51
|
Holm JB, France MT, Ma B, McComb E, Robinson CK, Mehta A, Tallon LJ, Brotman RM, Ravel J. Comparative Metagenome-Assembled Genome Analysis of " Candidatus Lachnocurva vaginae", Formerly Known as Bacterial Vaginosis-Associated Bacterium-1 (BVAB1). Front Cell Infect Microbiol 2020; 10:117. [PMID: 32296647 PMCID: PMC7136613 DOI: 10.3389/fcimb.2020.00117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/02/2020] [Indexed: 01/07/2023] Open
Abstract
Bacterial vaginosis-associated bacterium 1 (BVAB1) is an as-yet uncultured bacterial species found in the human vagina that belongs to the family Lachnospiraceae within the order Clostridiales. As its name suggests, this bacterium is often associated with bacterial vaginosis (BV), a common vaginal disorder that has been shown to increase a woman's risk for HIV, Chlamydia trachomatis, and Neisseria gonorrhoeae infections as well as preterm birth. BVAB1 has been further associated with the persistence of BV following metronidazole treatment, increased vaginal inflammation, and adverse obstetrics outcomes. There is no available complete genome sequence of BVAB1, which has made it difficult to mechanistically understand its role in disease. We present here a circularized metagenome-assembled genome (cMAG) of BVAB1 as well as a comparative analysis including an additional six metagenome-assembled genomes (MAGs) of this species. These sequences were derived from cervicovaginal samples of seven separate women. The cMAG was obtained from a metagenome sequenced with long-read technology on a PacBio Sequel II instrument while the others were derived from metagenomes sequenced on the Illumina HiSeq platform. The cMAG is 1.649 Mb in size and encodes 1,578 genes. We propose to rename BVAB1 to "Candidatus Lachnocurva vaginae" based on phylogenetic analyses, and provide genomic and metabolomic evidence that this candidate species may metabolize D-lactate, produce trimethylamine (one of the chemicals responsible for BV-associated odor), and be motile. The cMAG and the six MAGs are valuable resources that will further contribute to our understanding of the heterogeneous etiology of bacterial vaginosis.
Collapse
Affiliation(s)
- Johanna B. Holm
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Michael T. France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Elias McComb
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Courtney K. Robinson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Aditya Mehta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Luke J. Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rebecca M. Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
52
|
Mojgani N, Shahali Y, Dadar M. Immune modulatory capacity of probiotic lactic acid bacteria and applications in vaccine development. Benef Microbes 2020; 11:213-226. [PMID: 32216470 DOI: 10.3920/bm2019.0121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vaccination is one of the most important prevention tools providing protection against infectious diseases especially in children below the age of five. According to estimates, more than 5 million lives are saved annually by the implementation of six standard vaccines, including diphtheria, hepatitis B, Haemophilus influenza type b, polio, tetanus and yellow fever. Despite these efforts, we are faced with challenges in developing countries where increasing population and increasing disease burden and difficulties in vaccine coverage and delivery cause significant morbidity and mortality. Additionally, the high cost of these vaccines is also one of the causes for inappropriate and inadequate vaccinations in these regions. Thus, developing cost-effective vaccine strategies that could provide a stronger immune response with reduced vaccination schedules and maximum coverage is of critical importance. In last decade, different approaches have been investigated; among which live bacterial vaccines have been the focus of attention. In this regard, probiotic lactic acid bacteria have been extensively studied as safe and effective vaccine candidates. These microorganisms represent the largest group of probiotic bacteria in the intestine and are generally recognised as safe (GRAS) bacteria. They have also attracted attention due to their immunomodulatory actions and their effective role as novel vaccine adjuvants. A significant property of these bacteria is their ability to mimic natural infections, while intrinsically possessing mucosal adjuvant properties. Additionally, as live bacterial vaccines are administered orally or nasally, they have higher acceptance and better safety, but also avoid the risk of contamination due to needles and syringes. In this review, we emphasise the role of probiotic Lactobacillus strains as putative oral vaccine carriers and novel vaccine adjuvants.
Collapse
Affiliation(s)
- N Mojgani
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31975/148, Karaj, Iran
| | - Y Shahali
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31975/148, Karaj, Iran
| | - M Dadar
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31975/148, Karaj, Iran
| |
Collapse
|
53
|
Al-Nasiry S, Ambrosino E, Schlaepfer M, Morré SA, Wieten L, Voncken JW, Spinelli M, Mueller M, Kramer BW. The Interplay Between Reproductive Tract Microbiota and Immunological System in Human Reproduction. Front Immunol 2020; 11:378. [PMID: 32231664 PMCID: PMC7087453 DOI: 10.3389/fimmu.2020.00378] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
In the last decade, the microbiota, i.e., combined populations of microorganisms living inside and on the surface of the human body, has increasingly attracted attention of researchers in the medical field. Indeed, since the completion of the Human Microbiome Project, insight and interest in the role of microbiota in health and disease, also through study of its combined genomes, the microbiome, has been steadily expanding. One less explored field of microbiome research has been the female reproductive tract. Research mainly from the past decade suggests that microbial communities residing in the reproductive tract represent a large proportion of the female microbial network and appear to be involved in reproductive failure and pregnancy complications. Microbiome research is facing technological and methodological challenges, as detection techniques and analysis methods are far from being standardized. A further hurdle is understanding the complex host-microbiota interaction and the confounding effect of a multitude of constitutional and environmental factors. A key regulator of this interaction is the maternal immune system that, during the peri-conceptional stage and even more so during pregnancy, undergoes considerable modulation. This review aims to summarize the current literature on reproductive tract microbiota describing the composition of microbiota in different anatomical locations (vagina, cervix, endometrium, and placenta). We also discuss putative mechanisms of interaction between such microbial communities and various aspects of the immune system, with a focus on the characteristic immunological changes during normal pregnancy. Furthermore, we discuss how abnormal microbiota composition, “dysbiosis,” is linked to a spectrum of clinical disorders related to the female reproductive system and how the maternal immune system is involved. Finally, based on the data presented in this review, the future perspectives in diagnostic approaches, research directions and therapeutic opportunities are explored.
Collapse
Affiliation(s)
- Salwan Al-Nasiry
- Department of Obstetrics and Gynecology, GROW School of Oncology and Developmental Biology, Maastricht University Medical Centre (MUMC), Maastricht, Netherlands
| | - Elena Ambrosino
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Research School GROW (School for Oncology & Developmental Biology), Institute for Public Health Genomics, Maastricht University, Maastricht, Netherlands
| | - Melissa Schlaepfer
- Department of Obstetrics and Gynecology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Servaas A Morré
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Research School GROW (School for Oncology & Developmental Biology), Institute for Public Health Genomics, Maastricht University, Maastricht, Netherlands.,Laboratory of Immunogenetics, Department Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam UMC, Amsterdam, Netherlands
| | - Lotte Wieten
- Tissue Typing Laboratory, Department of Transplantation Immunology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Marialuigia Spinelli
- Department of Obstetrics and Gynecology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Martin Mueller
- Department of Obstetrics and Gynecology, University Hospital Bern, University of Bern, Bern, Switzerland.,Department of Pediatrics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
54
|
Klein C, Kahesa C, Mwaiselage J, West JT, Wood C, Angeletti PC. How the Cervical Microbiota Contributes to Cervical Cancer Risk in Sub-Saharan Africa. Front Cell Infect Microbiol 2020; 10:23. [PMID: 32117800 PMCID: PMC7028704 DOI: 10.3389/fcimb.2020.00023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/15/2020] [Indexed: 12/29/2022] Open
Abstract
Despite ongoing efforts, sub-Saharan Africa faces a higher cervical cancer burden than anywhere else in the world. Besides HPV infection, definitive factors of cervical cancer are still unclear. Particular states of the cervicovaginal microbiota and viral infections are associated with increased cervical cancer risk. Notably, HIV infection, which is prevalent in sub-Saharan Africa, greatly increases risk of cervicovaginal dysbiosis and cervical cancer. To better understand and address cervical cancer in sub-Saharan Africa, a better knowledge of the regional cervicovaginal microbiome is required This review establishes current knowledge of HPV, HIV, cervicovaginal infections, and the cervicovaginal microbiota in sub-Saharan Africa. Because population statistics are not available for the region, estimates are derived from smaller cohort studies. Microbiota associated with cervical inflammation have been found to be especially prevalent in sub-Saharan Africa, and to associate with increased cervical cancer risk. In addition to high prevalence and diversity of HIV and HPV, intracellular bacterial infections such as Chlamydia, Gonorrhea, and Mycoplasma hominis are much more common than in regions with a low burden of cervical cancer. This suggests the prevalence of cervical cancer in sub-Saharan Africa may be partially attributed to increased cervical inflammation resulting from higher likelihood of cervical infection and/or microbial dysbiosis.
Collapse
Affiliation(s)
- Cameron Klein
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | | | - John T West
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Charles Wood
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Peter C Angeletti
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
55
|
Barrientos-Durán A, Fuentes-López A, de Salazar A, Plaza-Díaz J, García F. Reviewing the Composition of Vaginal Microbiota: Inclusion of Nutrition and Probiotic Factors in the Maintenance of Eubiosis. Nutrients 2020; 12:419. [PMID: 32041107 PMCID: PMC7071153 DOI: 10.3390/nu12020419] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
The vaginal microbiota has importance in preserving vaginal health and defending the host against disease. The advent of new molecular techniques and computer science has allowed researchers to discover microbial composition in depth and associate the structure of vaginal microbial communities. There is a consensus that vaginal flora is grouped into a restricted number of communities, although the structure of the community is constantly changing. Certain Community-Sate Types (CSTs) are more associated with poor reproductive outcomes and sexually transmitted diseases (STDs) meanwhile, CSTs dominated by Lactobacillus species-particularly Lactobacillus crispatus-are more related to vaginal health. In this work, we have reviewed how modifiable and non-modifiable factors may affect normal vaginal microbiota homeostasis-including sexual behavior, race or ethnicity, and hygiene. Special interest has been given to how the use of probiotics, diet intake, and use of hormone replacement therapies (HRTs) can potentially impact vaginal microbiota composition.
Collapse
Affiliation(s)
- Antonio Barrientos-Durán
- Hospital Clínico Universitario San Cecilio, Servicio de Microbiología, Instituto de Investigación ibs. GRANADA, Avenida de la Ilustración S/N, 18016 Granada, Spain
| | - Ana Fuentes-López
- Hospital Clínico Universitario San Cecilio, Servicio de Microbiología, Instituto de Investigación ibs. GRANADA, Avenida de la Ilustración S/N, 18016 Granada, Spain
| | - Adolfo de Salazar
- Hospital Clínico Universitario San Cecilio, Servicio de Microbiología, Instituto de Investigación ibs. GRANADA, Avenida de la Ilustración S/N, 18016 Granada, Spain
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, Armilla, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Federico García
- Hospital Clínico Universitario San Cecilio, Servicio de Microbiología, Instituto de Investigación ibs. GRANADA, Avenida de la Ilustración S/N, 18016 Granada, Spain
| |
Collapse
|
56
|
Atassi F, Pho Viet Ahn DL, Lievin-Le Moal V. Diverse Expression of Antimicrobial Activities Against Bacterial Vaginosis and Urinary Tract Infection Pathogens by Cervicovaginal Microbiota Strains of Lactobacillus gasseri and Lactobacillus crispatus. Front Microbiol 2019; 10:2900. [PMID: 31921075 PMCID: PMC6933176 DOI: 10.3389/fmicb.2019.02900] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
We aimed to analyze the strain-by-strain expression of a large panel of antimicrobial activities counteracting the virulence mechanisms of bacterial vaginosis-associated Prevotella bivia CI-1 and Gardnerella vaginalis 594, pyelonephritis-associated Escherichia coli CFT073, and recurrent cystitis- and preterm labor-associated IH11128 E. coli by Lactobacillus gasseri and Lactobacillus crispatus clinical strains, and L. gasseri ATCC 9857 and KS 120.1, and L. crispatus CTV-05 strains isolated from the cervicovaginal microbiota of healthy women. All L. gasseri and L. crispatus strains exerted antimicrobial activity by secreted lactic acid, which killed the microbial pathogens by direct contact. Potent bactericidal activity was exerted by a very limited number of resident L. gasseri and L. crispatus strains showing the specific ability to a strain to produce and release antibiotic-like compounds. These compounds eradicated the microbial pathogens pre-associated with the surface of cervix epithelial cells, providing efficient protection of the cells against the deleterious effects triggered by toxin-producing G. vaginalis and uropathogenic E. coli. Furthermore, these compounds crossed the cell membrane to kill the pre-internalized microbial pathogens. In addition, all L. gasseri and L. crispatus cells exhibited another non-strain specific activity which inhibited the association of microbial pathogens with cervix epithelial cells with varying efficiency, partially protecting the cells against lysis and detachment triggered by toxin-producing G. vaginalis and uropathogenic E. coli. Our results provide evidence of strain-level specificity for certain antimicrobial properties among cervicovaginal L. gasseri and L. crispatus strains, indicating that the presence of a particular species in the vaginal microbiota is not sufficient to determine its benefit to the host. A full repertory of antimicrobial properties should be evaluated in choosing vaginal microbiota-associated Lactobacillus isolates for the development of live biotherapeutic strategies.
Collapse
Affiliation(s)
- Fabrice Atassi
- ISNERM UMR-S 1166, Sorbonne University, Paris, France.,INSERM, UMR-S 1166, CHU Pitié-Salpêtrière, Faculty of Medicine, Paris, France
| | - Diane L Pho Viet Ahn
- INSERM UMR-S 996, University of Paris-Sud, Orsay, France.,INSERM UMR-S 996, Paris-Saclay University, Saint-Aubin, France.,INSERM, UMR-S 996, Clamart, France
| | - Vanessa Lievin-Le Moal
- INSERM UMR-S 996, University of Paris-Sud, Orsay, France.,INSERM UMR-S 996, Paris-Saclay University, Saint-Aubin, France.,INSERM, UMR-S 996, Clamart, France
| |
Collapse
|
57
|
Mei C, Yang W, Wei X, Wu K, Huang D. The Unique Microbiome and Innate Immunity During Pregnancy. Front Immunol 2019; 10:2886. [PMID: 31921149 PMCID: PMC6929482 DOI: 10.3389/fimmu.2019.02886] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
A successful pregnancy depends on not only the tolerance of the fetal immune system by the mother but also resistance against the threat of hazardous microorganisms. Infection with pathogenic microorganisms during pregnancy may lead to premature delivery, miscarriage, growth restriction, neonatal morbidity, and other adverse outcomes. Moreover, the host also has an intact immune system to avoid these adverse outcomes. It is important to note the presence of normal bacteria in the maternal reproductive tract and the principal role of the maternal-placental-fetal interaction in antimicrobial immunity. Previous studies mainly focused on maternal infection during pregnancy. However, this review summarizes the new views on the study of the maternal microbiome and expounds the innate immune defense mechanism of the maternal vagina and decidua as well as how cytotrophoblasts and syncytiotrophoblasts recognize and kill bacteria in the placenta. Fetal immune systems, thought to be weak, also exhibit an immune defense function that is indispensable for maintaining the safety of the fetus. The skin, lungs, and intestines of the fetus during pregnancy constitute the main immune barriers. These findings will provide a new understanding of the effects of normal microbial flora and how the host resists harmful microbes during pregnancy. We believe that it may also contribute to the reference on the clinical prevention and treatment of gestational infection to avoid adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Chunlei Mei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weina Yang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wei
- Second Affiliated Hospital of Jinlin University, Changchun, China
| | - Kejia Wu
- Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Donghui Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
58
|
Extracellular vesicles from symbiotic vaginal lactobacilli inhibit HIV-1 infection of human tissues. Nat Commun 2019; 10:5656. [PMID: 31827089 PMCID: PMC6906448 DOI: 10.1038/s41467-019-13468-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
The vaginal microbiota, dominated by Lactobacillus spp., plays a key role in preventing HIV-1 transmission. Here, we investigate whether the anti-HIV effect of lactobacilli is mediated by extracellular vesicles (EVs) released by these bacteria. Human cervico-vaginal and tonsillar tissues ex vivo, and cell lines were infected with HIV-1 and treated with EVs released by lactobacilli isolated from vaginas of healthy women. EVs released by L. crispatus BC3 and L. gasseri BC12 protect tissues ex vivo and isolated cells from HIV-1 infection. This protection is associated with a decrease of viral attachment to target cells and viral entry due to diminished exposure of Env that mediates virus-cell interactions. Inhibition of HIV-1 infection is associated with the presence in EVs of several proteins and metabolites. Our findings demonstrate that the protective effect of Lactobacillus against HIV-1 is, in part, mediated by EVs released by these symbiotic bacteria. If confirmed in vivo, this finding may lead to new strategies to prevent male-to-female sexual HIV-1 transmission. Lactobacillus associates with vaginal protection from HIV-1 infection. Here, the authors show that lactobacilli extracellular vesicles contain bacterial proteins and metabolites that inhibit HIV-1 infection in T cells and in human cervico-vaginal and tonsillar tissues ex vivo via altering viral Env proteins.
Collapse
|
59
|
Affiliation(s)
- Wendy Li
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Zhan-Shan Sam Ma
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China, E-mail:.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming Yunnan 650223, China.,Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming Yunnan 650223, China
| |
Collapse
|
60
|
Protective Effect of Probiotic Bacteria and Estrogen in Preventing HIV-1-Mediated Impairment of Epithelial Barrier Integrity in Female Genital Tract. Cells 2019; 8:cells8101120. [PMID: 31546582 PMCID: PMC6829272 DOI: 10.3390/cells8101120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 01/18/2023] Open
Abstract
Approximately 40% of global HIV-1 transmission occurs in the female genital tract (FGT) through heterosexual transmission. Epithelial cells lining the FGT provide the first barrier to HIV-1 entry. Previous studies have suggested that certain hormonal contraceptives or a dysbiosis of the vaginal microbiota can enhance HIV-1 acquisition in the FGT. We examined the effects of lactobacilli and female sex hormones on the barrier functions and innate immune responses of primary endometrial genital epithelial cells (GECs). Two probiotic strains, Lactobacillus reuteri RC-14 and L. rhamnosus GR-1, were tested, as were sex hormones estrogen (E2), progesterone (P4), and the hormonal contraceptive medroxyprogesterone acetate (MPA). Our results demonstrate that probiotic lactobacilli enhance barrier function without affecting cytokines. Treatment of GECs with MPA resulted in reduced barrier function. In contrast, E2 treatment enhanced barrier function and reduced production of proinflammatory cytokines. Comparison of hormones plus lactobacilli as a pre-treatment prior to HIV exposure revealed a dominant effect of lactobacilli in preventing loss of barrier function by GECs. In summary, the combination of E2 and lactobacilli had the best protective effect against HIV-1 seen by enhancement of barrier function and reduction in proinflammatory cytokines. These studies provide insights into how probiotic lactobacilli in the female genital microenvironment can alter HIV-1-mediated barrier disruption and how the combination of E2 and lactobacilli may decrease susceptibility to primary HIV infection.
Collapse
|
61
|
Leyva-Gómez G, Prado-Audelo MLD, Ortega-Peña S, Mendoza-Muñoz N, Urbán-Morlán Z, González-Torres M, González-Del Carmen M, Figueroa-González G, Reyes-Hernández OD, Cortés H. Modifications in Vaginal Microbiota and Their Influence on Drug Release: Challenges and Opportunities. Pharmaceutics 2019; 11:pharmaceutics11050217. [PMID: 31064154 PMCID: PMC6571606 DOI: 10.3390/pharmaceutics11050217] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
Vaginal drug delivery represents an attractive alternative to achieve local and systemic effects due to the high contact surface exposed, the mucoadhesion of the epithelium, and the high innervation that facilitates the absorption of drugs into the bloodstream. However, despite the confinement of the vaginal cavity, it is an organ with a highly variable microenvironment. Mechanical alterations such as coitus, or chemical changes such as pH and viscosity, modify the release of drugs. In addition, changes in vaginal microbiota can influence the entire vaginal microenvironment, thus determining the disposition of drugs in the vaginal cavity and decreasing their therapeutic efficacy. Therefore, the influence of microorganisms on vaginal homeostasis can change the pre-established scenario for the application of drugs. This review aims to provide an explanation of normal vaginal microbiota, the factors that modify it, its involvement in the administration of drugs, and new proposals for the design of novel pharmaceutical dosage forms. Finally, challenges and opportunities directed toward the conception of new effective formulations are discussed.
Collapse
Affiliation(s)
- Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - María L Del Prado-Audelo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
- Laboratorio de Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico.
| | - Silvestre Ortega-Peña
- Laboratorio de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico.
| | | | - Zaida Urbán-Morlán
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico.
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México 14380, Mexico.
| | | | - Gabriela Figueroa-González
- CONACyT-Laboratorio de Genómica, Dirección de Investigación, Instituto Nacional de Cancerología. Av. San Fernando 22, Tlalpan, Sección XVI, 14080 Ciudad de México, Mexico.
| | - Octavio D Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico.
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico.
| |
Collapse
|
62
|
Thapa R, Yang Y, Bekemeier B. Menopausal symptoms and associated factors in women living with HIV in Cambodia. J Women Aging 2019; 32:517-536. [PMID: 30957680 DOI: 10.1080/08952841.2019.1593773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study investigated the prevalence and severity of menopausal symptoms and associated factors among women living with HIV in Cambodia. Menopause Rating Scale (MRS) assessed the menopausal symptoms, and SPSS Version 20.0 analyzed the data. The three most dominant symptoms, which were also rated the top three "severe" symptoms, were psychological: physical and mental exhaustion (91.5%), irritability (84.1%), and depressive mood (83.6%). The highest incidence was among the perimenopausal women. Severity of symptoms was associated with personal income, abortion, and intake of calcium supplements. Health-care professionals need to provide appropriate individualized interventions to maintain the social, emotional, and overall well-being of menopausal women living with HIV.
Collapse
Affiliation(s)
- Roshna Thapa
- School of Nursing, Chonbuk National University , Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Youngran Yang
- School of Nursing, Research Institute of Nursing Science, Chonbuk National University , Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Betty Bekemeier
- School of Nursing, University of Washington , Seattle, Washington, USA
| |
Collapse
|
63
|
Defining characteristics of genital health in South African adolescent girls and young women at high risk for HIV infection. PLoS One 2019; 14:e0213975. [PMID: 30947260 PMCID: PMC6448899 DOI: 10.1371/journal.pone.0213975] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 03/05/2019] [Indexed: 01/24/2023] Open
Abstract
The genital tract of African women has been shown to differ from what is currently accepted as ‘normal’, defined by a pH≤4.5 and lactobacilli-dominated microbiota. Adolescent girls and young women (AGYW) from sub-Saharan Africa are at high risk for HIV, and we hypothesized that specific biological factors are likely to be influential. This study aimed to compare characteristics of vaginal health in HIV-negative AGYW (16-22-years-old), from two South African communities, to international norms. We measured plasma hormones, vaginal pH, presence of BV (Nugent scoring), sexually transmitted infections (multiplex PCR for Chlamydia trachomatis, Neisseria gonorrhoea, Trichomonas vaginalis, Mycoplasma genitalium) and candidiasis (Gram stain) in AGYW (n = 298) from Cape Town and Soweto. Cervicovaginal microbiota was determined by 16S pyrosequencing; 44 genital cytokines were measured by Luminex; and cervical T-cell activation/proliferation (CCR5, HLA-DR, CD38, Ki67) was measured by multiparametric flow cytometry. 90/298 (30.2%) AGYW were negative for BV, candidiasis and bacterial STIs. L. crispatus and L. iners were the dominant bacteria in cervicovaginal swabs, and the median vaginal pH was 4.7. AGYW with L. crispatus-dominant microbiota (42.4%) generally had the lowest cytokine concentrations compared to women with more diverse microbiota (34/44 significantly upregulated cytokines). Frequencies of CCR5+CD4+ T-cells co-expressing CD38 and HLA-DR correlated positively with interleukin (IL)-6, TNF-α, GRO-α, macrophage inflammatory protein (MIP)-1α, and IL-9. While endogenous oestrogen had an immune-dampening effect on IL-6, TNF-related apoptosis-inducing ligand (TRAIL) and IL-16, injectable hormone contraceptives (DMPA and Net-EN) were associated with significantly lower endogenous hormone concentrations (p<0.0001 for oestrogen and progesterone) and upregulation of 34/44 cytokines. Since genital inflammation and the presence of activated CD4+ T cells in the genital tract have been implicated in increased HIV risk in South African women, the observed high levels of genital cellular activation and cytokines from AGYW may point towards biological factors increasing HIV risk in this region.
Collapse
|
64
|
van der Veer C, Hertzberger RY, Bruisten SM, Tytgat HLP, Swanenburg J, de Kat Angelino-Bart A, Schuren F, Molenaar D, Reid G, de Vries H, Kort R. Comparative genomics of human Lactobacillus crispatus isolates reveals genes for glycosylation and glycogen degradation: implications for in vivo dominance of the vaginal microbiota. MICROBIOME 2019; 7:49. [PMID: 30925932 PMCID: PMC6441167 DOI: 10.1186/s40168-019-0667-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/15/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND A vaginal microbiota dominated by lactobacilli (particularly Lactobacillus crispatus) is associated with vaginal health, whereas a vaginal microbiota not dominated by lactobacilli is considered dysbiotic. Here we investigated whether L. crispatus strains isolated from the vaginal tract of women with Lactobacillus-dominated vaginal microbiota (LVM) are pheno- or genotypically distinct from L. crispatus strains isolated from vaginal samples with dysbiotic vaginal microbiota (DVM). RESULTS We studied 33 L. crispatus strains (n = 16 from LVM; n = 17 from DVM). Comparison of these two groups of strains showed that, although strain differences existed, both groups degraded various carbohydrates, produced similar amounts of organic acids, inhibited Neisseria gonorrhoeae growth, and did not produce biofilms. Comparative genomics analyses of 28 strains (n = 12 LVM; n = 16 DVM) revealed a novel, 3-fragmented glycosyltransferase gene that was more prevalent among strains isolated from DVM. Most L. crispatus strains showed growth on glycogen-supplemented growth media. Strains that showed less-efficient (n = 6) or no (n = 1) growth on glycogen all carried N-terminal deletions (respectively, 29 and 37 amino acid deletions) in a putative pullulanase type I protein. DISCUSSION L. crispatus strains isolated from LVM were not phenotypically distinct from L. crispatus strains isolated from DVM; however, the finding that the latter were more likely to carry a 3-fragmented glycosyltransferase gene may indicate a role for cell surface glycoconjugates, which may shape vaginal microbiota-host interactions. Furthermore, the observation that variation in the pullulanase type I gene is associated with growth on glycogen discourages previous claims that L. crispatus cannot directly utilize glycogen.
Collapse
Affiliation(s)
- Charlotte van der Veer
- Department of Infectious Diseases, Public Health Service, GGD, Amsterdam, The Netherlands
| | - Rosanne Y Hertzberger
- Department of Molecular Cell Biology, Faculty of Science, O|2 Lab Building, VU University, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Sylvia M Bruisten
- Department of Infectious Diseases, Public Health Service, GGD, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Jorne Swanenburg
- Department of Molecular Cell Biology, Faculty of Science, O|2 Lab Building, VU University, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Netherlands Organization for Applied Scientific Research (TNO), Microbiology and Systems Biology, Zeist, The Netherlands
| | - Alie de Kat Angelino-Bart
- Netherlands Organization for Applied Scientific Research (TNO), Microbiology and Systems Biology, Zeist, The Netherlands
| | - Frank Schuren
- Netherlands Organization for Applied Scientific Research (TNO), Microbiology and Systems Biology, Zeist, The Netherlands
| | - Douwe Molenaar
- Department of Molecular Cell Biology, Faculty of Science, O|2 Lab Building, VU University, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Gregor Reid
- Canadian R&D Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, Canada
- Departments of Microbiology and Immunology, and Surgery, Western University, London, Ontario, Canada
| | - Henry de Vries
- Department of Infectious Diseases, Public Health Service, GGD, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Remco Kort
- Department of Molecular Cell Biology, Faculty of Science, O|2 Lab Building, VU University, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
- Netherlands Organization for Applied Scientific Research (TNO), Microbiology and Systems Biology, Zeist, The Netherlands.
- ARTIS-Micropia, Amsterdam, The Netherlands.
| |
Collapse
|
65
|
Antimicrobial and inflammatory properties of South African clinical Lactobacillus isolates and vaginal probiotics. Sci Rep 2019; 9:1917. [PMID: 30760770 PMCID: PMC6374385 DOI: 10.1038/s41598-018-38253-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/17/2018] [Indexed: 11/29/2022] Open
Abstract
Bacterial vaginosis (BV) causes genital inflammation and increased HIV acquisition risk. The standard-of-care for BV, antibiotic therapy, is associated with high recurrence rates. Probiotics may improve treatment outcomes, although substantial heterogeneity in efficacy has been observed during clinical trials. To evaluate the potential to improve existing probiotics, we compared the inflammatory and antimicrobial (adhesion, H2O2, D-lactate and L-lactate production) characteristics of 23 vaginal Lactobacillus isolates from South African women, commercial vaginal probiotics (L. casei rhamnosus, L. acidophilus) and 4 reference strains. All lactobacilli induced inflammatory cytokine production by genital epithelial cells and produced D-lactate. Of six isolates assessed, five suppressed inflammatory responses to Gardnerella vaginalis. Although the L. acidophilus probiotic was the most adherent, many clinical isolates produced greater amounts of H2O2, D-lactate and L-lactate than the probiotics. The most L-lactate and H2O2 were produced by L. jensenii (adjusted p = 0.0091) and L. mucosae (adjusted p = 0.0308) species, respectively. According to the characteristics evaluated, the top 10 isolates included 4 L. jensenii, 2 L. crispatus, 1 L. mucosae, 1 L. vaginalis and the L. acidophilus probiotic. There is potential to develop an improved vaginal probiotic using clinical Lactobacillus isolates. Inflammatory profiles are critical to evaluate as some isolates induced substantial cytokine production.
Collapse
|
66
|
Coulibaly FS, Ezoulin MJM, Dim DC, Molteni A, Youan BBC. Preclinical Safety Evaluation of HIV-1 gp120 Responsive Microbicide Delivery System in C57BL/6 Female Mice. Mol Pharm 2019; 16:595-606. [PMID: 30525661 DOI: 10.1021/acs.molpharmaceut.8b00872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many novel vaginal/rectal microbicide formulations failed clinically due to safety concerns, indicating the need for the early investigation of lead microbicide formulations. In this study, the preclinical safety of an HIV-1 gp120 and mannose responsive microbicide delivery system (MRP) is evaluated in C57BL/6 mice. MRP was engineered through the layer-by-layer coating of calcium carbonate (CaCO3) with Canavalia ensiformis lectin (Con A) and glycogen. MRP mean particle diameter and zeta potential were 857.8 ± 93.1 nm and 2.37 ± 4.12 mV, respectively. Tenofovir (TFV) encapsulation and loading efficiencies in MRP were 70.1% and 16.3% w/w, respectively. When exposed to HIV-1 rgp120 (25 μg/mL), MRP released a significant amount of TFV (∼5-fold higher) in vaginal and seminal fluid mixture compared to the control (pre-exposure) level (∼59 μg/mL) in vaginal fluid alone. Unlike the positive control treated groups (e.g., nonoxynol-9), no significant histological damages and CD45+ cells infiltration were observed in the vaginal and major reproductive organ epithelial layers. This was probably due to MRP biocompatibility and its isosmolality (304.33 ± 0.58 mOsm/kg). Furthermore, compared to negative controls, there was no statistically significant increase in pro-inflammatory cytokines such as IL1α, Ilβ, IL7, IP10, and TNFα. Collectively, these data suggest that MRP is a relatively safe nanotemplate for HIV-1 gp120 stimuli responsive vaginal microbicide delivery system.
Collapse
Affiliation(s)
- Fohona S Coulibaly
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy , University of Missouri-Kansas City , 2464 Charlotte , Kansas City , Missouri 64108 , United States
| | - Miezan J M Ezoulin
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy , University of Missouri-Kansas City , 2464 Charlotte , Kansas City , Missouri 64108 , United States
| | - Daniel C Dim
- School of Medicine , University of Missouri-Kansas City School of Medicine , Kansas City , Missouri 64108 , United States
| | - Agostino Molteni
- School of Medicine , University of Missouri-Kansas City School of Medicine , Kansas City , Missouri 64108 , United States
| | - Bi-Botti C Youan
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy , University of Missouri-Kansas City , 2464 Charlotte , Kansas City , Missouri 64108 , United States
| |
Collapse
|
67
|
Vaginal microbiota transplantation for the treatment of bacterial vaginosis: a conceptual analysis. FEMS Microbiol Lett 2019; 366:5304978. [DOI: 10.1093/femsle/fnz025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
|
68
|
Koppolu S, Wang L, Mathur A, Nigam JA, Dezzutti CS, Isaacs C, Meyn L, Bunge KE, Moncla BJ, Hillier SL, Rohan LC, Mahal LK. Vaginal Product Formulation Alters the Innate Antiviral Activity and Glycome of Cervicovaginal Fluids with Implications for Viral Susceptibility. ACS Infect Dis 2018; 4:1613-1622. [PMID: 30183260 DOI: 10.1021/acsinfecdis.8b00157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycosylated proteins (i.e., mucins, IgG) are important mediators of innate antiviral immunity in the vagina; however, our current knowledge of the role that glycan themselves play in genital immunity is relatively low. Herein, we evaluate the relationship between innate antiviral immunity and glycomic composition in cervicovaginal lavage fluid (CVL) collected as part of a Phase I clinical trial testing the impact of two distinct formulations of the antiretroviral drug dapivirine. Using lectin microarray technology, we discovered that formulation (hydrogel- versus film-based delivery) impacted the CVL glycome, with hydrogel formulations inducing more changes, including a loss of high-mannose. The loss of this epitope correlated to a loss of anti-HIV-1 activity. Glycoproteomic identification of high-mannose proteins revealed a cohort of antiproteases shown to be important in HIV-1 resistance, whose expression covaried with the high-mannose signature. Our data strongly suggests high-mannose as a marker for secreted proteins mediating innate antiviral immunity in vaginal fluids and that drug formulation may impact this activity as reflected in the glycome.
Collapse
Affiliation(s)
- Sujeethraj Koppolu
- Biomedical Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Linlin Wang
- Biomedical Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Ayushi Mathur
- Biomedical Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Jayeshwar A. Nigam
- Biomedical Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Charlene S. Dezzutti
- Magee-Womens Research Institute, 204 Craft Avenue, B511, Pittsburgh, Pennsylvania 15213, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, 300 Halket Street, Pittsburgh, Pennsylvania 15213, United States
| | - Charles Isaacs
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York, New York 10314, United States
| | - Leslie Meyn
- Magee-Womens Research Institute, 204 Craft Avenue, B511, Pittsburgh, Pennsylvania 15213, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, 300 Halket Street, Pittsburgh, Pennsylvania 15213, United States
| | - Katherine E. Bunge
- Magee-Womens Research Institute, 204 Craft Avenue, B511, Pittsburgh, Pennsylvania 15213, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, 300 Halket Street, Pittsburgh, Pennsylvania 15213, United States
| | - Bernard J. Moncla
- Magee-Womens Research Institute, 204 Craft Avenue, B511, Pittsburgh, Pennsylvania 15213, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, 300 Halket Street, Pittsburgh, Pennsylvania 15213, United States
| | - Sharon L. Hillier
- Magee-Womens Research Institute, 204 Craft Avenue, B511, Pittsburgh, Pennsylvania 15213, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Pittsburgh, 300 Halket Street, Pittsburgh, Pennsylvania 15213, United States
| | - Lisa C. Rohan
- Magee-Womens Research Institute, 204 Craft Avenue, B511, Pittsburgh, Pennsylvania 15213, United States
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Lara K. Mahal
- Biomedical Chemistry Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
69
|
|
70
|
Schmidt BA, Phillips R, Rolston M, Raeman R, Iyer SS. Comparison of sampling methods for profiling cervicovaginal microbiome in rhesus macaques. J Med Primatol 2018; 48:54-57. [PMID: 30277264 DOI: 10.1111/jmp.12381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/19/2018] [Indexed: 12/15/2022]
Abstract
Cervicovaginal bacteria cause inflammation which in turn increases HIV risk. Profiling the cervicovaginal microbiome, therefore, is instrumental for vaccine development. We show that the microbiome profile captured by cervicovaginal lavage is comparable to samples obtained by vaginal swabs. Thus, lavage may serve as a sampling strategy in NHP vaccine studies.
Collapse
Affiliation(s)
- Brian A Schmidt
- Center for Comparative Medicine, University of California, Davis, California
| | - Ronald Phillips
- Center for Comparative Medicine, University of California, Davis, California
| | - Matthew Rolston
- Host Microbe Systems Biology Core, University of California, Davis, California
| | - Reben Raeman
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Smita S Iyer
- Center for Comparative Medicine, University of California, Davis, California.,California National Primate Research Center, University of California, Davis, California.,Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California
| |
Collapse
|
71
|
Takada K, Komine-Aizawa S, Kuramochi T, Ito S, Trinh QD, Pham NTK, Sasano M, Hayakawa S. Lactobacillus crispatus accelerates re-epithelialization in vaginal epithelial cell line MS74. Am J Reprod Immunol 2018; 80:e13027. [PMID: 30144195 DOI: 10.1111/aji.13027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022] Open
Abstract
PROBLEM The functions of vaginal lactobacilli in susceptibility to infectious diseases as regards epithelial barrier integrity and wound healing remain incompletely understood. METHOD OF STUDY Lactobacillus crispatus, one of the most common Lactobacillus species in the vagina and among the most protective against sexually transmitted infections, was cocultured with an immortalized human vaginal epithelial cell line (MS74), and a scratch assay was performed to evaluate re-epithelialization. The concentration of vascular endothelial growth factor A (VEGF) was measured using enzyme-linked immunosorbent assay (ELISA). An immunofluorescence assay was performed to locate the expression of VEGF and VEGF receptor (VEGFR) 1 and 2. The effects of the bacterial supernatant of L. crispatus were also evaluated. RESULTS Lactobacillus crispatus significantly accelerated re-epithelialization of MS74 cells, accompanied by an increase in VEGF concentration. In contrast, heat-killed L. crispatus did not show this effect. The bacterial supernatant of L. crispatus also induced re-epithelialization. The immunoreactivity of VEGF was higher at the scratched edge, whereas VEGFR1 and 2 stained site-independently. Recombinant VEGF induced cell migration in a dose-dependent manner. The bacterial supernatant of L. crispatus also significantly accelerated re-epithelialization in MS74 cells and increased the concentration of VEGF in the culture 24 hours after the scratch. CONCLUSION These results may enhance our knowledge of the importance of L. crispatus in the healing of damaged vaginal epithelium and protection against the consequent risk of pathogenic infections, such as human immunodeficiency virus (HIV), and improve our understanding of vaginal epithelial barrier integrity maintenance by this bacterium.
Collapse
Affiliation(s)
- Kazuhide Takada
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | | | - Shun Ito
- Nihon University School of Medicine, Tokyo, Japan
| | - Quang Duy Trinh
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Mari Sasano
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
72
|
Petrova MI, van den Broek MFL, Spacova I, Verhoeven TLA, Balzarini J, Vanderleyden J, Schols D, Lebeer S. Engineering Lactobacillus rhamnosus GG and GR-1 to express HIV-inhibiting griffithsin. Int J Antimicrob Agents 2018; 52:599-607. [PMID: 30040991 DOI: 10.1016/j.ijantimicag.2018.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/14/2018] [Accepted: 07/08/2018] [Indexed: 11/30/2022]
Abstract
Probiotic bacteria are being explored for the in situ delivery of various therapeutic agents. In this study, we aimed to express two HIV-inhibiting lectins, actinohivin (AH) and griffithsin (GRFT), in the probiotic strains Lactobacillus rhamnosus GG and L. rhamnosus GR-1 for gastrointestinal and vaginal mucosal delivery, respectively. Constructs were generated for the intracellular and extracellular production of AH and GRFT under the control of the promoter of their Major Secreted Protein Msp1. Also, intracellular expression of GRFT was investigated under the control of the nisA promoter from the inducible nisin-controlled expression (NICE) system. For the extracellular localization, the signal leader peptide of Msp1/p75 from L. rhamnosus GG was translationally fused with the genes encoding AH and GRFT. Construction of recombinant strains expressing the AH monomer and dimer was unsuccessful, probably due to the intracellular toxicity of AH for the lactobacilli. On the other hand, recombinant strains for intra- and extracellular production of GRFT by L. rhamnosus GG and GR-1 were successfully constructed. The highest expression levels of recombinant GRFT were observed for the constructs under the control of the inducible nisA promoter and we demonstrated anti-HIV activity against an M-tropic and a T-tropic HIV-1 strain. We can conclude that recombinant Lactobacillus expressing anti-HIV lectins could contribute to the development of enhanced probiotic strains that are able to inhibit HIV transmission and subsequent replication, although further research and development are required.
Collapse
Affiliation(s)
- Mariya I Petrova
- KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium; University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | - Marianne F L van den Broek
- University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Irina Spacova
- KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium; University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Tine L A Verhoeven
- KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Jan Balzarini
- KU Leuven, Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Jos Vanderleyden
- KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium
| | - Sarah Lebeer
- KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium; University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| |
Collapse
|
73
|
Taddei CR, Cortez RV, Mattar R, Torloni MR, Daher S. Microbiome in normal and pathological pregnancies: A literature overview. Am J Reprod Immunol 2018; 80:e12993. [DOI: 10.1111/aji.12993] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/16/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Carla R. Taddei
- Department of Clinical and Toxicological Analyses; School of Pharmaceutical Sciences; Universidade de São Paulo; São Paulo Brazil
| | - Ramon V. Cortez
- Department of Clinical and Toxicological Analyses; School of Pharmaceutical Sciences; Universidade de São Paulo; São Paulo Brazil
| | - Rosiane Mattar
- Department of Obstetrics; Universidade Federal de São Paulo; São Paulo Brazil
| | | | - Silvia Daher
- Department of Obstetrics; Universidade Federal de São Paulo; São Paulo Brazil
| |
Collapse
|
74
|
Gupta V, Nag D, Garg P. Recurrent urinary tract infections in women: How promising is the use of probiotics? Indian J Med Microbiol 2018; 35:347-354. [PMID: 29063878 DOI: 10.4103/ijmm.ijmm_16_292] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Urinary tract infections (UTIs) currently rank amongst the most prevalent bacterial infections, representing a major health hazard. UTIs in females usually start as vaginal infections and ascend to the urethra and bladder. Recurrent UTIs (rUTIs) can be defined as at least three episodes of UTI in 1 year or two episodes in 6 months. Various antibiotics have been the mainstay of therapy in ameliorating the incidence of UTIs, but recurrent infections continue to afflict many women. It necessitates the exploitation of alternative antimicrobial therapy. Probiotics have been shown to be effective in varied clinical trials for long-term preventions of rUTI. Because Escherichia coli is the primary pathogen involved in UTIs which spreads from the rectum to vagina and then ascends up the sterile urinary tract, improving the gut or vaginal flora will thus impact the urinary tract. Since a healthy vaginal microbiota is mainly dominated by Lactobacillus species, in this context, exogenously administered probiotics containing Lactobacilli play a pivotal role in reducing the risk of rUTI. The concept of artificially boosting the Lactobacilli numbers through probiotic administration has long been conceived but has been recently shown to be possible. Lactobacilli may especially be useful for women with a history of recurrent, complicated UTIs or on prolonged antibiotic use. Probiotics do not cause antibiotic resistance and may offer other health benefits due to vaginal re-colonisation with Lactobacilli. However, more comprehensive research is still needed, to recommend for probiotics as an alternative to antibiotics.
Collapse
Affiliation(s)
- Varsha Gupta
- Department of Microbiology, Government Medical College Hospital, Chandigarh, India
| | - Deepika Nag
- Department of Microbiology, Government Medical College Hospital, Chandigarh, India
| | - Pratibha Garg
- Department of Microbiology, Government Medical College Hospital, Chandigarh, India
| |
Collapse
|
75
|
Abstract
: Bacterial vaginosis, characterized by the replacement of the Lactobacillus-dominant microbiota with anaerobic bacteria and facultative Gram-negative rods, has been associated with adverse reproductive health outcomes including HIV acquisition. With the advent of newer molecular techniques, the vaginal microbiota can be investigated in more detail and the association with HIV examined more thoroughly. This review examines recent evidence suggesting that vaginal dysbiosis with increased microbial diversity, specific vaginal bacterial communities, and the presence and concentrations of some individual bacterial species, may increase HIV susceptibility. Potential mechanisms through which vaginal microbiota could impact HIV susceptibility are discussed. On the basis of the available data, this review finds that there is a modest, but growing, body of evidence linking vaginal microbiota to HIV susceptibility in women. The evidence could be strengthened through two main pathways. First, laboratory studies such as ex-vivo or animal experiments are needed to move from plausible mechanisms towards proven mechanisms that explain an effect of the vaginal microbiota on HIV susceptibility. Second, experimental evidence could directly test the hypothesis that sustaining optimal microbiota reduces HIV risk, though there are important obstacles to conducting such studies. Finally, this review examines strong evidence from a recent publication suggesting that deviations from an optimal vaginal microbiome, and particularly the presence of some bacterial communities with high relative abundance of Gardnerella vaginalis, reduces the efficacy of vaginal tenofovir-based microbicides.
Collapse
|
76
|
Abstract
Objective: To examine bacterial vaginosis as an effect modifier for the association between hormonal contraception and incident HIV infection. Design: Serodiscordant couples enrolled in an open longitudinal cohort in Lusaka, Zambia from 1994 to 2012. This analysis was restricted to couples with an HIV-positive man enrolled between1994 and 2002 when a quarterly genital tract examination and HIV testing was performed. Methods: Multivariate Cox models evaluated the association between contraceptive method and HIV-acquisition, stratified by time-varying bacterial vaginosis status. Results: Among 564 couples contributing 1137.2 couple-years of observation, bacterial vaginosis was detected at 15.5% of study visits. Twenty-two of 106 seroconversions occurred during intervals after bacterial vaginosis was detected [12 on no method/nonhormonal method (nonhormonal contraception), two on injectables, eight on oral contraceptive pills (OCPs)]. Unadjusted seroincidence rates per 100 couple-years for nonhormonal contraception, injectable, and OCP users, respectively, during intervals with bacterial vaginosis were 8.3, 20.8, and 31.0 and during intervals without bacterial vaginosis were 8.2, 9.7, and 12.3. In the bacterial vaginosis-positive model, there was a significant increase in incident HIV among those using injectables (adjusted hazard ratio, aHR 6.55, 95% CI 1.14–37.77) and OCPs (aHR 5.20, 95% CI 1.68–16.06) compared with nonhormonal contraception. Hormonal contraception did not increase the hazard of HIV acquisition in bacterial vaginosis-negative models. These findings persisted in sensitivity analyses whenever all covariates from the nonstratified model previously published were included, whenever other genital tract findings were excluded from the model and with the addition of condom-less sex and sperm on wet-prep. Conclusion: Future research should consider a potential interaction with bacterial vaginosis whenever evaluating the impact of hormonal contraception on HIV acquisition.
Collapse
|
77
|
Waldman AJ, Balskus EP. The Human Microbiota, Infectious Disease, and Global Health: Challenges and Opportunities. ACS Infect Dis 2018; 4:14-26. [PMID: 29207239 DOI: 10.1021/acsinfecdis.7b00232] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite significant advances in treating infectious diseases worldwide, morbidity and mortality associated with pathogen infection remains extraordinarily high and represents a critical scientific and global health challenge. Current strategies to combat these infectious agents include a combination of vaccines, small molecule drugs, increased hygiene standards, and disease-specific interventions. While these approaches have helped to drastically reduce the incidence and number of deaths associated with infection, continued investment in current strategies and the development of novel therapeutic approaches will be required to address these global health threats. Recently, human- and vector-associated microbiotas, the assemblages of microorganisms living on and within their hosts, have emerged as a potentially important factor mediating both infection risk and disease progression. These complex microbial communities are involved in intricate and dynamic interactions with both pathogens as well as the innate and adaptive immune systems of their hosts. Here, we discuss recent findings that have illuminated the importance of resident microbiotas in infectious disease, emphasizing opportunities for novel therapeutic intervention and future challenges for the field. Our discussion will focus on four major global health threats: tuberculosis, malaria, HIV, and enteric/diarrheal diseases. We hope this Perspective will highlight the many opportunities for chemists and chemical biologists in this field as well as inspire efforts to elucidate the mechanisms underlying established disease correlations, identify novel microbiota-based risk factors, and develop new therapeutic interventions.
Collapse
Affiliation(s)
- Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
78
|
Root-Bernstein R. Human Immunodeficiency Virus Proteins Mimic Human T Cell Receptors Inducing Cross-Reactive Antibodies. Int J Mol Sci 2017; 18:E2091. [PMID: 28972547 PMCID: PMC5666773 DOI: 10.3390/ijms18102091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/07/2023] Open
Abstract
Human immunodeficiency virus (HIV) hides from the immune system in part by mimicking host antigens, including human leukocyte antigens. It is demonstrated here that HIV also mimics the V-β-D-J-β of approximately seventy percent of about 600 randomly selected human T cell receptors (TCR). This degree of mimicry is greater than any other human pathogen, commensal or symbiotic organism studied. These data suggest that HIV may be evolving into a commensal organism just as simian immunodeficiency virus has done in some types of monkeys. The gp120 envelope protein, Nef protein and Pol protein are particularly similar to host TCR, camouflaging HIV from the immune system and creating serious barriers to the development of safe HIV vaccines. One consequence of HIV mimicry of host TCR is that antibodies against HIV proteins have a significant probability of recognizing the corresponding TCR as antigenic targets, explaining the widespread observation of lymphocytotoxic autoantibodies in acquired immunodeficiency syndrome (AIDS). Quantitative enzyme-linked immunoadsorption assays (ELISA) demonstrated that every HIV antibody tested recognized at least one of twelve TCR, and as many as seven, with a binding constant in the 10-8 to 10-9 m range. HIV immunity also affects microbiome tolerance in ways that correlate with susceptibility to specific opportunistic infections.
Collapse
Affiliation(s)
- Robert Root-Bernstein
- Department of Physiology, Michigan State University, 567 Wilson Road, Room 2201, East Lansing, MI 48824 USA.
| |
Collapse
|
79
|
Filardo S, Di Pietro M, Porpora MG, Recine N, Farcomeni A, Latino MA, Sessa R. Diversity of Cervical Microbiota in Asymptomatic Chlamydia trachomatis Genital Infection: A Pilot Study. Front Cell Infect Microbiol 2017; 7:321. [PMID: 28770172 PMCID: PMC5509768 DOI: 10.3389/fcimb.2017.00321] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/28/2017] [Indexed: 12/21/2022] Open
Abstract
Chlamydia trachomatis genital infection continues to be an important public health problem worldwide due to its increasing incidence. C. trachomatis infection can lead to severe sequelae, such as pelvic inflammatory disease, obstructive infertility, and preterm birth. Recently, it has been suggested that the cervico-vaginal microbiota may be an important defense factor toward C. trachomatis infection as well as the development of chronic sequelae. Therefore, the investigation of microbial profiles associated to chlamydial infection is of the utmost importance. Here we present a pilot study aiming to characterize, through the metagenomic analysis of sequenced 16s rRNA gene amplicons, the cervical microbiota from reproductive age women positive to C. trachomatis infection. The main finding of our study showed a marked increase in bacterial diversity in asymptomatic C. trachomatis positive women as compared to healthy controls in terms of Shannon's diversity and Shannon's evenness (P = 0.031 and P = 0.026, respectively). More importantly, the cervical microbiota from C. trachomatis positive women and from healthy controls significantly separated into two clusters in the weighted UniFrac analysis (P = 0.0027), suggesting that differences between the two groups depended entirely on the relative abundance of bacterial taxa rather than on the types of bacterial taxa present. Furthermore, C. trachomatis positive women showed an overall decrease in Lactobacillus spp. and an increase in anaerobes. These findings are part of an ongoing larger epidemiological study that will evaluate the potential role of distinct bacterial communities of the cervical microbiota in C. trachomatis infection.
Collapse
Affiliation(s)
- Simone Filardo
- Section of Microbiology, Department of Public Health and Infectious Diseases, University of Rome "Sapienza"Rome, Italy
| | - Marisa Di Pietro
- Section of Microbiology, Department of Public Health and Infectious Diseases, University of Rome "Sapienza"Rome, Italy
| | - Maria G Porpora
- Department of Gynecology, Obstetrics and Urology, University of Rome "Sapienza"Rome, Italy
| | - Nadia Recine
- Department of Gynecology, Obstetrics and Urology, University of Rome "Sapienza"Rome, Italy
| | - Alessio Farcomeni
- Section of Statistics, Department of Public Health and Infectious Diseases, University of Rome "Sapienza"Rome, Italy
| | - Maria A Latino
- Unit of Bacteriology, STIs Diagnostic Centre, Sant'Anna HospitalTurin, Italy
| | - Rosa Sessa
- Section of Microbiology, Department of Public Health and Infectious Diseases, University of Rome "Sapienza"Rome, Italy
| |
Collapse
|
80
|
Vaginal Microbiome and Its Relationship to Behavior, Sexual Health, and Sexually Transmitted Diseases. Obstet Gynecol 2017; 129:643-654. [PMID: 28277350 DOI: 10.1097/aog.0000000000001932] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vaginal microbiota has great significance in maintaining vaginal health and protecting the host from disease. Recent advances in molecular techniques and informatics allow researchers to explore microbial composition in detail and to compare the structure of vaginal microbial communities with behavior and health outcomes, particularly acquisition and transmission of sexually transmitted diseases (STDs) and poor birth outcomes. Vaginal flora have been found to cluster into a limited number of communities, although community structure is dynamic. Certain community types are more associated with poor reproductive outcomes and STDs; communities dominated by Lactobacillus species, particularly Lactobacillus crispatus, are most associated with vaginal health. Modifiable and nonmodifiable factors are strongly associated with community composition, including behavior, race or ethnicity, and hygiene. In this review, we describe the state of the science on the vaginal microbiome and its relationship to behavior, sexual health, and STDs, including determinants of the microbiome that go beyond an individual level.
Collapse
|
81
|
Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus La-14 Attenuate Gardnerella vaginalis-Infected Bacterial Vaginosis in Mice. Nutrients 2017; 9:nu9060531. [PMID: 28545241 PMCID: PMC5490510 DOI: 10.3390/nu9060531] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 12/30/2022] Open
Abstract
Oral administration of a probiotic mixture (PM; Respecta®) consisting of Lactobacillus rhamnosus HN001 (L1), Lactobacillus acidophilus La-14 (L2), and lactoferrin RCXTM results in colonization of these probiotics in the vagina of healthy women. Therefore, we examined whether vaginal colonization of the PM ingredients L1 and L2 could attenuate bacterial vaginosis (BV). BV was induced in mice via β-estradiol-3-benzoate-induced immunosuppression and intravaginal inoculation with Gardnerella vaginalis (GV). Inflammatory markers were analyzed using enzyme-linked immunosorbent assay, immunoblotting, quantitative polymerase chain reaction, and flow cytometry. Oral or intravaginal administration of PM resulted in colonization of L1 and L2 in the vagina. Oral or intravaginal administration of L1, L2, or PM significantly inhibited GV-induced epithelial cell disruption, myeloperoxidase activity, NF-κB activation, and IL-1β and TNF-α expression (p < 0.05). Administration of these probiotics also inhibited IL-17 and RORγt expression but increased IL-10 and Foxp3 expression. Of these probiotics, L2 most effectively attenuated GV-induced BV, followed by L1 and PM. Oral administration was more effective against GV-induced BV than intravaginal administration. L1 and L2 also significantly inhibited the adherence of GV to HeLa cells (a human cervical cancer cell line) and GV growth in vitro. In addition, L1 and L2 inhibited lipopolysaccharide-induced NF-κB activation in macrophages and the differentiation of splenocytes into Th17 cells in vitro, but increased their differentiation into Treg cells. Our study suggests that L1, L2, and PM attenuated GV-induced vaginosis by regulating both vaginal and systemic innate and adaptive immune responses rather than direct competition or killing of GV in the vagina.
Collapse
|
82
|
Ñahui Palomino RA, Zicari S, Vanpouille C, Vitali B, Margolis L. Vaginal Lactobacillus Inhibits HIV-1 Replication in Human Tissues Ex Vivo. Front Microbiol 2017; 8:906. [PMID: 28579980 PMCID: PMC5437121 DOI: 10.3389/fmicb.2017.00906] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/03/2017] [Indexed: 01/11/2023] Open
Abstract
Lactobacillus species, which dominate vaginal microbiota of healthy reproductive-age women, lower the risks of sexually transmitted infections, including the risk of human immunodeficiency virus (HIV) acquisition. The exact mechanisms of this protection remain to be understood. Here, we investigated these mechanisms in the context of human cervico-vaginal and lymphoid tissues ex vivo. We found that all six Lactobacillus strains tested in these systems significantly suppressed HIV type-1 (HIV-1) infection. We identified at least three factors that mediated this suppression: (i) Acidification of the medium. The pH of the undiluted medium conditioned by lactobacilli was between 3.8 and 4.6. Acidification of the culture medium with hydrochloric acid (HCl) to this pH in control experiments was sufficient to abrogate HIV-1 replication. However, the pH of the Lactobacillus-conditioned medium (CM) diluted fivefold, which reached ∼6.9, was also suppressive for HIV-1 infection, while in control experiments HIV-1 infection was not abrogated when the pH of the medium was brought to 6.9 through the use of HCl. This suggested the existence of other factors responsible for HIV-1 inhibition by lactobacilli. (ii) Lactic acid. There was a correlation between the concentration of lactic acid in the Lactobacillus-CM and its ability to suppress HIV-1 infection in human tissues ex vivo. Addition of lactic acid isomers D and L to tissue culture medium at the concentration that corresponded to their amount released by lactobacilli resulted in HIV-1 inhibition. Isomer L was produced in higher quantities than isomer D and was mostly responsible for HIV-1 inhibition. These results indicate that lactic acid, in particular its L-isomer, inhibits HIV-1 independently of lowering of the pH. (iii) Virucidal effect. Incubation of HIV-1 in Lactobacillus-CM significantly suppressed viral infectivity for human tissues ex vivo. Finally, lactobacilli adsorb HIV-1, serving as a sink decreasing the number of free virions. In summary, we found that lactobacilli inhibit HIV-1 replication in human tissue ex vivo by multiple mechanisms. Further studies are needed to evaluate the potential of altering the spectra of vaginal microbiota as an effective strategy to enhance vaginal health. Human tissues ex vivo may serve as a test system for these strategies.
Collapse
Affiliation(s)
- Rogers A Ñahui Palomino
- Section of Intercellular Interaction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, BethesdaMD, United States.,Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Sonia Zicari
- Section of Intercellular Interaction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, BethesdaMD, United States
| | - Christophe Vanpouille
- Section of Intercellular Interaction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, BethesdaMD, United States
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Leonid Margolis
- Section of Intercellular Interaction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, BethesdaMD, United States
| |
Collapse
|
83
|
Kamińska D, Gajecka M. Is the role of human female reproductive tract microbiota underestimated? Benef Microbes 2017; 8:327-343. [PMID: 28504576 DOI: 10.3920/bm2015.0174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An issue that is currently undergoing extensive study is the influence of human vaginal microbiota (VMB) on the health status of women and their neonates. Healthy women are mainly colonised with lactobacilli such as Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus iners; however, other bacteria may be elements of the VMB, particularly in women with bacterial vaginosis. The implementation of culture-independent molecular methods in VMB characterisation, especially next-generation sequencing, have provided new information regarding bacterial diversity in the vagina, revealing a large number of novel, fastidious, and/or uncultivated bacterial species. These molecular studies have contributed new insights regarding the role of bacterial community composition. In this study, we discuss recent findings regarding the reproductive tract microbiome. Not only bacteria but also viruses and fungi constitute important components of the reproductive tract microbiome. We focus on aspects related to the impact of the maternal microbiome on foetal development, as well as the establishment of the neonatal microbiomes, including the placenta microbiome, and the haematogenous source of intrauterine infection. We also discuss whether the role of the vaginal microbiome is currently understood and appreciated.
Collapse
Affiliation(s)
- D Kamińska
- 1 Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznan, Poland
| | - M Gajecka
- 1 Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Swiecickiego 4, 60-781 Poznan, Poland.,2 Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| |
Collapse
|
84
|
Medina-Colorado AA, Vincent KL, Miller AL, Maxwell CA, Dawson LN, Olive T, Kozlova EV, Baum MM, Pyles RB. Vaginal ecosystem modeling of growth patterns of anaerobic bacteria in microaerophilic conditions. Anaerobe 2017; 45:10-18. [PMID: 28456518 DOI: 10.1016/j.anaerobe.2017.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 12/30/2022]
Abstract
The human vagina constitutes a complex ecosystem created through relationships established between host mucosa and bacterial communities. In this ecosystem, classically defined bacterial aerobes and anaerobes thrive as communities in the microaerophilic environment. Levels of CO2 and O2 present in the vaginal lumen are impacted by both the ecosystem's physiology and the behavior and health of the human host. Study of such complex relationships requires controlled and reproducible causational approaches that are not possible in the human host that, until recently, was the only place these bacterial communities thrived. To address this need we have utilized our ex vivo human vaginal mucosa culture system to support controlled, reproducible colonization by vaginal bacterial communities (VBC) collected from healthy, asymptomatic donors. Parallel vaginal epithelial cells (VEC)-VBC co-cultures were exposed to two different atmospheric conditions to study the impact of CO2 concentrations upon the anaerobic bacteria associated with dysbiosis and inflammation. Our data suggest that in the context of transplanted VBC, increased CO2 favored specific lactobacilli species defined as microaerophiles when grown as monocultures. In preliminary studies, the observed community changes also led to shifts in host VEC phenotypes with significant changes in the host transcriptome, including altered expression of select molecular transporter genes. These findings support the need for additional study of the environmental changes associated with behavior and health upon the symbiotic and adversarial relationships that are formed in microbial communities present in the human vaginal ecosystem.
Collapse
Affiliation(s)
| | - Kathleen L Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Aaron L Miller
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Carrie A Maxwell
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lauren N Dawson
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Trevelyn Olive
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Elena V Kozlova
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Marc M Baum
- Oak Crest Institute of Science, Monrovia, CA, USA
| | - Richard B Pyles
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
85
|
Associations of the vaginal microbiota with HIV infection, bacterial vaginosis, and demographic factors. AIDS 2017; 31:895-904. [PMID: 28121709 DOI: 10.1097/qad.0000000000001421] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We sought to investigate the effects of HIV infection on the vaginal microbiota and associations with treatment and demographic factors. We thus compared vaginal microbiome samples from HIV-infected (HIV+) and HIV-uninfected (HIV-) women collected at two Chicago area hospitals. DESIGN We studied vaginal microbiome samples from 178 women analyzed longitudinally (n = 324 samples) and collected extensive data on clinical status and demographic factors. METHODS We used 16S rRNA gene sequencing to characterize the bacterial lineages present, then UniFrac, Shannon diversity, and other measures to compare community structure with sample metadata. RESULTS Differences in microbiota measures were modest in the comparison of HIV+ and HIV- samples, in contrast to several previous studies, consistent with effective antiretroviral therapy. Proportions of healthy Lactobacillus species were not higher in HIV- patients overall, but were significantly higher when analyzed within each hospital in isolation. Rates of bacterial vaginosis were higher among African-American women and HIV+ women. Bacterial vaginosis was associated with higher frequency of HIV+. Unexpectedly, African-American women were more likely to switch bacterial vaginosis status between sampling times; switching was not associated with HIV+ status. CONCLUSION The influence of HIV infection on the vaginal microbiome was modest for this cohort of well suppressed urban American women, consistent with effective antiretroviral therapy. HIV+ was found to be associated with bacterial vaginosis. Although bacterial vaginosis has previously been associated with HIV transmission, most of the women studied here became HIV+ many years before our test for bacterial vaginosis, thus implicating additional mechanisms linking HIV infection and bacterial vaginosis.
Collapse
|
86
|
Happel AU, Jaumdally SZ, Pidwell T, Cornelius T, Jaspan HB, Froissart R, Barnabas SL, Passmore JAS. Probiotics for vaginal health in South Africa: what is on retailers' shelves? BMC WOMENS HEALTH 2017; 17:7. [PMID: 28103868 PMCID: PMC5248517 DOI: 10.1186/s12905-017-0362-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/05/2017] [Indexed: 01/26/2023]
Abstract
BACKGROUND Probiotics are widely used to improve gastrointestinal (GI) health, but they may also be useful to prevent or treat gynaecological disorders, including bacterial vaginosis (BV) and candidiasis. BV prevalence is high in South Africa and is associated with increased HIV risk and pregnancy complications. We aimed to assess the availability of probiotics for vaginal health in retail stores (pharmacies, supermarkets and health stores) in two major cities in South Africa. METHODS A two-stage cluster sampling strategy was used in the Durban and Cape Town metropoles. Instructions for use, microbial composition, dose, storage and manufacturers' details were recorded. RESULTS A total of 104 unique probiotics were identified in Cape Town and Durban (66.4% manufactured locally). Cape Town had more products than Durban (94 versus 59 probiotics), although 47% were common between cities (49/104). Only four products were explicitly for vaginal health. The remainder were for GI health in adults (51.0%) or infants (17.3%). The predominant species seen overall included Lactobacillus acidophilus (53.5%), L. rhamnosus (37.6%), Bifidobacterium longum ssp. longum (35.6%) and B. animalis ssp. lactis (33.7%). Products for vaginal health contained only common GI probiotic species, with a combination of L. acidophilus/B. longum ssp. longum/B. bifidum, L. rhamnosus/L. reuteri or L. rhamnosus alone, despite L. crispatus, L. gasseri, and L. jensenii being the most common commensals found in the lower female reproductive tract. CONCLUSION This survey highlights the paucity of vaginal probiotics available in South Africa, where vaginal dysbiosis is common. Most vaginal products contained organisms other than female genital tract commensals.
Collapse
Affiliation(s)
- Anna-Ursula Happel
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Medical School, Anzio Road, Observatory, 7925, Cape Town, South Africa.,UMR 5290 MIVEGEC, CNRS IRD Université Montpellier, Montpellier, France
| | - Shameem Z Jaumdally
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Medical School, Anzio Road, Observatory, 7925, Cape Town, South Africa.,CAPRISA DST-NRF Centre of Excellence in HIV Prevention, Cape Town, South Africa
| | - Tanya Pidwell
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Medical School, Anzio Road, Observatory, 7925, Cape Town, South Africa.,Desmond Tutu HIV Foundation, Cape Town, South Africa
| | - Tracy Cornelius
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Medical School, Anzio Road, Observatory, 7925, Cape Town, South Africa
| | - Heather B Jaspan
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Medical School, Anzio Road, Observatory, 7925, Cape Town, South Africa.,Seattle Children's Research Institute, University of Washington, Seattle, WA, USA
| | - Remy Froissart
- UMR 5290 MIVEGEC, CNRS IRD Université Montpellier, Montpellier, France
| | - Shaun L Barnabas
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Medical School, Anzio Road, Observatory, 7925, Cape Town, South Africa.,Desmond Tutu HIV Foundation, Cape Town, South Africa
| | - Jo-Ann S Passmore
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Medical School, Anzio Road, Observatory, 7925, Cape Town, South Africa. .,CAPRISA DST-NRF Centre of Excellence in HIV Prevention, Cape Town, South Africa. .,National Health Laboratory Service, Cape Town, South Africa.
| |
Collapse
|
87
|
Petrova MI, Reid G, Vaneechoutte M, Lebeer S. Lactobacillus iners: Friend or Foe? Trends Microbiol 2016; 25:182-191. [PMID: 27914761 DOI: 10.1016/j.tim.2016.11.007] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/24/2016] [Accepted: 11/07/2016] [Indexed: 01/09/2023]
Abstract
The vaginal microbial community is typically characterized by abundant lactobacilli. Lactobacillus iners, a fairly recently detected species, is frequently present in the vaginal niche. However, the role of this species in vaginal health is unclear, since it can be detected in normal conditions as well as during vaginal dysbiosis, such as bacterial vaginosis, a condition characterized by an abnormal increase in bacterial diversity and lack of typical lactobacilli. Compared to other Lactobacillus species, L. iners has more complex nutritional requirements and a Gram-variable morphology. L. iners has an unusually small genome (ca. 1 Mbp), indicative of a symbiotic or parasitic lifestyle, in contrast to other lactobacilli that show niche flexibility and genomes of up to 3-4 Mbp. The presence of specific L. iners genes, such as those encoding iron-sulfur proteins and unique σ-factors, reflects a high degree of niche specification. The genome of L. iners strains also encodes inerolysin, a pore-forming toxin related to vaginolysin of Gardnerella vaginalis. Possibly, this organism may have clonal variants that in some cases promote a healthy vagina, and in other cases are associated with dysbiosis and disease. Future research should examine this friend or foe relationship with the host.
Collapse
Affiliation(s)
- Mariya I Petrova
- KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, box 2460, B- 3001 Leuven, Belgium; University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Gregor Reid
- Western University Departments of Microbiology & Immunology and Surgery, and The Lawson Health Research Institute London, 268 Grosvenor Street, London, ON Canada N6A 4V2
| | - Mario Vaneechoutte
- Ghent University, Laboratory of Bacteriology Research, Faculty of Medicine & Health Sciences, De Pintelaan 185, Medical Research Building 2, B-9000 Gent, Belgium
| | - Sarah Lebeer
- KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, box 2460, B- 3001 Leuven, Belgium; University of Antwerp, Department of Bioscience Engineering, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| |
Collapse
|
88
|
Petrova MI, Lievens E, Verhoeven TLA, Macklaim JM, Gloor G, Schols D, Vanderleyden J, Reid G, Lebeer S. The lectin-like protein 1 in Lactobacillus rhamnosus GR-1 mediates tissue-specific adherence to vaginal epithelium and inhibits urogenital pathogens. Sci Rep 2016; 6:37437. [PMID: 27869151 PMCID: PMC5116675 DOI: 10.1038/srep37437] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/28/2016] [Indexed: 12/02/2022] Open
Abstract
The probiotic Lactobacillus rhamnosus GR-1 has been documented to survive implantation onto the vaginal epithelium and interfere with urogenital pathogens. However, the molecular mechanisms involved are largely unknown. Here, we report for the first time the construction of dedicated knock-out mutants in L. rhamnosus GR-1 to enable the study of gene functions. In a search for genes responsible for the adherence capacity of L. rhamnosus GR-1, a genomic region encoding a protein with homology to lectin-like proteins was identified. Phenotypic analyses of the knock-out mutant of L. rhamnosus GR-1 revealed a two-fold decreased adhesion to the vaginal and ectocervical epithelial cell lines compared to wild-type. In contrast, the adhesion to gastro-intestinal epithelial (Caco2) and endocervical cell lines (Hela and End1/E6E7) was not drastically affected by the mutation, suggesting that the LGR-1_Llp1 lectins mediates tissue tropism. The purified LGR-1_Llp1 protein also inhibited biofilm formation and adhesion of uropathogenic Escherichia coli. For the first time, an important role for a novel lectin-like protein in the adhesion capacity and host cell-specific interaction of a vaginal probiotic Lactobacillus strain has been discovered, with an additional role in pathogen inhibition.
Collapse
Affiliation(s)
- Mariya I Petrova
- KU Leuven, Centre of Microbial and Plant Genetics, Leuven, Belgium.,University of Antwerp, Department of Bioscience Engineering, Antwerp, Belgium
| | - Elke Lievens
- KU Leuven, Centre of Microbial and Plant Genetics, Leuven, Belgium.,University of Antwerp, Department of Bioscience Engineering, Antwerp, Belgium
| | | | - Jean M Macklaim
- The Lawson Health Research Institute London, Canada Research and Development Centre for Probiotics, London, ON, Canada.,University of Western Ontario, London, ON, Canada
| | | | | | - Jos Vanderleyden
- KU Leuven, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Gregor Reid
- The Lawson Health Research Institute London, Canada Research and Development Centre for Probiotics, London, ON, Canada.,University of Western Ontario, London, ON, Canada
| | - Sarah Lebeer
- KU Leuven, Centre of Microbial and Plant Genetics, Leuven, Belgium.,University of Antwerp, Department of Bioscience Engineering, Antwerp, Belgium
| |
Collapse
|
89
|
Malik S, Petrova MI, Imholz NCE, Verhoeven TLA, Noppen S, Van Damme EJM, Liekens S, Balzarini J, Schols D, Vanderleyden J, Lebeer S. High mannose-specific lectin Msl mediates key interactions of the vaginal Lactobacillus plantarum isolate CMPG5300. Sci Rep 2016; 6:37339. [PMID: 27853317 PMCID: PMC5112522 DOI: 10.1038/srep37339] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/21/2016] [Indexed: 12/12/2022] Open
Abstract
To characterize the interaction potential of the human vaginal isolate Lactobacillus plantarum CMPG5300, its genome was mined for genes encoding lectin-like proteins. cmpg5300.05_29 was identified as the gene encoding a putative mannose-binding lectin. Phenotypic analysis of a gene knock-out mutant of cmpg5300.05_29 showed that expression of this gene is important for auto-aggregation, adhesion to the vaginal epithelial cells, biofilm formation and binding to mannosylated glycans. Purification of the predicted lectin domain of Cmpg5300.05_29 and characterization of its sugar binding capacity confirmed the specificity of the lectin for high- mannose glycans. Therefore, we renamed Cmpg5300.05_29 as a mannose-specific lectin (Msl). The purified lectin domain of Msl could efficiently bind to HIV-1 glycoprotein gp120 and Candida albicans, and showed an inhibitory activity against biofilm formation of uropathogenic Escherichia coli, Staphylococcus aureus and Salmonella Typhimurium. Thus, using a combination of molecular lectin characterization and functional assays, we could show that lectin-sugar interactions play a key role in host and pathogen interactions of a prototype isolate of the vaginal Lactobacillus microbiota.
Collapse
Affiliation(s)
- Shweta Malik
- KU Leuven, Centre of Microbial and Plant Genetics, Leuven, Belgium.,University of Antwerp, Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, Antwerp, Belgium
| | - Mariya I Petrova
- KU Leuven, Centre of Microbial and Plant Genetics, Leuven, Belgium.,University of Antwerp, Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, Antwerp, Belgium
| | - Nicole C E Imholz
- KU Leuven, Centre of Microbial and Plant Genetics, Leuven, Belgium.,University of Antwerp, Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, Antwerp, Belgium
| | | | - Sam Noppen
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Els J M Van Damme
- Ghent University, Department of Molecular Biotechnology, Ghent, Belgium
| | - Sandra Liekens
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Jan Balzarini
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Jos Vanderleyden
- KU Leuven, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Sarah Lebeer
- KU Leuven, Centre of Microbial and Plant Genetics, Leuven, Belgium.,University of Antwerp, Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, Antwerp, Belgium
| |
Collapse
|
90
|
Agrahari V, Meng J, Ezoulin MJM, Youm I, Dim DC, Molteni A, Hung WT, Christenson LK, Youan BBC. Stimuli-sensitive thiolated hyaluronic acid based nanofibers: synthesis, preclinical safety and in vitro anti-HIV activity. Nanomedicine (Lond) 2016; 11:2935-2958. [PMID: 27785967 PMCID: PMC9816923 DOI: 10.2217/nnm-2016-0103] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIM To develop a seminal enzyme bioresponsive, mucoadhesive nanofibers (NFs) as safe and effective nanocarriers for the prevention of HIV vaginal transmission. METHODS A novel thiolated hyaluronic acid (HA-SH) polymer was synthesized to fabricate tenofovir (TFV)-loaded electrospun NFs (HA-SH-NFs) and characterized in vitro/in vivo. RESULTS A triggered drug release (87% w/w) from the engineered HA-SH-NFs (mean diameter ∼75 nm) occured within 1 h under the influence of seminal hyaluronidase enzyme. HA-SH-NFs were noncytotoxic, induced no damage on the C57BL/6 mice genital-tract and other organs. No significant CD45 cell-infiltration and changes in cytokines level in cervicovaginal tissues were observed. HA-SH-NFs significantly enhanced both TFV retention and bioavailability in vaginal tissue compared with the 1% TFV-gel. The anti-HIV activity of TFV (on pseudotyped virus followed by luciferase assay) was not adversely affected by the electrospinning process. CONCLUSION HA-SH-NFs developed in this study could potentially serve as a safe nanotemplate for topical intravaginal delivery of HIV/AIDS microbicides.
Collapse
Affiliation(s)
- Vivek Agrahari
- Laboratory of Future Nanomedicines & Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Jianing Meng
- Laboratory of Future Nanomedicines & Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Miezan JM Ezoulin
- Laboratory of Future Nanomedicines & Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Ibrahima Youm
- Laboratory of Future Nanomedicines & Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA,Hough Ear Institute, Oklahoma City, OK 73112, USA
| | - Daniel C Dim
- School of Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Agostino Molteni
- School of Medicine, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Wei-Ting Hung
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Lane K Christenson
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Bi-Botti C Youan
- Laboratory of Future Nanomedicines & Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA,*Author for correspondence:
| |
Collapse
|
91
|
Zevin AS, Xie IY, Birse K, Arnold K, Romas L, Westmacott G, Novak RM, McCorrister S, McKinnon LR, Cohen CR, Mackelprang R, Lingappa J, Lauffenburger DA, Klatt NR, Burgener AD. Microbiome Composition and Function Drives Wound-Healing Impairment in the Female Genital Tract. PLoS Pathog 2016; 12:e1005889. [PMID: 27656899 PMCID: PMC5033340 DOI: 10.1371/journal.ppat.1005889] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/22/2016] [Indexed: 01/07/2023] Open
Abstract
The mechanism(s) by which bacterial communities impact susceptibility to infectious diseases, such as HIV, and maintain female genital tract (FGT) health are poorly understood. Evaluation of FGT bacteria has predominantly been limited to studies of species abundance, but not bacterial function. We therefore sought to examine the relationship of bacterial community composition and function with mucosal epithelial barrier health in the context of bacterial vaginosis (BV) using metaproteomic, metagenomic, and in vitro approaches. We found highly diverse bacterial communities dominated by Gardnerella vaginalis associated with host epithelial barrier disruption and enhanced immune activation, and low diversity communities dominated by Lactobacillus species that associated with lower Nugent scores, reduced pH, and expression of host mucosal proteins important for maintaining epithelial integrity. Importantly, proteomic signatures of disrupted epithelial integrity associated with G. vaginalis-dominated communities in the absence of clinical BV diagnosis. Because traditional clinical assessments did not capture this, it likely represents a larger underrepresented phenomenon in populations with high prevalence of G. vaginalis. We finally demonstrated that soluble products derived from G. vaginalis inhibited wound healing, while those derived from L. iners did not, providing insight into functional mechanisms by which FGT bacterial communities affect epithelial barrier integrity.
Collapse
Affiliation(s)
- Alexander S. Zevin
- Department of Pharmaceutics, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Irene Y. Xie
- National HIV and Retrovirology Labs, JC Wilt Center for Infectious Diseases, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Kenzie Birse
- National HIV and Retrovirology Labs, JC Wilt Center for Infectious Diseases, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Kelly Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Laura Romas
- National HIV and Retrovirology Labs, JC Wilt Center for Infectious Diseases, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Garrett Westmacott
- Mass Spectrometry and Proteomics Core, National Microbiology Lab, Public Health Agency of Canada, Winnipeg, Canada
| | - Richard M. Novak
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Stuart McCorrister
- Mass Spectrometry and Proteomics Core, National Microbiology Lab, Public Health Agency of Canada, Winnipeg, Canada
| | - Lyle R. McKinnon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Craig R. Cohen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Romel Mackelprang
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Jairam Lingappa
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Doug A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Nichole R. Klatt
- Department of Pharmaceutics, Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Adam D. Burgener
- National HIV and Retrovirology Labs, JC Wilt Center for Infectious Diseases, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Unit of Infectious Diseases, Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
92
|
Resolving microbial membership using Abundance and Variability In Taxonomy ('AVIT ). Sci Rep 2016; 6:31655. [PMID: 27530237 PMCID: PMC4987704 DOI: 10.1038/srep31655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/22/2016] [Indexed: 01/07/2023] Open
Abstract
Development of NGS has revolutionized the analysis in microbial ecology contributing to our deeper understanding of microbiota in health and disease. However, the quality, quantity and confidence of summarized taxonomic abundances are in need of further scrutiny due to sample dependent and independent effects. In this article we introduce ‘AVIT (Abundance and Variability In Taxonomy), an unbiased method to enrich for assigned members of microbial communities. As opposed to using a priori thresholds, ‘AVIT uses inherent abundance and variability of taxa in a dataset to determine the inclusion or rejection of each taxa for further downstream analysis. Using in-vitro and in-vivo studies, we benchmarked performance and parameterized ‘AVIT to establish a framework for investigating the dynamic range of microbial community membership in clinically relevant scenarios.
Collapse
|
93
|
Reimers LL, Mehta SD, Massad LS, Burk RD, Xie X, Ravel J, Cohen MH, Palefsky JM, Weber KM, Xue X, Anastos K, Minkoff H, Atrio J, D'Souza G, Ye Q, Colie C, Zolnik CP, Spear GT, Strickler HD. The Cervicovaginal Microbiota and Its Associations With Human Papillomavirus Detection in HIV-Infected and HIV-Uninfected Women. J Infect Dis 2016; 214:1361-1369. [PMID: 27521363 DOI: 10.1093/infdis/jiw374] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bacterial vaginosis (BV) is characterized by low abundance of Lactobacillus species, high pH, and immune cell infiltration and has been associated with an increased risk of human papillomavirus (HPV) infection. We molecularly assessed the cervicovaginal microbiota over time in human immunodeficiency virus (HIV)-infected and HIV-uninfected women to more comprehensively study the HPV-microbiota relationship, controlling for immune status. METHODS 16S ribosomal RNA gene amplicon pyrosequencing and HPV DNA testing were conducted annually in serial cervicovaginal lavage specimens obtained over 8-10 years from African American women from Chicago, of whom 22 were HIV uninfected, 22 were HIV infected with a stable CD4+ T-cell count of > 500 cells/mm3, and 20 were HIV infected with progressive immunosuppression. Vaginal pH was serially measured. RESULTS The relative abundances of Lactobacillus crispatus and other Lactobacillus species were inversely associated with vaginal pH (all P < .001). High (vs low) L. crispatus relative abundance was associated with decreased HPV detection (odds ratio, 0.48; 95% confidence interval, .24-.96; Ptrend = .03) after adjustment for repeated observation and multiple covariates, including pH and study group. However, there were no associations between HPV and the relative abundance of Lactobacillus species as a group, nor with Lactobacillus gasseri, Lactobacillus iners, and Lactobacillus jensenii individually. CONCLUSIONS L. crispatus may have a beneficial effect on the burden of HPV in both HIV-infected and HIV-uninfected women (independent of pH).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kathleen M Weber
- Cook County Health and Hospitals System/Hektoen Institute of Medicine, Chicago, Illinois
| | | | | | | | | | | | - Qian Ye
- Albert Einstein College of Medicine, Bronx
| | | | | | | | | |
Collapse
|
94
|
Williams B, Mirmonsef P, Boucher CA, Bushman F, Carrington-Lawrence S, Collman RG, Dandekar S, Dang Q, Malaspina A, Paredes R, Stone A, Landay A. A Summary of the First HIV Microbiome Workshop 2015. AIDS Res Hum Retroviruses 2016; 32:935-941. [PMID: 27267576 DOI: 10.1089/aid.2016.0034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of microbiota in the pathogenesis of HIV infection has become the subject of intense research in recent years. A rapidly growing amount of data suggest that microbial dysbiosis-in the gut or the genital tract-can influence HIV transmission and/or disease progression; however, a deeper understanding of the mechanisms involved is lacking. To better understand the relationship between the microbiome and HIV infection, investigators from a wide variety of disciplines, including those working in basic and clinical HIV studies, cardiovascular disease, reproductive health, and bioinformatics, gathered at the first International Workshop on Microbiome in HIV Pathogenesis, Prevention and Treatment, at NIH on 7 and 8 April, 2015.
Collapse
Affiliation(s)
- Brett Williams
- Division of Infectious Diseases, Rush University Medical Center, Chicago, Illinois
| | - Paria Mirmonsef
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois
| | - Charles A.B. Boucher
- Department of Virosciences, Erasmus Medical Center, Erasmus University, Rotterdam, the Netherlands
| | - Frederic Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stacy Carrington-Lawrence
- Office of AIDS Research, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, U.S. National Institutes of Health, U.S. Department of Health and Human Services, Philadelphia, Pennsylvania
| | - Ronald G. Collman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Satya Dandekar
- Department of Medical Microbiology & Immunology, University of California, Davis, California
| | - Que Dang
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Angela Malaspina
- Vaccine Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Roger Paredes
- Institut de Recerca de la SIDA IrsiCaixa i Unitat VIH, Universitat Autònoma de Barcelona, Universitat de Vic, Catalonia, Spain
| | - Arthur Stone
- HJF-DAIDS, A Division of the Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Contractor to NIAID, NIH, DHHS, Bethesda, Maryland
| | - Alan Landay
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
95
|
Zhu L, Lei AH, Zheng HY, Lyu LB, Zhang ZG, Zheng YT. Longitudinal analysis reveals characteristically high proportions of bacterial vaginosis-associated bacteria and temporal variability of vaginal microbiota in northern pig-tailed macaques (Macaca leonina). DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2016; 36:285-98. [PMID: 26452693 DOI: 10.13918/j.issn.2095-8137.2015.5.285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The complex and dynamic vaginal microbial ecosystem is critical to both health and disease of the host. Studies focusing on how vaginal microbiota influences HIV-1 infection may face limitations in selecting proper animal models. Given that northern pig-tailed macaques (Macaca leonina) are susceptible to HIV-1 infection, they may be an optimal animal model for elucidating the mechanisms by which vaginal microbiota contributes to resistance and susceptibility to HIV-1 infection. However, little is known about the composition and temporal variability of vaginal microbiota of the northern pig-tailed macaque. Here, we present a comprehensive catalog of the composition and temporal dynamics of vaginal microbiota of two healthy northern pig-tailed macaques over 19 weeks using 454-pyrosequencing of 16S rRNA genes. We found remarkably high proportions of a diverse array of anaerobic bacteria associated with bacterial vaginosis. Atopobium and Sneathia were dominant genera, and interestingly, we demonstrated the presence of Lactobacillus-dominated vaginal microbiota. Moreover, longitudinal analysis demonstrated that the temporal dynamics of the vaginal microbiota were considerably individualized. Finally, network analysis revealed that vaginal pH may influence the temporal dynamics of the vaginal microbiota, suggesting that inter-subject variability of vaginal bacterial communities could be mirrored in inter-subject variation in correlation profiles of species with each other and with vaginal pH over time. Our results suggest that the northern pig-tailed macaque could be an ideal animal model for prospective investigation of the mechanisms by which vaginal microbiota influence susceptibility and resistance to HIV-1 infection in the context of highly polymicrobial and Lactobacillus-dominated states.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
| | - Ai-Hua Lei
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;School of Life Sciences, University of Science and Technology of China, Hefei Anhui 230026, China
| | - Long-Bao Lyu
- Kunming Primate Research Center, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Zhi-Gang Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China;Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China;Kunming Primate Research Center, Chinese Academy of Sciences, Kunming Yunnan 650223,
| |
Collapse
|
96
|
The role of IL-10 in microbiome-associated immune modulation and disease tolerance. Cytokine 2015; 75:291-301. [DOI: 10.1016/j.cyto.2014.11.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 02/06/2023]
|
97
|
Abstract
Vaginal microbiota differs within individuals and between human populations. Anahtar et al. (2015) identify a specific vaginal cervicotype commonly found in healthy South African women that causes localized inflammation including activation of antigen-presenting cells and vaginal recruitment of HIV target cells.
Collapse
Affiliation(s)
- Smita Gopinath
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520 USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, 06520 USA.
| |
Collapse
|
98
|
Abstract
PURPOSE OF REVIEW Bacterial vaginosis epidemiology has been transformed by new theoretical insights and methodologies, such as molecular sequencing. We summarize the progress made in these domains. RECENT FINDINGS The vaginal microbiome can be classified in five to eight clusters. Bacterial vaginosis-type clusters typically constitute one of these clusters, but in higher risk women, it can constitute up to three clusters. The vaginal microbiomes may be fairly stable or be subject to rapid changes in their constitutive makeup. Bacterial vaginosis does not appear to be a single entity. Certain bacterial communities are associated with particular symptoms of bacterial vaginosis that are paired with unique adverse outcomes. Biofilm-producing Gardnerella vaginalis are likely to play an important role in initiating the structured polymicrobial biofilm that is a hallmark of bacterial vaginosis. SUMMARY Longitudinal studies currently underway should help elucidate how to best define bacterial vaginosis and its subtypes. Risk factors and outcomes associated with particular bacterial vaginosis subtypes should also be further clarified through these studies.
Collapse
|
99
|
Gordts SC, Férir G, D’huys T, Petrova MI, Lebeer S, Snoeck R, Andrei G, Schols D. The Low-Cost Compound Lignosulfonic Acid (LA) Exhibits Broad-Spectrum Anti-HIV and Anti-HSV Activity and Has Potential for Microbicidal Applications. PLoS One 2015; 10:e0131219. [PMID: 26132818 PMCID: PMC4488490 DOI: 10.1371/journal.pone.0131219] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/30/2015] [Indexed: 12/24/2022] Open
Abstract
Objectives Lignosulfonic acid (LA), a low-cost lignin-derived polyanionic macromolecule, was extensively studied for its anti-HIV and anti-HSV activity in various cellular assays, its mechanism of viral inhibition and safety profile as potential microbicide. Results LA demonstrated potent inhibitory activity of HIV replication against a wide range of R5 and X4 HIV strains and prevented the uptake of HIV by bystander CD4+ T cells from persistently infected T cells in vitro (IC50: 0.07 – 0.34 μM). LA also inhibited HSV-2 replication in vitro in different cell types (IC50: 0.42 – 1.1 μM) and in rodents in vivo. Furthermore, LA neutralized the HIV-1 and HSV-2 DC-SIGN-mediated viral transfer to CD4+ T cells (IC50: ∼1 μM). In addition, dual HIV-1/HSV-2 infection in T cells was potently blocked by LA (IC50: 0.71 μM). No antiviral activity was observed against the non-enveloped viruses Coxsackie type B4 and Reovirus type 1. LA is defined as a HIV entry inhibitor since it interfered with gp120 binding to the cell surface of T cells. Pretreatment of PBMCs with LA neither increased expression levels of cellular activation markers (CD69, CD25 and HLA-DR), nor enhanced HIV-1 replication. Furthermore, we found that LA had non-antagonistic effects with acyclovir, PRO2000 or LabyA1 (combination index (CI): 0.46 – 1.03) in its anti-HSV-2 activity and synergized with tenofovir (CI: 0.59) in its anti-HIV-1 activity. To identify mechanisms of LA resistance, we generated in vitro a mutant HIV-1 NL4.3LAresistant virus, which acquired seven mutations in the HIV-1 envelope glycoproteins: S160N, V170N, Q280H and R389T in gp120 and K77Q, N113D and H132Y in gp41. Additionally, HIV-1 NL4.3LAresistant virus showed cross-resistance with feglymycin, enfuvirtide, PRO2000 and mAb b12, four well-described HIV binding/fusion inhibitors. Importantly, LA did not affect the growth of vaginal Lactobacilli strains. Conclusion Overall, these data highlight LA as a potential and unique low-cost microbicide displaying broad anti-HIV and anti-HSV activity.
Collapse
Affiliation(s)
| | - Geoffrey Férir
- Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
- * E-mail:
| | - Thomas D’huys
- Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mariya I. Petrova
- Centre of Microbial and Plant Genetics, University of Leuven, Leuven, Belgium
- Department of Bioscience Engineering, Antwerp University, Antwerp, Belgium
| | - Sarah Lebeer
- Centre of Microbial and Plant Genetics, University of Leuven, Leuven, Belgium
- Department of Bioscience Engineering, Antwerp University, Antwerp, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Dominique Schols
- Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
100
|
Petrova MI, Lievens E, Malik S, Imholz N, Lebeer S. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Front Physiol 2015; 6:81. [PMID: 25859220 PMCID: PMC4373506 DOI: 10.3389/fphys.2015.00081] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/02/2015] [Indexed: 12/21/2022] Open
Abstract
The human body is colonized by a vast number of microorganisms collectively referred to as the human microbiota. One of the main microbiota body sites is the female genital tract, commonly dominated by Lactobacillus spp., in approximately 70% of women. Each individual species can constitute approximately 99% of the ribotypes observed in any individual woman. The most frequently isolated species are Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus jensenii and Lactobacillus iners. Residing at the port of entry of bacterial and viral pathogens, the vaginal Lactobacillus species can create a barrier against pathogen invasion since mainly products of their metabolism secreted in the cervicovaginal fluid can play an important role in the inhibition of bacterial and viral infections. Therefore, a Lactobacillus-dominated microbiota appears to be a good biomarker for a healthy vaginal ecosystem. This balance can be rapidly altered during processes such as menstruation, sexual activity, pregnancy and various infections. An abnormal vaginal microbiota is characterized by an increased diversity of microbial species, leading to a condition known as bacterial vaginosis. Information on the vaginal microbiota can be gathered from the analysis of cervicovaginal fluid, by using the Nugent scoring or the Amsel's criteria, or at the molecular level by investigating the number and type of Lactobacillus species. However, when translating this to the clinical setting, it should be noted that the absence of a Lactobacillus-dominated microbiota does not appear to directly imply a diseased condition or dysbiosis. Nevertheless, the widely documented beneficial role of vaginal Lactobacillus species demonstrates the potential of data on the composition and activity of lactobacilli as biomarkers for vaginal health. The substantiation and further validation of such biomarkers will allow the design of better targeted probiotic strategies.
Collapse
Affiliation(s)
- Mariya I Petrova
- Department of Bioscience Engineering, University of Antwerp Antwerp, Belgium ; Centre of Microbial and Plant Genetics, KU Leuven Leuven, Belgium
| | - Elke Lievens
- Department of Bioscience Engineering, University of Antwerp Antwerp, Belgium ; Centre of Microbial and Plant Genetics, KU Leuven Leuven, Belgium
| | - Shweta Malik
- Department of Bioscience Engineering, University of Antwerp Antwerp, Belgium ; Centre of Microbial and Plant Genetics, KU Leuven Leuven, Belgium
| | - Nicole Imholz
- Department of Bioscience Engineering, University of Antwerp Antwerp, Belgium ; Centre of Microbial and Plant Genetics, KU Leuven Leuven, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp Antwerp, Belgium ; Centre of Microbial and Plant Genetics, KU Leuven Leuven, Belgium
| |
Collapse
|