrasound surgery (MRgFUS) is a quickly developing technology with potential applications across a spectrum of indications traditionally within the domain of radiation oncology. Especially for applications where focal treatment is the preferred technique (for example, radiosurgery), MRgFUS has the potential to be a disruptive technology that could shift traditional patterns of care. While currently cleared in the United States for the noninvasive treatment of uterine fibroids and bone metastases, a wide range of clinical trials are currently underway, and the number of publications describing advances in MRgFUS is increasing. However, for MRgFUS to make the transition from a research curiosity to a clinical standard of care, a variety of challenges, technical, financial, clinical, and practical, must be overcome. This installment of the Vision 20∕20 series examines the current status of MRgFUS, focusing on the hurdles the technology faces before it can cross over from a research technique to a standard fixture in the clinic. It then reviews current and near-term technical developments which may overcome these hurdles and allow MRgFUS to break through into clinical practice.
Collapse
Affiliation(s)
- David Schlesinger
- Department of Radiation Oncology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | |
Collapse
|
82
|
Ding T, Zhang S, Fu Q, Xu Z, Wan M. Ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping for high-intensity focused ultrasound. ULTRASONICS 2014; 54:147-55. [PMID: 23673346 DOI: 10.1016/j.ultras.2013.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 03/12/2013] [Accepted: 04/14/2013] [Indexed: 05/15/2023]
Abstract
This paper presented an ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping applicable in a liquid or liquid filled tissue cavities exposed by high-intensity focused ultrasound (HIFU). Scattered signals from cavitation bubbles were obtained in a scan line immediately after one HIFU exposure, and then there was a waiting time of 2 s long enough to make the liquid back to the original state. As this pattern extended, an image was built up by sequentially measuring a series of such lines. The acquisition of the beamformed radiofrequency (RF) signals for a scan line was synchronized with HIFU exposure. The duration of HIFU exposure, as well as the delay of the interrogating pulse relative to the moment while HIFU was turned off, could vary from microseconds to seconds. The feasibility of this method was demonstrated in tap-water and a tap-water filled cavity in the tissue-mimicking gelatin-agar phantom as capable of observing temporal evolutions of cavitation bubble cloud with temporal resolution of several microseconds, lateral and axial resolution of 0.50 mm and 0.29 mm respectively. The dissolution process of cavitation bubble cloud and spatial distribution affected by cavitation previously generated were also investigated. Although the application is limited by the requirement for a gassy fluid (e.g. tap water, etc.) that allows replenishment of nuclei between HIFU exposures, the technique may be a useful tool in spatial-temporal cavitation mapping for HIFU with high precision and resolution, providing a reference for clinical therapy.
Collapse
Affiliation(s)
- Ting Ding
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | | | | | | | | |
Collapse
|
83
|
Tanter M, Fink M. Ultrafast imaging in biomedical ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014. [PMID: 24402899 DOI: 10.1109/tuffc.2014.2882] [Citation(s) in RCA: 358] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although the use of ultrasonic plane-wave transmissions rather than line-per-line focused beam transmissions has been long studied in research, clinical application of this technology was only recently made possible through developments in graphical processing unit (GPU)-based platforms. Far beyond a technological breakthrough, the use of plane or diverging wave transmissions enables attainment of ultrafast frame rates (typically faster than 1000 frames per second) over a large field of view. This concept has also inspired the emergence of completely novel imaging modes which are valuable for ultrasound-based screening, diagnosis, and therapeutic monitoring. In this review article, we present the basic principles and implementation of ultrafast imaging. In particular, present and future applications of ultrafast imaging in biomedical ultrasound are illustrated and discussed.
Collapse
|
84
|
Gateau J, Taccoen N, Tanter M, Aubry JF. Statistics of acoustically induced bubble-nucleation events in in vitro blood: a feasibility study. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1812-25. [PMID: 23932270 DOI: 10.1016/j.ultrasmedbio.2013.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 05/05/2023]
Abstract
Bubbles can form in biological tissues through ultrasonic activation of natural gas nuclei. The damaging aftereffects raise safety concerns. However, the population of nuclei is currently unknown, and bubble nucleation is stochastic and thus unpredictable. This study investigates the statistical behavior of bubble nucleation experimentally and introduces a model-based analysis to determine the distribution of nuclei in biological samples-two pig blood samples in vitro. Combined ultra-fast passive and active cavitation detection with a linear array was used to detect nucleation from pulsed ultrasound excitations at 660 kHz. Single nucleation events were detected at peak rarefaction pressures from -3.6 to -24 MPa, and the nucleation probability over the range 0 to 1 was estimated from more than 330 independent acquisitions per sample. Model fitting of the experimental probability revealed that the distribution of nuclei is most likely continuous, and nuclei are rare in comparison to blood cells.
Collapse
Affiliation(s)
- Jérôme Gateau
- Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, INSERM U979, Université Denis Diderot, Paris VII, 1 rue Jussieu 75005 Paris, France.
| | | | | | | |
Collapse
|
85
|
Yeh CL, Li PC, Shih WP, Huang PS, Kuo PL. Imaging monitored loosening of dense fibrous tissues using high-intensity pulsed ultrasound. Phys Med Biol 2013; 58:6779-96. [PMID: 24018912 DOI: 10.1088/0031-9155/58/19/6779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pulsed high-intensity focused ultrasound (HIFU) is proposed as a new alternative treatment for contracture of dense fibrous tissue. It is hypothesized that the pulsed-HIFU can release the contracted tissues by attenuating tensile stiffness along the fiber axis, and that the stiffness reduction can be quantitatively monitored by change of B-mode images. Fresh porcine tendons and ligaments were adapted to an ex vivo model and insonated with pulsed-HIFU for durations ranging from 5 to 30 min. The pulse length was 91 µs with a repetition frequency of 500 Hz, and the peak rarefactional pressure was 6.36 MPa. The corresponding average intensities were kept around 1606 W cm(-2) for ISPPA and 72.3 W cm(-2) for ISPTA. B-mode images of the tissues were acquired before and after pulsed-HIFU exposure, and the changes in speckle intensity and organization were analyzed. The tensile stiffness of the HIFU-exposed tissues along the longitudinal axis was examined using a stretching machine. Histology examinations were performed by optical and transmission electron microscopy. Pulsed-HIFU exposure significantly decreased the tensile stiffness of the ligaments and tendons. The intensity and organization of tissue speckles in the exposed region were also decreased. The speckle changes correlated well with the degree of stiffness alteration. Histology examinations revealed that pulsed-HIFU exposure probably damages tissues via a cavitation-mediated mechanism. Our results suggest that pulsed-HIFU with a low duty factor is a promising tool for developing new treatment strategies for orthopedic disorders.
Collapse
Affiliation(s)
- Chia-Lun Yeh
- Graduate Institute of Biomedical Electronics and Bioinformatics, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
86
|
Foley JL, Eames M, Snell J, Hananel A, Kassell N, Aubry JF. Image-guided focused ultrasound: state of the technology and the challenges that lie ahead. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/iim.13.38] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
87
|
Jones RM, O'Reilly MA, Hynynen K. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study. Phys Med Biol 2013; 58:4981-5005. [PMID: 23807573 DOI: 10.1088/0031-9155/58/14/4981] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337-43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source's emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system's resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring techniques currently exist.
Collapse
Affiliation(s)
- Ryan M Jones
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.
| | | | | |
Collapse
|
88
|
Gateau J, Aubry JF, Chauvet D, Boch AL, Fink M, Tanter M. In vivo bubble nucleation probability in sheep brain tissue. Phys Med Biol 2011; 56:7001-15. [PMID: 22015981 DOI: 10.1088/0031-9155/56/22/001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gas nuclei exist naturally in living bodies. Their activation initiates cavitation activity, and is possible using short ultrasonic excitations of high amplitude. However, little is known about the nuclei population in vivo, and therefore about the rarefaction pressure required to form bubbles in tissue. A novel method dedicated to in vivo investigations was used here that combines passive and active cavitation detection with a multi-element linear ultrasound probe (4-7 MHz). Experiments were performed in vivo on the brain of trepanated sheep. Bubble nucleation was induced using a focused single-element transducer (central frequency 660 kHz, f-number = 1) driven by a high power (up to 5 kW) electric burst of two cycles. Successive passive recording and ultrafast active imaging were shown to allow detection of a single nucleation event in brain tissue in vivo. Experiments carried out on eight sheep allowed statistical studies of the bubble nucleation process. The nucleation probability was evaluated as a function of the peak negative pressure. No nucleation event could be detected with a peak negative pressure weaker than -12.7 MPa, i.e. one order of magnitude higher than the recommendations based on the mechanical index. Below this threshold, bubble nucleation in vivo in brain tissues is a random phenomenon.
Collapse
Affiliation(s)
- J Gateau
- Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, INSERM U979, Université Denis Diderot, Paris VII, 10 Rue Vauquelin, 75005 Paris, France.
| | | | | | | | | | | |
Collapse
|