51
|
Xia Y, Cao H, Zheng J, Chen L. Claudin-1 Mediated Tight Junction Dysfunction as a Contributor to Atopic March. Front Immunol 2022; 13:927465. [PMID: 35844593 PMCID: PMC9277052 DOI: 10.3389/fimmu.2022.927465] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Atopic march refers to the phenomenon wherein the occurrence of asthma and food allergy tends to increase after atopic dermatitis. The mechanism underlying the progression of allergic inflammation from the skin to gastrointestinal (GI) tract and airways has still remained elusive. Impaired skin barrier was proposed as a risk factor for allergic sensitization. Claudin-1 protein forms tight junctions and is highly expressed in the epithelium of the skin, airways, and GI tract, thus, the downregulation of claudin-1 expression level caused by CLDN-1 gene polymorphism can mediate common dysregulation of epithelial barrier function in these organs, potentially leading to allergic sensitization at various sites. Importantly, in patients with atopic dermatitis, asthma, and food allergy, claudin-1 expression level was significantly downregulated in the skin, bronchial and intestinal epithelium, respectively. Knockdown of claudin-1 expression level in mouse models of atopic dermatitis and allergic asthma exacerbated allergic inflammation, proving that downregulation of claudin-1 expression level contributes to the pathogenesis of allergic diseases. Therefore, we hypothesized that the tight junction dysfunction mediated by downregulation of claudin-1 expression level contributes to atopic march. Further validation with clinical data from patients with atopic march or mouse models of atopic march is needed. If this hypothesis can be fully confirmed, impaired claudin-1 expression level may be a risk factor and likely a diagnostic marker for atopic march. Claudin-1 may serve as a valuable target to slowdown or block the progression of atopic march.
Collapse
|
52
|
Déméautis T, Delles M, Tomaz S, Monneret G, Glehen O, Devouassoux G, George C, Bentaher A. Pathogenic Mechanisms of Secondary Organic Aerosols. Chem Res Toxicol 2022; 35:1146-1161. [PMID: 35737464 DOI: 10.1021/acs.chemrestox.1c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Air pollution represents a major health problem and an economic burden. In recent years, advances in air pollution research has allowed particle fractionation and identification of secondary organic aerosol (SOA). SOA is formed from either biogenic or anthropogenic emissions, through a mass transfer from the gaseous mass to the particulate phase in the atmosphere. They can have deleterious impact on health and the mortality of individuals with chronic inflammatory diseases. The pleiotropic effects of SOA could involve different and interconnected pathogenic mechanisms ranging from oxidative stress, inflammation, and immune system dysfunction. The purpose of this review is to present recent findings about SOA pathogenic roles and potential underlying mechanisms focusing on the lungs; the latter being the primary exposed organ to atmospheric pollutants.
Collapse
Affiliation(s)
- Tanguy Déméautis
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Marie Delles
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Sophie Tomaz
- University of Lyon, Lyon 1 Claude Bernard University, CNRS, IRCELYON, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Guillaume Monneret
- Pathophysiology of Immunosuppression Associated with Systemic Inflammatory Responses, EA7426 (PI3), Edouard Herriot Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| | - Olivier Glehen
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France.,Digestive and Endocrine Surgery Department, University Hospital of Lyon, Lyon South Hospital,165 Chemin du Grand Revoyet 69495 Pierre-Benite, France
| | - Gilles Devouassoux
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France.,Pulmonology Department, Croix Rousse Hospital, Lyon Civil Hospices, Lyon 1 Claude Bernard University, 103 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Christian George
- University of Lyon, Lyon 1 Claude Bernard University, CNRS, IRCELYON, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Abderrazzak Bentaher
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| |
Collapse
|
53
|
Choi Y, Luu QQ, Park HS. Extracellular Traps: A Novel Therapeutic Target for Severe Asthma. J Asthma Allergy 2022; 15:803-810. [PMID: 35726304 PMCID: PMC9206515 DOI: 10.2147/jaa.s366014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/24/2022] [Indexed: 01/18/2023] Open
Abstract
Asthma is a complicated disease defined by a combination of clinical symptoms and physiological characteristics. Typically, asthma is diagnosed by the presence of episodic cough, wheezing, or dyspnea triggered by variable environmental factors (allergens and respiratory infections), and reversible airflow obstruction. To date, the majority of asthmatic patients have been adequately controlled by anti-inflammatory/bronchodilating agents, but those with severe asthma (SA) have not been sufficiently controlled by high-dose inhaled corticosteroids-long-acting beta-agonists plus additional controllers including leukotriene modifiers. Accordingly, these uncontrolled patients provoke a special issue, because they consume high healthcare resources, requiring innovative precision medicine solutions. Recently, phenotyping based on biomarkers of airway inflammation has led to elucidating the pathophysiological mechanism of SA, where emerging evidence has highlighted the significance of eosinophil or neutrophil extracellular traps contributing to the development of SA. Here, we aimed to provide current findings about extracellular traps as a novel therapeutic target for asthma to address medical unmet needs.
Collapse
Affiliation(s)
- Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Quoc Quang Luu
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Korea
| |
Collapse
|
54
|
Yang F, Kong J, Zong Y, Li Z, Lyu M, Li W, Li W, Zhu H, Chen S, Zhao X, Wang J. Autophagy-Related Genes Are Involved in the Progression and Prognosis of Asthma and Regulate the Immune Microenvironment. Front Immunol 2022; 13:897835. [PMID: 35619697 PMCID: PMC9127139 DOI: 10.3389/fimmu.2022.897835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Autophagy has been proven to play an important role in the pathogenesis of asthma and the regulation of the airway epithelial immune microenvironment. However, a systematic analysis of the clinical importance of autophagy-related genes (ARGs) regulating the immune microenvironment in patients with asthma remains lacking. Methods Clustering based on the k-means unsupervised clustering method was performed to identify autophagy-related subtypes in asthma. ARG-related diagnostic markers in low-autophagy subtypes were screened, the infiltration of immune cells in the airway epithelium was evaluated by the CIBERSORT, and the correlation between diagnostic markers and infiltrating immune cells was analyzed. On the basis of the expression of ARGs and combined with asthma control, a risk prediction model was established and verified by experiments. Results A total of 66 differentially expressed ARGs and 2 subtypes were identified between mild to moderate and severe asthma. Significant differences were observed in asthma control and FEV1 reversibility between the two subtypes, and the low-autophagy subtype was closely associated with severe asthma, energy metabolism, and hormone metabolism. The autophagy gene SERPINB10 was identified as a diagnostic marker and was related to the infiltration of immune cells, such as activated mast cells and neutrophils. Combined with asthma control, a risk prediction model was constructed, the expression of five risk genes was supported by animal experiments, was established for ARGs related to the prediction model. Conclusion Autophagy plays a crucial role in the diversity and complexity of the asthma immune microenvironment and has clinical value in treatment response and prognosis.
Collapse
Affiliation(s)
- Fan Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Kong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuqing Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingsheng Lyu
- Center of Respiratory, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China.,Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wanyang Li
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Wenle Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Haoyue Zhu
- Beijing Hospital of Traditional Chinese Medicine (TCM), Capital Medical University, Beijing, China
| | - Shunqi Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoshan Zhao
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ji Wang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
55
|
Autophagy in asthma and chronic obstructive pulmonary disease. Clin Sci (Lond) 2022; 136:733-746. [PMID: 35608088 PMCID: PMC9131388 DOI: 10.1042/cs20210900] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023]
Abstract
Autophagy (or macroautophagy) is a key cellular process that removes damaged molecules (particularly proteins) and subcellular organelles to maintain cellular homeostasis. There is growing evidence that abnormalities in autophagy may contribute to the pathogenesis of many chronic diseases, including asthma and chronic obstructive pulmonary disease (COPD). In asthma, increased autophagy plays a role in promoting type 2 immune responses and eosinophilic inflammation, whereas decreased autophagy may be important in neutrophilic asthma. Acute exposure to cigarette smoke may activate autophagy, resulting in ciliary dysfunction and death of airway epithelial cells, whereas in stable COPD most studies have demonstrated an impairment in autophagy, with reduced autophagic flux and accumulation of abnormal mitochondria (defective mitophagy) and linked to cellular senescence. Autophagy may be increased or decreased in different cell types and depending on the cellular environment, making it difficult to target autophagy therapeutically. Several existing drugs may activate autophagy, including rapamycin, metformin, carbamazepine, cardiac glycosides and statins, whereas others, such as chloroquine, inhibit this process. However, these drugs are nonspecific and more selective drugs are now in development, which may prove useful as novel agents to treat asthma and COPD in the future.
Collapse
|
56
|
Morán G, Uberti B, Quiroga J. Role of Cellular Metabolism in the Formation of Neutrophil Extracellular Traps in Airway Diseases. Front Immunol 2022; 13:850416. [PMID: 35493475 PMCID: PMC9039247 DOI: 10.3389/fimmu.2022.850416] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/18/2022] [Indexed: 01/08/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are a recently described mechanism of neutrophils that play an important role in health and disease. NETs are an innate defense mechanism that participate in clearance of pathogens, but they may also cause collateral damage in unrelated host tissues. Neutrophil dysregulation and NETosis occur in multiple lung diseases, such as pathogen-induced acute lung injury, pneumonia, chronic obstructive pulmonary disease (COPD), severe asthma, cystic fibrosis, and recently, the novel coronavirus SARS-CoV-2. More recently, research into immunometabolism has surged due to the possibility of reprogramming metabolism in order to modulate immune functions. The present review analyzes the different metabolic pathways associated with NETs formation, and how these impact on pathologies of the airways.
Collapse
Affiliation(s)
- Gabriel Morán
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Benjamín Uberti
- Instituto de Ciencias Clínicas Veterinarias, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - John Quiroga
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.,Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
57
|
Keir HR, Chalmers JD. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy. Eur Respir Rev 2022; 31:31/163/210241. [PMID: 35197267 PMCID: PMC9488971 DOI: 10.1183/16000617.0241-2021] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Neutrophilic inflammation has a key role in the pathophysiology of multiple chronic lung diseases. The formation of neutrophil extracellular traps (NETs) has emerged as a key mechanism of disease in neutrophilic lung diseases including asthma, COPD, cystic fibrosis and, most recently, bronchiectasis. NETs are large, web-like structures composed of DNA and anti-microbial proteins that are able to bind pathogens, prevent microbial dissemination and degrade bacterial virulence factors. The release of excess concentrations of proteases, antimicrobial proteins, DNA and histones, however, also leads to tissue damage, impaired mucociliary clearance, impaired bacterial killing and increased inflammation. A number of studies have linked airway NET formation with greater disease severity, increased exacerbations and overall worse disease outcomes across the spectrum of airway diseases. Treating neutrophilic inflammation has been challenging in chronic lung disease because of the delicate balance between reducing inflammation and increasing the risk of infections through immunosuppression. Novel approaches to suppressing NET formation or the associated inflammation are in development and represent an important therapeutic target. This review will discuss the relationship between NETs and the pathophysiology of cystic fibrosis, asthma, COPD and bronchiectasis, and explore the current and future development of NET-targeting therapies. NETs contribute to the pathophysiology of chronic lung disease. Immunomodulating therapies that may reduce inflammatory mediators and NET formation, without compromising bacterial clearance, offer a new treatment path for patients. https://bit.ly/3fyJC6I
Collapse
Affiliation(s)
- Holly R Keir
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, Dundee, UK
| |
Collapse
|
58
|
Ogawa H, Azuma M, Umeno A, Shimizu M, Murotomi K, Yoshida Y, Nishioka Y, Tsuneyama K. Singlet oxygen -derived nerve growth factor exacerbates airway hyperresponsiveness in a mouse model of asthma with mixed inflammation. Allergol Int 2022; 71:395-404. [PMID: 35346582 DOI: 10.1016/j.alit.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/01/2022] [Accepted: 02/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Refractory asthma, which is caused by several factors including neutrophil infiltration is a serious complication of bronchial asthma. We previously reported that nerve growth factor (NGF) is involved in AHR. NGF-derived induction of hyperalgesia is dependent on neutrophils; however, this relationship remains unclear in respiratory disease. In this study, we examined the roles of neutrophils and NGF in refractory asthma. METHODS Using intranasal house dust mite sensitization, we established a mouse model of asthma with mixed inflammation (Mix-in). AHR, NGF production and hyperinnervation of the lungs were examined with or without different inhibitory treatments. The levels of the singlet oxygen markers, 10- and 12-(Z,E)-hydroxyoctadecadienoic acids (HODE) in the lungs, were measured by liquid chromatography-tandem mass spectrometry. An in vitro experiment was also performed to evaluate the direct effect of singlet oxygen on NGF production. RESULTS NGF production and hyperinnervation were higher in Mix-in mice than in conventional eosinophilic-asthmatic mice and were positively correlated with AHR. Asthmatic parameters were inhibited by NGF neutralizing Abs and myeloperoxidase (MPO) inhibition. The 10- and 12-(Z,E)-HODEs levels were increased in the lungs and were positively correlated with MPO activity and NGF production. NGF was produced by bronchial epithelial cells in vitro upon stimulation with singlet oxygen. CONCLUSIONS Our findings suggest that neutrophil MPO-derived singlet oxygen induces increased NGF production, leading to AHR and 10- and 12-(Z,E)-HODEs production. These findings may help to develop new therapies targeting this mechanism and to establish a new biomarker for non-type 2 and refractory asthma.
Collapse
Affiliation(s)
- Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
| | - Masahiko Azuma
- Department of Respiratory Medicine and Rheumatology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan; Research Center for Education of Health Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Aya Umeno
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Kagawa, Japan; Department of Ophthalmology, Shimane University Faculty of Medicine, Shimane, Japan; Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Mayuko Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kazutoshi Murotomi
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Kagawa, Japan; Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Yasukazu Yoshida
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Kagawa, Japan; LG Japan Lab Inc., Kanagawa, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
59
|
The Immune Mechanisms of Severe Equine Asthma-Current Understanding and What Is Missing. Animals (Basel) 2022; 12:ani12060744. [PMID: 35327141 PMCID: PMC8944511 DOI: 10.3390/ani12060744] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Severe equine asthma is a chronic respiratory disease of adult horses, occurring when genetically susceptible individuals are exposed to environmental aeroallergens. This results in airway inflammation, mucus accumulation and bronchial constriction. Although several studies aimed at evaluating the genetic and immune pathways associated with the disease, the results reported are inconsistent. Furthermore, the complexity and heterogeneity of this disease bears great similarity to what is described for human asthma. Currently available studies identified two chromosome regions (ECA13 and ECA15) and several genes associated with the disease. The inflammatory response appears to be mediated by T helper cells (Th1, Th2, Th17) and neutrophilic inflammation significantly contributes to the persistence of airway inflammatory status. This review evaluates the reported findings pertaining to the genetical and immunological background of severe equine asthma and reflects on their implications in the pathophysiology of the disease whilst discussing further areas of research interest aiming at advancing treatment and prognosis of affected individuals.
Collapse
|
60
|
Papanicolaou A, Wang H, McQualter J, Aloe C, Selemidis S, Satzke C, Vlahos R, Bozinovski S. House Dust Mite Aeroallergen Suppresses Leukocyte Phagocytosis and Netosis Initiated by Pneumococcal Lung Infection. Front Pharmacol 2022; 13:835848. [PMID: 35273509 PMCID: PMC8902390 DOI: 10.3389/fphar.2022.835848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Asthmatics are highly susceptible to developing lower respiratory tract infections caused by Streptococcus pneumoniae (SPN, the pneumococcus). It has recently emerged that underlying allergic airway disease creates a lung microenvironment that is defective in controlling pneumococcal lung infections. In the present study, we examined how house dust mite (HDM) aeroallergen exposure altered immunity to acute pneumococcal lung infection. Alveolar macrophage (AM) isolated from HDM-exposed mice expressed alternatively activated macrophage (AAM) markers including YM1, FIZZ1, IL-10, and ARG-1. In vivo, prior HDM exposure resulted in accumulation of AAMs in the lungs and 2-log higher bacterial titres in the bronchoalveolar (BAL) fluid of SPN-infected mice (Day 2). Acute pneumococcal infection further increased the expression of IL-10 and ARG1 in the lungs of HDM-exposed mice. Moreover, prior HDM exposure attenuated neutrophil extracellular traps (NETs) formation in the lungs and dsDNA levels in the BAL fluid of SPN-infected mice. In addition, HDM-SPN infected animals had significantly increased BAL fluid cellularity driven by an influx of macrophages/monocytes, neutrophils, and eosinophils. Increased lung inflammation and mucus production was also evident in HDM-sensitised mice following acute pneumococcal infection, which was associated with exacerbated airway hyperresponsiveness. Of note, PCV13 vaccination modestly reduced pneumococcal titres in the BAL fluid of HDM-exposed animals and did not prevent BAL inflammation. Our findings provide new insights on the relationship between pneumococcal lung infections and allergic airways disease, where defective AM phagocytosis and NETosis are implicated in increased susceptibility to pneumococcal infection.
Collapse
Affiliation(s)
| | - Hao Wang
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Jonathan McQualter
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Christian Aloe
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Catherine Satzke
- Translational Microbiology Group, Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
61
|
Huang Z, Liu X, Wu X, Chen M, Yu W. MiR-146a alleviates lung injury caused by RSV infection in young rats by targeting TRAF-6 and regulating JNK/ERKMAPK signaling pathways. Sci Rep 2022; 12:3481. [PMID: 35241728 PMCID: PMC8894416 DOI: 10.1038/s41598-022-07346-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/28/2022] [Indexed: 01/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract infection in infants and children. The present study aimed to investigate the effects of miR-146a on RSV replication and the related mechanisms. Material and methods: We pretreated A549 and HEp-2 cells and young rats with miR-146a mimic before infection with RSV. The expressions of miR-146a and RSV-F mRNA in cells and lung tissues were detected by RT-qPCR, and production of IL-1β, IL-6, IL-18, and TNF-α in bronchial alveolar lavage fluid (BALF) were determined by ELISA. The expression level of TRAF-6 and activation of the JNK/ERK/MAPK/NF-κB signaling pathway was detected by Western blotting. Results: RSV infection significantly reduced miR-146a levels in both A549 and HEp-2 cells and rat lung tissues. RSV infection resulted in accelerated growth, increased release of inflammatory cytokines, increased expression of TRAF-6, and activation of the JNK pathway in cells, and the lung inflammatory infiltration and the pathological score increased in rats. Overexpression of miR-146a targeted down-regulation of TRAF-6 expression and JNK/ERK/MAPK/NF-κB pathway induced by RSV infection, reduced the production of inflammatory cytokines IL-1β, IL-6 and TNF-α, and alleviate lung injury in young rats. We got similar results in both A549 and HEp-2 cell experiments. Conclusion: MiR-146a alleviates lung injury caused by RSV infection in young rats by targeting TRAF-6 and regulating JNK/ERK/MAPK signaling pathways.
Collapse
Affiliation(s)
- Zhi Huang
- Department of Interventional Radiology, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, China.,School of Basic Medical Science, Guizhou Medical University, Guiyang, 550002, China
| | - Xiaoxian Liu
- Department of Medicine Intersive Care, Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, China
| | - Xi Wu
- Department of Medicine Intersive Care, Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, China
| | - Min Chen
- Department of Pneumology, Maternal, Child Health Hospital of Guiyang City, Guiyang, 550001, China.
| | - Wenfeng Yu
- School of Basic Medical Science, Guizhou Medical University, Guiyang, 550002, China.
| |
Collapse
|
62
|
Wen X, Nian S, Wei G, Kang P, Yang Y, Li L, Ye Y, Zhang L, Wang S, Yuan Q. Changes in the phenotype and function of mucosal-associated invariant T cells in neutrophilic asthma. Int Immunopharmacol 2022; 106:108606. [PMID: 35180624 DOI: 10.1016/j.intimp.2022.108606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 12/30/2022]
Abstract
Asthma is a chronic heterogeneous inflammatory disease. Most neutrophilic asthma (NA) cases are severe asthma involving many inflammatory cells and mediators, although the specific pathogenesis is not clear. Mucosal-associated invariant T (MAIT) cells as innate-like T lymphocytes play an important role in the immune response in asthma by producing cytokines. In this study, we evaluated the phenotype and function of circulating MAIT cells in patients with NA and inflammatory-related cytokines in plasma and induced sputum supernatants using flow cytometry. The results showed that the frequency of circulating MAIT cells in asthma patients, particularly NA patients, decreased significantly, and CD8+ MAIT and MAIT Temra cells also decreased significantly. Increased expression of CD69 and PD-1 on MAIT cells indicated excessive activation and depletion, leading to the decrease in MAIT cells. Levels of IL-17A and TNF-α secreted by MAIT cells of NA patients increased, whereas IFN-γ levels decreased, indicating that MAIT cells in NA are biased to the Th17 subtype. MAIT cells were also negatively correlated with clinical parameters, indicating that these cells are related to asthma severity. Pro-inflammatory cytokines in plasma and sputum supernatant increased to varying degrees, whereas IL-10 declined, corresponding with asthma severity. We speculate that increased IL-17A and TNF-α synergistically stimulated respiratory epithelial cells to secrete IL-6 and IL-8, thereby recruiting neutrophils to inflammatory sites and aggravating asthma symptoms. Therefore, MAIT cells could serve as a potential therapeutic target in NA immunity, thus providing a new strategy for the treatment of asthma.
Collapse
Affiliation(s)
- Xue Wen
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Sichuan 646000, P.R. China.
| | - Siji Nian
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, the School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Gang Wei
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
| | - Pengyuan Kang
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, the School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Yaqi Yang
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, the School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Lin Li
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, the School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Yingchun Ye
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, the School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Lulu Zhang
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, the School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Songping Wang
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Qing Yuan
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, the School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
63
|
Al Heialy S, Ramakrishnan RK, Hamid Q. Recent advances in the immunopathogenesis of severe asthma. J Allergy Clin Immunol 2022; 149:455-465. [DOI: 10.1016/j.jaci.2021.12.765] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
|
64
|
Zhang X, Xu Z, Wen X, Huang G, Nian S, Li L, Guo X, Ye Y, Yuan Q. The onset, development and pathogenesis of severe neutrophilic asthma. Immunol Cell Biol 2022; 100:144-159. [PMID: 35080788 DOI: 10.1111/imcb.12522] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/02/2021] [Accepted: 01/23/2022] [Indexed: 12/12/2022]
Abstract
Bronchial asthma is divided into Th2 high, Th2 low and mixed types. The Th2 high type is dominated by eosinophils while the Th2 low type is divided into neutrophilic and paucigranulocytic types. Eosinophilic asthma has gained increased attention recently, and its pathogenesis and treatment are well understood. However, severe neutrophilic asthma requires more in-depth research because its pathogenesis is not well understood, and no effective treatment exists. This review looks at the advances made in asthma research, the pathogenesis of neutrophilic asthma, the mechanisms of progression to severe asthma, risk factors for asthma exacerbations, and biomarkers and treatment of neutrophilic asthma. The pathogenesis of neutrophilic asthma is further discussed from four aspects: Th17-type inflammatory response, inflammasomes, exosomes and microRNAs. This review provides direction for the mechanistic study, diagnosis and treatment of neutrophilic asthma. The treatment of neutrophilic asthma remains a significant challenge for clinical therapists and is an important area of future clinical research.
Collapse
Affiliation(s)
- Xingli Zhang
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Zixi Xu
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Xue Wen
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Guoping Huang
- Zigong Hospital of Woman and Children Healthcare, Sichuan, China
| | - Siji Nian
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Li
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiyuan Guo
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Yingchun Ye
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| | - Qing Yuan
- Public Center of Experimental Technology, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Science of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
65
|
Theofani E, Semitekolou M, Samitas K, Mais A, Galani IE, Triantafyllia V, Lama J, Morianos I, Stavropoulos A, Jeong S, Andreakos E, Razani B, Rovina N, Xanthou G. TFEB signaling attenuates NLRP3-driven inflammatory responses in severe asthma. Allergy 2022; 77:2131-2146. [PMID: 35038351 DOI: 10.1111/all.15221] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND NLRP3-driven inflammatory responses by circulating and lung-resident monocytes are critical drivers of asthma pathogenesis. Autophagy restrains NLRP3-induced monocyte activation in asthma models. Yet, the effects of autophagy and its master regulator, transcription factor EB (TFEB), on monocyte responses in human asthma remain unexplored. Here, we investigated whether activation of autophagy and TFEB signaling suppress inflammatory monocyte responses in asthmatic individuals. METHODS Peripheral blood CD14+ monocytes from asthmatic patients (n = 83) and healthy controls (n = 46) were stimulated with LPS/ATP to induce NLRP3 activation with or without the autophagy inducer, rapamycin. ASC specks, caspase-1 activation, IL-1β and IL-18 levels, mitochondrial function, ROS release, and mTORC1 signaling were examined. Autophagy was evaluated by LC3 puncta formation, p62/SQSTM1 degradation and TFEB activation. In a severe asthma (SA) model, we investigated the role of NLRP3 signaling using Nlrp3-/- mice and/or MCC950 administration, and the effects of TFEB activation using myeloid-specific TFEB-overexpressing mice or administration of the TFEB activator, trehalose. RESULTS We observed increased NLRP3 inflammasome activation, concomitant with impaired autophagy in circulating monocytes that correlated with asthma severity. SA patients also exhibited mitochondrial dysfunction and ROS accumulation. Autophagy failed to inhibit NLRP3-driven monocyte responses, due to defective TFEB activation and excessive mTORC1 signaling. NLRP3 blockade restrained inflammatory cytokine release and linked airway disease. TFEB activation restored impaired autophagy, attenuated NLRP3-driven pulmonary inflammation, and ameliorated SA phenotype. CONCLUSIONS Our studies uncover a crucial role for TFEB-mediated reprogramming of monocyte inflammatory responses, raising the prospect that this pathway can be therapeutically harnessed for the management of SA.
Collapse
Affiliation(s)
- Efthymia Theofani
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
- 1st Department of Respiratory Medicine Medical School ‘Sotiria’ Athens Chest Diseases HospitalNational Kapodistrian University of Athens Athens Greece
| | - Maria Semitekolou
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
| | - Konstantinos Samitas
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
- 7th Respiratory Clinic and Asthma Center of the ‘Sotiria’ Athens Chest Hospital Athens Greece
| | - Annie Mais
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
| | - Ioanna E. Galani
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational Research BRFAA Athens Greece
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational Research BRFAA Athens Greece
| | - Joanna Lama
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
| | - Ioannis Morianos
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
| | - Athanasios Stavropoulos
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational Research BRFAA Athens Greece
| | - Se‐Jin Jeong
- Department of Medicine Cardiovascular Division, and Department of Pathology & Immunology Washington University School of Medicine St. Louis Missouri USA
| | - Evangelos Andreakos
- Laboratory of Immunobiology Center for Clinical, Experimental Surgery and Translational Research BRFAA Athens Greece
| | - Babak Razani
- Department of Medicine Cardiovascular Division, and Department of Pathology & Immunology Washington University School of Medicine St. Louis Missouri USA
- John Cochran VA Medical Center St. Louis Missouri USA
| | - Nikoletta Rovina
- 1st Department of Respiratory Medicine Medical School ‘Sotiria’ Athens Chest Diseases HospitalNational Kapodistrian University of Athens Athens Greece
| | - Georgina Xanthou
- Cellular Immunology Laboratory Center for Basic Research Biomedical Research Foundation of the Academy of Athens (BRFAA) Athens Greece
| |
Collapse
|
66
|
Jahan P, Tahseen R, Parvez M, Kumar GS. Combined Neutrophil-to-Lymphocyte Ratio and Serum Neutrophil Elastase: Is it an Emerging Marker of Asthma Prognosis? BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2022. [DOI: 10.4103/bbrj.bbrj_290_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
67
|
Bich TCT, Quoc QL, Choi Y, Yang EM, Trinh HKT, Shin YS, Park HS. Serum Amyloid A1: A Biomarker for Neutrophilic Airway Inflammation in Adult Asthmatic Patients. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:40-58. [PMID: 34983106 PMCID: PMC8724823 DOI: 10.4168/aair.2022.14.1.40] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Purpose We evaluated the role of serum amyloid A1 (SAA1) in the pathogenesis of airway inflammation according to the phenotype of asthma. Methods One hundred twenty-two asthmatic patients and 60 healthy control subjects (HCs) were enrolled to measure SAA1 levels. The production of SAA1 from airway epithelial cells (AECs) and its effects on macrophages and neutrophils were investigated in vitro and in vivo. Results The SAA1 levels were significantly higher in sera of asthmatic patients than in those of HCs (P = 0.014); among asthmatics, patients with neutrophilic asthma (NA) showed significantly higher SAA1 levels than those with non-NA (P < 0.001). In vitro, polyinosinic:polycytidylic acid (Poly I-C) treatment markedly enhanced the production of SAA1 from AECs, which was further augmented by neutrophils; SAA1 could induce the production of interleukin (IL)-6, IL-8, and S100 calcium-binding protein A9 from AECs. Additionally, SAA1 activated neutrophils and macrophages isolated from peripheral blood of asthmatics, releasing neutrophil extracellular traps (NETs) and secreting proinflammatory cytokines presenting M1 phenotype, respectively. In ovalbumin-induced asthma mice, Poly I-C treatment significantly increased SAA1 levels as well as IL-17A/interferon-gamma/IL-33 levels in bronchoalveolar lavage fluid (BALF), leading to airway hyperresponsiveness and inflammation. The highest levels of SAA1 and neutrophilia were noted in the BALF and sera of the NA mouse model, followed by the mixed granulocytic asthma (MA) model. Especially, SAA1 induced IL-17/retinoic acid receptor-related orphan receptor γt expression from activated CD4+ T lymphocytes in asthmatic mice. Conclusions The results show that SAA1 could induce neutrophilic airway inflammation by activating neutrophils along with NET formation, M1 macrophages, and Th2/Th17 predominant cells, contributing to the phenotype of NA or MA.
Collapse
Affiliation(s)
- Tra Cao Thi Bich
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Ajou University School of Medicine, Suwon, Korea
| | - Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Science, Ajou University School of Medicine, Suwon, Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Eun-Mi Yang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | | | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
68
|
Investigation of the role of the autophagic protein LC3B in the regulation of human airway epithelium cell differentiation in COPD using a biomimetic model. Mater Today Bio 2021; 13:100182. [PMID: 34917923 PMCID: PMC8668979 DOI: 10.1016/j.mtbio.2021.100182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/02/2021] [Indexed: 12/04/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most lethal chronic disease worldwide; however, the establishment of reliable in vitro models for exploring the biological mechanisms of COPD remains challenging. Here, we determined the differences in the expression and characteristics of the autophagic protein LC3B in normal and COPD human small airway epithelial cells and found that the nucleus of COPD cells obviously accumulated LC3B. We next established 3D human small airway tissues with distinct disease characteristics by regulating the biological microenvironment, extracellular matrix, and air-liquid interface culture methods. Using this biomimetic model, we found that LC3B affects the differentiation of COPD cells into basal, secretory, mucous, and ciliated cells. Moreover, although chloroquine and ivermectin effectively inhibited the expression of LC3B in the nucleus, chloroquine specifically maintained the performance of LC3B in cytoplasm, thereby contributing to the differentiation of ciliated cells and subsequent improvement in the beating functions of the cilia, whereas ivermectin only facilitated differentiation of goblet cells. We demonstrated that the autophagic mechanism of LC3B in the nucleus is one factor regulating the ciliary differentiation and function of COPD cells. Our innovative model can be used to further analyze the physiological mechanisms in the in vitro airway environment.
Collapse
|
69
|
Chen Z, Yuan Y, He Y, Wasti B, Duan W, Jia J, Li D, Xiao B, Zhang D, Ma L, Li J, Liu Y, Zeng Q, Xiang X, Zhang X, Liu S. MBD2 as a Potential Novel Biomarker for Identifying Severe Asthma With Different Endotypes. Front Med (Lausanne) 2021; 8:693605. [PMID: 34692717 PMCID: PMC8527858 DOI: 10.3389/fmed.2021.693605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/03/2021] [Indexed: 01/24/2023] Open
Abstract
Background: Studies have shown that methyl-CpG binding domain protein 2 (MBD2) expression is significantly elevated in a neutrophil-dominant severe asthma mouse model. It also regulates Th17 cell differentiation. The objective of this study was to investigate the relationship between serum MBD2 levels in patients with severe asthma with different endotypes. Methods: Eligible adults with confirmed asthma (n = 63) underwent a clinical assessment, asthma control test and pulmonary function test and were classified as having mild, moderate or severe asthma. Severe asthma endotypes were defined according to the percentage of Th2 and Th17 cells in the peripheral blood and by the type of inflammation. The percentage of Th2 and Th17 cells in the peripheral blood was determined by flow cytometry. Serum MBD2, eosinophilic cationic protein and myeloperoxidase were measured by enzyme-linked immunosorbent assay. Correlations of MBD2 expression with clinical parameters were evaluated using Spearman's rank correlation analysis. Results: Serum MBD2 levels were upregulated in patients with severe asthma compared to healthy controls and patients with mild to moderate asthma. MBD2 was also significantly increased in patients with Th17 severe asthma compared to patients with type 2 severe asthma. Furthermore, MBD2 was positively correlated with MPO and Th17 cells but negatively correlated with ECP and Th2 cells in patients with severe asthma. Conclusions: These findings suggest that serum MBD2 may be a potential new biomarker for identifying severe asthma, Th17 severe asthma and the type of airway inflammation. However, these findings are still preliminary and need to be further investigated.
Collapse
Affiliation(s)
- Zhifeng Chen
- Department of Respiratory Medicine, Research Unit of Respiratory Diseases, Hunan Centre for Evidence-Based Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Yuan
- Department of Respiratory Medicine, Research Unit of Respiratory Diseases, Hunan Centre for Evidence-Based Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi He
- Department of Respiratory Medicine, Research Unit of Respiratory Diseases, Hunan Centre for Evidence-Based Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Binaya Wasti
- Department of Respiratory Medicine, Research Unit of Respiratory Diseases, Hunan Centre for Evidence-Based Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wentao Duan
- Department of Respiratory Medicine, Research Unit of Respiratory Diseases, Hunan Centre for Evidence-Based Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jingsi Jia
- Department of Respiratory Medicine, Research Unit of Respiratory Diseases, Hunan Centre for Evidence-Based Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Danhong Li
- Department of Respiratory Medicine, Research Unit of Respiratory Diseases, Hunan Centre for Evidence-Based Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bing Xiao
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dongshan Zhang
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Libing Ma
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jianmin Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital, Changsha, China
| | - Yi Liu
- Department of Respiratory Medicine, Zhuzhou City Central Hospital, Zhuzhou, China
| | - Qingping Zeng
- Department of Respiratory and Critical Care Medicine, Longshan County People's Hospital, Longshan, China
| | - Xudong Xiang
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiufeng Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shaokun Liu
- Department of Respiratory Medicine, Research Unit of Respiratory Diseases, Hunan Centre for Evidence-Based Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
70
|
Shin JW, Kim J, Ham S, Choi SM, Lee CH, Lee JC, Kim JH, Cho SH, Kang HR, Kim YM, Chung DH, Chung Y, Bae YS, Bae YS, Roh TY, Kim T, Kim HY. A unique population of neutrophils generated by air pollutant-induced lung damage exacerbates airway inflammation. J Allergy Clin Immunol 2021; 149:1253-1269.e8. [PMID: 34653517 DOI: 10.1016/j.jaci.2021.09.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Diesel exhaust particles (DEPs) are the main component of traffic-related air pollution and have been implicated in the pathogenesis and exacerbation of asthma. However, the mechanism by which DEP exposure aggravates asthma symptoms remains unclear. OBJECTIVE This study aimed to identify a key cellular player of air pollutant-induced asthma exacerbation and development. METHODS We examined the distribution of innate immune cells in the murine models of asthma induced by house dust mite and DEP. Changes in immune cell profiles caused by DEP exposure were confirmed by flow cytometry and RNA-Seq analysis. The roles of sialic acid-binding, Ig-like lectin F (SiglecF)-positive neutrophils were further evaluated by adoptive transfer experiment and in vitro functional studies. RESULTS DEP exposure induced a unique population of lung granulocytes that coexpressed Ly6G and SiglecF. These cells differed phenotypically, morphologically, functionally, and transcriptionally from other SiglecF-expressing cells in the lungs. Our findings with murine models suggest that intratracheal challenge with DEPs induces the local release of adenosine triphosphate, which is a damage-associated molecular pattern signal. Adenosine triphosphate promotes the expression of SiglecF on neutrophils, and these SiglecF+ neutrophils worsen type 2 and 3 airway inflammation by producing high levels of cysteinyl leukotrienes and neutrophil extracellular traps. We also found Siglec8- (which corresponds to murine SiglecF) expressing neutrophils, and we found it in patients with asthma-chronic obstructive pulmonary disease overlap. CONCLUSION The SiglecF+ neutrophil is a novel and critical player in airway inflammation and targeting this population could reverse or ameliorate asthma.
Collapse
Affiliation(s)
- Jae Woo Shin
- Laboratory of Mucosal Immunology in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jihyun Kim
- Laboratory of Mucosal Immunology in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seokjin Ham
- Department of Life Sciences and Division of Integrative Biosciences & Biotechnology, Pohang University of Science & Technology (POSTECH), Pohang, Republic of Korea
| | - Sun Mi Choi
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chang-Hoon Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jung Chan Lee
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyung Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sang-Heon Cho
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Ryun Kang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - You-Me Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon, Republic of Korea; Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon, Republic of Korea; Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Tae-Young Roh
- Department of Life Sciences and Division of Integrative Biosciences & Biotechnology, Pohang University of Science & Technology (POSTECH), Pohang, Republic of Korea; SysGenLab Inc, Pohang, Republic of Korea
| | - Taesoo Kim
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
71
|
Daubeuf F, Schall N, Petit-Demoulière N, Frossard N, Muller S. An Autophagy Modulator Peptide Prevents Lung Function Decrease and Corrects Established Inflammation in Murine Models of Airway Allergy. Cells 2021; 10:cells10092468. [PMID: 34572117 PMCID: PMC8472429 DOI: 10.3390/cells10092468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022] Open
Abstract
The involvement of autophagy and its dysfunction in asthma is still poorly documented. By using a murine model of chronic house dust mite (HDM)-induced airway inflammation, we tested the expression of several autophagy markers in the lung and spleen of asthma-like animals. Compared to control mice, in HDM-sensitized and challenged mice, the expression of sequestosome-1/p62, a multifunctional adaptor protein that plays an important role in the autophagy machinery, was raised in the splenocytes. In contrast, its expression was decreased in the neutrophils recovered from the bronchoalveolar fluid, indicating that autophagy was independently regulated in these two compartments. In a strategy of drug repositioning, we treated allergen-sensitized mice with the therapeutic peptide P140 known to target chaperone-mediated autophagy. A single intravenous administration of P140 in these mice resulted in a significant reduction in airway resistance and elastance, and a reduction in the number of neutrophils and eosinophils present in the bronchoalveolar fluid. It corrected the autophagic alteration without showing any suppressive effect in the production of IgG1 and IgE. Collectively, these findings show that autophagy processes are altered in allergic airway inflammation. This cellular pathway may represent a potential therapeutic target for treating selected patients with asthma.
Collapse
Affiliation(s)
- François Daubeuf
- CNRS-Strasbourg University Laboratoire d’Innovation Thérapeutique/Strasbourg Drug Discovery and Development Institute (IMS), Faculté de Pharmacie, 67400 Illkirch, France; (F.D.); (N.P.-D.); (N.F.)
- CNRS UMS3286, Plate-Forme de Chimie Biologique Intégrative de Strasbourg/Strasbourg Drug Discovery and Development Institute (IMS), 67400 Illkirch, France
| | - Nicolas Schall
- CNRS-Strasbourg University Unit Biotechnology and Cell Signaling/Strasbourg Drug Discovery and Development Institute (IMS), Ecole Supérieure de Biotechnologie de Strasbourg, 67400 Illkirch, France;
| | - Nathalie Petit-Demoulière
- CNRS-Strasbourg University Laboratoire d’Innovation Thérapeutique/Strasbourg Drug Discovery and Development Institute (IMS), Faculté de Pharmacie, 67400 Illkirch, France; (F.D.); (N.P.-D.); (N.F.)
- CNRS-Strasbourg University Unit Biotechnology and Cell Signaling/Strasbourg Drug Discovery and Development Institute (IMS), Ecole Supérieure de Biotechnologie de Strasbourg, 67400 Illkirch, France;
| | - Nelly Frossard
- CNRS-Strasbourg University Laboratoire d’Innovation Thérapeutique/Strasbourg Drug Discovery and Development Institute (IMS), Faculté de Pharmacie, 67400 Illkirch, France; (F.D.); (N.P.-D.); (N.F.)
| | - Sylviane Muller
- CNRS-Strasbourg University Unit Biotechnology and Cell Signaling/Strasbourg Drug Discovery and Development Institute (IMS), Ecole Supérieure de Biotechnologie de Strasbourg, 67400 Illkirch, France;
- Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg University, 67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study, 67000 Strasbourg, France
- Correspondence:
| |
Collapse
|
72
|
Characteristics and Role of Neutrophil Extracellular Traps in Asthma. Inflammation 2021; 45:6-13. [PMID: 34480251 PMCID: PMC8803764 DOI: 10.1007/s10753-021-01526-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
Asthma is a common chronic respiratory disease that affects millions of people worldwide. The incidence of asthma has continued to increase every year. Bronchial asthma involves a variety of cells, including airway inflammatory cells, structural cells, and neutrophils, which have gained more attention because they secrete substances that play an important role in the occurrence and development of asthma. Neutrophil extracellular traps (NETs) are mesh-like structures composed of DNA, histones, and non-histone molecules that can be secreted from neutrophils. NETs can enrich anti-bacterial substances and limit pathogen migration, thus having a protective effect in case of inflammation. However, despite of their anti-inflammatory properties, NETs have been shown to trigger allergic asthma and worsen asthma progression. Here, we provide a systematic review of the roles of NETs in asthma.
Collapse
|
73
|
Schuliga M, Read J, Knight DA. Ageing mechanisms that contribute to tissue remodeling in lung disease. Ageing Res Rev 2021; 70:101405. [PMID: 34242806 DOI: 10.1016/j.arr.2021.101405] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Age is a major risk factor for chronic respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and certain phenotypes of asthma. The recent COVID-19 pandemic also highlights the increased susceptibility of the elderly to acute respiratory distress syndrome (ARDS), a diffuse inflammatory lung injury with often long-term effects (ie parenchymal fibrosis). Collectively, these lung conditions are characterized by a pathogenic reparative process that, rather than restoring organ function, contributes to structural and functional tissue decline. In the ageing lung, the homeostatic control of wound healing following challenge or injury has an increased likelihood of being perturbed, increasing susceptibility to disease. This loss of fidelity is a consequence of a diverse range of underlying ageing mechanisms including senescence, mitochondrial dysfunction, proteostatic stress and diminished autophagy that occur within the lung, as well as in other tissues, organs and systems of the body. These ageing pathways are highly interconnected, involving localized and systemic increases in inflammatory mediators and damage associated molecular patterns (DAMPs); along with corresponding changes in immune cell function, metabolism and composition of the pulmonary and gut microbiomes. Here we comprehensively review the roles of ageing mechanisms in the tissue remodeling of lung disease.
Collapse
Affiliation(s)
- Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| | - Jane Read
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Providence Health Care Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
74
|
Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants (Basel) 2021; 10:antiox10091335. [PMID: 34572965 PMCID: PMC8471691 DOI: 10.3390/antiox10091335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Corticosteroid insensitivity is a key characteristic of patients with severe asthma and COPD. These individuals experience greater pulmonary oxidative stress and inflammation, which contribute to diminished lung function and frequent exacerbations despite the often and prolonged use of systemic, high dose corticosteroids. Reactive oxygen and nitrogen species (RONS) promote corticosteroid insensitivity by disrupting glucocorticoid receptor (GR) signaling, leading to the sustained activation of pro-inflammatory pathways in immune and airway structural cells. Studies in asthma and COPD models suggest that corticosteroids need a balanced redox environment to be effective and to reduce airway inflammation. In this review, we discuss how oxidative stress contributes to corticosteroid insensitivity and the importance of optimizing endogenous antioxidant responses to enhance corticosteroid sensitivity. Future studies should aim to identify how antioxidant-based therapies can complement corticosteroids to reduce the need for prolonged high dose regimens in patients with severe asthma and COPD.
Collapse
|
75
|
Abstract
As a basic biological phenomenon of cells, regulated cell death (RCD) has irreplaceable influence on the occurrence and development of many processes of life and diseases. RCD plays an important role in the stability of the homeostasis, the development of multiple systems and the evolution of organisms. Thus comprehensively understanding of RCD is undoubtedly helpful in the innovation of disease treatment. Recently, research on the underlying mechanisms of the major forms of RCD, such as apoptosis, autophagy, necroptosis, pyroptosis, paraptosis and neutrophils NETosis has made significant breakthroughs. In addition, the interconnections among them have attracted increasing attention from global scholars in the field of life sciences. Here, recent advances in RCD research field are discussed.
Collapse
|
76
|
Zhang Y, Wang X, Zhang H, Tang H, Hu H, Wang S, Wong VKW, Li Y, Deng J. Autophagy Modulators From Chinese Herbal Medicines: Mechanisms and Therapeutic Potentials for Asthma. Front Pharmacol 2021; 12:710679. [PMID: 34366865 PMCID: PMC8342996 DOI: 10.3389/fphar.2021.710679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 01/21/2023] Open
Abstract
Asthma has become a global health issue, suffering more than 300 million people in the world, which is a heterogeneous disease, usually characterized by chronic airway inflammation and airway hyperreactivity. Combination of inhaled corticosteroids (ICS) and long acting β-agonists (LABA) can relieve asthma symptoms and reduce the frequency of exacerbations, especially for patients with refractory asthma, but there are limited treatment options for people who do not gain control on combination ICS/LABA. The increase in ICS dose generally provides little additional benefit, and there is an increased risk of side effects. Therefore, therapeutic interventions integrating the use of different agents that focus on different targets are needed to overcome this set of diseases. Some findings suggest autophagy is closely correlated with the severity of asthma through eosinophilic inflammation, and its modulation may provide novel therapeutic approaches for severe allergic asthma. The chinese herbal medicine (CHM) have been demonstrated clinically as potent therapeutic interventions for asthma. Moreover some reports have found that the bioactive components isolated from CHM could modulate autophagy, and exhibit potent Anti-inflammatory activity. These findings have implied the potential for CHMs in asthma or allergic inflammation therapy via the modulation of autophagy. In this review, we discuss the basic pathomechanisms underpinning asthma, and the potential role of CHMs in treating asthma with modulating autophagy.
Collapse
Affiliation(s)
- Yun Zhang
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xing Wang
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - He Zhang
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hongmei Tang
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hang Hu
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Songping Wang
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yuying Li
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Deng
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
77
|
Wang R, Zhu Y, Liu Z, Chang L, Bai X, Kang L, Cao Y, Yang X, Yu H, Shi MJ, Hu Y, Fan W, Zhao BQ. Neutrophil extracellular traps promote tPA-induced brain hemorrhage via cGAS in mice with stroke. Blood 2021; 138:91-103. [PMID: 33881503 PMCID: PMC8288643 DOI: 10.1182/blood.2020008913] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/07/2021] [Indexed: 02/07/2023] Open
Abstract
Intracerebral hemorrhage associated with thrombolytic therapy with tissue plasminogen activator (tPA) in acute ischemic stroke continues to present a major clinical problem. Here, we report that infusion of tPA resulted in a significant increase in markers of neutrophil extracellular traps (NETs) in the ischemic cortex and plasma of mice subjected to photothrombotic middle cerebral artery occlusion. Peptidylarginine deiminase 4 (PAD4), a critical enzyme for NET formation, is also significantly upregulated in the ischemic brains of tPA-treated mice. Blood-brain barrier (BBB) disruption after ischemic challenge in an in vitro model of BBB was exacerbated after exposure to NETs. Importantly, disruption of NETs by DNase I or inhibition of NET production by PAD4 deficiency restored tPA-induced loss of BBB integrity and consequently decreased tPA-associated brain hemorrhage after ischemic stroke. Furthermore, either DNase I or PAD4 deficiency reversed tPA-mediated upregulation of the DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). Administration of cGAMP after stroke abolished DNase I-mediated downregulation of the STING pathway and type 1 interferon production and blocked the antihemorrhagic effect of DNase I in tPA-treated mice. We also show that tPA-associated brain hemorrhage after ischemic stroke was significantly reduced in cGas-/- mice. Collectively, these findings demonstrate that NETs significantly contribute to tPA-induced BBB breakdown in the ischemic brain and suggest that targeting NETs or cGAS may ameliorate thrombolytic therapy for ischemic stroke by reducing tPA-associated hemorrhage.
Collapse
Affiliation(s)
- Ranran Wang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuanbo Zhu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhongwang Liu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Luping Chang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaofei Bai
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lijing Kang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yongliang Cao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xing Yang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Huilin Yu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mei-Juan Shi
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yue Hu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wenying Fan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Bing-Qiao Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
78
|
Quoc QL, Choi Y, Thi Bich TC, Yang EM, Shin YS, Park HS. S100A9 in adult asthmatic patients: a biomarker for neutrophilic asthma. Exp Mol Med 2021; 53:1170-1179. [PMID: 34285336 PMCID: PMC8333352 DOI: 10.1038/s12276-021-00652-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
The biomarkers and therapeutic targets of neutrophilic asthma (NA) are poorly understood. Although S100 calcium-binding protein A9 (S100A9) has been shown to correlate with neutrophil activation, its role in asthma pathogenesis has not been clarified. This study investigated the mechanism by which S100A9 is involved in neutrophil activation, neutrophil extracellular trap (NET)-induced airway inflammation, and macrophage polarization in NA. The S100A9 levels (by ELISA) in sera/culture supernatant of peripheral blood neutrophils (PBNs) and M0 macrophages from asthmatic patients were measured and compared to those of healthy controls (HCs). The function of S100A9 was evaluated using airway epithelial cells (AECs) and PBNs/M0 macrophages from asthmatic patients, as well as a mouse asthma model. The serum levels of S100A9 were higher in NA patients than in non-NA patients, and there was a positive correlation between serum S100A9 levels and sputum neutrophil counts (r = 0.340, P = 0.005). Asthmatic patients with higher S100A9 levels had lower PC20 methacholine values and a higher prevalence of severe asthma (SA) (P < .050). PBNs/M0 macrophages from SA released more S100A9 than those from non-SA patients. PBNs from asthmatic patients induced S100A9 production by AECs, which further activated AECs via the extracellular signal-regulated kinase (ERK) pathway, stimulated NET formation, and induced M1 macrophage polarization. Higher S100A9 levels in sera, bronchoalveolar lavage fluid, and lung tissues were observed in the mouse model of NA but not in the other mouse models. These results suggest that S100A9 is a potential serum biomarker and therapeutic target for NA.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Tra Cao Thi Bich
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Eun-Mi Yang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
79
|
Crucial role of stimulator of interferon genes-dependent signaling in house dust mite extract-induced IgE production. Sci Rep 2021; 11:13157. [PMID: 34162937 PMCID: PMC8222396 DOI: 10.1038/s41598-021-92561-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 01/04/2023] Open
Abstract
Stimulator of interferon genes (STING) is a DNA sensor that responds to pathogens and induces type I interferon production. Herein, the role of STING in house dust mite extract (HDM)-induced allergic asthma was investigated. C57BL/6 wild-type (WT) and Sting−/− mice were intratracheally sensitized with HDM, and the bronchoalveolar lavage fluid (BALF), sera, lungs, and mediastinal lymph nodes (MLNs) were analyzed. The total and HDM-specific serum IgE levels were lower in Sting−/− mice than in WT mice. B cell and IgE-positive B cell proportion in BALF and MLNs, respectively, was significantly lower in Sting−/− mice than in WT mice. Additionally, cyclic GMP-AMP, a STING ligand, augmented total and HDM-specific serum IgE levels and B cell proportion in BALF when applied in combination with HDM. To elucidate the role of STING in IgE production, follicular helper T (Tfh) cells, which are involved in B cell maturation, were investigated. Tfh cell proportion in MLNs decreased in Sting−/− mice, and IL-4 and IL-13 production by HDM-restimulated MLN cells from HDM-sensitized mice was decreased in Sting−/− mice compared with WT mice. Thus, STING plays an important role in the maturation and class switching of IgE-producing B cells in allergic inflammation via Tfh cells.
Collapse
|
80
|
Ma Q, Qian Y, Jiang J, Wu J, Song M, Li X, Chen Z, Wang Z, Zhu R, Sun Z, Huang M, Ji N, Zhang M. IL-33/ST2 axis deficiency exacerbates neutrophil-dominant allergic airway inflammation. Clin Transl Immunology 2021; 10:e1300. [PMID: 34178329 PMCID: PMC8207976 DOI: 10.1002/cti2.1300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 02/01/2023] Open
Abstract
Objective The IL‐33/ST2 axis has been extensively investigated in type 2 eosinophilic inflammation. Here, we aimed to investigate the role of the IL‐33/ST2 axis in neutrophil‐dominant allergic airway inflammation. Methods House‐dust mite (HDM) extract and lipopolysaccharide (LPS) were administered to establish a murine model of neutrophil‐dominant allergic airway inflammation. The formation of neutrophilic extracellular traps (NETs) in the lung tissues was demonstrated by immunofluorescence imaging. Mature IL‐33 in bronchoalveolar lavage fluid (BALF) was detected by Western blotting. The neutrophilic chemokine KC produced by bone marrow‐derived macrophages (BMDMs) or primary alveolar epithelial cells was measured with a commercial ELISA kit. Results In the present study, we observed neutrophilic inflammation and tight junction damage in the lungs of mice sensitised with HDM and LPS. Furthermore, sensitisation with HDM and LPS resulted in the formation of NETs, accompanied by increased levels of mature IL‐33 in the BALF. Moreover, LPS damaged the epithelial tight junction protein occludin directly or indirectly by inducing NET formation. Surprisingly, IL‐33 deficiency augmented neutrophilia and epithelial barrier injury in the lungs of mice after sensitisation with HDM and LPS. Similarly, the absence of ST2 exacerbated the neutrophilic inflammatory response, decreased the expression of occludin and exacerbated the severity of neutrophil‐dominant allergic airway inflammation in an HDM/LPS‐induced mouse model. Mechanistically, BMDMs and alveolar epithelial cells from IL‐33‐ or ST2‐deficient mice tended to produce higher levels of the neutrophilic chemokine KC. Conclusions These results demonstrated that the IL‐33/ST2 axis may play a protective role in neutrophil‐dominant allergic airway inflammation.
Collapse
Affiliation(s)
- Qiyun Ma
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Yan Qian
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Jingjing Wu
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Meijuan Song
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Xinyu Li
- NHC Key Laboratory of Antibody Technique Jiangsu Key Laboratory of Pathogen Biology Department of Immunology Nanjing Medical University Nanjing China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Ranran Zhu
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Zhixiao Sun
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique Jiangsu Key Laboratory of Pathogen Biology Department of Immunology Nanjing Medical University Nanjing China
| |
Collapse
|
81
|
Theofani E, Xanthou G. Autophagy: A Friend or Foe in Allergic Asthma? Int J Mol Sci 2021; 22:ijms22126314. [PMID: 34204710 PMCID: PMC8231495 DOI: 10.3390/ijms22126314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a major self-degradative process through which cytoplasmic material, including damaged organelles and proteins, are delivered and degraded in the lysosome. Autophagy represents a dynamic recycling system that produces new building blocks and energy, essential for cellular renovation, physiology, and homeostasis. Principal autophagy triggers include starvation, pathogens, and stress. Autophagy plays also a pivotal role in immune response regulation, including immune cell differentiation, antigen presentation and the generation of T effector responses, the development of protective immunity against pathogens, and the coordination of immunometabolic signals. A plethora of studies propose that both impaired and overactive autophagic processes contribute to the pathogenesis of human disorders, including infections, cancer, atherosclerosis, autoimmune and neurodegenerative diseases. Autophagy has been also implicated in the development and progression of allergen-driven airway inflammation and remodeling. Here, we provide an overview of recent studies pertinent to the biology of autophagy and molecular pathways controlling its activation, we discuss autophagy-mediated beneficial and detrimental effects in animal models of allergic diseases and illuminate new advances on the role of autophagy in the pathogenesis of human asthma. We conclude contemplating the potential of targeting autophagy as a novel therapeutic approach for the management of allergic responses and linked asthmatic disease.
Collapse
Affiliation(s)
- Efthymia Theofani
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11547 Athens, Greece;
- 1st Department of Respiratory Medicine, “Sotiria” Regional Chest Diseases Hospital, Medical School, National Kapodistrian University of Athens, 11547 Athens, Greece
| | - Georgina Xanthou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11547 Athens, Greece;
- Correspondence: ; Tel.: +30-210-65-97-336
| |
Collapse
|
82
|
To Trap a Pathogen: Neutrophil Extracellular Traps and Their Role in Mucosal Epithelial and Skin Diseases. Cells 2021; 10:cells10061469. [PMID: 34208037 PMCID: PMC8230648 DOI: 10.3390/cells10061469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
Neutrophils are the most abundant circulating innate immune cells and comprise the first immune defense line, as they are the most rapidly recruited cells at sites of infection or inflammation. Their main microbicidal mechanisms are degranulation, phagocytosis, cytokine secretion and the formation of extracellular traps. Neutrophil extracellular traps (NETs) are a microbicidal mechanism that involves neutrophil death. Since their discovery, in vitro and in vivo neutrophils have been challenged with a range of stimuli capable of inducing or inhibiting NET formation, with the objective to understand its function and regulation in health and disease. These networks composed of DNA and granular components are capable of immobilizing and killing pathogens. They comprise enzymes such as myeloperoxidase, elastase, cathepsin G, acid hydrolases and cationic peptides, all with antimicrobial and antifungal activity. Therefore, the excessive formation of NETs can also lead to tissue damage and promote local and systemic inflammation. Based on this concept, in this review, we focus on the role of NETs in different infectious and inflammatory diseases of the mucosal epithelia and skin.
Collapse
|
83
|
Liu Y, Kaplan MJ. Neutrophil Dysregulation in the Pathogenesis of Systemic Lupus Erythematosus. Rheum Dis Clin North Am 2021; 47:317-333. [PMID: 34215366 DOI: 10.1016/j.rdc.2021.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent identifications of a subset of proinflammatory neutrophils, low-density granulocytes, and their ability to readily form neutrophil extracellular traps led to a resurgence of interest in neutrophil dysregulation in the pathogenesis of systemic lupus erythematosus (SLE). This article presents an overview on how neutrophil dysregulation modulates the innate and adaptive immune responses in SLE and their putative roles in disease pathogenesis. The therapeutic potential of targeting this pathogenic process in the treatment of SLE is also discussed.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD 20892-1930, USA.
| |
Collapse
|
84
|
Dömer D, Walther T, Möller S, Behnen M, Laskay T. Neutrophil Extracellular Traps Activate Proinflammatory Functions of Human Neutrophils. Front Immunol 2021; 12:636954. [PMID: 34168641 PMCID: PMC8217666 DOI: 10.3389/fimmu.2021.636954] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/23/2021] [Indexed: 01/15/2023] Open
Abstract
Neutrophil extracellular traps (NETs) consist of decondensed nuclear chromatin that is associated with proteins and are released by neutrophils during an inflammatory response. Released NETs are able to capture pathogens, prevent their dissemination and potentially kill them via antimicrobial peptides and proteins that are associated with the decondensed chromatin. In addition to their antimicrobial functions, NETs have also been shown to exert immunomodulatory effects by activation and differentiation of macrophages, dendritic cells and T cells. However, the effect of NETs on neutrophil functions is poorly understood. Here we report the first comprehensive study regarding the effects of NETs on human primary neutrophils in vitro. NETs were isolated from cultures of PMA-exposed neutrophils. Exposure of neutrophils to isolated NETs resulted in the activation of several neutrophil functions in a concentration-dependent manner. NETs induced exocytosis of granules, the production of reactive oxygen species (ROS) by the NADPH oxidase NOX2, NOX2-dependent NET formation, increased the phagocytosis and killing of microbial pathogens. Furthermore, NETs induced the secretion of the proinflammatory chemokine IL-8 and the B-cell-activating cytokine BAFF. We could show that the NET-induced activation of neutrophils occurs by pathways that involve the phosphorylation of Akt, ERK1/2 and p38. Taken together our results provide further insights into the proinflammatory role of NETs by activating neutrophil effector function and further supports the view that NETs can amplify inflammatory events. On the one hand the amplified functions enhance the antimicrobial defense. On the other hand, NET-amplified neutrophil functions can be involved in the pathophysiology of NET-associated diseases. In addition, NETs can connect the innate and adaptive immune system by inducing the secretion of the B-cell-activating cytokine BAFF.
Collapse
Affiliation(s)
- Daniel Dömer
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Tabea Walther
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Sonja Möller
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Martina Behnen
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
85
|
Lee Y, Quoc QL, Park HS. Biomarkers for Severe Asthma: Lessons From Longitudinal Cohort Studies. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:375-389. [PMID: 33733634 PMCID: PMC7984946 DOI: 10.4168/aair.2021.13.3.375] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/24/2021] [Indexed: 12/16/2022]
Abstract
Severe asthma (SA) is a heterogeneous disease characterized by uncontrolled symptoms, frequent exacerbations, and lung function decline. The discovery of phenotypes and endotypes of SA significantly improves our understanding of its pathophysiology and allows the advent of biologics blocking multiple molecular targets. The advances have mainly been made in type 2-high asthma associated with elevated type 2 inflammatory biomarkers such as immunoglobulin E (IgE), interleukins (IL)-4, IL-5, and IL-13. Previous clinical trials have demonstrated that type 2 biomarkers, including blood/sputum eosinophils and the fraction of exhaled nitric oxide (FeNO), were correlated to severe airway inflammation, persistent symptoms, frequent exacerbations, and the clinical efficacy of these biomarkers in predicting treatment outcomes of type 2-targeting biologics. However, it is well known that type 2 inflammation is partially attributable to the pathogenesis of SA. Although some recent studies have suggested that type 2-low and mixed phenotypes of asthma are important contributors to the heterogeneity of SA, many questions about these non-type 2 asthma phenotypes remain to be solved. Consequently, many efforts to investigate and find novel biomarkers for SA have also made in their methods. Many cross-sectional experimental studies in large-scale cohorts and randomized clinical trials have proved their value in understanding SA. More recently, real-world cohort studies have been in the limelight for SA research, which is unbiased and expected to give us an answer to the unmet needs of the heterogeneity of SA.
Collapse
Affiliation(s)
- Youngsoo Lee
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Hae Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
86
|
Ding L, Yang J, Zhang C, Zhang X, Gao P. Neutrophils Modulate Fibrogenesis in Chronic Pulmonary Diseases. Front Med (Lausanne) 2021; 8:616200. [PMID: 33987189 PMCID: PMC8110706 DOI: 10.3389/fmed.2021.616200] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammatory pulmonary diseases are characterized by recurrent and persistent inflammation of the airways, commonly associated with poor clinical outcomes. Although their etiologies vary tremendously, airway neutrophilia is a common feature of these diseases. Neutrophils, as vital regulators linking innate and adaptive immune systems, are a double-edged sword in the immune response of the lung involving mechanisms such as phagocytosis, degranulation, neutrophil extracellular trap formation, exosome secretion, release of cytokines and chemokines, and autophagy. Although neutrophils serve as strong defenders against extracellular pathogens, neutrophils and their components can trigger various cascades leading to inflammation and fibrogenesis. Here, we review current studies to elucidate the versatile roles of neutrophils in chronic pulmonary inflammatory diseases and describe the common pathogenesis of these diseases. This may provide new insights into therapeutic strategies for chronic lung diseases.
Collapse
Affiliation(s)
- Lili Ding
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Juan Yang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, China
| | - Chunmei Zhang
- Intensive Care Unit of Emergency Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiuna Zhang
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital, Jilin University, Changchun, China
| | - Pujun Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
87
|
Galiniak S, Rachel M. Comparison of fractional exhaled nitric oxide in asthmatics with and without allergic rhinitis. Biomarkers 2021; 26:174-183. [PMID: 33435738 DOI: 10.1080/1354750x.2020.1871410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE OF THE STUDY The aim of this study was to measure the concentration of FeNO in asthmatics with and without allergic rhinitis (AR) and to determine usefulness of the test in the assessment of asthma control in the Polish population. The next objective of this study was to estimate the cut-off point of FeNO which might be a good indicator of uncontrolled asthma. MATERIALS AND METHODS The measurements were taken using the Hyp'Air FeNO in 303 adult patients with asthma, AR, comorbid AR and asthma, and non-diseased volunteers. RESULTS FeNO level in healthy adults was similar to the FeNO concentration in AR as well as controlled asthmatic patients without and with AR. Patients with partly controlled and uncontrolled asthma with and without AR had higher FeNO (>60 ppb) levels when compared to adults with controlled disease. The optimal cut-off point of FeNO > 46 ppb and FeNO > 33 ppb was estimated for identification of uncontrolled asthmatics without and with AR, respectively. CONCLUSION In conclusion, we found a significant correlation between the FeNO concentration and the level of asthma symptom control in asthmatic patients with and without AR.
Collapse
Affiliation(s)
| | - Marta Rachel
- Medical College of Rzeszów University, Rzeszów, Poland.,Allergology Department, Provincial Hospital No 2, Rzeszów, Poland
| |
Collapse
|
88
|
Maneechotesuwan K, Kasetsinsombat K, Wongkajornsilp A, Barnes PJ. Role of autophagy in regulating interleukin-10 and the responses to corticosteroids and statins in asthma. Clin Exp Allergy 2021; 51:1553-1565. [PMID: 33423318 DOI: 10.1111/cea.13825] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Interleukin (IL)-10 is a key anti-inflammatory cytokine that may be reduced in asthma but is enhanced by corticosteroids, especially when combined with a statin, although the mechanisms of these effects are uncertain. OBJECTIVE To study the role of autophagy in macrophages in promoting inflammation in asthma through reducing IL-10 secretion and how corticosteroids and statins may reverse this process. METHODS We conducted a randomised double-blind placebo-controlled study in moderate to severe asthmatic patients (n = 44) to investigate the effect of an inhaled corticosteroid (budesonide 400 μg/day) and the combination of budesonide with an oral statin (simvastatin 10 mg/day) given for 8 weeks on autophagy protein expression in sputum cells by using immunocytochemistry and measurement of IL-10 release. In in vitro experiments, we studied cross-regulation between autophagy and IL-10 release by measuring the expression of autophagy proteins in M2-like macrophages and the effects of budesonide and simvastatin on these mechanisms. RESULTS In asthmatic patients, inhaled budesonide inhibited airway macrophage autophagy (beclin-1, LC3) as well as autophagic flux (p62), which was enhanced by simvastatin and was correlated with increased sputum IL-10 and reduced IL-4 concentrations. In macrophages in vitro, budesonide and simvastatin inhibited rapamycin-induced autophagy as well as autophagic flux, with reduced expression of beclin-1 and LC3, but enhanced the accumulation of p62 and increased expression of IL-10, which itself further inhibited autophagy in macrophages. With siRNA-mediated silencing, LC3-deficient macrophages also showed a maximal induction of IL-10 transcription. Neutralisation of IL-10 with recombinant specific blocking antibody and silencing IL-10 transcription reversed the inhibitory effects of budesonide and simvastatin on macrophage autophagy. CONCLUSION AND CLINICAL RELEVANCE Inhibition by corticosteroids and a statin of macrophage autophagy enhances IL-10 production, resulting in the control of asthmatic inflammation.
Collapse
Affiliation(s)
- Kittipong Maneechotesuwan
- Division of Respiratory Disease and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanda Kasetsinsombat
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Adisak Wongkajornsilp
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
89
|
Davis KU, Sheats MK. The Role of Neutrophils in the Pathophysiology of Asthma in Humans and Horses. Inflammation 2020; 44:450-465. [PMID: 33150539 DOI: 10.1007/s10753-020-01362-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Asthma is a common and debilitating chronic airway disease that affects people and horses of all ages worldwide. While asthma in humans most commonly involves an excessive type 2 immune response and eosinophilic inflammation, neutrophils have also been recognized as key players in the pathophysiology of asthma, including in the severe asthma phenotype where neutrophilic inflammation predominates. Severe equine asthma syndrome (sEAS) features prominent neutrophilic inflammation and has been increasingly used as a naturally occurring animal model for the study of human neutrophilic asthma. This comparative review examines the recent literature in order to explore the role of neutrophil inflammatory functions in the pathophysiology and immunology of asthma in humans and horses.
Collapse
Affiliation(s)
- Kaori Uchiumi Davis
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC, 27607, USA.,Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA
| | - M Katie Sheats
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC, 27607, USA. .,Center for Comparative Medicine and Translational Research, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA.
| |
Collapse
|
90
|
Ansari SF, Memon M, Kumar R, Rizwan A. Risk Factors Associated With Frequent Acute Exacerbations of Asthma. Cureus 2020; 12:e11090. [PMID: 33240688 PMCID: PMC7681754 DOI: 10.7759/cureus.11090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Introduction: Asthma can lead to fatigue, frequent hospital visits, psychological problems, and learning problems in children. One of the complications of asthma is its life-threatening acute exacerbation. It is important to identify precipitating factors responsible for frequent acute exacerbations of asthma. Methods: This case-control study was conducted in the pulmonology ward of Liaquat University of Medical and Health Sciences, Jamshoro, from May 2019 to February 2020. Sampling was done by convenient probability technique. The case group was identified as patients with two or more episodes of acute exacerbation of asthma and the control group was identified as asthmatic patients without acute exacerbation in the last year. Results: Factors leading to acute exacerbation of asthma include number of asthma attacks in the past seven days (4.9 ± 3.4 vs. 2.2 ± 2.0; p < 0.0001) and number of nights with troublesome cough in the past 28 days (12.2 ± 8.1 vs. 4.3 ± 3.1; p < 0.0001). Participants with recent upper respiratory tract infection (38.4% vs. 10%; odds ratio [OR] 5.62), smoking history (30.7% vs. 12%; OR 3.25), gastroesophageal reflux disease (26.9% vs. 8.0%; OR 4.2) and non-adherence to medication (26.9% vs. 8.0%; OR 4.2) were more likely to experience from exacerbation of asthma. Conclusion: It is important to identify risk factors that may cause acute exacerbation of asthma in the patients. Patients should be educated of the risk factors and complications of the exacerbation episode of asthma.
Collapse
Affiliation(s)
- Sheeba F Ansari
- Internal Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, PAK
| | - Mubeen Memon
- Pulmonology, Liaquat University of Medical and Health Sciences, Jamshoro, PAK
| | | | - Amber Rizwan
- Family Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| |
Collapse
|
91
|
De Volder J, Vereecke L, Joos G, Maes T. Targeting neutrophils in asthma: A therapeutic opportunity? Biochem Pharmacol 2020; 182:114292. [PMID: 33080186 DOI: 10.1016/j.bcp.2020.114292] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
Suppression of airway inflammation with inhaled corticosteroids has been the key therapeutic approach for asthma for many years. Identification of inflammatory phenotypes in asthma has moreover led to important breakthroughs, e.g. with specific targeting of the IL-5 pathway as add-on treatment in difficult-to-treat eosinophilic asthma. However, the impact of interfering with the neutrophilic component in asthma is less documented and understood. This review provides an overview of established and recent insights with regard to the role of neutrophils in asthma, focusing on research in humans. We will describe the main drivers of neutrophilic responses in asthma, the heterogeneity in neutrophils and how they could contribute to asthma pathogenesis. Moreover we will describe findings from clinical trials, in which neutrophilic inflammation was targeted. It is clear that neutrophils are important actors in asthma development and play a role in exacerbations. However, more research is required to fully understand how modulation of neutrophil activity could lead to a significant benefit in asthma patients with airway neutrophilia.
Collapse
Affiliation(s)
- Joyceline De Volder
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Lars Vereecke
- VIB Inflammation Research Center, Ghent, Belgium; Ghent Gut Inflammation Group (GGIG), Ghent University, Belgium; Department of Rheumatology, Ghent University Hospital, Belgium
| | - Guy Joos
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Tania Maes
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
92
|
Lee Y, Park Y, Kim C, Lee E, Lee HY, Woo SD, You SC, Park RW, Park HS. Longitudinal Outcomes of Severe Asthma: Real-World Evidence of Multidimensional Analyses. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 9:1285-1294.e6. [PMID: 33049391 DOI: 10.1016/j.jaip.2020.09.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/16/2020] [Accepted: 09/25/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND There have been few studies assessing long-term outcomes of asthma based on regular follow-up data. OBJECTIVE We aimed to demonstrate clinical outcomes of asthma by multidimensional analyses of a long-term real-world database and a prediction model of severe asthma using machine learning. METHODS The database included 567 severe and 1337 nonsevere adult asthmatics, who had been monitored during a follow-up of up to 10 years. We evaluated longitudinal changes in eosinophilic inflammation, lung function, and the annual number of asthma exacerbations (AEs) using a linear mixed effects model. Least absolute shrinkage and selection operator logistic regression was used to develop a prediction model for severe asthma. Model performance was evaluated and validated. RESULTS Severe asthmatics had higher blood eosinophil (P = .02) and neutrophil (P < .001) counts at baseline than nonsevere asthmatics; blood eosinophil counts showed significantly slower declines in severe asthmatics than nonsevere asthmatics throughout the follow-up (P = .009). Severe asthmatics had a lower level of forced expiratory volume in 1 second (P < .001), which declined faster than nonsevere asthmatics (P = .033). Severe asthmatics showed a higher annual number of severe AEs than nonsevere asthmatics. The prediction model for severe asthma consisted of 17 variables, including novel biomarkers. CONCLUSIONS Severe asthma is a distinct phenotype of asthma with persistent eosinophilia, progressive lung function decline, and frequent severe AEs even on regular asthma medication. We suggest a useful prediction model of severe asthma for research and clinical purposes.
Collapse
Affiliation(s)
- Youngsoo Lee
- Department of Allergy & Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Youjin Park
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Chungsoo Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Eunyoung Lee
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea; Office of Biostatistics, Medical Research Collaboration Center, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Korea
| | - Hyun Young Lee
- Department of Statistics, Clinical Trial Center, Ajou University Medical Center, Suwon, Korea
| | - Seong-Dae Woo
- Department of Allergy & Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Seng Chan You
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
| | - Rae Woong Park
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea; Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy & Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
93
|
Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E, Fineman JR, Wang T, Black SM. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol 2020; 36:101679. [PMID: 32818797 PMCID: PMC7451718 DOI: 10.1016/j.redox.2020.101679] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
The autophagic pathway involves the encapsulation of substrates in double-membraned vesicles, which are subsequently delivered to the lysosome for enzymatic degradation and recycling of metabolic precursors. Autophagy is a major cellular defense against oxidative stress, or related conditions that cause accumulation of damaged proteins or organelles. Selective forms of autophagy can maintain organelle populations or remove aggregated proteins. Dysregulation of redox homeostasis under pathological conditions results in excessive generation of reactive oxygen species (ROS), leading to oxidative stress and the associated oxidative damage of cellular components. Accumulating evidence indicates that autophagy is necessary to maintain redox homeostasis. ROS activates autophagy, which facilitates cellular adaptation and diminishes oxidative damage by degrading and recycling intracellular damaged macromolecules and dysfunctional organelles. The cellular responses triggered by oxidative stress include the altered regulation of signaling pathways that culminate in the regulation of autophagy. Current research suggests a central role for autophagy as a mammalian oxidative stress response and its interrelationship to other stress defense systems. Altered autophagy phenotypes have been observed in lung diseases such as chronic obstructive lung disease, acute lung injury, cystic fibrosis, idiopathic pulmonary fibrosis, and pulmonary arterial hypertension, and asthma. Understanding the mechanisms by which ROS regulate autophagy will provide novel therapeutic targets for lung diseases. This review highlights our current understanding on the interplay between ROS and autophagy in the development of pulmonary disease.
Collapse
Affiliation(s)
- Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Alejandro E Garcia
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA
| | - Emin Maltepe
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, The University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, AZ, USA
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
94
|
Vitte J, Michel M, Mezouar S, Diallo AB, Boumaza A, Mege JL, Desnues B. Immune Modulation as a Therapeutic Option During the SARS-CoV-2 Outbreak: The Case for Antimalarial Aminoquinolines. Front Immunol 2020; 11:2159. [PMID: 32983179 PMCID: PMC7484884 DOI: 10.3389/fimmu.2020.02159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
The rapid spread, severity, and lack of specific treatment for COVID-19 resulted in hasty drug repurposing. Conceptually, trials of antivirals were well-accepted, but twentieth century antimalarials sparked an impassioned global debate. Notwithstanding, antiviral and immunomodulatory effects of aminoquinolines have been investigated in vitro, in vivo and in clinical trials for more than 30 years. We review the mechanisms of action of (hydroxy)chloroquine on immune cells and networks and discuss promises and pitfalls in the fight against SARS-CoV-2, the agent of the COVID-19 outbreak.
Collapse
Affiliation(s)
- Joana Vitte
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Moïse Michel
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Soraya Mezouar
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Aïssatou Bailo Diallo
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Asma Boumaza
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Jean-Louis Mege
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Benoit Desnues
- Aix Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
95
|
Ma R, Ortiz Serrano TP, Davis J, Prigge AD, Ridge KM. The cGAS-STING pathway: The role of self-DNA sensing in inflammatory lung disease. FASEB J 2020; 34:13156-13170. [PMID: 32860267 PMCID: PMC8121456 DOI: 10.1096/fj.202001607r] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
The presence of DNA in the cytosol is usually a sign of microbial infections, which alerts the host innate immune system to mount a defense response. Cyclic GMP-AMP synthase (cGAS) is a critical cytosolic DNA sensor that elicits robust innate immune responses through the production of the second messenger, cyclic GMP-AMP (cGAMP), which binds and activates stimulator of interferon genes (STING). However, cGAS binds to DNA irrespective of DNA sequence, therefore, self-DNA leaked from the nucleus or mitochondria can also serve as a cGAS ligand to activate this pathway and trigger extensive inflammatory responses. Dysregulation of the cGAS-STING pathway is responsible for a broad array of inflammatory and autoimmune diseases. Recently, evidence has shown that self-DNA release and cGAS-STING pathway over-activation can drive lung disease, making this pathway a promising therapeutic target for inflammatory lung disease. Here, we review recent advances on the cGAS-STING pathway governing self-DNA sensing, highlighting its role in pulmonary disease.
Collapse
Affiliation(s)
- Ruihua Ma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tatiana P Ortiz Serrano
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jennifer Davis
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew D Prigge
- Division of Critical Care Medicine, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
96
|
Wan R, Jiang J, Hu C, Chen X, Chen C, Zhao B, Hu X, Zheng Z, Li Y. Neutrophil extracellular traps amplify neutrophil recruitment and inflammation in neutrophilic asthma by stimulating the airway epithelial cells to activate the TLR4/ NF-κB pathway and secrete chemokines. Aging (Albany NY) 2020; 12:16820-16836. [PMID: 32756014 PMCID: PMC7521522 DOI: 10.18632/aging.103479] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/27/2020] [Indexed: 01/24/2023]
Abstract
Neutrophilic asthma (NA) is a distinct airway inflammation disease with prominent neutrophil infiltration. The role played by neutrophil extracellular traps (NETs) in NA, however, is quite unclear. This study was based on the hypothesis that NETs are responsible for the second neutrophil wave and therefore contribute significantly to inflammation. The proinflammatory effects of NETs were evaluated in vitro and in vivo. Formation of NETs and neutrophil swarming was seen in a mouse model of NA. Additionally, NETs were found to stimulate airway cells to express CXCL1, CXCL2, and CXCL8 via the TLR4/NF-κB pathway, which recruits neutrophils to the inflammation site. Furthermore, prevention of NET formation decreased the recruitment of lung neutrophils and hence reduce neutrophilic inflammation. Additionally, the structural integrity of NETs had no effect on the recruitment of lung neutrophils and neutrophilic inflammation. In NA mice, NETs could trigger airway and alveolar epithelial cells to express chemokines which recruit more neutrophils via activation of the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Rongjun Wan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Juan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Chengping Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Xi Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Cen Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Bingrong Zhao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Xinyue Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Zhiyuan Zheng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yuanyuan Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Provincial Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
97
|
Kim S, Jung H, Kim M, Moon J, Ban G, Kim SJ, Yoo H, Park H. Ceramide/sphingosine-1-phosphate imbalance is associated with distinct inflammatory phenotypes of uncontrolled asthma. Allergy 2020; 75:1991-2004. [PMID: 32072647 DOI: 10.1111/all.14236] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/13/2020] [Accepted: 01/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Asthma is associated with inflammatory dysregulation, but the underlying metabolic signatures are unclear. This study aimed to classify asthma inflammatory phenotypes based on cellular and metabolic features. METHODS To determine cellular and metabolic profiles, we assessed inflammatory cell markers using flow cytometry, sphingolipid (SL) metabolites using LC-MS/MS, and serum cytokines using ELISA. Targeted gene polymorphisms were determined to identify genetic predispositions related to the asthma inflammatory phenotype. RESULTS In total, 137 patients with asthma and 20 healthy controls (HCs) were enrolled. Distinct cellular and metabolic profiles were found between them; patients with asthma showed increased expressions of inflammatory cell markers and higher levels of SL metabolites compared to HCs (P < .05 for all). Cellular markers (CD66+ neutrophils, platelet-adherent eosinophils) and SL metabolic markers (C16:0 and C24:0 ceramides) for uncontrolled asthma were also identified; higher levels were observed in uncontrolled asthma compared to controlled asthma (P < .05 for all). Asthmatics patients with higher levels of CD66+ neutrophils had lower FEV1(%), higher ACQ (but lower AQLO) scores, and higher sphingosine and C16:0 ceramide levels compared to those with low levels of CD66+ neutrophils. Asthmatics patients with higher levels of platelet-adherent eosinophils had higher S1P levels compared to those with lower levels of platelet-adherent eosinophils. Patients carrying TT genotype of ORMDL3 had more CD66+ neutrophils; those with AG/ GG genotypes of SGMS1 exhibited higher platelet-adherent eosinophils. CONCLUSION Patients with uncontrolled asthma possess distinct inflammatory phenotypes including increased CD66+ neutrophils and platelet-adherent eosinophils, with an imbalanced ceramide/S1P rheostat, potentially involving ORMDL3 and SGMS1 gene polymorphisms. Ceramide/S1P synthesis could be targeted to control airway inflammation.
Collapse
Affiliation(s)
- Seung‐Hyun Kim
- Translational Research Laboratory for Inflammatory Disease Clinical Trial Center Ajou University Medical Center Suwon South Korea
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Hae‐Won Jung
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Minji Kim
- Translational Research Laboratory for Inflammatory Disease Clinical Trial Center Ajou University Medical Center Suwon South Korea
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Ji‐Young Moon
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Ga‐Young Ban
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
- Department of Pulmonary, Allergy, and Critical Care Medicine Kangdong Sacred Heart HospitalHallym University College of Medicine Institute for Life Sciences Seoul South Korea
| | - Su Jung Kim
- Asan Institute for Life Sciences Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Hyun‐Ju Yoo
- Asan Institute for Life Sciences Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Hae‐Sim Park
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| |
Collapse
|
98
|
Cicco S, Cicco G, Racanelli V, Vacca A. Neutrophil Extracellular Traps (NETs) and Damage-Associated Molecular Patterns (DAMPs): Two Potential Targets for COVID-19 Treatment. Mediators Inflamm 2020; 2020:7527953. [PMID: 32724296 PMCID: PMC7366221 DOI: 10.1155/2020/7527953] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/11/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
COVID-19 is a pandemic disease caused by the new coronavirus SARS-CoV-2 that mostly affects the respiratory system. The consequent inflammation is not able to clear viruses. The persistent excessive inflammatory response can build up a clinical picture that is very difficult to manage and potentially fatal. Modulating the immune response plays a key role in fighting the disease. One of the main defence systems is the activation of neutrophils that release neutrophil extracellular traps (NETs) under the stimulus of autophagy. Various molecules can induce NETosis and autophagy; some potent activators are damage-associated molecular patterns (DAMPs) and, in particular, the high-mobility group box 1 (HMGB1). This molecule is released by damaged lung cells and can induce a robust innate immunity response. The increase in HMGB1 and NETosis could lead to sustained inflammation due to SARS-CoV-2 infection. Therefore, blocking these molecules might be useful in COVID-19 treatment and should be further studied in the context of targeted therapy.
Collapse
Affiliation(s)
- Sebastiano Cicco
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy
| | - Gerolamo Cicco
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy
| |
Collapse
|
99
|
Kuczia P, Zuk J, Iwaniec T, Soja J, Dropinski J, Malesa-Wlodzik M, Zareba L, Bazan JG, Undas A, Bazan-Socha S. Citrullinated histone H3, a marker of extracellular trap formation, is increased in blood of stable asthma patients. Clin Transl Allergy 2020; 10:31. [PMID: 32685129 PMCID: PMC7354860 DOI: 10.1186/s13601-020-00337-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Emerging data indicates that extracellular traps (ETs), structures formed by various immune cell types, may contribute to the pathology of noninfectious inflammatory diseases. Histone hypercitrullination is an important step in ETs formation and citrullinated histone H3 (H3cit) is considered a novel and specific biomarker of that process. In the present study we have evaluated circulating H3cit in stable asthmatics and investigated its relationship with asthma severity, pulmonary function and selected blood and bronchoalveolar lavage (BAL) biomarkers. METHODS In 60 white adult stable asthmatics and 50 well-matched controls we measured serum levels of H3cit. In asthmatics we also performed bronchoscopy with BAL. We analyzed blood and BAL biomarkers, including interleukin (IL)-4, IL-5, IL-6, IL-10, IL-12p70, IL-17A and interferon γ. For statistical analysis, Mann-Whitney U-test, χ2 test, one-way ANCOVA, ROC curve analysis and univariate linear regression were applied. Independent determinants of H3cit were established in a multiple linear regression model. RESULTS Asthma was characterized by elevated circulating H3cit (17.49 [11.25-22.58] vs. 13.66 [8.66-18.87] ng/ml, p = 0.03). In asthmatics positive associations were demonstrated between serum H3cit and lung function variables, including total lung capacity (TLC) (β = 0.37 [95% CI 0.24-0.50]) and residual volume (β = 0.38 [95% CI 0.25-0.51]). H3cit was increased in asthma patients receiving systemic steroids (p = 0.02), as well as in subjects with BAL eosinophilia above 144 cells/ml (p = 0.02). In asthmatics, but not in controls, circulating H3cit correlated well with number of neutrophils (β = 0.31 [95% CI 0.19-0.44]) and monocytes (β = 0.42 [95% CI 0.29-0.55]) in peripheral blood. Furthermore, BAL macrophages, BAL neutrophils, TLC, high-sensitivity C-reactive protein, Il-12p70 and bronchial obstruction degree were independent determinants of H3cit in a multivariate linear regression model. CONCLUSIONS Asthma is characterized by increased circulating H3cit likely related to the enhanced lung ETs formation. Inhibition of ETs might be a therapeutic option in selected asthma phenotypes, such as neutrophilic asthma.
Collapse
Affiliation(s)
- Pawel Kuczia
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Str, 31-066 Kraków, Poland
| | - Joanna Zuk
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Str, 31-066 Kraków, Poland
| | - Teresa Iwaniec
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Str, 31-066 Kraków, Poland
| | - Jerzy Soja
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Str, 31-066 Kraków, Poland
| | - Jerzy Dropinski
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Str, 31-066 Kraków, Poland
| | - Marta Malesa-Wlodzik
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Str, 31-066 Kraków, Poland
- Allergology and Pulmonology Clinic, Institute of Tuberculosis and Lung Diseases, Regional Branch in Rabka-Zdrój, Rabka-Zdrój, Poland
| | - Lech Zareba
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, 1 Pigonia Str., 35-310 Rzeszow, Poland
| | - Jan G. Bazan
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, 1 Pigonia Str., 35-310 Rzeszow, Poland
| | - Anetta Undas
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Str, 31-066 Kraków, Poland
- Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
| | - Stanislawa Bazan-Socha
- Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawinska Str, 31-066 Kraków, Poland
| |
Collapse
|
100
|
Painter JD, Galle-Treger L, Akbari O. Role of Autophagy in Lung Inflammation. Front Immunol 2020; 11:1337. [PMID: 32733448 PMCID: PMC7358431 DOI: 10.3389/fimmu.2020.01337] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a cellular recycling system found in almost all types of eukaryotic organisms. The system is made up of a variety of proteins which function to deliver intracellular cargo to lysosomes for formation of autophagosomes in which the contents are degraded. The maintenance of cellular homeostasis is key in the survival and function of a variety of human cell populations. The interconnection between metabolism and autophagy is extensive, therefore it has a role in a variety of different cell functions. The disruption or dysfunction of autophagy in these cell types have been implicated in the development of a variety of inflammatory diseases including asthma. The role of autophagy in non-immune and immune cells both lead to the pathogenesis of lung inflammation. Autophagy in pulmonary non-immune cells leads to tissue remodeling which can develop into chronic asthma cases with long term effects. The role autophagy in the lymphoid and myeloid lineages in the pathology of asthma differ in their functions. Impaired autophagy in lymphoid populations have been shown, in general, to decrease inflammation in both asthma and inflammatory disease models. Many lymphoid cells rely on autophagy for effector function and maintained inflammation. In stark contrast, autophagy deficient antigen presenting cells have been shown to have an activated inflammasome. This is largely characterized by a TH17 response that is accompanied with a much worse prognosis including granulocyte mediated inflammation and steroid resistance. The cell specificity associated with changes in autophagic flux complicates its targeting for amelioration of asthmatic symptoms. Differing asthmatic phenotypes between TH2 and TH17 mediated disease may require different autophagic modulations. Therefore, treatments call for a more cell specific and personalized approach when looking at chronic asthma cases. Viral-induced lung inflammation, such as that caused by SARS-CoV-2, also may involve autophagic modulation leading to inflammation mediated by lung resident cells. In this review, we will be discussing the role of autophagy in non-immune cells, myeloid cells, and lymphoid cells for their implications into lung inflammation and asthma. Finally, we will discuss autophagy's role viral pathogenesis, immunometabolism, and asthma with insights into autophagic modulators for amelioration of lung inflammation.
Collapse
Affiliation(s)
- Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lauriane Galle-Treger
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|