51
|
Chou DK, Krishnamurthy R, Manning MC, Randolph TW, Carpenter JF. Effects of Solution Conditions on Methionine Oxidation in Albinterferon Alfa-2b and the Role of Oxidation in its Conformation and Aggregation. J Pharm Sci 2013. [DOI: 10.1002/jps.23401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
52
|
Abbas SA, Gaspar G, Sharma VK, Patapoff TW, Kalonia DS. Application of Second-Derivative Fluorescence Spectroscopy to Monitor Subtle Changes in a Monoclonal Antibody Structure. J Pharm Sci 2013; 102:52-61. [DOI: 10.1002/jps.23354] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/14/2012] [Accepted: 10/09/2012] [Indexed: 11/05/2022]
|
53
|
Sorbitol counteracts temperature- and chemical-induced denaturation of a recombinant α-amylase from alkaliphilic Bacillus sp. TS-23. ACTA ACUST UNITED AC 2012; 39:1779-88. [DOI: 10.1007/s10295-012-1183-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/23/2012] [Indexed: 11/27/2022]
Abstract
Abstract
Enzymes are highly complex systems with a substantial degree of structural variability in their folded state. In the presence of cosolvents, fluctuations among vast numbers of folded and unfolded conformations occur via many different pathways; alternatively, certain conformations can be stabilized or destabilized. To understand the contribution of osmolytes to the stabilization of structural changes and enzymatic activity of a truncated Bacillus sp. TS-23 α-amylase (BACΔNC), we monitored amylolytic activity, circular dichroism, and fluorescence as a function of osmolytes. In the presence of trimethylamine N-oxide (TMAO) and sorbitol, BACΔNC activity was retained significantly at elevated temperatures. As compared to the control, the secondary structures of this enzyme were essentially conserved upon the addition of these two kinds of osmolytes. Fluorescence results revealed that the temperature-induced conformational change of BACΔNC was prevented by TMAO and sorbitol. However, glycerol did not provide profound protection against thermal denaturation of the enzyme. Sorbitol was further found to counteract guanidine hydrochloride- and SDS-induced denaturation of BACΔNC. Thus, some well-known naturally occurring osmolytes make a dominant contribution to the stabilization of BACΔNC.
Collapse
|
54
|
Misra PP, Kishore N. Glycine betaine: A widely reported osmolyte induces differential and selective conformational stability and enhances aggregation in some proteins in the presence of surfactants. Biopolymers 2012; 97:933-49. [DOI: 10.1002/bip.22110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
55
|
James S, McManus JJ. Thermal and Solution Stability of Lysozyme in the Presence of Sucrose, Glucose, and Trehalose. J Phys Chem B 2012; 116:10182-8. [DOI: 10.1021/jp303898g] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Susan James
- Department of Chemistry, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Jennifer J. McManus
- Department of Chemistry, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
56
|
Graziano G. How does sucrose stabilize the native state of globular proteins? Int J Biol Macromol 2011; 50:230-5. [PMID: 22085755 DOI: 10.1016/j.ijbiomac.2011.10.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 11/17/2022]
Abstract
It is well known that sucrose stabilizes the native state of globular proteins against both chemical denaturants and temperature. A largely accepted explanation of sucrose-induced stabilization is not yet emerged. It is shown that the same theoretical approach able to rationalize the occurrence of cold denaturation, the contrasting role of GdmCl and Gdm(2)SO(4), and the TMAO counteraction of urea denaturing activity [PCCP 12 (2010) 14245; PCCP 13 (2011) 12008; PCCP 13 (2011) 17689] works well also in the case of sucrose. The solvent-excluded volume effect plays the fundamental role because sucrose addition to water causes a marked increase in volume packing density due to the large size of sucrose molecules, that act as crowding agents.
Collapse
Affiliation(s)
- Giuseppe Graziano
- Dipartimento di Scienze Biologiche ed Ambientali, Università del Sannio, Benevento, Italy.
| |
Collapse
|
57
|
Mustafa M, Dar T, Ali S. Polyols Stabilize the Denatured States of Multidomain Protein Ovomucoid. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/ijbc.2011.327.341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
58
|
Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Protein-excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev 2011; 63:1118-59. [PMID: 21855584 DOI: 10.1016/j.addr.2011.07.006] [Citation(s) in RCA: 362] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/19/2011] [Accepted: 07/26/2011] [Indexed: 12/18/2022]
Abstract
The purpose of this review is to demonstrate the critical importance of understanding protein-excipient interactions as a key step in the rational design of formulations to stabilize and deliver protein-based therapeutic drugs and vaccines. Biophysical methods used to examine various molecular interactions between solutes and protein molecules are discussed with an emphasis on applications to pharmaceutical excipients in terms of their effects on protein stability. Key mechanisms of protein-excipient interactions such as electrostatic and cation-pi interactions, preferential hydration, dispersive forces, and hydrogen bonding are presented in the context of different physical states of the formulation such as frozen liquids, solutions, gels, freeze-dried solids and interfacial phenomenon. An overview of the different classes of pharmaceutical excipients used to formulate and stabilize protein therapeutic drugs is also presented along with the rationale for use in different dosage forms including practical pharmaceutical considerations. The utility of high throughput analytical methodologies to examine protein-excipient interactions is presented in terms of expanding formulation design space and accelerating experimental timelines.
Collapse
Affiliation(s)
- Tim J Kamerzell
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
59
|
He F, Woods CE, Litowski JR, Roschen LA, Gadgil HS, Razinkov VI, Kerwin BA. Effect of Sugar Molecules on the Viscosity of High Concentration Monoclonal Antibody Solutions. Pharm Res 2011; 28:1552-60. [DOI: 10.1007/s11095-011-0388-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
|
60
|
Paulite M, Fakhraai Z, Li ITS, Gunari N, Tanur AE, Walker GC. Imaging secondary structure of individual amyloid fibrils of a β2-microglobulin fragment using near-field infrared spectroscopy. J Am Chem Soc 2011; 133:7376-83. [PMID: 21524071 DOI: 10.1021/ja109316p] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid fibril diseases are characterized by the abnormal production of aggregated proteins and are associated with many types of neuro- and physically degenerative diseases. X-ray diffraction techniques, solid-state magic-angle spinning NMR spectroscopy, circular dichroism (CD) spectroscopy, and transmission electron microscopy studies have been utilized to detect and examine the chemical, electronic, material, and structural properties of amyloid fibrils at up to angstrom spatial resolution. However, X-ray diffraction studies require crystals of the fibril to be analyzed, while other techniques can only probe the bulk solution or solid samples. In the work reported here, apertureless near-field scanning infrared microscopy (ANSIM) was used to probe the secondary structure of individual amyloid fibrils made from an in vitro solution. Simultaneous topographic and infrared images of individual amyloid fibrils synthesized from the #21-31 peptide fragment of β(2)-microglobulin were acquired. Using this technique, IR spectra of the amyloid fibrils were obtained with a spatial resolution of less than 30 nm. It is observed that the experimental scattered field spectrum correlates strongly with that calculated using the far-field absorption spectrum. The near-field images of the amyloid fibrils exhibit much lower scattering of the IR radiation at approximately 1630 cm(-1). In addition, the near-field images also indicate that composition and/or structural variations among individual amyloid fibrils were present.
Collapse
Affiliation(s)
- Melissa Paulite
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| | | | | | | | | | | |
Collapse
|
61
|
Blobel J, Brath U, Bernadó P, Diehl C, Ballester L, Sornosa A, Akke M, Pons M. Protein loop compaction and the origin of the effect of arginine and glutamic acid mixtures on solubility, stability and transient oligomerization of proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:1327-38. [PMID: 21390527 DOI: 10.1007/s00249-011-0686-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/07/2011] [Accepted: 02/16/2011] [Indexed: 11/25/2022]
Abstract
Addition of a 50 mM mixture of L: -arginine and L: -glutamic acid (RE) is extensively used to improve protein solubility and stability, although the origin of the effect is not well understood. We present Small Angle X-ray Scattering (SAXS) and Nuclear Magnetic Resonance (NMR) results showing that RE induces protein compaction by collapsing flexible loops on the protein core. This is suggested to be a general mechanism preventing aggregation and improving resistance to proteases and to originate from the polyelectrolyte nature of RE. Molecular polyelectrolyte mixtures are expected to display long range correlation effects according to dressed interaction site theory. We hypothesize that perturbation of the RE solution by dissolved proteins is proportional to the volume occupied by the protein. As a consequence, loop collapse, minimizing the effective protein volume, is favored in the presence of RE.
Collapse
Affiliation(s)
- Jascha Blobel
- Laboratory of Biomolecular NMR, Institute for Research in Biomedicine, Parc Científic de Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Protein and DNA destabilization by osmolytes: The other side of the coin. Life Sci 2011; 88:117-25. [DOI: 10.1016/j.lfs.2010.10.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 09/26/2010] [Accepted: 10/19/2010] [Indexed: 01/23/2023]
|
63
|
Waldeck DH, Khoshtariya DE. Fundamental Studies of Long- and Short-Range Electron Exchange Mechanisms between Electrodes and Proteins. MODERN ASPECTS OF ELECTROCHEMISTRY 2011. [DOI: 10.1007/978-1-4614-0347-0_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
64
|
Baid R, Tyagi P, Durazo SA, Kompella UB. Protein Drug Delivery and Formulation Development. DRUG PRODUCT DEVELOPMENT FOR THE BACK OF THE EYE 2011. [DOI: 10.1007/978-1-4419-9920-7_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
65
|
Poddar NK, Ansari ZA, Singh RKB, Movahedi AAM, Ahmad F. Effect of Oligosaccharides and their Monosaccharide Mixtures on the Stability of Proteins: A Scaled Particle Study. J Biomol Struct Dyn 2010; 28:331-41. [DOI: 10.1080/07391102.2010.10507363] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
66
|
Cauchy M, Hefford MA. Excipient exchange in the comparison of preparations of the same biologic made by different manufacturing processes: An exploratory study with recombinant human growth hormone (rhGH). Biologicals 2010; 38:637-43. [DOI: 10.1016/j.biologicals.2010.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/16/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022] Open
|
67
|
Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res 2010; 27:544-75. [PMID: 20143256 DOI: 10.1007/s11095-009-0045-6] [Citation(s) in RCA: 777] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 12/27/2009] [Indexed: 12/16/2022]
Abstract
In 1989, Manning, Patel, and Borchardt wrote a review of protein stability (Manning et al., Pharm. Res. 6:903-918, 1989), which has been widely referenced ever since. At the time, recombinant protein therapy was still in its infancy. This review summarizes the advances that have been made since then regarding protein stabilization and formulation. In addition to a discussion of the current understanding of chemical and physical instability, sections are included on stabilization in aqueous solution and the dried state, the use of chemical modification and mutagenesis to improve stability, and the interrelationship between chemical and physical instability.
Collapse
|
68
|
Vagenende V, Yap MGS, Trout BL. Mechanisms of Protein Stabilization and Prevention of Protein Aggregation by Glycerol. Biochemistry 2009; 48:11084-96. [DOI: 10.1021/bi900649t] [Citation(s) in RCA: 336] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Vincent Vagenende
- Singapore-MIT Alliance, National University of Singapore, 4 Engineering Drive 3, Singapore 117576
- Bioprocessing Technology Institute, 20 Biopolis Way #06-01, Centros, Singapore 138668
| | - Miranda G. S. Yap
- Singapore-MIT Alliance, National University of Singapore, 4 Engineering Drive 3, Singapore 117576
- Bioprocessing Technology Institute, 20 Biopolis Way #06-01, Centros, Singapore 138668
| | - Bernhardt L. Trout
- Singapore-MIT Alliance, National University of Singapore, 4 Engineering Drive 3, Singapore 117576
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| |
Collapse
|
69
|
Qi W, Zhang A, Good TA, Fernandez EJ. Two disaccharides and trimethylamine N-oxide affect Abeta aggregation differently, but all attenuate oligomer-induced membrane permeability. Biochemistry 2009; 48:8908-19. [PMID: 19637920 PMCID: PMC2838166 DOI: 10.1021/bi9006397] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Interaction between aggregates of amyloid beta protein (Abeta) and membranes has been hypothesized by many to be a key event in the mechanism of neurotoxicity associated with Alzheimer's disease (AD). Proposed membrane-related mechanisms of neurotoxicity include ion channel formation, membrane disruption, changes in membrane capacitance, and lipid membrane oxidation. Recently, osmolytes such as trehalose have been found to delay Abeta aggregation in vitro and reduce neurotoxicity. However, no direct measurements have separated the effects of osmolytes on Abeta aggregation versus membrane interactions. In this article, we tested the influence of trehalose, sucrose and trimethylamine-N-oxide (TMAO) on Abeta aggregation and fluorescent dye leakage induced by Abeta aggregates from liposomes. In the absence of lipid vesicles, trehalose and sucrose, but not TMAO, were found to delay Abeta aggregation. In contrast, all of the osmolytes significantly attenuated dye leakage. Dissolution of preformed Abeta aggregates was excluded as a possible mechanism of dye leakage attenuation by measurements of Congo red binding as well as hydrogen-deuterium exchange detected by mass spectrometry (HX-MS). However, the accelerated conversion of high order oligomers to fibril caused by vesicles did not take place if any of the three osmolytes presented. Instead, in the case of disaccharide, osmolytes were found to form adducts with Abeta, and change the dissociation dynamics of soluble oligomeric species. Both effects may have contributed to the observed osmolyte attenuation of dye leakage. These results suggest that disaccharides and TMAO may have very different effects on Abeta aggregation because of the different tendencies of the osmolytes to interact with the peptide backbone. However, the effects on Abeta membrane interaction may be due to much more general phenomena associated with osmolyte enhancement of Abeta oligomer stability and/or direct interaction of osmolyte with the membrane surface.
Collapse
Affiliation(s)
- Wei Qi
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | | | |
Collapse
|
70
|
Jamal S, Poddar NK, Singh LR, Dar TA, Rishi V, Ahmad F. Relationship between functional activity and protein stability in the presence of all classes of stabilizing osmolytes. FEBS J 2009; 276:6024-32. [PMID: 19765077 DOI: 10.1111/j.1742-4658.2009.07317.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the effects of stabilizing osmolytes (low molecular mass organic compounds that raise the midpoint of thermal denaturation) on the stability and function of RNase-A under physiological conditions (pH 6.0 and 25 degrees C). Measurements of Gibbs free energy change at 25 degrees C (DeltaG(D) degrees ) and kinetic parameters, Michaelis constant (K(m)) and catalytic constant (k(cat)) of the enzyme mediated hydrolysis of cytidine monophosphate, enabled us to classify stabilizing osmolytes into three different classes based on their effects on kinetic parameters and protein stability. (a) Polyhydric alcohols and amino acids and their derivatives do not have significant effects on DeltaG(D) degrees and functional activity (K(m) and k(cat)). (b) Methylamines increase DeltaG(D) degrees and k(cat), but decrease K(m). (c) Sugars increase DeltaG(D) degrees , but decrease both K(m) and k(cat). These findings suggest that, among the stabilizing osmolytes, (a) polyols, amino acids and amino acid derivatives are compatible solutes in terms of both stability and function, (b) methylamines are the best refolders (stabilizers), and (c) sugar osmolytes stabilize the protein, but they apparently do not yield functionally active folded molecules.
Collapse
Affiliation(s)
- Shazia Jamal
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | | | | | | | | | | |
Collapse
|
71
|
|
72
|
Deshpande KS, Ahamed T, ter Horst JH, Jansens PJ, van der Wielen LAM, Ottens M. The use of self-interaction chromatography in stable formulation and crystallization of proteins. Biotechnol J 2009; 4:1266-77. [DOI: 10.1002/biot.200800226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
73
|
Miao F, Velayudhan A, DiBella E, Shervin J, Felo M, Teeters M, Alred P. Theoretical analysis of excipient concentrations during the final ultrafiltration/diafiltration step of therapeutic antibody. Biotechnol Prog 2009; 25:964-72. [DOI: 10.1002/btpr.168] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
74
|
Kim DS, Lee SH, Kim JS, Lee SC, Kwon MH, Kim YS. Generation of humanized anti-DNA hydrolyzing catalytic antibodies by complementarity determining region grafting. Biochem Biophys Res Commun 2009; 379:314-8. [DOI: 10.1016/j.bbrc.2008.12.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Accepted: 12/10/2008] [Indexed: 11/26/2022]
|
75
|
Kamberi M, Kim YJ, Jun B, Riley CM. The effects of sucrose on stability of human brain natriuretic peptide [hBNP (1-32)] and human parathyroid hormone [hPTH (1-34)]. ACTA ACUST UNITED AC 2008; 66:348-56. [PMID: 16316450 DOI: 10.1111/j.1399-3011.2005.00290.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the effect of sucrose on the physical stability of proteins has been well documented, its impact on their chemical stability is largely unknown. The aim of this study was to investigate the potential effects of sucrose on the structural conformation of human brain natriuretic peptide [hBNP (1-32)] and the synthetic human parathyroid hormone [hPTH (1-34)], and link these effects to chemical degradation pathways of these peptides. The stability of hBNP (1-32) and hPTH (1-34) was studied at pH 5.5. Aggregation was monitored using size exclusion high-performance liquid chromatography (SE-HPLC), whereas oxidation and deamidation products were measured by reversed phase (RP) HPLC. Fourier transform infrared (FT-IR) spectroscopy was used to study the peptides' conformation. Sucrose retarded aggregation, deamidation, and oxidation of hBNP (1-32) and hPTH (1-34), with a maximum effect at relatively high concentrations (as much as 1 m). FT-IR spectroscopy indicated that sucrose maintained the native conformation of hBNP (1-32) and induced small conformation changes in the hPTH (1-34) structure. Sucrose enhanced the stability of hBNP (1-32) and hPTH (1-34) in liquid formulations. The stabilizing effect of sucrose was due to a large extent to retardation of oxidation and deamidation of hBNP (1-32) and hPTH (1-34).
Collapse
Affiliation(s)
- M Kamberi
- Department of Analytical Sciences, ALZA Corporation, Mountain View, CA 94039-7210, USA.
| | | | | | | |
Collapse
|
76
|
Stability of β-Lactoglobulin A in the Presence of Sugar Osmolytes Estimated from Their Guanidinium Chloride-Induced Transition Curves. Protein J 2008; 27:455-60. [DOI: 10.1007/s10930-008-9156-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
77
|
Effect of monomeric and oligomeric sugar osmolytes on ΔGD, the Gibbs energy of stabilization of the protein at different pH values: Is the sum effect of monosaccharide individually additive in a mixture? Biophys Chem 2008; 138:120-9. [DOI: 10.1016/j.bpc.2008.09.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/15/2008] [Accepted: 09/15/2008] [Indexed: 11/24/2022]
|
78
|
Gangadhara, Ramesh Kumar P, Prakash V. Influence of Polyols on the Stability and Kinetic Parameters of Invertase from Candida utilis: Correlation with the Conformational Stability and Activity. Protein J 2008; 27:440-9. [DOI: 10.1007/s10930-008-9154-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
79
|
Kamerzell TJ, Russell Middaugh C. The Complex Inter-Relationships Between Protein Flexibility and Stability. J Pharm Sci 2008; 97:3494-517. [DOI: 10.1002/jps.21269] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
80
|
Baptista RP, Pedersen S, Cabrita GJM, Otzen DE, Cabral JMS, Melo EP. Thermodynamics and mechanism of cutinase stabilization by trehalose. Biopolymers 2008; 89:538-47. [PMID: 18213692 DOI: 10.1002/bip.20926] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Trehalose has been widely used to stabilize cellular structures such as membranes and proteins. The effect of trehalose on the stability of the enzyme cutinase was studied. Thermal unfolding of cutinase reveals that trehalose delays thermal unfolding, thus increasing the temperature at the midpoint of unfolding by 7.2 degrees . Despite this stabilizing effect, trehalose also favors pathways that lead to irreversible denaturation. Stopped-flow kinetics of cutinase folding and unfolding was measured and temperature was introduced as experimental variable to assess the mechanism and thermodynamics of protein stabilization by trehalose. The main stabilizing effect of trehalose was to delay the rate constant of the unfolding of an intermediate. A full thermodynamic analysis of this step has revealed that trehalose induces the phenomenon of entropy-enthalpy compensation, but the enthalpic contribution increases more significantly leading to a net stabilizing effect that slows down unfolding of the intermediate. Regarding the molecular mechanism of stabilization, trehalose increases the compactness of the unfolded state. The conformational space accessible to the unfolded state decreases in the presence of trehalose when the unfolded state acquires residual native interactions that channel the folding of the protein. This residual structure results into less hydrophobic groups being newly exposed upon unfolding, as less water molecules are immobilized upon unfolding.
Collapse
Affiliation(s)
- Ricardo P Baptista
- Institute of Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | | | | | | | | | | |
Collapse
|
81
|
Dougan L, Feng G, Lu H, Fernandez JM. Solvent molecules bridge the mechanical unfolding transition state of a protein. Proc Natl Acad Sci U S A 2008; 105:3185-90. [PMID: 18305176 PMCID: PMC2265161 DOI: 10.1073/pnas.0706075105] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Indexed: 11/18/2022] Open
Abstract
We demonstrate a combination of single molecule force spectroscopy and solvent substitution that captures the presence of solvent molecules in the transition state structure. We measure the effect of solvent substitution on the rate of unfolding of the I27 titin module, placed under a constant stretching force. From the force dependency of the unfolding rate, we determine Deltax(u), the distance to the transition state. Unfolding the I27 protein in water gives a Deltax(u) = 2.5 A, a distance that compares well to the size of a water molecule. Although the height of the activation energy barrier to unfolding is greatly increased in both glycerol and deuterium oxide solutions, Deltax(u) depends on the size of the solvent molecules. Upon replacement of water by increasing amounts of the larger glycerol molecules, Deltax(u) increases rapidly and plateaus at its maximum value of 4.4 A. In contrast, replacement of water by the similarly sized deuterium oxide does not change the value of Deltax(u). From these results we estimate that six to eight water molecules form part of the unfolding transition state structure of the I27 protein, and that the presence of just one glycerol molecule in the transition state is enough to lengthen Deltax(u). Our results show that solvent composition is important for the mechanical function of proteins. Furthermore, given that solvent composition is actively regulated in vivo, it may represent an important modulatory pathway for the regulation of tissue elasticity and other important functions in cellular mechanics.
Collapse
Affiliation(s)
- Lorna Dougan
- *Department of Biological Sciences, Columbia University, New York, NY 10027; and
| | - Gang Feng
- Department of Bioengineering, University of Illinois, Chicago, IL 60607
| | - Hui Lu
- Department of Bioengineering, University of Illinois, Chicago, IL 60607
| | - Julio M. Fernandez
- *Department of Biological Sciences, Columbia University, New York, NY 10027; and
| |
Collapse
|
82
|
Makowski L, Rodi DJ, Mandava S, Minh DDL, Gore DB, Fischetti RF. Molecular crowding inhibits intramolecular breathing motions in proteins. J Mol Biol 2008; 375:529-46. [PMID: 18031757 PMCID: PMC2219890 DOI: 10.1016/j.jmb.2007.07.075] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 06/19/2007] [Accepted: 07/31/2007] [Indexed: 11/16/2022]
Abstract
In aqueous solution some proteins undergo large-scale movements of secondary structures, subunits or domains, referred to as protein "breathing", that define a native-state ensemble of structures. These fluctuations are sensitive to the nature and concentration of solutes and other proteins and are thereby expected to be different in the crowded interior of a cell than in dilute solution. Here we use a combination of wide angle X-ray scattering (WAXS) and computational modeling to derive a quantitative measure of the spatial scale of conformational fluctuations in a protein solution. Concentration-dependent changes in the observed scattering intensities are consistent with a model of structural fluctuations in which secondary structures undergo rigid-body motions relative to one another. This motion increases with decreasing protein concentration or increasing temperature. Analysis of a set of five structurally and functionally diverse proteins reveals a diversity of kinetic behaviors. Proteins with multiple disulfide bonds exhibit little or no increase in breathing in dilute solutions. The spatial extent of structural fluctuations appears highly dependent on both protein structure and concentration and is universally suppressed at very high protein concentrations.
Collapse
Affiliation(s)
- Lee Makowski
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4845, USA.
| | | | | | | | | | | |
Collapse
|
83
|
Mukaiyama A, Koga Y, Takano K, Kanaya S. Osmolyte effect on the stability and folding of a hyperthermophilic protein. Proteins 2008; 71:110-8. [DOI: 10.1002/prot.21660] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
84
|
Zhao JH, Liu HL, Lin HY, Huang CH, Fang HW, Chen SS, Ho Y, Tsai WB, Chen WY. Chemical chaperone and inhibitor discovery: potential treatments for protein conformational diseases. PERSPECTIVES IN MEDICINAL CHEMISTRY 2007; 1:39-48. [PMID: 19812735 PMCID: PMC2754919 DOI: 10.4137/pmc.s212] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation cause a large number of neurodegenerative diseases in humans due to (i) gain of function as observed in Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and Prion’s disease or (ii) loss of function as observed in cystic fibrosis and α1-antitrypsin deficiency. These misfolded proteins could either lead to the formation of harmful amyloids that become toxic for the cells or to be recognized and prematurely degraded by the protein quality control system. An increasing number of studies has indicated that some low-molecular-weight compounds named as chemical chaperones can reverse the mislocalization and/or aggregation of proteins associated with human conformational diseases. These small molecules are thought to non-selectively stabilize proteins and facilitate their folding. In this review, we summarize the probable mechanisms of protein conformational diseases in humans and the use of chemical chaperones and inhibitors as potential therapeutic agents against these diseases. Furthermore, recent advanced experimental and theoretical approaches underlying the detailed mechanisms of protein conformational changes and current structure-based drug designs towards protein conformational diseases are also discussed. It is believed that a better understanding of the mechanisms of conformational changes as well as the biological functions of these proteins will lead to the development and design of potential interfering compounds against amyloid formation associated with protein conformational diseases.
Collapse
Affiliation(s)
- Jian-Hua Zhao
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1 Sec. 3 ZhongXiao E. Rd., Taipei 10608
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Sathish HA, Kumar PR, Prakash V. Mechanism of solvent induced thermal stabilization of papain. Int J Biol Macromol 2007; 41:383-90. [PMID: 17628660 DOI: 10.1016/j.ijbiomac.2007.05.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 05/16/2007] [Accepted: 05/18/2007] [Indexed: 11/22/2022]
Abstract
In the present study an attempt is made to elucidate the effects of various cosolvents, such as sorbitol, sucrose, xylose and glycerol, on papain. The stabilizing effects of these cosolvents on the structure and function of papain is determined by the activity measurements, fluorescence spectroscopy and differential scanning calorimetry (DSC). The enzyme activity measurements indicate several fold increase in the thermal stability of the enzyme in all the cosolvents used. The thermal denaturation studies of papain in presence of various concentrations of cosolvents indicated a shift in the apparent thermal denaturation temperature (app Tm) suggesting increased thermal stability of papain in presence of cosolvents. The app Tm shifted from a control value of 83+/-1 degrees C to a value of >90+/-1 degrees C in presence of 40% sorbitol. The DSC thermogram for native papain can be clearly deconvoluted into two transitions corresponding to left and right domain and in presence of cosolvents both transitions A and B shift to higher temperature. Maximum stabilization was seen in case of 30% sorbitol where the thermal transition temperatures increased compared to control. The results from partial specific volume measurements of papain in presence of cosolvents suggest that the preferential interaction parameter (xi3) was negative in all cosolvents and maximum hydration was observed in the case of glycerol where the preferential interaction parameter was 0.165g/g. These above results suggest that there is a considerable increase in the thermal stability of papain in presence of these cosolvents as a result of preferential hydration.
Collapse
Affiliation(s)
- H A Sathish
- Department of Protein Chemistry and Technology, Central Food Technological Research Institute, Mysore 570 020, India
| | | | | |
Collapse
|
86
|
Han Y, Jin BS, Lee SB, Sohn Y, Joung JW, Lee JH. Effects of sugar additives on protein stability of recombinant human serum albumin during lyophilization and storage. Arch Pharm Res 2007; 30:1124-31. [DOI: 10.1007/bf02980247] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
87
|
Roberts A, Jackson SE. Destabilised mutants of ubiquitin gain equal stability in crowded solutions. Biophys Chem 2007; 128:140-9. [PMID: 17434659 DOI: 10.1016/j.bpc.2007.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Revised: 03/16/2007] [Accepted: 03/16/2007] [Indexed: 10/23/2022]
Abstract
This paper investigates the thermodynamic and kinetic response of WT* ubiquitin (F45W) and three mutants to high concentrations of glucose, sucrose and dextran under physiological temperature and pH. WT* ubiquitin was stabilised by the same amount when comparing each cosolute on a weight to volume ratio, with cosolute effects largely independent of denaturant concentration. The energy difference between the mutants and WT* ubiquitin also remained the same in high concentrations of cosolute. An apparent decrease in transition-state surface burial in the presence of the cosolutes was attributed to increased compaction of the denatured state, and not to the Hammond effect. Together, these results suggest higher thermodynamic stabilities and folding rates for proteins in vivo compared to in vitro, in addition to more compact denatured states. Because the effects of mutation are the same in dilute solution and crowded conditions used to mimic the cellular environment, there is validity in using measurements of mutant stabilities made in dilute solutions to inform on how the mutations may affect stability in vivo.
Collapse
Affiliation(s)
- Andrew Roberts
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, UK
| | | |
Collapse
|
88
|
Romero CM, Lozano JM, Sancho J, Giraldo GI. Thermal stability of β-lactoglobulin in the presence of aqueous solution of alcohols and polyols. Int J Biol Macromol 2007; 40:423-8. [PMID: 17141862 DOI: 10.1016/j.ijbiomac.2006.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 10/23/2006] [Accepted: 10/26/2006] [Indexed: 11/19/2022]
Abstract
A systematic study concerning the effect of aqueous solution of alcohols and polyols with four carbon atoms on beta-lactoglobulin stability is presented. The protein was chosen due to its functional properties and applications in food and pharmaceutical industries and because its structure and properties in aqueous solution have been widely described. The alcohols having a four carbon chain were selected to examine the effect of the gradual increase in the number of OH groups on protein stability. Protein thermal stability in water, buffers and dilute aqueous solutions of 1-butanol, 1,2-butanediol, 1,2,4-butanetriol and 1,2,3,4-butanetetrol was evaluated by fluorescence spectroscopy. The results were used to determine the temperature range in which the unfolding process is reversible and the protein denaturation temperature in acetate buffer pH 5.5 and in the aqueous mixed solvents. Thermodynamic results show that alcohol denaturating effect diminishes gradually as the number of OH groups increase.
Collapse
Affiliation(s)
- Carmen M Romero
- Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia.
| | | | | | | |
Collapse
|
89
|
Thirumangalathu R, Krishnan S, Brems DN, Randolph TW, Carpenter JF. Effects of pH, temperature, and sucrose on benzyl alcohol-induced aggregation of recombinant human granulocyte colony stimulating factor. J Pharm Sci 2006; 95:1480-97. [PMID: 16729274 DOI: 10.1002/jps.20619] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Antimicrobial preservatives (e.g., benzyl alcohol), which are required in multidose formulations, can induce protein aggregation. In this study, the mechanism of benzyl alcohol-induced aggregation of recombinant human granulocyte colony-stimulating factor (rhGCSF) was investigated by determining the effects of temperature, pH, and sucrose on this process. rhGCSF was incubated at 25 and 37 degrees C and at pH 7.0 (phosphate-buffered saline, PBS) and pH 3.5 (HCl). Benzyl alcohol (0.9% w/v) accelerated aggregation of rhGCSF at pH 7.0, an effect that was much greater at 37 degrees C than at 25 degrees C and partially counteracted by 1.0 M sucrose. At pH 3.5, benzyl alcohol did not induce aggregation of rhGCSF. Spectroscopic studies showed that 0.9% benzyl alcohol altered the tertiary structure of rhGCSF at both pH, without detectably altering secondary structure. Structural perturbation was greater at 37 degrees C than at 25 degrees C. At both pH 7.0 and 3.5, the hydrogen-deuterium (H-D) exchange rate for rhGCSF was increased by 0.9% benzyl alcohol. Sucrose (1.0 M) partially counteracted the benzyl alcohol-induced perturbation of tertiary structure and the increase in H-D exchange rate. Thus, benzyl alcohol accelerates aggregation of rhGCSF at pH 7.0, because it favors partially unfolded aggregation-prone conformations of the protein. Sucrose partially counteracts benzyl alcohol-induced rhGCSF aggregation by shifting the molecular population away from these species and towards more compact conformations. We postulate that the absence of aggregation at pH 3.5, even with benzyl alcohol-induced structural perturbation, is due to the unfavorable energetics of intermolecular interactions (i.e., colloidal stability) between rhGCSF molecules at this pH.
Collapse
Affiliation(s)
- Renuka Thirumangalathu
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Biotechnology, University of Colorado Health Sciences Center, University of Colorado, Denver, 80262, USA
| | | | | | | | | |
Collapse
|
90
|
Khoshtariya DE, Dolidze TD, Seifert S, Sarauli D, Lee G, van Eldik R. Kinetic, Thermodynamic, and Mechanistic Patterns for Free (Unbound) Cytochromec at Au/SAM Junctions: Impact of Electronic Coupling, Hydrostatic Pressure, and Stabilizing/Denaturing Additives. Chemistry 2006; 12:7041-56. [PMID: 16888736 DOI: 10.1002/chem.200600059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Combined kinetic (electrochemical) and thermodynamic (calorimetric) investigations were performed for an unbound (intact native-like) cytochrome c (CytC) freely diffusing to and from gold electrodes modified by hydroxyl-terminated self-assembled monolayer films (SAMs), under a unique broad range of experimental conditions. Our approach included: 1) fine-tuning of the charge-transfer (CT) distance by using the extended set of Au-deposited hydroxyl-terminated alkanethiol SAMs [-S-(CH(2))(n)-OH] of variable thickness (n=2, 3, 4, 6, 11); 2) application of a high-pressure (up to 150 MPa) kinetic strategy toward the representative Au/SAM/CytC assemblies (n=3, 4, 6); 3) complementary electrochemical and microcalorimetric studies on the impact of some stabilizing and denaturing additives. We report for the first time a mechanistic changeover detected for "free" CytC by three independent kinetic methods, manifested through 1) the abrupt change in the dependence of the shape of the electron exchange standard rate constant (k(o)) versus the SAM thickness (resulting in a variation of estimated actual CT range within ca. 15 to 25 A including ca. 11 A of an "effective" heme-to-omega-hydroxyl distance). The corresponding values of the electronic coupling matrix element vary within the range from ca. 3 to 0.02 cm(-1); 2) the change in activation volume from +6.7 (n=3), to approximately 0 (n=4), and -5.5 (n=6) cm(3) mol(-1) (disclosing at n=3 a direct pressure effect on the protein's internal viscosity); 3) a "full" Kramers-type viscosity dependence for k(o) at n=2 and 3 (demonstrating control of an intraglobular friction through the external dynamic properties), and its gradual transformation to the viscosity independent (nonadiabatic) regime at n=6 and 11. Multilateral cross-testing of "free" CytC in a native-like, glucose-stabilized and urea-destabilized (molten-globule-like) states revealed novel intrinsic links between local/global structural and functional characteristics. Importantly, our results on the high-pressure and solution-viscosity effects, together with matching literature data, strongly support the concept of "dynamic slaving", which implies that fluctuations involving "small" solution components control the proteins' intrinsic dynamics and function in a highly cooperative manner as far as CT processes under adiabatic conditions are concerned.
Collapse
Affiliation(s)
- Dimitri E Khoshtariya
- Institute for Inorganic Chemistry, University of Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
91
|
Schüle S, Friess W, Bechtold-Peters K, Garidel P. Conformational analysis of protein secondary structure during spray-drying of antibody/mannitol formulations. Eur J Pharm Biopharm 2006; 65:1-9. [PMID: 17034996 DOI: 10.1016/j.ejpb.2006.08.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 06/12/2006] [Accepted: 08/22/2006] [Indexed: 10/24/2022]
Abstract
Inhalation of spray-dried particles is a promising delivery route for proteins as an alternative to injection. Changes in the protein structure and aggregation have to be avoided. The effect of mannitol, a stabilizing agent typically used in both liquid and lyophilized protein formulations, on an antibody (IgG1) in a spray-dried powder was studied using different biophysical and chromatographic techniques. At first, different solutions composed of antibody (IgG1) and mannitol at a ratio between 20/80 and 100/0 IgG1/mannitol (100 mg/ml total solid) were investigated for their stability. Protein solutions containing the IgG1 showed mannitol-dependent aggregation. High amounts of mannitol (50-80%) exerted a destabilizing effect on the antibody and the aggregate 9 level increased to 2.6-4.2%. In contrast, solutions with only 20-40% mannitol showed the same amount of aggregates as the pure antibody solution. The antibody mannitol solutions were investigated by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) to evaluate whether changes in the protein secondary structure can be correlated with aggregation. Considering the sensitivity of the used methods and data evaluation, FTIR spectra did not reveal structural changes in the IgG1/mannitol solutions compared to the pure antibody, despite varying aggregate levels. Thermal stress was reflected in perturbations of the secondary structure, but mannitol-dependent aggregation could not be correlated to detectable alterations in the FTIR spectra. Analyzing the CD spectra revealed no distinctive change in the shape of the CD curve, indicating that the protein secondary structure is mainly retained. This is in agreement with the infrared data. Subsequently, the IgG1/mannitol solutions were spray-dried at Tin/Tout of 90/50 degrees C. Using ATR-FTIR for the investigation of the protein amide I band in the spray-dried powder revealed changes in the sub-components of the amide I band. This indicates that the peptide groups (CO and NH) of the protein are found in a different environment in the solid state, compared to the liquid protein formulation. After redissolution of the powders, the native structure of the pure antibody solution was found identical to the protein secondary structure before spray-drying, indicating that the protein secondary structure is not strongly altered in the dry state, and not affected by the spray-drying process. Thus, from the presented study it can be concluded that the formation of antibody aggregates in mannitol formulations cannot be correlated with significant perturbations of the protein secondary structure elements.
Collapse
Affiliation(s)
- Stefanie Schüle
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, Germany
| | | | | | | |
Collapse
|
92
|
Valente JJ, Fryksdale BG, Dale DA, Gaertner AL, Henry CS. Screening for physical stability of a Pseudomonas amylase using self-interaction chromatography. Anal Biochem 2006; 357:35-42. [PMID: 16843425 DOI: 10.1016/j.ab.2006.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 05/16/2006] [Accepted: 06/05/2006] [Indexed: 11/29/2022]
Abstract
Formulation development is an integral step in the successful commercialization of protein-based products in both the biotechnology and pharmaceutical industries. As the number of these protein formulations increases, so does the need for innovative approaches to characterize physical and chemical product stability. In this study, the osmotic second virial coefficient (B) of a commercial amylase was evaluated by self-interaction chromatography (SIC) as an innovative approach to characterize physical protein stability. B was measured as a function of pH and several common formulation additives (cosolvents), including sodium chloride, sucrose, and sorbitol. Cosolvent- and pH-induced physical stabilization of amylase is discussed in terms of positive shifts in B. Liquid chromatographic measurements of total soluble amylase and enzymatic activity measurements correlated qualitatively with trends in B except near the pI of amylase, where physical stability was minimal.
Collapse
Affiliation(s)
- Joseph J Valente
- Department of Chemistry, Colorado State University, Fort Collins, 80523, USA
| | | | | | | | | |
Collapse
|
93
|
Shimizu S, McLaren WM, Matubayasi N. The Hofmeister series and protein-salt interactions. J Chem Phys 2006; 124:234905. [PMID: 16821951 DOI: 10.1063/1.2206174] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In order to understand the origin of the Hofmeister series, a statistical-mechanical analysis, based upon the Kirkwood-Buff (KB) theory, has been performed to extract information regarding protein hydration and water-mediated protein-salt interactions from published experimental data-preferential hydration and volumetric data for bovine serum albumin in the presence of a wide range of salts. The analysis showed a linear correlation between the preferential hydration parameter and the protein-cosolvent KB parameter. The same linear correlation holds even when nonelectrolyte cosolvents, such as polyethelene glycol, have been incorporated. These results suggest that the Hofmeister series is due to a wide variation of the water-mediated protein-cosolvent interaction (but not the change of protein hydration) and that this mechanism is a special case of a more general scenario common even to the macromolecular crowding.
Collapse
Affiliation(s)
- Seishi Shimizu
- York Structural Biology Laboratory, Department of Chemistry, University of York-Heslington, York, North Yorkshire YO10 5YW, United Kingdom.
| | | | | |
Collapse
|
94
|
Bulman AL, Nelson HCM. Role of trehalose and heat in the structure of the C-terminal activation domain of the heat shock transcription factor. Proteins 2006; 58:826-35. [PMID: 15651035 DOI: 10.1002/prot.20371] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The heat shock transcription factor (HSF) is the primary transcriptional regulator of the heat shock response in eukaryotes. Saccharomyces cerevisiae HSF1 has two functional transcriptional activation domains, located N- and C-terminal to the central core of the protein. These activation domains have a low level of transcriptional activity prior to stress, but they acquire a high level of transcriptional activity in response to stresses such as heat. Previous studies on the N-terminal activation domain have shown that it can be completely disordered. In contrast, we show that the C-terminal activation domain of S. cerevisiae HSF1 does contain a certain amount of secondary structure as measured by circular dichroism (CD) and protease resistance. The alpha-helical content of the domain can be increased by the addition of the disaccharide trehalose but not by sucrose. Trehalose, but not sucrose, causes a blue shift in the fluorescence emission spectra, which is suggestive of an increase in tertiary structure. Trehalose, which is known to be a chemical chaperone, also increases proteases' resistance and promotes heat-induced increases in alpha-helicity. The latter is particularly intriguing because of the physiological role of trehalose in yeast. Trehalose levels are increased dramatically after heat shock, and this is thought to protect protein structure prior to the increase of heat shock protein levels. Our results suggest that the dramatic changes in S. cerevisiae HSF1 transcriptional activity in response to stress might be linked to the combined effects of trehalose and elevated temperatures in modifying the overall structure of HSF1's C-terminal activation domain.
Collapse
Affiliation(s)
- Amanda L Bulman
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6089, USA
| | | |
Collapse
|
95
|
Affiliation(s)
- Valerie Daggett
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, Washington 98195-7610, USA
| |
Collapse
|
96
|
Haque I, Islam A, Singh R, Moosavi-Movahedi AA, Ahmad F. Stability of proteins in the presence of polyols estimated from their guanidinium chloride-induced transition curves at different pH values and 25 °C. Biophys Chem 2006; 119:224-33. [PMID: 16226834 DOI: 10.1016/j.bpc.2005.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 09/19/2005] [Accepted: 09/20/2005] [Indexed: 11/20/2022]
Abstract
We have recently concluded from the heat-induced denaturation studies that polyols do not affect deltaG(D) degrees (the Gibbs free energy change (deltaG(D)) at 25 degrees C) of ribonuclease-A and lysozyme at physiological pH and temperature, and their stabilizing effect increases with decrease in pH. Since the estimation of deltaG(D) degrees of proteins from heat-induced denaturation curves requires a large extrapolation, the reliability of this procedure for the estimation of deltaG(D) degrees is always questionable, and so are conclusions drawn from such studies. This led us to measure deltaG(D) degrees of ribonuclease-A and lysozyme using a more accurate method, i.e., from their isothermal (25 degrees C) guanidinium chloride (GdmCl)-induced denaturations. We show that our earlier conclusions drawn from heat-induced denaturation studies are correct. Since the extent of unfolding of heat- and GdmCl-induced denatured states of these proteins is not identical, the extent of stabilization of the proteins by polyols against heat and GdmCl denaturations may also differ. We report that in spite of the differences in the structural nature of the heat- and GdmCl-denatured states of each protein, the extent of stabilization by a polyol is same. We also report that the functional dependence of deltaG(D) of proteins in the presence of polyols on denaturant concentration is linear through the full denaturant concentration range. Furthermore, polyols do not affect the secondary and tertiary structures of the native and GdmCl-denatured states.
Collapse
Affiliation(s)
- Inamul Haque
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi-110 025, India
| | | | | | | | | |
Collapse
|
97
|
Valente JJ, Verma KS, Manning MC, Wilson WW, Henry CS. Second virial coefficient studies of cosolvent-induced protein self-interaction. Biophys J 2005; 89:4211-8. [PMID: 16199499 PMCID: PMC1366986 DOI: 10.1529/biophysj.105.068551] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein self-interaction is important in protein crystal growth, solubilization, and aggregation, both in vitro and in vivo, as with protein misfolding diseases, such as Alzheimer's. Although second virial coefficient studies can supply invaluable quantitative information, their emergence as a systematic approach to evaluating protein self-interaction has been slowed by the limitations of traditional measurement methods, such as static light scattering. Comparatively, self-interaction chromatography is an inexpensive, high-throughput method of evaluating the osmotic second virial coefficient (B) of proteins in solution. In this work, we used self-interaction chromatography to measure B of lysozyme in the presence of various cosolvents, including sucrose, trehalose, mannitol, glycine, arginine, and combinations of arginine and glutamic acid and arginine and sucrose in an effort to develop a better fundamental understanding of protein self-interaction in complex cosolvent systems. All of these cosolvents, alone or in combination, increased B, indicating a reduction in intermolecular attraction. However, the magnitude of cosolvent-induced changes in B was found to be largely dependent on the ability to control long-range electrostatic repulsion. To the best of our knowledge, this work represents the most comprehensive virial coefficient study to date focusing on complex cosolvent-induced effects on the self-interaction of lysozyme.
Collapse
Affiliation(s)
- Joseph J Valente
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA
| | | | | | | | | |
Collapse
|
98
|
Roberts MF. Organic compatible solutes of halotolerant and halophilic microorganisms. SALINE SYSTEMS 2005; 1:5. [PMID: 16176595 PMCID: PMC1224877 DOI: 10.1186/1746-1448-1-5] [Citation(s) in RCA: 377] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 08/04/2005] [Indexed: 11/10/2022]
Abstract
Microorganisms that adapt to moderate and high salt environments use a variety of solutes, organic and inorganic, to counter external osmotic pressure. The organic solutes can be zwitterionic, noncharged, or anionic (along with an inorganic cation such as K(+)). The range of solutes, their diverse biosynthetic pathways, and physical properties of the solutes that effect molecular stability are reviewed.
Collapse
Affiliation(s)
- Mary F Roberts
- Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02465, USA.
| |
Collapse
|
99
|
Haque I, Singh R, Moosavi-Movahedi AA, Ahmad F. Effect of polyol osmolytes on ΔGD, the Gibbs energy of stabilisation of proteins at different pH values. Biophys Chem 2005; 117:1-12. [PMID: 15905020 DOI: 10.1016/j.bpc.2005.04.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 04/15/2005] [Accepted: 04/17/2005] [Indexed: 11/29/2022]
Abstract
Thermal denaturation curves of lysozyme and ribonuclease-A were determined by measuring their far-UV circular dichroism (CD) spectra in the presence of different concentrations of five polyols (sorbitol, glycerol, mannitol, xylitol and adonitol) at various pH values in the range 7.0--1.9. The denaturation curve at each polyol concentration and pH was analysed to obtain values of T(m) (midpoint of denaturation) and DeltaH(m) (enthalpy change at T(m)), and these DeltaH(m) and T(m) values obtained at different pH values were used to obtain DeltaC(p) (constant-pressure heat capacity change) at each polyol concentration. Using values of DeltaH(m), T(m) and DeltaC(p) in the Gibbs-Helmholtz equation, DeltaG(D) degrees (Gibbs energy change at 25 degrees C) was determined at a given pH and polyol concentration. Main conclusions of this study are that polyols have no significant effect on DeltaG(D) degrees at pH 7.0, and they stabilise proteins in terms of DeltaG(D) degrees against heat denaturation at lower pH values. Other conclusions of this study are: (i) T(m) at each pH increases with increasing polyol concentration, (ii) DeltaH(m) remains, within experimental error, unperturbed in the presence of polyols, and (iii) DeltaC(p) depends on polyol concentration. Furthermore, measurements of the far- and near-UV CD spectra suggested that secondary and tertiary structures of both proteins in their native and denatured states are not perturbed on the addition of polyols.
Collapse
Affiliation(s)
- Inamul Haque
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi-110 025, India
| | | | | | | |
Collapse
|
100
|
Haque I, Singh R, Ahmad F, Moosavi-Movahedi AA. Testing polyols’ compatibility with Gibbs energy of stabilization of proteins under conditions in which they behave as compatible osmolytes. FEBS Lett 2005; 579:3891-8. [PMID: 15990095 DOI: 10.1016/j.febslet.2005.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 05/27/2005] [Accepted: 06/03/2005] [Indexed: 11/18/2022]
Abstract
It is generally believed that compatible osmolytes stabilize proteins by shifting the denaturation equilibrium, native state <--> denatured state toward the left. We show here that if osmolytes are compatible with the functional activity of the protein at a given pH and temperature, they should not significantly perturb this denaturation equilibrium under the same experimental conditions. This conclusion was reached from the measurements of the activity parameters (K(m) and k(cat)) and guanidinium chloride-induced denaturations of lysozyme and ribonuclease-A in the presence of five polyols (sorbitol, glycerol, mannitol, xylitol and adonitol) at pH 7.0 and 25 degrees C.
Collapse
Affiliation(s)
- Inamul Haque
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110 025, India
| | | | | | | |
Collapse
|