51
|
Vitamin D effects in atopic dermatitis. J Am Acad Dermatol 2013; 69:238-44. [DOI: 10.1016/j.jaad.2013.03.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 02/18/2013] [Accepted: 03/08/2013] [Indexed: 11/19/2022]
|
52
|
Geng S, Zhou S, Bi Z, Glowacki J. Vitamin D metabolism in human bone marrow stromal (mesenchymal stem) cells. Metabolism 2013; 62:768-77. [PMID: 23375059 PMCID: PMC3644521 DOI: 10.1016/j.metabol.2013.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 01/10/2023]
Abstract
There are many human extra-renal tissues and cells that biosynthesize 1α,25-dihydroxyvitamin D (1α,25(OH)(2)D) by the action of CYP27B1/1α-hydroxylase. Human marrow stromal cells (hMSCs), also known as mesenchymal stem cells, were isolated from marrow discarded from well-characterized, consented subjects during common orthopedic procedures. Human MSCs can give rise to osteoblasts, chondrocytes, adipocytes, and other lineages. Their in vitro differentiation to osteoblasts is stimulated by 1α,25(OH)(2)D, and recent evidence indicates that they have the capacity to metabolize vitamin D in a regulated manner. Human MSCs express the vitamin D receptor, 25-hydroxylases, 1α-hydroxylase, and 24-hydroxylase; stimulation of in vitro osteoblastogenesis by 25(OH)D depends on the activity of CYP27B1/1α-hydroxylase. The finding that hMSCs are a both a producer and target of 1α,25(OH)(2)D suggests a potential autocrine/paracrine role of vitamin D metabolism in osteoblast differentiation. Expression and enzyme activity of CYP27B1/1α-hydroxylase are upregulated by substrate 25(OH)D and Parathyroid Hormone (PTH) and are downregulated by 1α,25(OH)(2)D. With subject age, there are decreases in basal osteoblast potential and in stimulation of osteoblastogenesis by 1α,25(OH)(2)D, 25(OH)D, and PTH. In vitro treatment with a combination of 25(OH)D and PTH rejuvenated osteoblastogenesis with hMSCs from elders; this was attributable to increases in CYP27B1/1α-hydroxylase and in receptor for each hormone by the reciprocal factor. Other clinical variables beside age, i.e. low serum 25(OH)D or low estimated glomerular filtration rate, are correlated with reduced osteoblastogenesis. These studies suggest that osteoblastogenesis may not be optimal unless there is sufficient serum 25(OH)D substrate for hMSCs to synthesize and respond to local 1α,25(OH)(2)D.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhenggang Bi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Julie Glowacki
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Corresponding author: Tel: 617-732-5397; Fax: 617-732-6937;
| |
Collapse
|
53
|
Tu CL, Bikle DD. Role of the calcium-sensing receptor in calcium regulation of epidermal differentiation and function. Best Pract Res Clin Endocrinol Metab 2013; 27:415-27. [PMID: 23856269 PMCID: PMC3713412 DOI: 10.1016/j.beem.2013.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The epidermis is a stratified squamous epithelium composed of proliferating basal and differentiated suprabasal keratinocytes. It serves as the body's major physical and chemical barrier against infection and harsh environmental insults, as well as preventing excess water loss from the body into the atmosphere. Calcium is a key regulator of the proliferation and differentiation in keratinocytes. Elevated extracellular Ca(2+) concentration ([Ca(2+)]o) raises the levels of intracellular free calcium ([Ca(2+)]i), promotes cell-cell adhesion, and activates differentiation-related genes. Keratinocytes deficient in the calcium-sensing receptor fail to respond to [Ca(2+)]o stimulation and to differentiate, indicating a role for the calcium-sensing receptor in transducing the [Ca(2+)]o signal during differentiation. The concepts derived from in vitro gene knockdown experiments have been evaluated and confirmed in three mouse models in vivo.
Collapse
Affiliation(s)
- Chia-Ling Tu
- Endocrine Unit, Veterans Affair Medical Center and The University of California, San Francisco, CA, USA
| | | |
Collapse
|
54
|
Hon KL, Lau CBS, Hui PCL, Leung PC. Anti-allergic drug discovery in China for eczema: current methods and future strategies. Expert Opin Drug Discov 2013; 8:753-67. [DOI: 10.1517/17460441.2013.795539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
55
|
Bikle DD. Protective actions of vitamin D in UVB induced skin cancer. Photochem Photobiol Sci 2013; 11:1808-16. [PMID: 22990497 DOI: 10.1039/c2pp25251a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Non-melanoma skin cancers (NMSC) are the most common type of cancer, occurring at a rate of over 1 million per year in the United States. Although their metastatic potential is generally low, they can and do metastasize, especially in the immune compromised host, and their surgical treatment is often quite disfiguring. Ultraviolet radiation (UVR) as occurs with sunlight exposure is generally regarded as causal for these malignancies, but UVR is also required for vitamin D synthesis in the skin. Based on our own data and that reported in the literature, we hypothesize that the vitamin D produced in the skin serves to suppress UVR epidermal tumor formation. In this review we will first discuss the evidence supporting the conclusion that the vitamin D receptor (VDR), with or without its ligand 1,25-dihydroxyvitamin D, limits the propensity for cancer formation following UVR. We will then explore three potential mechanisms for this protection: inhibition of proliferation and stimulation of differentiation, immune regulation, and stimulation of DNA damage repair (DDR).
Collapse
Affiliation(s)
- Daniel D Bikle
- Department of Medicine, San Francisco VA Medical Center and University of California, San Francisco, CA, USA.
| |
Collapse
|
56
|
Abstract
The vitamin D signal transduction system involves a series of cytochrome P450-containing sterol hydroxylases to generate and degrade the active hormone, 1α,25-dihydroxyvitamin D3, which serves as a ligand for the vitamin D receptor-mediated transcriptional gene expression described in companion articles in this review series. This review updates our current knowledge of the specific anabolic cytochrome P450s involved in 25- and 1α-hydroxylation, as well as the catabolic cytochrome P450 involved in 24- and 23-hydroxylation steps, which are believed to initiate inactivation of the vitamin D molecule. We focus on the biochemical properties of these enzymes; key residues in their active sites derived from crystal structures and mutagenesis studies; the physiological roles of these enzymes as determined by animal knockout studies and human genetic diseases; and the regulation of these different cytochrome P450s by extracellular ions and peptide modulators. We highlight the importance of these cytochrome P450s in the pathogenesis of kidney disease, metabolic bone disease, and hyperproliferative diseases, such as psoriasis and cancer; as well as explore potential future developments in the field.
Collapse
Affiliation(s)
- Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
57
|
Antico A, Tozzoli R, Giavarina D, Tonutti E, Bizzaro N. Hypovitaminosis D as predisposing factor for atrophic type A gastritis: a case-control study and review of the literature on the interaction of Vitamin D with the immune system. Clin Rev Allergy Immunol 2012; 42:355-64. [PMID: 21286859 DOI: 10.1007/s12016-011-8255-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,25-Dihydroxyvitamin D displays immunoregulatory and anti-inflammatory properties, and the cells involved in innate and adaptive immune response express the vitamin D receptor and can both produce and respond to this hormone. This article aims at describing the complex immune regulatory role of vitamin D and depicting whether a correlation exists between atrophic type A gastritis and hypovitaminosis. We studied 62 autoimmune gastritis (AIG) patients and compared them to 54 lymphocytic gastritis patients, 21 Helicobacter pylori gastritis patients and 212 healthy subjects. We also statistically analyzed vitamin D concentration in 36,384 outpatients referred to our clinical laboratories. 25-Hydroxyvitamin D levels, the measurable metabolite used to determine vitamin D status in plasma, were measured by a chemiluminescent method. Average level of 25-OHD in AIG subjects was 9.8 ± 5.6 ng/mL (95% confidence interval (CI) 8.4-11.2), 11.1 ± 8.4 (CI 7.5-14.7) in H. pylori gastritis patients, 22.2 ± 13.5 (CI 18.6-25.8) in nonspecific lymphocytic gastritis patients, 21.3 ± 12.2 (CI 19.7-22.9) in healthy subjects, and 21.8 ± 13.1 (CI 21.7-21.9) in the 36,384 outpatients. Vitamin D levels in AIG patients were significantly lower than in patients with nonspecific gastritis or in the general population, supporting the hypothesis that hypovitaminosis D might be a risk factor for the development of autoimmune diseases. The low vitamin D concentration in H. pylori gastritis patients might act as predisposing factor for a more severe Th1-type aggression to the stomach epithelium.
Collapse
Affiliation(s)
- Antonio Antico
- Department of Clinical Pathology, Cittadella General Hospital, Cittadella, Italy
| | | | | | | | | |
Collapse
|
58
|
Abstract
A major function of the skin is to provide a barrier to the movement of water and electrolytes, which is required for life in a terrestrial environment. This permeability barrier is localized to the stratum corneum and is mediated by extracellular lipid-enriched lamellar membranes, which are delivered to the extracellular spaces by the secretion of lamellar bodies by stratum granulosum cells. A large number of factors have been shown to regulate the formation of this permeability barrier. Specifically, lamellar body secretion and permeability barrier formation are accelerated by decreases in the calcium content in the stratum granulosum layer of the epidermis. In addition, increased expression of cytokines and growth factors and the activation of nuclear hormone receptors (peroxisome proliferator-activated receptors, liver X receptors, vitamin D receptor) accelerate permeability barrier formation. In contrast, nitric oxide, protease-activated receptor 2 activation, glucocorticoids, and testosterone inhibit permeability barrier formation. The ability of a variety of factors to regulate permeability barrier formation allows for a more precise and nuanced regulation.
Collapse
|
59
|
Demay MB. The hair cycle and Vitamin D receptor. Arch Biochem Biophys 2012; 523:19-21. [DOI: 10.1016/j.abb.2011.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/30/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
|
60
|
Welsh J. Cellular and molecular effects of vitamin D on carcinogenesis. Arch Biochem Biophys 2012; 523:107-14. [PMID: 22085499 PMCID: PMC3295909 DOI: 10.1016/j.abb.2011.10.019] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/31/2011] [Indexed: 12/12/2022]
Abstract
Epidemiologic data suggest that the incidence and severity of many types of cancer inversely correlates with indices of vitamin D status. The vitamin D receptor (VDR) is highly expressed in epithelial cells at risk for carcinogenesis including those resident in skin, breast, prostate and colon, providing a direct molecular link by which vitamin D status impacts on carcinogenesis. Consistent with this concept, activation of VDR by its ligand 1,25-dihydroxyvitamin D (1,25D) triggers comprehensive genomic changes in epithelial cells that contribute to maintenance of the differentiated phenotype, resistance to cellular stresses and protection of the genome. Many epithelial cells also express the vitamin D metabolizing enzyme CYP27B1 which enables autocrine generation of 1,25D from the circulating vitamin D metabolite 25-hydroxyvitamin D (25D), critically linking overall vitamin D status with cellular anti-tumor actions. Furthermore, pre-clinical studies in animal models has demonstrated that dietary supplementation with vitamin D or chronic treatment with VDR agonists decreases tumor development in skin, colon, prostate and breast. Conversely, deletion of the VDR gene in mice alters the balance between proliferation and apoptosis, increases oxidative DNA damage, and enhances susceptibility to carcinogenesis in these tissues. Because VDR expression is retained in many human tumors, vitamin D status may be an important modulator of cancer progression in persons living with cancer. Collectively, these observations have reinforced the need to further define the molecular actions of the VDR and the human requirement for vitamin D in relation to cancer development and progression.
Collapse
Affiliation(s)
- JoEllen Welsh
- Cancer Research Center, University at Albany, Rensselaer, NY 12144, USA.
| |
Collapse
|
61
|
Rosen CJ, Adams JS, Bikle DD, Black DM, Demay MB, Manson JE, Murad MH, Kovacs CS. The nonskeletal effects of vitamin D: an Endocrine Society scientific statement. Endocr Rev 2012; 33:456-92. [PMID: 22596255 PMCID: PMC3365859 DOI: 10.1210/er.2012-1000] [Citation(s) in RCA: 495] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/18/2012] [Indexed: 12/18/2022]
Abstract
Significant controversy has emerged over the last decade concerning the effects of vitamin D on skeletal and nonskeletal tissues. The demonstration that the vitamin D receptor is expressed in virtually all cells of the body and the growing body of observational data supporting a relationship of serum 25-hydroxyvitamin D to chronic metabolic, cardiovascular, and neoplastic diseases have led to widespread utilization of vitamin D supplementation for the prevention and treatment of numerous disorders. In this paper, we review both the basic and clinical aspects of vitamin D in relation to nonskeletal organ systems. We begin by focusing on the molecular aspects of vitamin D, primarily by examining the structure and function of the vitamin D receptor. This is followed by a systematic review according to tissue type of the inherent biological plausibility, the strength of the observational data, and the levels of evidence that support or refute an association between vitamin D levels or supplementation and maternal/child health as well as various disease states. Although observational studies support a strong case for an association between vitamin D and musculoskeletal, cardiovascular, neoplastic, and metabolic disorders, there remains a paucity of large-scale and long-term randomized clinical trials. Thus, at this time, more studies are needed to definitively conclude that vitamin D can offer preventive and therapeutic benefits across a wide range of physiological states and chronic nonskeletal disorders.
Collapse
|
62
|
Tu CL, Crumrine DA, Man MQ, Chang W, Elalieh H, You M, Elias PM, Bikle DD. Ablation of the calcium-sensing receptor in keratinocytes impairs epidermal differentiation and barrier function. J Invest Dermatol 2012; 132:2350-2359. [PMID: 22622426 PMCID: PMC3434298 DOI: 10.1038/jid.2012.159] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The calcium-sensing receptor (CaR) plays an essential role in mediating Ca2+-induced keratinocyte differentiation in vitro. In this study, we generated keratinocyte-specific CaR knockout (EpidCaR-/-) mice to investigate the function of the CaR in epidermal development in vivo. EpidCaR-/- mice exhibited a delay in permeability barrier formation during embryonic development. Ion capture cytochemistry detected the loss of the epidermal Ca2+ gradient in the EpidCaR-/- mice. The expression of terminal differentiation markers and key enzymes mediating epidermal sphingolipid transport and processing in the EpidCaR-/- epidermis was significantly reduced. The EpidCaR-/- epidermis displayed a marked decrease in the number of lamellar bodies and lamellar body secretion, thinner lipid-bound cornified envelopes and a defective permeability barrier. Consistent with in vivo results, epidermal keratinocytes cultured from EpidCaR-/- mice demonstrated abnormal Ca2+I handling and diminished differentiation. The impairment in epidermal differentiation and permeability barrier in EpidCaR-/- mice maintained on a low calcium (0.02%) diet is more profound and persistent with age then in EpidCaR-/- mice maintained on a normal calcium (1.3%) diet. Deleting CaR perturbs the epidermal Ca2+ gradient and impairs keratinocyte differentiation and permeability barrier homeostasis, indicating a key role for the CaR in normal epidermal development.
Collapse
Affiliation(s)
- Chia-Ling Tu
- Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, California, USA.
| | - Debra A Crumrine
- Dermatology Service, Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, California, USA
| | - Mao-Qiang Man
- Dermatology Service, Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, California, USA
| | - Wenhan Chang
- Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, California, USA
| | - Hashem Elalieh
- Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, California, USA
| | - Michael You
- Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, California, USA
| | - Peter M Elias
- Dermatology Service, Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, California, USA
| | - Daniel D Bikle
- Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
63
|
Mediator1: an important intermediary of vitamin D receptor-regulated epidermal function and hair follicle biology. J Invest Dermatol 2012; 132:1068-70. [PMID: 22418940 DOI: 10.1038/jid.2012.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Considerable data in the literature support the idea that 1,25-dihydroxyvitamin D3 and the vitamin D receptor (VDR) are involved in regulating skin biology. Studies using cultured keratinocytes, artificial human skin, and transgenic mouse models, as well as observations in patients with rickets, provide evidence of this pathway's importance in epidermal proliferation and differentiation and the hair growth cycle. The report by Oda et al. in this issue also indicates an important role of the VDR coactivator mediator 1 in these processes.
Collapse
|
64
|
Ritter CS, Haughey BH, Armbrecht HJ, Brown AJ. Distribution and regulation of the 25-hydroxyvitamin D3 1α-hydroxylase in human parathyroid glands. J Steroid Biochem Mol Biol 2012; 130:73-80. [PMID: 22326730 DOI: 10.1016/j.jsbmb.2012.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 01/22/2023]
Abstract
Parathyroid glands express the 25-hydroxyvitamin D(3) 1α-hydroxylase (1αOHase). 1,25-dihydroxyvitamin D(3) (calcitriol) synthesized by extrarenal tissues generally does not enter the circulation, but plays an autocrine/paracrine role specific to the cell type, and is regulated by the needs of that particular cell. While the role of calcitriol produced in the parathyroid glands presumably is to suppress PTH and cell growth, its regulation in this cell type has not been defined. In the present study, we found that regulation of the human parathyroid 1αOHase differs from the renal enzyme in that it is induced by FGF-23 and extracellular calcium. Hyperplastic parathyroid glands from patients with chronic kidney failure normally display a heterogeneous cellularity. We found that the 1αOHase is expressed at much higher levels in oxyphil cells than in chief cells in these patients. Recent findings indicate that oxyphil cell content is increased by treatment with calcium receptor activators (calcimimetics). Here, we demonstrate that the calcimimetic cinacalcet increases the expression of 1αOHase in human parathyroid cultures. Additionally, we found that the 1αOHase in human parathyroid cultures is functionally active, as evidenced by the ability of the enzyme to 1-hydroxylate 25(OH)D(3) in parathyroid monolayers. Calcium, as well as cinacalcet, also induced expression of the degradation enzyme 24-hydroxylase, indicating the presence of a negative feedback system in the parathyroid cells. Therefore, local production of 1αOHase suggests an autocrine/paracrine role in regulating parathyroid function and may mediate, in part, the suppression of PTH by calcium and FGF-23.
Collapse
Affiliation(s)
- Cynthia S Ritter
- Renal Division, Washington University School of Medicine, St. Louis, MO 63110, United States.
| | | | | | | |
Collapse
|
65
|
Fernandez TL, Dawson RA, Van Lonkhuyzen DR, Kimlin MG, Upton Z. A tan in a test tube -in vitro models for investigating ultraviolet radiation-induced damage in skin. Exp Dermatol 2012; 21:404-10. [DOI: 10.1111/j.1600-0625.2012.01485.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
66
|
Extrarenal expression of the 25-hydroxyvitamin D-1-hydroxylase. Arch Biochem Biophys 2012; 523:95-102. [PMID: 22446158 DOI: 10.1016/j.abb.2012.02.016] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 12/19/2022]
Abstract
Like the vitamin D receptor (VDR), the CYP27B1-hydroxylase is expressed widely in human tissues. This expression profile establishes the potential for interaction of the VDR with the product of the CYP27B1, 1,25-dihydroxyvitamin D (1,25-(OH)(2)D), in either an intracrine or paracrine mode. This expansive expression profile also suggests that the local production and action of 1,25-(OH)(2)D to regulate VDR-directed gene expression may be similarly wide-ranging and distinct from what occurs in the kidney; the proximal renal tubular epithelial cell is the richest source of the CYP27B1 and the site for production of 1,25-(OH)(2)D destined to function as a hormone. Existence of the CYP27B1 at extrarenal sites has been widely documented, although the functional impact of the enzyme in these tissues has yet to be fully demonstrated. Two notable exceptions are the disease-activated macrophage (e.g., in sarcoidosis or tuberculosis) and the placenta. These two tissues are capable of generating enough 1,25-(OH)(2)D so as to be detectable in the general circulation. As such, this review will focus on CYP27B1 expression only at these two sites, theorizing that 1,25-(OH)(2)D production at these sites is for the purpose of local immunoregulatory function, not for controlling calcium balance in the host or the fetus.
Collapse
|
67
|
Abstract
The keratinocytes of the skin are unique in being not only the primary source of vitamin D for the body, but in possessing both the enzymatic machinery to metabolize the vitamin D produced to active metabolites (in particular 1,25(OH)(2)D) and the vitamin D receptor (VDR) that enables the keratinocytes to respond to the 1,25(OH)(2)D thus generated. Numerous functions of the skin are regulated by vitamin D and/or its receptor. These include inhibition of proliferation, stimulation of differentiation including formation of the permeability barrier, promotion of innate immunity, regulation of the hair follicle cycle, and suppression of tumor formation. Regulation of these actions is exerted by a number of different coregulator complexes including the coactivators vitamin D receptor interacting protein (DRIP) complex also known as Mediator and the steroid receptor coactivator (SRC) family (of which SRC 2 and 3 are found in keratincytes), the inhibitor hairless (Hr), and β-catenin whose impact on VDR function is complex. Different coregulators appear to be involved in different VDR regulated functions. This review will examine the various functions of vitamin D and its receptor in the skin, and explore the mechanisms by which these functions are regulated.
Collapse
Affiliation(s)
- Daniel D Bikle
- Veterans Affairs Medical Center/University of California, San Francisco, San Francisco, CA 94121, USA.
| |
Collapse
|
68
|
Vitamin D Receptor Activation Improves Allergen-Triggered Eczema in Mice. J Invest Dermatol 2012; 132:330-6. [DOI: 10.1038/jid.2011.296] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
69
|
Abstract
Fundamental to understanding the way in which perturbations in the vitamin D endocrine system can affect human health is an appreciation of the steps involved in the production of the well-recognized active hormonal form, 1,25-dihydroxyvitamin D(3). Thus this paper focuses first on the nature and regulation of the two enzymes responsible for the production of 1,25-dihydroxyvitamin D(3), the 25-hydroxylase in the liver and the 1α-hydroxylase in the kidney. The most important regulators of the 1α-hydroxylase in the kidney are 1,25-dihydroxyvitamin D(3) itself, parathyroid hormone and FGF23. The extent and importance of extra-renal, 1,25-dihydroxyvitamin D(3) synthesis is then considered. Finally the features of the 24R-hydroxylase, which produces 24R,25-dihydroxyvitamin D(3) in the kidney and is induced by and inactivated, 1,25-dihydroxyvitamin D(3)in target cells are described.
Collapse
Affiliation(s)
- Helen L Henry
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
70
|
Abstract
Vitamin D has been produced by plants and animals almost from the time life began. The ability to transport and metabolize vitamin D to more active forms evolved as the structures of plants and animals became more complex, and the cells within these organisms took on more specialized functions. In higher-order animals, the vitamin D receptor (VDR) is found in nearly every cell, and the ability of the cell to produce the active hormone, 1,25(OH)2D, is also widely distributed. Furthermore, the physiological functions with which vitamin D signalling is now associated are as diverse as the tissues in which the VDR is located. Why is this, and is there a common theme? This viewpoint article argues that there is. All cells maintain a fairly constant and submicromolar concentration of free calcium. Calcium is an important regulator of many processes within the cell. The ebb and flow of calcium within cells is controlled by calcium pumps, antiporters and channels. Animals with calcified exo- or endoskeletons have an additional need for calcium, a need that changes during the life cycle of the organism. In this article, I make the case that vitamin D signalling evolved to enable the organism to effectively regulate calcium flux, storage and signalling and that such regulation is critical for the evolutionary process.
Collapse
Affiliation(s)
- Daniel D Bikle
- San Francisco Veterans Affairs Medical Center, University of California at San Francisco, CA, USA.
| |
Collapse
|
71
|
Searing DA, Leung DYM. Vitamin D in atopic dermatitis, asthma and allergic diseases. Immunol Allergy Clin North Am 2011; 30:397-409. [PMID: 20670821 DOI: 10.1016/j.iac.2010.05.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review examines the scientific evidence behind the hypothesis that vitamin D plays a role in the pathogenesis of allergic diseases, along with a focus on emerging data regarding vitamin D and atopic dermatitis. Elucidated molecular interactions of vitamin D with components of the immune system and clinical data regarding vitamin D deficiency and atopic diseases are discussed. The rationale behind the sunshine hypothesis, laboratory evidence supporting links between vitamin D deficiency and allergic diseases, the clinical evidence for and against vitamin D playing a role in allergic diseases, and the emerging evidence regarding the potential use of vitamin D to augment the innate immune response in atopic dermatitis are reviewed.
Collapse
Affiliation(s)
- Daniel A Searing
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, National Jewish Health, 1400 Jackson Street, K731a, Denver, CO 80206, USA
| | | |
Collapse
|
72
|
Teichert A, Elalieh H, Bikle D. Disruption of the hedgehog signaling pathway contributes to the hair follicle cycling deficiency in Vdr knockout mice. J Cell Physiol 2010; 225:482-9. [PMID: 20458748 DOI: 10.1002/jcp.22227] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mice null for the Vitamin D receptor (VdrKO) have a disrupted first hair follicle cycle and aborted subsequent hair follicle cycling. We examined the expression of different markers and mediators of hair follicle cycling in the hair follicle of the VdrKO mouse during days 13-22 when the hair follicle normally initiates and completes the first catagen. We compared the expression of those genes in mice with a nonsense mutation in hairless (Rhino), which have a similar alopecia phenotype, and to Cyp27b1 null mice which are deficient in the production of 1,25(OH)2D3, the Vdr ligand, but display normal hair follicle cycling. Our results demonstrate the down regulation of hair follicle markers and the alteration of expression of hedgehog (Hh), Wnt, Fgf, and Tgfbeta pathways in VdrKO and Rhino mice, but not in Cyp27b1KO mice. Treatment of VdrKO mice with an agonist to the Hh pathway partially restored hair follicle cycling, suggesting a role of this pathway in the regulation of hair follicle cycling by VDR. These results suggest that Vdr regulates directly or indirectly the expression of genes required for hair follicle cycling, including Hh signaling, independent of 1,25(OH)2D3.
Collapse
Affiliation(s)
- Arnaud Teichert
- University of California, San Francisco, California 94121, USA
| | | | | |
Collapse
|
73
|
Gorman S, Judge MA, Hart PH. Gene regulation by 1,25-dihydroxyvitamin D3 in CD4+CD25+ cells is enabled by IL-2. J Invest Dermatol 2010; 130:2368-76. [PMID: 20574434 DOI: 10.1038/jid.2010.167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Vitamin D may be responsible for reducing the development and severity of autoimmune and allergic diseases. Topically applied 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) enhances the immunoregulatory ability of CD4+CD25+ T cells residing in the skin-draining lymph nodes (SDLNs) of mice. The mechanisms responsible were investigated by examining the expression of 84 cytokine and cytokine-related genes in a 96-well gene array. CD4+CD25+ cells isolated from the SDLNs of BALB/c mice, 24 and 96 hours after topical treatment with 1,25(OH)(2)D(3), consistently expressed increased IL-2 mRNA levels and also secreted enhanced quantities of IL-2 after ex vivo stimulation with phorbol 12-myristate 13-acetate and ionomycin. CD4+CD25+ cells from the lymph nodes of naive mice constitutively express the vitamin D receptor, allowing direct modulation by 1,25(OH)(2)D(3). However, in vitro treatment with 1,25(OH)(2)D(3) did not modify the expression of 84 tested cytokine and cytokine-related mRNAs. It was only in the presence of IL-2 that 1,25(OH)(2)D(3) increased the expression of genes including IL-2 and TLR4. Further, 1,25(OH)(2)D(3) enhanced the ability of IL-2 to stimulate CD4+CD25+ cells to proliferate in vitro and also regulate contact hypersensitivity responses on adoptive transfer into naive mice. Therefore, 1,25(OH)(2)D(3) enabled by IL-2 can directly enhance the regulatory potential of CD4+CD25+ T cells to control immune disease.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia.
| | | | | |
Collapse
|
74
|
Hong SP, Oh Y, Jung M, Lee S, Jeon H, Cho MY, Lee SH, Choi EH. Topical calcitriol restores the impairment of epidermal permeability and antimicrobial barriers induced by corticosteroids. Br J Dermatol 2010; 162:1251-60. [PMID: 20302580 DOI: 10.1111/j.1365-2133.2010.09760.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The active form of vitamin D(3) , calcitriol, is widely used for the treatment of psoriasis, with or without topical corticosteroids. Topical corticosteroids are known to disrupt permeability and antimicrobial barriers, even with short-term use. Yet, the effect of topical calcitriol on epidermal permeability and antimicrobial barriers disrupted by topical corticosteroids has not been determined. OBJECTIVES To examine the effect of calcitriol on epidermal permeability and antimicrobial barrier function that has been impaired by corticosteroids, as well as to elucidate the mechanism of improvement. MATERIAL AND METHODS Topical calcitriol or the control vehicle was applied to each flank of hairless mice 20 min after treatment with topical clobetasol propionate and repeated every 12 h for 3·5 days. Barrier function assessment, Nile red staining, electron microscopy, immunohistochemistry, Western blotting, and real-time reverse transcriptase-polymerase chain reaction studies were performed 24 h after the last application. RESULTS Epidermis co-treated with topical calcitriol showed an improvement of stratum corneum integrity and barrier recovery, more intense fluorescence staining with Nile red, and an increase in lamellar body (LB) maturation and density, as well as upregulation of major epidermal lipid synthesis-related enzymes (3-hydroxy-3-methylglutaryl-CoA, serine-palmitoyl transferase and fatty acid synthase), mouse beta-defensin 3, cathelin-related antimicrobial peptide and vitamin D receptor. CONCLUSIONS We found that topical calcitriol restored both the epidermal permeability and antimicrobial barrier that had been impaired by corticosteroids. This restoration was mediated by both an activation of the cutaneous vitamin D pathway and an increase of epidermal lipids and antimicrobial peptides, promoted by the formation of the LB and the activity of epidermal lipid synthesis-related enzymes.
Collapse
Affiliation(s)
- S P Hong
- Department of Dermatology, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
The keratinocytes of the skin are unique in being not only the primary source of vitamin D for the body, but also possessing the enzymatic machinery to metabolize vitamin D to active metabolites [in particular, 1,25 dihydroxyvitamin D (1,25(OH)(2)D)] and the vitamin D receptor (VDR) that enables the keratinocytes to respond to the 1,25(OH)(2)D they produce. Numerous functions of the skin are regulated by vitamin D and/or its receptor: these include inhibition of proliferation, stimulation of differentiation including formation of the permeability barrier, promotion of innate immunity, regulation of the hair follicle cycle, and suppression of tumor formation. Regulation of these actions is exerted by a number of different coregulators including the coactivators DRIP and SRC, a less well known inhibitor, hairless, and beta-catenin. Different coregulators appear to be involved in different VDR-regulated functions. This review examines the various functions of vitamin D and its receptor, and to the extent known explores the mechanisms by which these functions are regulated.
Collapse
Affiliation(s)
- Daniel D Bikle
- Veterans Affairs Medical Center, University of California, 4150 Clement St (111N), San Francisco, CA 94121, USA.
| |
Collapse
|
76
|
Goltzman D. 25-Hydroxyvitamin D-1α Hydroxylase: Studies in Mouse Models and Implications for Human Disease. Clin Rev Bone Miner Metab 2009. [DOI: 10.1007/s12018-009-9032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
77
|
Vantieghem K, Kissmeyer AM, De Haes P, Bouillon R, Segaert S. UVB-induced production of 1,25-dihydroxyvitamin D3 and vitamin D activity in human keratinocytes pretreated with a sterol delta7-reductase inhibitor. J Cell Biochem 2009; 98:81-92. [PMID: 16365879 DOI: 10.1002/jcb.20756] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The skin fulfills an important role in the vitamin D photo-endocrine system. Epidermis is not only the site of vitamin D3 photoproduction. In addition, epidermal keratinocytes contain the vitamin D receptor (VDR) and possess 25-hydroxylase and 1alpha-hydroxylase activity indicating that all components of the vitamin D system are present. We investigated whether these components cooperate in inducing vitamin D activity upon treatment with physiological UVB doses. Upon irradiation, 24-hydroxylase mRNA was induced in keratinocytes pretreated with a sterol Delta7-reductase inhibitor (BM15766) whereby the 7-dehydrocholesterol content increased by 300-fold. Transfection experiments with a vitamin D response element containing construct confirmed VDR-dependent gene activation. Furthermore, the UVB-dependent induction of 24-hydroxylase was blocked by the cytochrome-P450 inhibitor ketoconazole. The 24-hydroxylase inducing photoproduct was transferable to unirradiated keratinocytes by medium and cellular homogenates of UVB-irradiated, BM15766-pretreated cells and was identified as 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] by high-performance liquid chromatography with tandem mass spectrometric detection. Addition of vitamin D binding protein blunted UVB-induced 24-hydroxylase suggesting the possibility of a paracrine or autocrine role for 1,25(OH)2D3. In conclusion, epidermal keratinocytes can produce vitamin D3, convert it to 1,25(OH)2D3 and respond to it upon UVB irradiation in the absence of exogenous 7-dehydrocholesterol and therefore contain a unique and complete photo-endocrine vitamin D system.
Collapse
Affiliation(s)
- Katleen Vantieghem
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
78
|
|
79
|
|
80
|
Abstract
Vitamin D has pleiotropic effects that go beyond its traditional role in calcium homeostasis. Hundreds of genes with vitamin D receptor response elements directly or indirectly influence cell cycling and proliferation, differentiation, and apoptosis. Vitamin D compounds also have effects on cell function that are nongenomic. The noncalcemic actions of vitamin D influence normal and pathological cell growth, carcinogenesis, immune function, and cardiovascular physiology. This review examines many of the various mechanisms by which vitamin D alters cellular growth and differentiation and explores cell-specific factors that influence responsiveness to vitamin D.
Collapse
Affiliation(s)
- Sam Samuel
- The Western New York Veterans Administration Medical Center, University at Buffalo, State University of New York, Buffalo, New York 14215, USA
| | | |
Collapse
|
81
|
Lehmann B. Role of the vitamin D3pathway in healthy and diseased skin - facts, contradictions and hypotheses. Exp Dermatol 2009; 18:97-108. [DOI: 10.1111/j.1600-0625.2008.00810.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
82
|
Song SP, Lv CZ, Feingold KR, Hou QN, Li ZY, Guo CY, Elias PM, Man MQ. Abnormalities in stratum corneum function in patients recovered from leprosy. Skin Pharmacol Physiol 2009; 22:131-6. [PMID: 19136834 DOI: 10.1159/000189802] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 10/09/2008] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND OBJECTIVES Leprosy involves both the skin and peripheral nervous system. Leprosy patients display an increased incidence of xerosis and altered sensory thresholds, which persist in previously active skin sites. We assessed here whether alterations in stratum corneum (SC) function persist in cured leprosy, and the relationship of epidermal functional abnormalities to each clinical subtype of leprosy. METHODS A total of 43 cured leprosy subjects and 29 normal control subjects were enrolled in this study. Basal skin surface pH, SC hydration, permeability barrier function as well as barrier recovery rates were measured over previously involved skin sites with a skin physiology monitor. One-way ANOVA and two-tailed Student's t test were used to determine the significance between 2 groups and 3 or more groups, respectively. RESULTS Competent barrier function was observed in all subtypes of cured leprosy subjects. All cured leprosy subjects except those with the borderline tuberculoid type exhibited a significantly lower SC hydration in comparison with normal subjects. Skin surface pH was significantly elevated in all cured leprosy subjects in comparison with normal subjects. CONCLUSIONS A varied spectrum of alterations in SC function remains in all subjects who have recovered from leprosy, but the spectrum of SC functional abnormalities varies with disease subtype.
Collapse
Affiliation(s)
- S-P Song
- Dalian Skin Disease Hospital, Liaoning, PR China
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
CONTEXT Vitamin D receptors are found in most tissues, not just those participating in the classic actions of vitamin D such as bone, gut, and kidney. These nonclassic tissues are therefore potential targets for the active metabolite of vitamin D, 1,25(OH)(2)D. Furthermore, many of these tissues also contain the enzyme CYP27B1 capable of producing 1,25(OH)(2)D from the circulating form of vitamin D. This review was intended to highlight the actions of 1,25(OH)(2)D in several of these tissues but starts with a review of vitamin D production, metabolism, and molecular mechanism. EVIDENCE ACQUISITION Medline was searched for articles describing actions of 1,25(OH)(2)D on parathyroid hormone and insulin secretion, immune responses, keratinocytes, and cancer. EVIDENCE SYNTHESIS Vitamin D production in the skin provides an efficient source of vitamin D. Subsequent metabolism to 1,25(OH)(2)D within nonrenal tissues differs from that in the kidney. Although vitamin D receptor mediates the actions of 1,25(OH)(2)D, regulation of transcriptional activity is cell specific. 1,25(OH)(2)D inhibits PTH secretion but promotes insulin secretion, inhibits adaptive immunity but promotes innate immunity, and inhibits cell proliferation but stimulates their differentiation. CONCLUSIONS The nonclassic actions of vitamin D are cell specific and provide a number of potential new clinical applications for 1,25(OH)(2)D(3) and its analogs. However, the use of vitamin D metabolites and analogs for these applications remains limited by the classic actions of vitamin D leading to hypercalcemia and hypercalcuria.
Collapse
Affiliation(s)
- Daniel Bikle
- Veterans Affairs Medical Center (111N), 4150 Clement Street, San Francisco, California 94121, USA.
| |
Collapse
|
84
|
|
85
|
Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 2008; 29:726-76. [PMID: 18694980 PMCID: PMC2583388 DOI: 10.1210/er.2008-0004] [Citation(s) in RCA: 1170] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 07/08/2008] [Indexed: 02/06/2023]
Abstract
The vitamin D endocrine system is essential for calcium and bone homeostasis. The precise mode of action and the full spectrum of activities of the vitamin D hormone, 1,25-dihydroxyvitamin D [1,25-(OH)(2)D], can now be better evaluated by critical analysis of mice with engineered deletion of the vitamin D receptor (VDR). Absence of a functional VDR or the key activating enzyme, 25-OHD-1alpha-hydroxylase (CYP27B1), in mice creates a bone and growth plate phenotype that mimics humans with the same congenital disease or severe vitamin D deficiency. The intestine is the key target for the VDR because high calcium intake, or selective VDR rescue in the intestine, restores a normal bone and growth plate phenotype. The VDR is nearly ubiquitously expressed, and almost all cells respond to 1,25-(OH)(2)D exposure; about 3% of the mouse or human genome is regulated, directly and/or indirectly, by the vitamin D endocrine system, suggesting a more widespread function. VDR-deficient mice, but not vitamin D- or 1alpha-hydroxylase-deficient mice, and man develop total alopecia, indicating that the function of the VDR and its ligand is not fully overlapping. The immune system of VDR- or vitamin D-deficient mice is grossly normal but shows increased sensitivity to autoimmune diseases such as inflammatory bowel disease or type 1 diabetes after exposure to predisposing factors. VDR-deficient mice do not have a spontaneous increase in cancer but are more prone to oncogene- or chemocarcinogen-induced tumors. They also develop high renin hypertension, cardiac hypertrophy, and increased thrombogenicity. Vitamin D deficiency in humans is associated with increased prevalence of diseases, as predicted by the VDR null phenotype. Prospective vitamin D supplementation studies with multiple noncalcemic endpoints are needed to define the benefits of an optimal vitamin D status.
Collapse
Affiliation(s)
- Roger Bouillon
- Katholieke Universiteit Leuven, Laboratory of Experimental Medicine and Endocrinology, Herestraat 49, O&N 1 bus 902, 3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Norman AW. From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr 2008; 88:491S-499S. [PMID: 18689389 DOI: 10.1093/ajcn/88.2.491s] [Citation(s) in RCA: 613] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
New knowledge of the biological and clinical importance of the steroid hormone 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] and its receptor, the vitamin D receptor (VDR), has resulted in significant contributions to good bone health. However, worldwide reports have highlighted a variety of vitamin D insufficiency and deficiency diseases. Despite many publications and scientific meetings reporting advances in vitamin D science, a disturbing realization is growing that the newer scientific and clinical knowledge is not being translated into better human health. Over the past several decades, the biological sphere of influence of vitamin D(3), as defined by the tissue distribution of the VDR, has broadened at least 9-fold from the target organs required for calcium homeostasis (intestine, bone, kidney, and parathyroid). Now, research has shown that the pluripotent steroid hormone 1alpha,25(OH)(2)D(3) initiates the physiologic responses of >/=36 cell types that possess the VDR. In addition to the kidney's endocrine production of circulating 1alpha,25(OH)(2)D(3,) researchers have found a paracrine production of this steroid hormone in >/=10 extrarenal organs. This article identifies the fundamentals of the vitamin D endocrine system, including its potential for contributions to good health in 5 physiologic arenas in which investigators have clearly documented new biological actions of 1alpha,25(OH)(2)D(3) through the VDR. As a consequence, the nutritional guidelines for vitamin D(3) intake (defined by serum hydroxyvitamin D(3) concentrations) should be reevaluated, taking into account the contributions to good health that all 36 VDR target organs can provide.
Collapse
Affiliation(s)
- Anthony W Norman
- Department of Biochemistry and Division of Biomedical Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
87
|
Biopositive effects of low-dose UVB on epidermis: coordinate upregulation of antimicrobial peptides and permeability barrier reinforcement. J Invest Dermatol 2008; 128:2880-7. [PMID: 18580964 DOI: 10.1038/jid.2008.169] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Whereas high-dose ultraviolet B (UVB) is detrimental to the epidermal permeability barrier, suberythemal doses of UVB are used to treat atopic dermatitis (AD), which is characterized by defective permeability barrier and antimicrobial function. As epidermal permeability barrier and antimicrobial peptide (AMP) expression are coregulated and interdependent functions, we hypothesized that suberythemal doses of UVB exposure could regulate AMP expression in parallel with permeability barrier function. Hairless mice were exposed to 40 mJ cm(-2) UVB (about 1/2 minimal erythema dose) daily for 1 or 3 days. Twenty-four hours after the last exposure, epidermal barrier function was assessed and skin specimens were taken for western blotting, immunohistochemistry, and quantitative reverse transcription-PCR for mouse beta-defensin (mBD)-2, mBD3 and cathelin-related antimicrobial peptide (CRAMP). mRNA levels of the vitamin D receptor (VDR), 1alpha-hydroxylase and key epidermal lipid synthetic enzymes were also quantified. After 3 days of UVB exposure, acceleration of barrier recovery and augmentation in expression of epidermal differentiation markers (for example, involucrin and filaggrin) occurred in parallel with increased mBD2, mBD3, and CRAMP expression at both the mRNA and protein level. VDR, 1alpha-hydroxylase, and the major epidermal lipid synthetic enzymes were also upregulated. When an inhibitor of 1alpha, 25 dihydroxyvitamin D(3) formation, ketoconazole, was applied immediately after UVB exposure, the cutaneous vitamin D system was inhibited, which in turn blocked epidermal lipid synthesis, AMP expression, and permeability barrier homeostasis, suggesting that the beneficial effect of low-dose UVB depends, at least in part, on activation of the cutaneous vitamin D system. Our results provide new insights into the mechanisms whereby low-dose UVB comprises effective therapy for AD.
Collapse
|
88
|
Inactivation of the vitamin D receptor enhances susceptibility of murine skin to UV-induced tumorigenesis. J Invest Dermatol 2008; 128:2508-17. [PMID: 18509362 DOI: 10.1038/jid.2008.131] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) is the biologically active ligand for the vitamin D receptor (VDR). VDR(-/-) mice have a hair follicle-cycling defect resulting in alopecia. However, mice lacking 25-hydroxyvitamin D(3) 1alpha-hydroxylase (CYP27B1(-/-)), and having no circulating 1,25(OH)(2)D(3), have normal follicular function. These mouse models indicate that VDR functions independently of 1,25(OH)(2)D(3) in regulating hair-follicle cycling. Here, we show that VDR(-/-) mice rapidly develop chemically induced skin tumors, whereas CYP27B1(-/-) and wild-type mice do not, indicating that VDR, and not the 1,25(OH)(2)D(3) ligand, is essential for protection against skin tumorigenesis. Because the majority of human skin cancer results from exposure to UV, the susceptibility of VDR(-/-) mice to this carcinogen was also evaluated. VDR(-/-) mice developed UV-induced tumors more rapidly and with greater penetrance than did VDR(+/+) mice. p53 protein levels were upregulated at similar rates in UV-treated keratinocytes of VDR(-/-) and VDR(+/+) mice. However, rates of thymine-dimer repair and UV-induced apoptosis were significantly lower in VDR(-/-) epidermis compared with the wild type epidermis. UV-induced epidermal thickening was also attenuated in VDR(-/-) skin, indicating that VDR plays a critical role in the repair and removal of severely damaged keratinocytes and adaptation of the skin to chronic UV exposure.
Collapse
|
89
|
Jones G. Expanding role for vitamin D in chronic kidney disease: importance of blood 25-OH-D levels and extra-renal 1alpha-hydroxylase in the classical and nonclassical actions of 1alpha,25-dihydroxyvitamin D(3). Semin Dial 2007; 20:316-24. [PMID: 17635821 DOI: 10.1111/j.1525-139x.2007.00302.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent advances in the understanding of vitamin D have revolutionized our view of this old nutritional factor and suggested that it has much wider effects on the body than ever believed before. In addition to its well-known effects on calcium/phosphate homeostasis, vitamin D, through its hormonal form, 1alpha,25-dihydroxyvitamin D(3) or calcitriol, is a cell differentiating factor and anti-proliferative agent with actions on a variety of tissues around the body (e.g., skin, muscle, immune system). By influencing gene expression in multiple tissues, calcitriol influences many physiological processes besides calcium/phosphate homeostasis including muscle and keratinocyte differentiation, insulin secretion, blood pressure regulation, and the immune response. The incidence of various diseases including epithelial cancers, multiple sclerosis, muscle weakness as well as bone-related disorders has been correlated with vitamin D deficiency/insufficiency and has led to a re-evaluation of recommended daily intakes both in the normal subject and CKD patient. Critical developments have been the emergence of the value of blood 25-OH-D measurement as a tool in predicting vitamin D-related problems and this has in turn emphasized the importance of the extra-renal version of the 1alpha-hydroxylase, the enzyme responsible for the final step in vitamin D activation. The widespread expression of this extra-renal enzyme supports the view that it exists to boost intracellular concentrations of calcitriol within some target tissues in order to modulate a unique set of genes specifically in those tissues, a process which is therefore dependent upon circulating 25-OH-D. For CKD patients with their tendency to vitamin D substrate insufficiency coupled with their documented loss of the renal 1alpha-hydroxylase in late stages, this new information has profound implications. Physicians must start to manage the vitamin D insufficiency by vitamin D supplements throughout stages 1-5 whilst continuing to provide calcitriol replacement therapy, in the form of calcitriol or its analogs, in stages 3-5.
Collapse
Affiliation(s)
- Glenville Jones
- Departments of Biochemistry and Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
90
|
Abstract
PURPOSE OF REVIEW This review focuses on recent developments in a number of areas to bring the reader up to the current state of knowledge in this field. RECENT FINDINGS A number of studies have revealed new insights into the regulation of the vitamin D receptor and new targets for its action. The mechanism by which a number of drugs can reduce circulating 25OHD has been clarified. New drug targets including increased bone by inhibition of osteoclasts, improvement in diabetes mellitus, and stimulation of innate immunity to combat infections such as tuberculosis have been found. SUMMARY The wide distribution of the vitamin D receptor provides a number of clinical targets for vitamin D and its analogs. The wide distribution of CYP27B1, the enzyme required to convert circulating 25OHD to 1,25(OH)2D enables a number of cells to make their own 1,25(OH)2D3 if circulating 25OHD levels are maintained. These newer studies emphasize that vitamin D is not just for bones, and maintaining adequate levels is important for many tissues.
Collapse
Affiliation(s)
- Daniel D Bikle
- Medicine and Dermatology, University of California and Veterans Affairs Medical Center, San Francisco, California, USA.
| |
Collapse
|
91
|
Ellison TI, Eckert RL, MacDonald PN. Evidence for 1,25-Dihydroxyvitamin D3-independent Transactivation by the Vitamin D Receptor. J Biol Chem 2007; 282:10953-62. [PMID: 17310066 DOI: 10.1074/jbc.m609717200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The vitamin D endocrine system plays critical although poorly understood roles in skin. Vitamin D receptor (VDR) knock-out (VDRKO) mice have defects in hair follicle cycling and keratinocyte proliferation leading to epidermal thickening, dermal cyst formation, and alopecia. Surprisingly, skin defects are not apparent in mice lacking 25-hydroxyvitamin D 1alpha-hydroxylase, the enzyme required for 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) hormone biosynthesis. These disparate phenotypes indicate that VDR effects in skin are independent of the 1,25(OH)2D3 ligand. However, cellular or molecular data supporting this hypothesis are lacking. Here, we show transcriptional activation of the vitamin D-responsive 24-hydroxylase promoter by VDR in primary keratinocytes that is independent of the 1,25(OH)2D3 ligand. This activity required functional vitamin D-responsive promoter elements as well as an intact VDR DNA binding domain and thus could not be distinguished from 1,25(OH)2D3-dependent VDR transactivation. The 1,25(OH)2D3-independent activation of VDR was also observed in keratinocytes from 1alpha-hydroxylase knock-out mice, indicating that it is not due to endogenous 1,25(OH)2D3 production. Mammalian two-hybrid studies showed strong, 1,25(OH)2D3-independent interaction between VDR and retinoid X receptors in primary keratinocytes, indicating that enhanced heterodimerization of these receptors was involved. Indeed, this 1,25(OH)2D3-independent VDR-RXR heterodimerization was sufficient to drive transactivation by VDR(L233S), an inactive ligand binding mutant of VDR that was previously shown to rescue the skin phenotype of VDR null mice. Cumulatively, these studies support the concept that transactivation by VDR in keratinocytes may be uncoupled from the 1,25(OH)2D3 ligand.
Collapse
Affiliation(s)
- Tara I Ellison
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
92
|
Bollag WB. Differentiation of Human Keratinocytes Requires the Vitamin D Receptor and Its Coactivators. J Invest Dermatol 2007; 127:748-50. [PMID: 17363957 DOI: 10.1038/sj.jid.5700692] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
1,25-Dihydroxyvitamin D3 exerts its effects by binding to the vitamin D receptor (VDR), which regulates transcription of target genes by recruiting various coactivators. Bikle and colleagues examined the role of several coactivators in human epidermal keratinocytes and found that, although these coactivators differentially associate with the VDR in proliferating versus differentiating keratinocytes, each is required for both early and late differentiation.
Collapse
Affiliation(s)
- Wendy B Bollag
- Institute of Molecular Medicine and Genetics, Department of Medicine (Dermatology), Medical College of Georgia, Augusta, Georgia 30912, USA.
| |
Collapse
|
93
|
Bikle D, Teichert A, Hawker N, Xie Z, Oda Y. Sequential regulation of keratinocyte differentiation by 1,25(OH)2D3, VDR, and its coregulators. J Steroid Biochem Mol Biol 2007; 103:396-404. [PMID: 17229570 DOI: 10.1016/j.jsbmb.2006.12.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Indexed: 10/23/2022]
Abstract
Keratinocyte differentiation requires the sequential regulation of gene expression. We have explored the role of 1,25(OH)(2)D(3) and its receptor (VDR) in this process. VDR sequentially binds to coactivator complexes such as Vitamin D receptor interacting protein (DRIP) and steroid receptor coactivator (SRC) during differentiation. Different genes respond differently to the VDR/coactivator complexes as determined by knockdown studies. The binding of DRIP205 and SRC to VDR is ligand (i.e. 1,25(OH)(2)D(3)) dependent. LXXLL motifs in these coactivators are critical for this binding; however, the affinity for VDR of the different LXXLL motifs in these coactivators varies. Hairless is an inhibitor of 1,25(OH)(2)D(3) dependent gene transcription. A phiXXphiphi motif in hairless is crucial for hairless binding to VDR, and its binding is ligand independent. 1,25(OH)(2)D(3) displaces hairless and recruits the coactivators to VDREs. Hsp90 and p23 are chaperone proteins recruited to the DRIP/VDR complex, where they block the binding of the complex to VDREs and block 1,25(OH)(2)D(3) stimulated transcription. Thus four mechanisms explain the ability of 1,25(OH)(2)D(3) to sequentially regulate gene transcription during differentiation: changes in coregulator levels, their differential binding to VDR, differential gene responsiveness to the VDR/coregulator complexes, and chaperone proteins facilitating the cycling of VDR/coregulator complexes on and off the VDREs.
Collapse
Affiliation(s)
- D Bikle
- Endocrine Research Unit, University of California, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.
| | | | | | | | | |
Collapse
|
94
|
Abstract
Parkinson's disease (PD), a common disease of the elderly, is a movement disorder characterized by tremor, akinesia, and loss of postural reflexes, leading to immobility and frequent falls. It results from selective loss (death) of dopaminergic neurons in the substantia nigra region of the brain, largely developed prior to clinical diagnosis, and continuous after diagnosis, despite use of current therapeutic modalities. In PD in the United States the cause and mechanism of continued neuron cell death in the substantia nigra is currently unknown. We hypothesize, based upon several lines of evidence, that documented chronically inadequate vitamin D intake in the United States, particularly in the northern states and particularly in the elderly, is a significant factor in the pathogenesis of PD. This hypothesis implies that dietary aid for prevention and therapy for PD is possible.
Collapse
Affiliation(s)
- Harold L Newmark
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.
| | | |
Collapse
|
95
|
Bär M, Domaschke D, Meye A, Lehmann B, Meurer M. Wavelength-Dependent Induction of CYP24A1-mRNA after UVB-Triggered Calcitriol Synthesis in Cultured Human Keratinocytes. J Invest Dermatol 2007; 127:206-13. [PMID: 16902422 DOI: 10.1038/sj.jid.5700493] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Earlier investigations in our laboratory have demonstrated that UVB irradiation of cultured human keratinocytes induces the conversion of 7-dehydrocholesterol (7-DHC) to hormonally active 1alpha,25-dihydroxyvitamin D3 (calcitriol). In the research presented here, we have investigated the influence of UVB-triggered calcitriol production on gene expression of the vitamin D3 hydroxylating enzymes catabolic 25-hydroxyvitamin-D3-24-hydroxylase (CYP24A1), active vitamin-D3-25-hydroxylase (CYP27A1), and 25-hydroxyvitamin-D3-1alpha-hydroxylase (CYP27B1) using real-time PCR. Our results demonstrate a marked and wavelength-dependent induction of CYP24A1-mRNA in cultured human keratinocytes supplemented with 7-DHC, which parallels the spectral optimum at about 300 nm of calcitriol production as detected by HPLC and radioimmunoassay. Owing to the high sensitivity of real-time PCR, we provide evidence of a wavelength-dependent induction of CYP24A1-mRNA even in 7-DHC-deficient keratinocytes. Interestingly, we have found a strong but transient induction of CYP24A1-mRNA in non-irradiated keratinocytes, followed by accelerated cell proliferation. In contrast, UVB and calcitriol had no effect on gene expression of CYP27A1 and CYP27B1. We conclude from these experiments a constitutive gene expression of the vitamin D3 hydroxylases, whereas the catabolic enzyme CYP24A1 is markedly regulated by UVB, calcitriol, and perhaps cell proliferation. If confirmed at protein level, these findings could have an impact on epidermal vitamin D3 metabolism and its modulation by UVB in health and disease.
Collapse
Affiliation(s)
- Michael Bär
- Department of Dermatology, Carl Gustav Carus Medical School, Dresden University of Technology, Dresden, Germany.
| | | | | | | | | |
Collapse
|
96
|
Bouillon R, Verstuyf A, Mathieu C, Van Cromphaut S, Masuyama R, Dehaes P, Carmeliet G. Vitamin D resistance. Best Pract Res Clin Endocrinol Metab 2006; 20:627-45. [PMID: 17161336 DOI: 10.1016/j.beem.2006.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vitamin D is a secosteroid of nutritional origin but can also be generated in the skin by ultraviolet light. After two hydroxylations 1,25-(OH)2 vitamin D avidly binds and activates the vitamin D receptor (VDR), a nuclear transcription factor, hereby regulating a large number of genes. The generation of VDR deficient mice has expanded the knowledge on vitamin D from a calcium-regulating hormone to a humoral factor with extensive actions. The effects of the vitamin D system on calcium and bone homeostasis are largely mediated by promoting active intestinal calcium transport via the induction of the epithelial calcium channel TRPV6. Although VDR is redundant in bone, it may regulate the differentiation and function of several bone cells. In skin, VDR expression in keratinocytes is essential in a ligand-independent manner for the maintenance of the normal hair cycle. Therefore, VDR but not vitamin D deficiency results in alopecia. Moreover, 1,25-(OH)2 vitamin D impairs the proliferation not only of keratinocytes but also of many cell types by regulating the expression of cell cycle genes, leading to a G1 cell cycle arrest. In addition, VDR inactivation in mice results in high renin hypertension, cardiac hypertrophy and thrombogenesis. Finally, a dual effect of vitamin D was observed in the immune system where it stimulates the innate immune system while tapering down excessive activation of the acquired immune system. Taken together, the vitamin D endocrine system not only regulates calcium homeostasis but affects several systems mainly by altering gene expression but also by ligand-independent actions.
Collapse
Affiliation(s)
- Roger Bouillon
- Laboratory for Experimental Medicine and Endocrinology, Campus Gasthuisberg, Onderwijs & Navorsing 1, Herestraat 49, bus 902, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
97
|
Vantieghem K, Overbergh L, Carmeliet G, De Haes P, Bouillon R, Segaert S. UVB-induced 1,25(OH)2D3 production and vitamin D activity in intestinal CaCo-2 cells and in THP-1 macrophages pretreated with a sterol Delta7-reductase inhibitor. J Cell Biochem 2006; 99:229-40. [PMID: 16598763 DOI: 10.1002/jcb.20910] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Epidermal keratinocytes are able to produce 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and induce vitamin D activity upon UVB irradiation. To find out whether this property is keratinocyte specific, we investigated this characteristic in two other cell types, namely intestinal CaCo-2 cells and the macrophage-like differentiated THP-1 cells. THP-1 macrophages and preconfluent CaCo-2 cells contain the vitamin D receptor (VDR), possess 25-hydroxylase (CYP2R1 and CYP27A1) and 1alpha-hydroxylase (CYP27B1) activity, and survive the low UVB doses essential for vitamin D3 photoproduction. Upon irradiation, 24-hydroxylase (CYP24) mRNA is induced in both cell types pretreated with the sterol Delta7-reductase inhibitor BM15766 whereby the 7-dehydrocholesterol (7-DHC) content was increased. Transfection studies in CaCo-2 cells with a vitamin D response element-containing construct revealed the involvement of the VDR in this UVB-dependent CYP24 induction. The CYP24 inducing activity in BM15766-pretreated UVB-irradiated CaCo-2 cells and THP-1 macrophages was identified as 1,25(OH)2D3 by combined high-performance liquid chromatography radioimmunoassay. Addition of vitamin D binding protein to the CaCo-2 cells attenuated UVB-induced CYP24 induction suggesting the possibility of a paracrine or autocrine role for the photoproduced 1,25(OH)2D3. In conclusion, preconfluent CaCo-2 cells and THP-1 macrophages are able to induce vitamin D activity upon UVB irradiation and hence combine all parts of the vitamin D photoendocrine system, a characteristic which is therefore not keratinocyte specific.
Collapse
Affiliation(s)
- Katleen Vantieghem
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Gasthuisberg, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
98
|
Vantieghem K, De Haes P, Bouillon R, Segaert S. Dermal fibroblasts pretreated with a sterol Δ7-reductase inhibitor produce 25-hydroxyvitamin D3 upon UVB irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 85:72-8. [PMID: 16824767 DOI: 10.1016/j.jphotobiol.2006.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 05/11/2006] [Accepted: 05/11/2006] [Indexed: 11/29/2022]
Abstract
As dermis is a physiological site of vitamin D3 photoproduction, the photo-endocrine vitamin D3 system was studied in dermal fibroblasts. Dermal fibroblasts contain the vitamin D receptor and induce 1alpha,25-dihydroxyvitamin D3-24-hydroxylase [CYP24] mRNA upon stimulation with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. In addition, dermal fibroblasts contain mRNA of the vitamin D3-25-hydroxylases (CYP2R1 and CYP27A1). However, we could not detect any 25-hydroxyvitamin D3 [25OHD3]-1alpha-hydroxylase mRNA in dermal fibroblasts and no CYP24 mRNA was induced upon ultraviolet [UVB] irradiation, even when endogenous 7-dehydrocholesterol content was elevated by pretreatment with the sterol Delta7-reductase inhibitor BM15766. Nevertheless, dermal fibroblasts produce inactive vitamin D3 metabolites that can be activated by epidermal keratinocytes as CYP24 mRNA is induced in epidermal keratinocytes but not in dermal fibroblasts after transfer of medium or cellular suspensions from BM15766-pretreated, UVB-irradiated fibroblasts. This CYP24 induction was UVB-dose dependent and was inhibited by ketoconazole. As revealed in a competitive binding assay, BM15766-pretreated dermal fibroblasts are able to produce 25OHD3 upon UVB irradiation, but no 1,25(OH)2D3 was detected via combined high-performance liquid chromatography radioimmunoassay. The physiological relevance of dermal vitamin D3 photoproduction and its subsequent conversion into 25OHD3 remains elusive.
Collapse
Affiliation(s)
- Katleen Vantieghem
- Laboratorium voor Experimentele Geneeskunde en Endocrinologie (LEGENDO), Gasthuisberg, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | |
Collapse
|
99
|
Ingen-Housz-Oro S, Boudou P, Bergot C, Ibrahim F, Souberbielle JC, Dubertret L, Blanchet-Bardon C. Evidence of a marked 25-hydroxyvitamin D deficiency in patients with congenital ichthyosis. J Eur Acad Dermatol Venereol 2006; 20:947-52. [PMID: 16922943 DOI: 10.1111/j.1468-3083.2006.01689.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Vitamin D is essential for bone mineralization, and its deficiency may be the cause of skeletal fractures and osteomalacia. Geographical or ethnic factors may modulate the cutaneous synthesis of vitamin D. We hypothesized that major changes in keratinization may similarly alter the cutaneous synthesis of vitamin D. OBJECTIVES To explore calciotrophic hormones, parameters of bone remodelling and bone mineral density (BMD) in nine patients with non-bullous congenital ichthyosis. PATIENTS AND METHODS Six patients were European, three were North African. Four had received acitretin over a long period of time. A complete biological investigation, including serum and urinary calcium and phosphorus, calciotrophic hormones [intact parathyroid hormone (iPTH), 25-hydroxyvitamin D (25-(OH)D) and 1,25-dihydroxyvitamin D (1,25-(OH)2D)], bone formation and resorption markers, was performed on all patients during the winter season and repeated among four patients after summer. BMD was measured in all patients. RESULTS All patients had a marked 25-(OH)D deficiency, clearly below the deficiency threshold of 25 nmol/L. Patients from North Africa had a greater deficiency than European patients, perhaps because of the difference in skin pigmentation. iPTH remained normal in European patients but was elevated among the North Africans. After sun exposure, an improvement in vitamin status was visible in only one patient. Bone formation and resorption markers remained normal. Femoral neck osteodensitometry indicated values near the osteopaenic threshold in two young North African females. No deleterious effect of retinoids on vitamin D metabolism was observed. CONCLUSION Patients, and in particular pigmented patients, with congenital ichthyosis present a severe deficiency in vitamin D. Care provided to protect the skeletal future of these patients involves measuring BMD and prescribing supplementation.
Collapse
|
100
|
Bikle DD, Elalieh H, Chang S, Xie Z, Sundberg JP. Development and progression of alopecia in the vitamin D receptor null mouse. J Cell Physiol 2006; 207:340-53. [PMID: 16419036 DOI: 10.1002/jcp.20578] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Humans with selected mutations in the vitamin D receptor (VDR) and mouse models lacking VDR develop alopecia. Mice null for the Vdr gene are born with a normal coat of hair, but fail to initiate normal hair follicle cycling. In this study, we examined the morphology of the hair follicle of the Vdr null mouse during days 13-22 when the hair follicle normally initiates and completes the first catagen. We then explored the possibility that the abnormality in hair follicle cycling was associated with abnormal expression of hairless (Hr), a putative transcriptional regulator known to regulate hair follicle cycling and recently shown to regulate VDR transcriptional activity. Our results demonstrate the progressive deterioration of the hair follicle through catagen. Comparable to VDR, Hr was found in the basal cells of the epidermis and ORS of the hair follicle. However, Hr was also found in the IRS and matrix of the follicle, regions with little or no VDR. Hr levels increased during catagen, reaching a peak by day 19. Levels of Hr were greater in the Vdr null mice compared to wildtype controls, results confirmed by quantitative RT-PCR. We conclude that lack of VDR causes disruption of hair follicle structure during the first catagen resulting in failure of subsequent hair follicle cycling. These changes are associated with increased expression of Hr, suggesting a role for VDR in regulating Hr expression. Both Hr and VDR are required for normal hair follicle cycling.
Collapse
Affiliation(s)
- Daniel D Bikle
- Department of Medicine, Veterans Affairs Medical Center and University of California, San Francisco, California 94121, USA.
| | | | | | | | | |
Collapse
|