51
|
Sex differences shape zebrafish performance in a battery of anxiety tests and in response to acute scopolamine treatment. Neurosci Lett 2021; 759:135993. [PMID: 34058290 DOI: 10.1016/j.neulet.2021.135993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
Sex differences influence human and animal behavioral and pharmacological responses. The zebrafish (Danio rerio) is a powerful, popular model system in neuroscience and drug screening. However, the impact of zebrafish sex differences on their behavior and drug responses remains poorly understood. Here, we evaluate baseline anxiety-like behavior in adult male and female zebrafish, and its changes following an acute 30-min exposure to 800-μM scopolamine, a common psychoactive anticholinergic drug. Overall, we report high baseline anxiety-like behavior and more individual variability in locomotion in female zebrafish, as well as distinct, sex-specific (anxiolytic-like in females and anxiogenic-like in males) effects of scopolamine. Collectively, these findings reinforce the growing importance of zebrafish models for studying how both individual and sex differences shape behavioral and pharmacological responses.
Collapse
|
52
|
Audira G, Siregar P, Chen KHC, Roldan MJM, Huang JC, Lai HT, Hsiao CD. Interspecies Behavioral Variability of Medaka Fish Assessed by Comparative Phenomics. Int J Mol Sci 2021; 22:ijms22115686. [PMID: 34073632 PMCID: PMC8197923 DOI: 10.3390/ijms22115686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, medaka has been used as a model organism in various research fields. However, even though it possesses several advantages over zebrafish, fewer studies were done in medaka compared to zebrafish, especially with regard to its behavior. Thus, to provide more information regarding its behavior and to demonstrate the behavioral differences between several species of medaka, we compared the behavioral performance and biomarker expression in the brain between four medaka fishes, Oryzias latipes, Oryzias dancena, Oryzias woworae, and Oryzias sinensis. We found that each medaka species explicitly exhibited different behaviors to each other, which might be related to the different basal levels of several biomarkers. Furthermore, by phenomics and genomic-based clustering, the differences between these medaka fishes were further investigated. Here, the phenomic-based clustering was based on the behavior results, while the genomic-based clustering was based on the sequence of the nd2 gene. As we expected, both clusterings showed some resemblances to each other in terms of the interspecies relationship between medaka and zebrafish. However, this similarity was not displayed by both clusterings in the medaka interspecies comparisons. Therefore, these results suggest a re-interpretation of several prior studies in comparative biology. We hope that these results contribute to the growing database of medaka fish phenotypes and provide one of the foundations for future phenomics studies of medaka fish.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Petrus Siregar
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
| | - Kelvin H.-C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
| | - Marri Jmelou M. Roldan
- Faculty of Pharmacy and The Graduate School, University of Santo Tomas, Manila 1008, Philippines;
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 900391, Taiwan;
- Correspondence: (J.-C.H.); (H.-T.L.); (C.-D.H.)
| | - Hong-Thih Lai
- Department of Aquatic Biosciences, National Chiayi University, 300 University Rd., Chiayi 600, Taiwan
- Correspondence: (J.-C.H.); (H.-T.L.); (C.-D.H.)
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Correspondence: (J.-C.H.); (H.-T.L.); (C.-D.H.)
| |
Collapse
|
53
|
Jones PE, Champneys T, Vevers J, Börger L, Svendsen JC, Consuegra S, Jones J, Garcia de Leaniz C. Selective effects of small barriers on river‐resident fish. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Peter E. Jones
- Centre for Sustainable Aquatic Research Department of Biosciences College of Science Swansea University Swansea UK
| | - Toby Champneys
- Centre for Sustainable Aquatic Research Department of Biosciences College of Science Swansea University Swansea UK
| | - Jessica Vevers
- Centre for Sustainable Aquatic Research Department of Biosciences College of Science Swansea University Swansea UK
| | - Luca Börger
- Centre for Sustainable Aquatic Research Department of Biosciences College of Science Swansea University Swansea UK
| | - Jon C. Svendsen
- National Institute of Aquatic Resources (DTU‐Aqua)Technical University of Denmark Lyngby Denmark
| | - Sofia Consuegra
- Centre for Sustainable Aquatic Research Department of Biosciences College of Science Swansea University Swansea UK
| | - Joshua Jones
- Centre for Sustainable Aquatic Research Department of Biosciences College of Science Swansea University Swansea UK
| | - Carlos Garcia de Leaniz
- Centre for Sustainable Aquatic Research Department of Biosciences College of Science Swansea University Swansea UK
| |
Collapse
|
54
|
Martorell-Barceló M, Mulet J, Sanllehi J, Signaroli M, Lana A, Barcelo-Serra M, Aspillaga E, Alós J. Aggressiveness-related behavioural types in the pearly razorfish. PeerJ 2021; 9:e10731. [PMID: 33850638 PMCID: PMC8018250 DOI: 10.7717/peerj.10731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/17/2020] [Indexed: 11/20/2022] Open
Abstract
Behavioural types (i.e., personalities or temperament) are defined as among individual differences in behavioural traits that are consistent over time and ecological contexts. Behavioural types are widespread in nature and play a relevant role in many ecological and evolutionary processes. In this work, we studied for the first time the consistency of individual aggressiveness in the pearly razorfish, Xyrichtys novacula, using a mirror test: a classic method to define aggressive behavioural types. The experiments were carried out in semi-natural behavioural arenas and monitored through a novel Raspberry Pi-based recording system. The experimental set up allowed us to obtain repeated measures of individual aggressivity scores during four consecutive days. The decomposition of the phenotypic variance revealed a significant repeatability score (R) of 0.57 [0.44-0.60], suggesting high predictability of individual behavioural variation and the existence of different behavioural types. Aggressive behavioural types emerged irrespective of body size, sex and the internal condition of the individual. Razorfishes are a ubiquitous group of fish species that occupy sedimentary habitats in most shallow waters of temperate and tropical seas. These species are known for forming strong social structures and playing a relevant role in ecosystem functioning. Therefore, our work provides novel insight into an individual behavioural component that may play a role in poorly known ecological and evolutionary processes occurring in this species.
Collapse
Affiliation(s)
- Martina Martorell-Barceló
- Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Júlia Mulet
- Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain.,Universitat de Barcelona, Barcelona, Spain
| | - Javier Sanllehi
- Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Marco Signaroli
- Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Arancha Lana
- Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Margarida Barcelo-Serra
- Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Eneko Aspillaga
- Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Josep Alós
- Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain
| |
Collapse
|
55
|
Backström T, Brännäs E, Nilsson J, Carlberg H, Johansson K, Magnhagen C. Proof of concept: visual categorization of carotenoid pigmentation in Arctic charr (Salvelinus alpinus L) can predict stress response. JOURNAL OF FISH BIOLOGY 2021; 98:1192-1195. [PMID: 33244772 DOI: 10.1111/jfb.14633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 06/11/2023]
Abstract
Carotenoid pigmentation in Salvelinus alpinus has been connected to stress responsiveness in earlier studies. This has, however, only been tested with time-consuming image analysis from photos. Here, we used quick visual categorization of carotenoid pigmentation to investigate the stress responsiveness of the extreme groups. The visually selected charr were then exposed to a net restraint stressor. Arctic charr with few spots also had a lower stress responsiveness compared to charr with many spots. Thus, visual selection could be used as a simple method within aquaculture.
Collapse
Affiliation(s)
- Tobias Backström
- Institute of Integrated Natural Sciences, University Koblenz-Landau, Koblenz, Universitätsstraße 1, Koblenz, Germany
| | - Eva Brännäs
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jan Nilsson
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Hanna Carlberg
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Kajsa Johansson
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Carin Magnhagen
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
56
|
Santos MES, Horký P, Grabicová K, Hubená P, Slavík O, Grabic R, Douda K, Randák T. Traces of tramadol in water impact behaviour in a native European fish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111999. [PMID: 33550078 DOI: 10.1016/j.ecoenv.2021.111999] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Tramadol is a widely used analgesic with additional antidepressant and anxiolytic effects. This compound has been reported in continental waters reaching concentrations of µg/L as a consequence of its inefficient removal in sewage treatment plants and increasing use over time. In this study, European chubs (Squalius cephalus) were exposed to 1 µg/L of tramadol in water for 42 days with a subsequent 14 days of depuration. Our results revealed that chubs exposed to this analgesic underwent changes in their behaviour as compared to the control group. The behavioural outcome was also influenced by the individual concentration of tramadol in brain tissue. In particular, experimental fish presented anxiolytic-like effects, characterized by less bold and less social individuals. Exposed animals were less frequently out of the shelter and moved a shorter distance, indicating that they explored the new environment less during the boldness test. In the novel object recognition experiment, although they distinguished the new item, they examined it less and displayed a reduced activity. Shoal cohesion was disrupted as observed in an increased distance between individuals. After the depuration phase, this alteration remained whereas the boldness effect disappeared. Moreover, the degree of behavioural changes was correlated with the concentration of the substance in brain. According to our findings, chronic presence of tramadol in the environment can impact the fitness of exposed aquatic fauna by altering evolutionary crucial behaviours.
Collapse
Affiliation(s)
- Maria Eugenia Sancho Santos
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Pavel Horký
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Pavla Hubená
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Ondřej Slavík
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Karel Douda
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
57
|
Muraco JJ, Monroe DJ, Aspbury AS, Gabor CR. Do Females in a Unisexual-Bisexual Species Complex Differ in Their Behavioral Syndromes and Cortisol Production? BIOLOGY 2021; 10:biology10030186. [PMID: 33802259 PMCID: PMC8001229 DOI: 10.3390/biology10030186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary In many species, including humans, individuals in a population have personalities: collections of correlated behaviors that are consistent across different environments (i.e., mating, eating). Personalities are affected by competitors for food or mates and the hormones produced by individuals). Competitors can include other individuals of the same species or closely related species. The all-female, Amazon molly is a hybrid species, and needs to coexist with one of its bisexual (males and females), parent species, to reproduce. One parent species of the Amazon molly is the sailfin molly. Female sailfin and Amazon mollies compete for access to males for mating and food which could affect the personalities of individuals of each species. We found that both species have similar personalities consisting of a correlation between exploration and activity. We did not detect a relationship between a stress response hormone, cortisol, and individual personality. However, the all-female Amazons had higher cortisol release rates than sailfins. Personalities may be similar due to genetic constraints that link these behaviors, and might benefit Amazons if this causes male sailfin mollies to mismate with them. However, the differences in cortisol release rates may be a useful mate identification cue for males to offset such mating mistakes. Abstract Studies of suites of correlated behavioral traits (i.e., behavioral syndromes) aid in understanding the adaptive importance of behavioral evolution. Behavioral syndromes may be evolutionarily constrained, preventing behaviors from evolving independently, or they may be an adaptive result of selection on the correlation itself. We tested these hypotheses by characterizing the behavioral syndromes in two sympatric, closely related species and testing for differences between the species. We studied the unisexual Amazon molly (Poecilia formosa) and one of its bisexual, parent species, the sailfin molly (P. latipinna). Sympatric female sailfin and Amazon mollies compete for mating which could affect the behavioral syndromes found in each species. We identified a behavioral syndrome between exploration and activity in both species that did not differ between species. Additionally, we explored the relationship between a stress response hormone, cortisol, and behavioral type, and did not detect a relationship. However, P. formosa differed from P. latipinna in their cortisol release rates. Behavioral syndromes may be constrained in this complex, aiding in mate acquisition for P. formosa by virtue of having a similar behavioral type to P. latipinna. The difference between the females in cortisol release rates may be a useful mate identification cue for males to offset higher mating mistakes associated with the similar behavioral types.
Collapse
Affiliation(s)
- James J. Muraco
- Population and Conservation Biology Group, Department of Biology, Texas State University, San Marcos, TX 78666, USA; (J.J.M.J.); (D.J.M.); (A.S.A.)
| | - Dillon J. Monroe
- Population and Conservation Biology Group, Department of Biology, Texas State University, San Marcos, TX 78666, USA; (J.J.M.J.); (D.J.M.); (A.S.A.)
| | - Andrea S. Aspbury
- Population and Conservation Biology Group, Department of Biology, Texas State University, San Marcos, TX 78666, USA; (J.J.M.J.); (D.J.M.); (A.S.A.)
| | - Caitlin R. Gabor
- Population and Conservation Biology Group, Department of Biology, Texas State University, San Marcos, TX 78666, USA; (J.J.M.J.); (D.J.M.); (A.S.A.)
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
- Correspondence:
| |
Collapse
|
58
|
The battle between harvest and natural selection creates small and shy fish. Proc Natl Acad Sci U S A 2021; 118:2009451118. [PMID: 33619086 DOI: 10.1073/pnas.2009451118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Harvest of fish and wildlife, both commercial and recreational, is a selective force that can induce evolutionary changes to life history and behavior. Naturally selective forces may create countering selection pressures. Assessing natural fitness represents a considerable challenge in broadcast spawners. Thus, our understanding about the relative strength of natural and fisheries selection is slim. In the field, we compared the strength and shape of harvest selection to natural selection on body size over four years and behavior over one year in a natural population of a freshwater top predator, the northern pike (Esox lucius). Natural selection was approximated by relative reproductive success via parent-offspring genetic assignments over four years. Harvest selection was measured by comparing individuals susceptible to recreational angling with individuals never captured by this gear type. Individual behavior was measured by high-resolution acoustic telemetry. Harvest and natural size selection operated with equal strength but opposing directions, and harvest size selection was consistently negative in all study years. Harvest selection also had a substantial behavioral component independent of body length, while natural behavioral selection was not documented, suggesting the potential for directional harvest selection favoring inactive, timid fish. Simulations of the outcomes of different fishing regulations showed that traditional minimum size-based harvest limits are unlikely to counteract harvest selection without being completely restrictive. Our study suggests harvest selection may be inevitable and recreational fisheries may thus favor small, inactive, shy, and difficult-to-capture fish. Increasing fractions of shy fish in angling-exploited stocks would have consequences for stock assessment and all fisheries operating with hook and line.
Collapse
|
59
|
Sociability interacts with temporal environmental variation to spatially structure metapopulations: A fish dispersal simulation in an ephemeral landscape. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
60
|
Individual behavioural traits not social context affects learning about novel objects in archerfish. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02996-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Learning can enable rapid behavioural responses to changing conditions but can depend on the social context and behavioural phenotype of the individual. Learning rates have been linked to consistent individual differences in behavioural traits, especially in situations which require engaging with novelty, but the social environment can also play an important role. The presence of others can modulate the effects of individual behavioural traits and afford access to social information that can reduce the need for ‘risky’ asocial learning. Most studies of social effects on learning are focused on more social species; however, such factors can be important even for less-social animals, including non-grouping or facultatively social species which may still derive benefit from social conditions. Using archerfish, Toxotes chatareus, which exhibit high levels of intra-specific competition and do not show a strong preference for grouping, we explored the effect of social contexts on learning. Individually housed fish were assayed in an ‘open-field’ test and then trained to criterion in a task where fish learnt to shoot a novel cue for a food reward—with a conspecific neighbour visible either during training, outside of training or never (full, partial or no visible presence). Time to learn to shoot the novel cue differed across individuals but not across social context. This suggests that social context does not have a strong effect on learning in this non-obligatory social species; instead, it further highlights the importance that inter-individual variation in behavioural traits can have on learning.
Significance statement
Some individuals learn faster than others. Many factors can affect an animal’s learning rate—for example, its behavioural phenotype may make it more or less likely to engage with novel objects. The social environment can play a big role too—affecting learning directly and modifying the effects of an individual’s traits. Effects of social context on learning mostly come from highly social species, but recent research has focused on less-social animals. Archerfish display high intra-specific competition, and our study suggests that social context has no strong effect on their learning to shoot novel objects for rewards. Our results may have some relevance for social enrichment and welfare of this increasingly studied species, suggesting there are no negative effects of short- to medium-term isolation of this species—at least with regards to behavioural performance and learning tasks.
Collapse
|
61
|
Davis R, Luchtenburg F, Richardson M, Schaaf M, Tudorache C, Slabbekoorn H. The importance of individual variation for the interpretation of behavioural studies: ethanol effects vary with basal activity level in zebrafish larvae. Psychopharmacology (Berl) 2021; 238:3155-3166. [PMID: 34510233 PMCID: PMC8605963 DOI: 10.1007/s00213-021-05932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Standardization and reduction of variation is key to behavioural screening of animal models in toxicological and pharmacological studies. However, individual variation in behavioural and physiological phenotypes remains in each laboratory population and can undermine the understanding of toxicological and pharmaceutical effects and their underlying mechanisms. Here, we used zebrafish (ABTL-strain) larvae to explore individual consistency in activity level and emergence time, across subsequent days of early development (6-8 dpf). We also explored the correlation between these two behavioural parameters. We found inter-individual consistency over time in activity level and emergence time, but we did not find a consistent correlation between these parameters. Subsequently, we investigated the impact of variation in activity level on the effect of a 1% ethanol treatment, suitable for our proof-of-concept case study about whether impact from pharmacological treatments might be affected by inter-individual variation in basal locomotion. The inter-individual consistency over time in activity level did not persist in this test. This was due to the velocity change from before to after exposure, which turned out to be a dynamic individual trait related to basal activity level: low-activity individuals raised their swimming velocity, while high-activity individuals slowed down, yielding diametrically opposite response patterns to ethanol exposure. We therefore argue that inter-individual consistency in basal activity level, already from 6 dpf, is an important factor to take into account and provides a practical measure to improve the power of statistical analyses and the scope for data interpretation from behavioural screening studies.
Collapse
Affiliation(s)
- Raissa Davis
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | | | | | - Marcel Schaaf
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | | | - Hans Slabbekoorn
- Institute of Biology, Leiden University, Leiden, the Netherlands
| |
Collapse
|
62
|
Kerr NR, Ingram T. Personality does not predict individual niche variation in a freshwater fish. Behav Ecol 2020. [DOI: 10.1093/beheco/araa117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Animal populations can exhibit considerable interindividual variation in both behavioral traits and niche use, but the potential connections between these characteristics are rarely compared for the same individuals. We aimed to test whether behavioral syndromes were predictive of individual diet or microhabitat in a native New Zealand freshwater fish, Gobiomorphus cotidianus. We carried out laboratory behavioral assays and repeated habitat and diet measurements in a seminatural mesocosm system. We found considerable repeatability in individual behavior, largely consistent with a proactive/reactive behavioral syndrome. We also found modest individual repeatability in microhabitat use and relatively strong individual specialization in diet. However, no measure of niche use in the mesocosms was significantly predicted by individual personality. Further studies of this type will be needed to assess whether links between individual behavior and resource use are more important in other species or ecological contexts.
Collapse
Affiliation(s)
- Nicky R Kerr
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Travis Ingram
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
63
|
Araujo-Silva H, Leite-Ferreira ME, Luchiari AC. Behavioral Screening of Alcohol Effects and Individual Differences in Zebrafish (Danio rerio). Alcohol Alcohol 2020; 55:591-597. [PMID: 32533153 DOI: 10.1093/alcalc/agaa046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023] Open
Abstract
AIM To better understand the individual differences that make up a population, this study aimed to evaluate the effects of different alcoholic concentrations on the behavioral profiles of zebrafish (Danio rerio). METHODS For this purpose, adult animals were separated into two behavioral profiles: bold and shy, according to the emergence order. Bold and shy fish were individually tested for exploration after exposure to the drug. Acute exposure treatments were alcohol 0.00, 0.10, 0.25 and 0.50%. The behavioral parameters evaluated were speed while moving, maximum speed, total distance traveled and distance from the bottom of the tank. RESULTS For the groups that did not receive alcohol, bold animals showed higher speed while moving. Shy 0.00% and shy 0.10% had the highest maximum speed compared with other concentrations and profiles. For the distance from the bottom tank, our results showed that the increase induced by the low acute dose (0.10%) was observed for both profiles. CONCLUSIONS Our results corroborate with previous findings that alcohol affects the behavioral profiles of zebrafish differently, with bold animals apparently more resistant to these changes.
Collapse
Affiliation(s)
- Heloysa Araujo-Silva
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Maria Elisa Leite-Ferreira
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
64
|
Jensen AJ, Finstad B, Fiske P, Diserud OH, Thorstad EB. Repeatable individual variation in migration timing in two anadromous salmonids and ecological consequences. Ecol Evol 2020; 10:11727-11738. [PMID: 33144996 PMCID: PMC7593174 DOI: 10.1002/ece3.6808] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 01/01/2023] Open
Abstract
Consistent individual differences in behavior have been demonstrated for many animals, but there are few studies of consequences of such repeated behavior in the wild. We tested consistency in migration timing to and from the sea among anadromous Arctic char (Salvelinus alpinus) and brown trout (Salmo trutta), using data from a study period of about 25 years, including more than 27,000 uniquely Carlin-tagged individuals that migrated to sea for feeding in the spring and returned to the river in late summer for up to 13 successive years. Consistency was found between individuals across time in timing of the seaward migration. Individuals migrating early during their first migration tended to migrate early the following years, and late migrants tended to migrate late. The same pattern was found also at ascent to freshwater. Hence, this study demonstrated that individual fish in nature can differ in behavior related to migration timing and that these differences can be consistent during their lifetime. Early migrants increased their mass more than late migrants and had a higher specific growth rate. Early migrating Arctic char, but not brown trout, experienced a longer life after the first migration to sea than late migrants. In both species, maturity occurred earlier in individuals that migrated early. For brown trout, but not for Arctic char, fecundity was significantly correlated to the timing of smolt migration. Hence, the repeatable individual variation in migration timing seemed to have ecological and fitness consequences in terms of growth, longevity, timing of maturity, and lifetime fecundity.
Collapse
Affiliation(s)
| | - Bengt Finstad
- Norwegian Institute for Nature Research (NINA)TrondheimNorway
- Department of BiologyNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Peder Fiske
- Norwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Ola H. Diserud
- Norwegian Institute for Nature Research (NINA)TrondheimNorway
| | - Eva B. Thorstad
- Norwegian Institute for Nature Research (NINA)TrondheimNorway
| |
Collapse
|
65
|
Local adaptation of antipredator behaviors in populations of a temperate reef fish. Oecologia 2020; 194:571-584. [PMID: 32964291 DOI: 10.1007/s00442-020-04757-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
The temperament of animals can vary among individuals and among populations, but it is often unclear whether spatial variation in temperament is the result of acclimation to local environmental conditions or genetic adaptation to spatial differences in natural selection. This study tested whether populations of a marine fish that experience different levels of mortality and fishing exhibited local adaptation in behaviors related to predator avoidance and evasion. First, we measured variation in reactivity to perceived risk in wild populations of black surfperch (Embiotoca jacksoni). We compared flight initiation distances (FID) between populations with significantly different mortality rates. After finding that FID values were substantially lower in the low-risk locations, we tested for local adaptation by rearing lab-born offspring from both high- and low-risk populations in a common environment before measuring their behavior. Lab-reared offspring from high- and low-risk populations exhibited significant differences in several behaviors related to reactivity. Between 23 and 43% of the total variation in behaviors we measured could be attributed to source population. These results thus suggest that a substantial amount of spatial variation in behaviors related to predator evasion may represent local adaptation. In addition, behaviors we measured had an average, broad-sense heritability of 0.24, suggesting that the behavioral tendencies of these populations have some capacity to evolve further in response to any changes in selection.
Collapse
|
66
|
Daniel DK, Bhat A. Bolder and Brighter? Exploring Correlations Between Personality and Cognitive Abilities Among Individuals Within a Population of Wild Zebrafish, Danio rerio. Front Behav Neurosci 2020; 14:138. [PMID: 32903664 PMCID: PMC7438763 DOI: 10.3389/fnbeh.2020.00138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Within populations, individual differences in behavioral and cognitive traits are dependent on the habitat and specific contexts, such as the presence of a predator or other risks. The ability to show variable responses to changing conditions can be of immense survival advantage to organisms. We studied individual differences in specific personality traits, such as boldness, exploration, and spatial ability, and the effect of these traits on learning ability and memory in the presence of a predatory threat, among wild caught zebrafish (Danio rerio). Under laboratory conditions, individuals were trained to perform a simple navigation task, and their performance, exploration, boldness traits were measured, along with learning and memory abilities under two contexts (i.e., in the presence and absence of a predator). Our results revealed that fish showed a clear decline in emergence time, exploration time, and feeding latency over trials, indicative of learning, and further tests for memory also showed memory retention. While the presence of a predator increased emergence time and latencies for navigating, indicating declines in boldness and exploration, these were found to be correlated to different personalities among the individuals and dependent on their sex. While females tended to be bolder and learned the spatial task faster, they showed lower memory retention abilities than males. Personality traits were also found to affect cognitive abilities among individuals. In general, the presence of a predator decreased performance latencies. However, bolder individuals were less affected and emerged more quickly from the refuge chamber than shy individuals. Our results point to the complex interplay of ecological context along with inherent correlations across personality traits that decide the overall personality and cognitive responses among individuals even within populations. These findings thus highlight the importance of an inclusive approach that combines personality and cognition studies for understanding variations within populations.
Collapse
Affiliation(s)
- Danita K Daniel
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, India
| | - Anuradha Bhat
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, India
| |
Collapse
|
67
|
Hubená P, Horký P, Slavík O. Test-dependent expression of behavioral syndromes: A study of aggressiveness, activity, and stress of chub. Aggress Behav 2020; 46:412-424. [PMID: 32542801 DOI: 10.1002/ab.21909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 11/09/2022]
Abstract
Aggressiveness has been one of the behavioral traits most examined with various standard testing methods. We used two distinct methods (the mirror and the real opponent tests) to evaluate individual aggression and relate it to the activity and individual stress of chub (Squalius cephalus L.). Three hypotheses were formulated and tested: (a) there is a significant positive relationship between the aggressiveness of individuals measured with the mirror and the real opponent tests, indicating their convergent validity; (b) the irregularities in response to the aggressiveness and activity tests lead to the context-specific expression of the behavioral syndromes; and (c) there is a significant positive relationship between the stress induced in individuals by both tests of aggressiveness, demonstrating individually consistent stress-coping strategies. The first and the second hypothesis were confirmed, while the third hypothesis was rejected. Our results suggest that particular tests of aggressiveness could act as a situation with high strength, leaving little variation between individual responses. Thus, we propose that for the proper interpretation of various studies using different tests to study identical behavioral traits, it is important to consider the convergent validity of not only the tested behavioral traits but also the individual stress responses. The chub also showed stress relieve through aggressiveness, suggesting the species as a prospective animal model to the study interaction between the stress and the aggressiveness. A detailed aggression ethogram of chub was provided to facilitate the use of this specie in future studies.
Collapse
Affiliation(s)
- Pavla Hubená
- Department of Zoology and FisheriesCzech University of Life Sciences Prague Prague Suchdol Czech Republic
| | - Pavel Horký
- Department of Zoology and FisheriesCzech University of Life Sciences Prague Prague Suchdol Czech Republic
| | - Ondřej Slavík
- Department of Zoology and FisheriesCzech University of Life Sciences Prague Prague Suchdol Czech Republic
| |
Collapse
|
68
|
Islam SS, Wringe BF, Bradbury IR, Fleming IA. Behavioural variation among divergent European and North American farmed and wild Atlantic salmon (Salmo salar) populations. Appl Anim Behav Sci 2020. [DOI: 10.1016/j.applanim.2020.105029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
69
|
Kniel N, Guenther A, Godin JGJ. Individual personality does not predict learning performance in a foraging context in female guppies, Poecilia reticulata. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
70
|
Fahlman J, Hellström G, Jonsson M, Veenstra A, Klaminder J. Six common behavioral trials and their relevance for perch performance in natural lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139101. [PMID: 32422478 DOI: 10.1016/j.scitotenv.2020.139101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/13/2020] [Accepted: 04/27/2020] [Indexed: 05/26/2023]
Abstract
Behavioral traits measured in laboratory settings are commonly used when predicting ecological effects and evolutionary outcomes in natural systems. However, uncertainties regarding the relevance of simplified lab-based behavioral tests for complex natural environments have created doubts about the use of these tests within aquatic ecology and ecotoxicology. In this study, we scrutinize the assumption that fish performance in six commonly applied behavioral assays has relevance for in situ behavior, by comparing individual behavior tracked in both artificial laboratory settings as well as in two natural lakes. We show that: i) commonly measured behavioral traits of individual fish (Perca fluviatilis) have low predictive power for within-lake behaviors if interpreted alone, but that; ii) composite variables synthesized from several (six) behavioral assays explain important in situ measures such as swimming activity, dispersion, home-range size, and habitat preference. While our findings support recent criticisms against the use of single behavioral tests for predicting environmental effects, we provide empirical evidences suggesting that fish performances in multiple laboratory assays are highly relevant for fish behavior in nature.
Collapse
Affiliation(s)
- J Fahlman
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.
| | - G Hellström
- Department of Wildlife, Fish, and Environmental Studies, SLU, Umeå, Sweden
| | - M Jonsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - A Veenstra
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - J Klaminder
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| |
Collapse
|
71
|
Huang P, St.Mary CM, Kimball RT. Habitat urbanization and stress response are primary predictors of personality variation in northern cardinals (Cardinalis cardinalis). JOURNAL OF URBAN ECOLOGY 2020. [DOI: 10.1093/jue/juaa015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
Behavioral traits that vary consistently among individuals across different contexts are often termed as ‘personality traits,’ while the correlated suite formed by those traits is called a ‘behavioral syndrome’. Both personality trait and behavioral syndrome are potentially responsive to animal ‘states’, defined as strategically relevant individual features affecting the cost-and-benefit trade-offs of behavioral actions. Both extrinsic ‘states’ (e.g. urban versus rural habitats), and intrinsic ‘states’ (e.g. sex), may shape among-individual variation in personality traits, as well as behavioral syndromes. Here, we used northern cardinals sampled from four locations to examine the effect of habitat type (urban versus rural, an extrinsic state), stress hormone corticosterone (CORT) parameters, body weight and sex (intrinsic states) on personality traits and behavioral syndrome variation. We used behavioral trials to measure five personality traits. Using principal component analysis to quantify personality traits first, followed by general linear mixed models, we found that habitat type, CORT at capture and 2-day CORT response affected some personality traits, while body weight and sex did not. Cardinals inhabiting more urbanized areas had lower CORT metabolite levels at capture and were more neophilic, less neophobic and also less aggressive than their rural conspecifics. Using structural equation modeling to construct behavioral syndromes formed by our selected personality traits, we found that urban and rural cardinals varied in the models representing syndrome structure. When utilizing the shared syndrome structural model to examine the effects of states, habitat type and 2-day CORT response appear to affect syndrome variation in a coordinated, not hierarchical, manner.
Collapse
Affiliation(s)
- Ping Huang
- Department of Biology, University of Florida, 220 Bartram Hall, P. O. Box 118525, Gainesville, FL 32611-8525, USA
| | - Colette M St.Mary
- Department of Biology, University of Florida, 220 Bartram Hall, P. O. Box 118525, Gainesville, FL 32611-8525, USA
| | - Rebecca T Kimball
- Department of Biology, University of Florida, 220 Bartram Hall, P. O. Box 118525, Gainesville, FL 32611-8525, USA
| |
Collapse
|
72
|
Roth TC, Rosier M, Krochmal AR, Clark L. A multi‐trait, field‐based examination of personality in a semi‐aquatic turtle. Ethology 2020. [DOI: 10.1111/eth.13030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Timothy C. Roth
- Department of Psychology Franklin and Marshall College Lancaster PA USA
| | - Maxwell Rosier
- Department of Psychology Franklin and Marshall College Lancaster PA USA
- 18 Rose Lane PA USA
| | | | - Lisa Clark
- Department of Psychology Franklin and Marshall College Lancaster PA USA
| |
Collapse
|
73
|
Kniel N, Godin JJ. Does individual personality predict male mating preference for female body size in the Trinidadian guppy? Ethology 2020. [DOI: 10.1111/eth.13077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Nina Kniel
- Department of Biology Carleton University Ottawa ON Canada
| | | |
Collapse
|
74
|
Polivka CM. Habitat affinity and density‐dependent movement as indicators of fish habitat restoration efficacy. Ecosphere 2020. [DOI: 10.1002/ecs2.3166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Carlos M. Polivka
- Pacific Northwest Research Station USDA Forest Service Wenatchee Washington98801USA
| |
Collapse
|
75
|
Ofstad EG, Markussen SS, Sæther B, Solberg EJ, Heim M, Haanes H, Røed KH, Herfindal I. Opposing fitness consequences of habitat use in a harvested moose population. J Anim Ecol 2020; 89:1701-1710. [DOI: 10.1111/1365-2656.13221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/17/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Endre Grüner Ofstad
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| | - Stine S. Markussen
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| | - Bernt‐Erik Sæther
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| | | | - Morten Heim
- Norwegian Institute for Nature Research (NINA) Trondheim Norway
| | | | - Knut H. Røed
- Department of Basic Sciences and Aquatic Medicine Norwegian University of Life Sciences Oslo Norway
| | - Ivar Herfindal
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
76
|
Jacquin L, Petitjean Q, Côte J, Laffaille P, Jean S. Effects of Pollution on Fish Behavior, Personality, and Cognition: Some Research Perspectives. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00086] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
77
|
Ibarra-Zatarain Z, Rey S, Boglino A, Fatsini E, Duncan N. Senegalese sole (Solea senegalensis) coping styles are consistent over time: behavioural and physiological responses during ontogenesis. Physiol Behav 2020; 217:112803. [DOI: 10.1016/j.physbeh.2020.112803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
|
78
|
Colchen T, Gisbert E, Ledoré Y, Teletchea F, Fontaine P, Pasquet A. Is a cannibal different from its conspecifics? A behavioural, morphological, muscular and retinal structure study with pikeperch juveniles under farming conditions. Appl Anim Behav Sci 2020. [DOI: 10.1016/j.applanim.2020.104947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
79
|
Demin KA, Lakstygal AM, Volgin AD, de Abreu MS, Genario R, Alpyshov ET, Serikuly N, Wang D, Wang J, Yan D, Wang M, Yang L, Hu G, Bytov M, Zabegalov KN, Zhdanov A, Harvey BH, Costa F, Rosemberg DB, Leonard BE, Fontana BD, Cleal M, Parker MO, Wang J, Song C, Amstislavskaya TG, Kalueff AV. Cross-species Analyses of Intra-species Behavioral Differences in Mammals and Fish. Neuroscience 2020; 429:33-45. [DOI: 10.1016/j.neuroscience.2019.12.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022]
|
80
|
Musseau C, Vincenzi S, Santoul F, Boulêtreau S, Jesenšek D, Crivelli AJ. Within-individual trophic variability drives short-term intraspecific trait variation in natural populations. J Anim Ecol 2020; 89:921-932. [PMID: 31758696 DOI: 10.1111/1365-2656.13149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/20/2019] [Indexed: 11/29/2022]
Abstract
Intraspecific trait variability (ITV) maintains functional diversity in populations and communities, and plays a crucial role in ecological and evolutionary processes such as trophic cascades or speciation. Furthermore, functional variation within a species and its populations can help buffer against harmful environmental changes. Trait variability within species can be observed from differences among populations, and between- and within individuals. In animals, ITV can be driven by ontogeny, the environment in which populations live and by within-individual specialization or variation unrelated to growth. However, we still know little about the relative strength of these drivers in determining ITV variation in natural populations. Here, we aimed to (a) measure the relative strength of between- and within-individual effects of body size on ITV over time, and (b) disentangle the trophic changes due to ontogeny from other sources of variability, such as the environment experienced by populations and individual preferences at varying temporal and spatial scales. We used as a model system the endangered marble trout Salmo marmoratus, a freshwater fish living in a restricted geographical area (<900 km2 ) that shows marked changes in diet through ontogeny. We investigated two trophic traits, trophic position and resource use, with stable isotopes (δ15 N and δ13 C), and followed over time 238 individually tagged marble trout from six populations to estimate the trophic changes between and within individuals through ontogeny at three different time-scales (short term: 3 months, medium term: 1 year and long term: 2 years). We found that the relative strength of between- and within-individual effects of body size on trophic position and resource use change strongly over time. Both effects played a similar role in ITV over medium- and long-term time-scales, but within-individual effects were significantly driving trophic variability over short-term scales. Apart from ontogenetic shifts, individuals showed variability in trophic traits as big as the variability estimated between populations. Overall, our results show how the relative strengths of ITV drivers change over time. This study evidences the crucial importance of considering effects of time-scales on functional variability at individual, population and species levels.
Collapse
Affiliation(s)
- Camille Musseau
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.,EcoLab, Université de Toulouse, CNRS, Toulouse, France
| | - Simone Vincenzi
- Center for Stock Assessment Research, Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA, USA
| | | | | | | | - Alain J Crivelli
- Research Institute for the Conservation of Mediterranean Wetlands, Tour du Valat, Arles, France
| |
Collapse
|
81
|
Inside the Fish Brain: Cognition, Learning and Consciousness. Anim Welf 2020. [DOI: 10.1007/978-3-030-41675-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
82
|
Johansen IB, Höglund E, Øverli Ø. Individual Variations and Coping Style. Anim Welf 2020. [DOI: 10.1007/978-3-030-41675-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
83
|
Mustafa A, Roman E, Winberg S. Boldness in Male and Female Zebrafish ( Danio rerio) Is Dependent on Strain and Test. Front Behav Neurosci 2019; 13:248. [PMID: 31803030 PMCID: PMC6877474 DOI: 10.3389/fnbeh.2019.00248] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Differences in selection pressure in nature and labs have profound effects on zebrafish strains. The widely used AB strain of zebrafish has been domesticated over several decades. Recently, there has been an upsurge in the availability of genetically modified lines, e.g., the spiegeldanio (spd), which has a mutation in the fibroblast growth factor receptor 1a (fgfr1a) gene. This mutant strain (fgfr1a) has previously been reported to be bolder than fish of the Tübingen strain, from which it was generated. Our knowledge on behavioral differences between different zebrafish strains, relative to wild-caught zebrafish, is limited. In the present study we compare behaviors related to interpretation of boldness in male and female offspring (F1) of wild-caught fish, AB and fgfr1a -/- zebrafish. A second aim of the study was to compare the behavior of fish from these strains when tested in different behavioral assays, i.e., shelter seeking, novel tank diving and scototaxis tests. The results demonstrate that behavioral variation exists both within and between the strains, but interpretation of boldness reveals a complex pattern in which behavior differs between strains but is also related to sex and test. Therefore, a careful assessment of various strains of fish using both males and females is warranted in order to strengthen interpretation of results. This is especially important in studies where zebrafish are used as model organisms for human conditions as well as studies evaluating the effects of pharmacological or toxicological substances on behavior.
Collapse
Affiliation(s)
- Arshi Mustafa
- Department of Neuroscience, Behavioral Neuroendocrinology Group, Uppsala University, Uppsala, Sweden.,Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Erika Roman
- Department of Pharmaceutical Biosciences, Division of Pharmacology, Neuropharmacology, Addiction and Behavior Unit, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Division of Anatomy and Physiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Svante Winberg
- Department of Neuroscience, Behavioral Neuroendocrinology Group, Uppsala University, Uppsala, Sweden
| |
Collapse
|
84
|
Rojas‐Ferrer I, Thompson MJ, Morand‐Ferron J. Is exploration a metric for information gathering? Attraction to novelty and plasticity in black‐capped chickadees. Ethology 2019. [DOI: 10.1111/eth.12982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
85
|
Eldøy SH, Bordeleau X, Crossin GT, Davidsen JG. Individual Repeatability in Marine Migratory Behavior: A Multi-Population Assessment of Anadromous Brown Trout Tracked Through Consecutive Feeding Migrations. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
86
|
The role of social network behavior, swimming performance, and fish size in the determination of angling vulnerability in bluegill. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2754-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
87
|
Pasparakis C, Esbaugh AJ, Burggren W, Grosell M. Impacts of deepwater horizon oil on fish. Comp Biochem Physiol C Toxicol Pharmacol 2019; 224:108558. [PMID: 31202903 DOI: 10.1016/j.cbpc.2019.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 11/17/2022]
Abstract
An explosion on the Deepwater Horizon (DWH) oil rig in 2010 lead to the largest marine oil spill to occur in US history, resulting in significant impacts to the ecosystems and organisms in the Northern Gulf of Mexico (GoM). The present review sought to summarize and discuss findings from the 50+ peer-reviewed publications reporting effects of DWH oil exposure on teleost fish, and concludes that oil toxicity is a multi-target, multi-organ syndrome with substantial species-specific sensitivity differences. Of the 15 species tested with characterized exposures, 20% show effects at concentrations <1 μg l-1 while 50% display effects at <8.6 μg l-1 ΣPAH50, concentrations well within the range of reported environmental levels during the spill. Cardiotoxic effects are among the most frequently reported endpoints in DWH oil exposure studies and are thought to have significant downstream effects on fitness and survival. However, additional and possibly cardio-toxic independent impacts on sensory function and behavior are reported at very low exposure concentrations (< 1 μg l-1 ∑PAH50) and are clearly deserving of further study. Available information about modes of action leading to different categories of effects are summarized in the present review. An overview of the literature illustrates that early life stages (ELS) are approximately 1-order of magnitude more sensitive than corresponding later life stages, but also illustrates that adults can be impacted at concentrations as low as 4 μg l-1 ΣPAH50. The majority of studies exploring DWH oil toxicity in fish are performed using acute exposures (1-2 days), mid-range test temperatures (26-28 °C) and measure effects at the molecular to organismal levels, leaving a pressing need for more long-term exposures, exposures at the upper and lower levels of GoM relevant temperatures, and studies investigating population level impacts.
Collapse
Affiliation(s)
- Christina Pasparakis
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Fl, USA.
| | - Andrew J Esbaugh
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, TX, USA
| | - Warren Burggren
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Fl, USA
| |
Collapse
|
88
|
Emergence of consistent intra-individual locomotor patterns during zebrafish development. Sci Rep 2019; 9:13647. [PMID: 31541136 PMCID: PMC6754443 DOI: 10.1038/s41598-019-49614-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
The analysis of larval zebrafish locomotor behavior has emerged as a powerful indicator of perturbations in the nervous system and is used in many fields of research, including neuroscience, toxicology and drug discovery. The behavior of larval zebrafish however, is highly variable, resulting in the use of large numbers of animals and the inability to detect small effects. In this study, we analyzed whether individual locomotor behavior is stable over development and whether behavioral parameters correlate with physiological and morphological features, with the aim of better understanding the variability and predictability of larval locomotor behavior. Our results reveal that locomotor activity of an individual larva remains consistent throughout a given day and is predictable throughout larval development, especially during dark phases, under which larvae demonstrate light-searching behaviors and increased activity. The larvae’s response to startle-stimuli was found to be unpredictable, with no correlation found between response strength and locomotor activity. Furthermore, locomotor activity was not associated with physiological or morphological features of a larva (resting heart rate, body length, size of the swim bladder). Overall, our findings highlight the areas of intra-individual consistency, which could be used to improve the sensitivity of assays using zebrafish locomotor activity as an endpoint.
Collapse
|
89
|
Armstrong T, Khursigara AJ, Killen SS, Fearnley H, Parsons KJ, Esbaugh AJ. Oil exposure alters social group cohesion in fish. Sci Rep 2019; 9:13520. [PMID: 31534177 PMCID: PMC6751191 DOI: 10.1038/s41598-019-49994-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/04/2019] [Indexed: 12/27/2022] Open
Abstract
Many animal taxa live in groups to increase foraging and reproductive success and aid in predator avoidance. For fish, a large proportion of species spend all or part of their lives in groups, with group coordination playing an important role in the emergent benefits of group-living. Group cohesion can be altered by an array of factors, including exposure to toxic environmental contaminants. Oil spills are one of the most serious forms of pollution in aquatic systems, and while a range of effects of acute oil exposure on animal physiology have been demonstrated, sub-lethal effects on animal behavior are relatively under-studied. Here we used an open-field behavioral assay to explore influence of acute oil exposure on social behavior in a gregarious fish native to the Gulf of Mexico, Atlantic croaker (Micropogonias undulatus). We used two oil concentrations (0.7% and 2% oil dilution, or 6.0 ± 0.9 and 32.9 ± 5.9 μg l-1 ΣPAH50 respectively) and assays were performed when all members of a group were exposed, when only one member was exposed, and when no individuals were exposed. Shoal cohesion, as assessed via mean neighbor distance, showed significant impairment following acute exposure to 2% oil. Fish in oil-exposed groups also showed reduced voluntary movement speed. Importantly, overall group cohesion was disrupted when even one fish within a shoal was exposed to 2% oil, and the behavior of unexposed in mixed groups, in terms of movement speed and proximity to the arena wall, was affected by the presence of these exposed fish. These results demonstrate that oil exposure can have adverse effects on fish behavior that may lead to reduced ecological success.
Collapse
Affiliation(s)
- Tiffany Armstrong
- University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow, G12 8QQ, UK
| | - Alexis J Khursigara
- University of Texas at Austin, Marine Science Institute, Port Aransas, Texas, 78373, USA.
| | - Shaun S Killen
- University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow, G12 8QQ, UK
| | - Hannah Fearnley
- University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow, G12 8QQ, UK
| | - Kevin J Parsons
- University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine, Glasgow, G12 8QQ, UK
| | - Andrew J Esbaugh
- University of Texas at Austin, Marine Science Institute, Port Aransas, Texas, 78373, USA
| |
Collapse
|
90
|
Steele AN, Moore PA. Express yourself: Individuals with bold personalities exhibit increased behavioral sensitivity to dynamic herbicide exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:272-281. [PMID: 31059994 DOI: 10.1016/j.ecoenv.2019.04.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
The majority of ecotoxicological studies performed measure average responses from individuals which do not account for the inter-individual variation in the responses of animals to environmental stimuli (i.e. the personality of individuals). Thus, these designs assume that all individuals will respond to contaminant exposure in a similar manner. Additionally, commonly used constant, static exposure regime designs neglect to recognize the spatial and temporal variation in contaminant plume structures as they move throughout fluid environments. The purpose of this study was to understand the effects of the structural characteristics (concentration, duration, and frequency) of temporally and spatially variant contaminant plumes on the personality of individuals. This experimental design aimed to construct a sensitive definition of exposure by connecting sublethal effects of toxicants and realistic exposure regimes. This study used escape response of Faxonius virilis crayfish from the predatory odor of Micropterus salmoides prior to and following exposure to the herbicide, atrazine. Atrazine was delivered in pulses to flow through exposure arenas for a total of 47 h while manipulating the concentration, frequency, and duration of the herbicide pulses. Escape response of crayfish prior to exposure was used to categorize animals into bold and shy personalities. The change in escape response was analyzed and resulted in a personality-dependent behavioral sensitivity to the polluted environment. Individuals classified as bold showed increased change in response to predatory odor relative to shy animals. Bold animals exhibited decreased activity after exposure where no change was presented in shy individuals. Shifts in individual behavior have impacts on the population level (e.g. resource acquisition/value; interspecies competition) and the ecosystem level (e.g. food web dynamics; trophic cascades). This study demonstrates the importance of sensitive measures in ecological risk assessment methods.
Collapse
Affiliation(s)
- Alexandra N Steele
- Laboratory for Sensory Ecology, Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA; University of Michigan Biological Station, Pellston, MI, 49769, USA
| | - Paul A Moore
- Laboratory for Sensory Ecology, Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA; University of Michigan Biological Station, Pellston, MI, 49769, USA; J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA.
| |
Collapse
|
91
|
Solomon-Lane TK, Hofmann HA. Early-life social environment alters juvenile behavior and neuroendocrine function in a highly social cichlid fish. Horm Behav 2019; 115:104552. [PMID: 31276665 DOI: 10.1016/j.yhbeh.2019.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/26/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
Early-life experiences can shape adult behavior, with consequences for fitness and health, yet fundamental questions remain unanswered about how early-life social experiences are translated into variation in brain and behavior. The African cichlid fish Astatotilapia burtoni, a model system in social neuroscience, is well known for its highly plastic social phenotypes in adulthood. Here, we rear juveniles in either social groups or pairs to investigate the effects of early-life social environments on behavior and neuroendocrine gene expression. We find that both juvenile behavior and neuroendocrine function are sensitive to early-life effects. Behavior robustly co-varies across multiple contexts (open field, social cue investigation, and dominance behavior assays) to form a behavioral syndrome, with pair-reared juveniles towards the end of syndrome that is less active and socially interactive. Pair-reared juveniles also submit more readily as subordinates. In a separate cohort, we measured whole brain expression of stress and sex hormone genes. Expression of glucocorticoid receptor 1a was elevated in group-reared juveniles, supporting a highly-conserved role for the stress axis mediating early-life effects. The effect of rearing environment on androgen receptor α and estrogen receptor α expression was mediated by treatment duration (1 vs. 5 weeks). Finally, expression of corticotropin-releasing factor and glucocorticoid receptor 2 decreased significantly over time. Rearing environment also caused striking differences in gene co-expression, such that expression was tightly integrated in pair-reared juveniles but not group-reared or isolates. Together, this research demonstrates the important developmental origins of behavioral phenotypes and identifies potential behavioral and neuroendocrine mechanisms.
Collapse
Affiliation(s)
- Tessa K Solomon-Lane
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States of America; Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, United States of America.
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States of America; Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712, United States of America
| |
Collapse
|
92
|
Enders EC, Wall AJ, Svendsen JC. Hypoxia but not shy-bold phenotype mediates thermal preferences in a threatened freshwater fish, Notropis percobromus. J Therm Biol 2019; 84:479-487. [PMID: 31466789 DOI: 10.1016/j.jtherbio.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/30/2019] [Accepted: 08/04/2019] [Indexed: 10/26/2022]
Abstract
For ectothermic animals, ambient temperature strongly influences developmental growth rate and individual fitness. While many ectotherms live in environments that are spatially hetero-thermal, the coupling between behavioural phenotypes (e.g., shy or bold behaviour) and thermal preferences remains uncertain. Relative to shy counterparts, bolder phenotypes may exert higher preference for ambient temperatures that are closer to their thermal optimum, thereby accelerating development. In addition, ectotherms should select colder temperatures in low oxygen conditions (hypoxia) according to the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis. Using wild caught carmine shiner (Notropis percobromus), this study examined thermoregulatory behaviour in individuals exhibiting consistent behavioural phenotypes along the shy-bold continuum and between ecologically relevant normal oxygen concentration (normoxic) and hypoxic treatments. Furthermore, the behaviour observed in the laboratory was compared to environmental data from the natal stream. Results demonstrated that individual shy-bold behavioural phenotype was consistent before and after a simulated aerial predator attack, indicating consistency of behaviour across situations. Individual preferred and avoidance temperatures varied substantially, but were unrelated to shy-bold behavioural phenotypes. In contrast, individual preferred and maximum avoidance temperatures were significantly reduced in hypoxia, consistent with the OCLTT hypothesis. These findings might indicate suppressed development rates in hypoxia, not only by the limited oxygen for aerobic metabolism, but also by the preference for colder water in hypoxia. Furthermore, the tolerated thermal ranges were reduced in hypoxia. Using test conditions confirmed by field data, our study demonstrates the strong influence of oxygen availability on thermoregulatory behaviours and preferences in aquatic environments.
Collapse
Affiliation(s)
- Eva C Enders
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada.
| | - Alexander J Wall
- University of Manitoba, Department of Civil Engineering, Winnipeg, Manitoba, Canada
| | - Jon C Svendsen
- Technical University of Denmark (DTU Aqua), National Institute of Aquatic Resources, Kemitorvet, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|
93
|
Jolles JW, Briggs HD, Araya-Ajoy YG, Boogert NJ. Personality, plasticity and predictability in sticklebacks: bold fish are less plastic and more predictable than shy fish. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.06.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
94
|
Mayrand JL, Heath DD, Heath JW, Semeniuk CA. The effects of variation in acclimation- and growth-maximizing behavioural types of outcrossed Chinook salmon (Oncorhynchus tshawytscha) on growth and survival in captivity. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2019.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
95
|
Wood ZT, Fryxell DC, Robinson RR, Palkovacs EP, Kinnison MT. Phenotypic and community consequences of captive propagation in mosquitofish. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zachary T. Wood
- School of Biology and Ecology and Ecology and Environmental Sciences Program University of Maine Orono Maine
| | - David C. Fryxell
- Department of Ecology and Evolutionary Biology University of California, Santa Cruz Santa Cruz California
| | - Rebecca R. Robinson
- Department of Ecology and Evolutionary Biology University of California, Santa Cruz Santa Cruz California
| | - Eric P. Palkovacs
- Department of Ecology and Evolutionary Biology University of California, Santa Cruz Santa Cruz California
| | - Michael T. Kinnison
- School of Biology and Ecology and Ecology and Environmental Sciences Program University of Maine Orono Maine
| |
Collapse
|
96
|
Sbragaglia V, Gliese C, Bierbach D, Honsey AE, Uusi-Heikkilä S, Arlinghaus R. Size-selective harvesting fosters adaptations in mating behaviour and reproductive allocation, affecting sexual selection in fish. J Anim Ecol 2019; 88:1343-1354. [PMID: 31131886 DOI: 10.1111/1365-2656.13032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/20/2019] [Indexed: 01/01/2023]
Abstract
The role of sexual selection in the context of harvest-induced evolution is poorly understood. However, elevated and trait-selective harvesting of wild populations may change sexually selected traits, which in turn can affect mate choice and reproduction. We experimentally evaluated the potential for fisheries-induced evolution of mating behaviour and reproductive allocation in fish. We used an experimental system of zebrafish (Danio rerio) lines exposed to large, small or random (i.e. control) size-selective mortality. The large-harvested line represented a treatment simulating the typical case in fisheries where the largest individuals are preferentially harvested. We used a full factorial design of spawning trials with size-matched individuals to control for the systematic impact of body size during reproduction, thereby singling out possible changes in mating behaviour and reproductive allocation. Both small size-selective mortality and large size-selective mortality left a legacy on male mating behaviour by elevating intersexual aggression. However, there was no evidence for line-assortative reproductive allocation. Females of all lines preferentially allocated eggs to the generally less aggressive males of the random-harvested control line. Females of the large-harvested line showed enhanced reproductive performance, and males of the large-harvested line had the highest egg fertilization rate among all males. These findings can be explained as an evolutionary adaptation by which individuals of the large-harvested line display an enhanced reproductive performance early in life to offset the increased probability of adult mortality due to harvest. Our results suggest that the large-harvested line evolved behaviourally mediated reproductive adaptations that could increase the rate of recovery when populations adapted to high fishing pressure come into secondary contact with other populations.
Collapse
Affiliation(s)
- Valerio Sbragaglia
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Institute for Environmental Protection and Research (ISPRA), Livorno, Italy
| | - Catalina Gliese
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Andrew E Honsey
- Ecology, Evolution, and Behavior Graduate Program, University of Minnesota, Saint Paul, Minnesota
| | - Silva Uusi-Heikkilä
- Department of Biology, University of Turku, Turku, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Division of Integrative Fisheries Management, Department of Crop and Animal Sciences, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
97
|
Abstract
Sampling fish by trapping can lead to biased conclusions about a population. We used catch data to assess differences between two types of traps for adult sea lamprey (Petromyzon marinus), submerged-funnel traps and studded-tile traps, which are angled ramps with trickle flow leading out of the water. The studded-tile trap at one river caught about 50% more females than the funnel trap. It caught males that had a smaller body size and females with a lower gonado-somatic index (GSI). The likelihood of catching lamprey in the studded-tile trap increased after they had been caught once. This was not the case for the funnel traps, which are used for mark–recapture-based population assessment of invasive sea lamprey in the Great Lakes. The apparent trap response caused by studded-tile traps may have been caused by a behavioral bias, i.e., the traps consistently attracting a subset of the population. Use of the studded-tile trap for population assessment should only be considered after more is known about its recapture bias. The differences between lamprey caught in the two trap types suggests that a variety of trapping methods needs to be employed in order to get a representative sample from a fish population.
Collapse
|
98
|
Li Y, Jiang Q, Fan S, Sun N, Li XD, Zheng Y. Aggressive behavior variation and experience effects in three families of juvenile Chinese mitten crab (Eriocheir sinensis). Behav Processes 2019; 165:44-50. [PMID: 31170460 DOI: 10.1016/j.beproc.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 05/11/2019] [Accepted: 06/01/2019] [Indexed: 12/29/2022]
Abstract
To assess how variable is the aggressive behavior among families (A, B, and C) and the experience effect of fighting among juvenile Chinese mitten crab (Eriocheir sinensis), we performed a total of 36 pairs of intrafamily and interfamily contests between three families of Eriocheir sinensis, qualifying and quantifying their aggressive acts and 13 pairs of winners within family and between family A and B. A table of aggression intensity was established, ranging from 1 (chasing) to 4 (intense combat). Crabs of intrafamily association performed more aggressive acts of shorter duration than interfamily, family B was more aggressive than those from families A and C: family C was the least aggressive, which is also the most morphologically distinct strain (a new strain with a red carapace). During the second fighting trail, the intensity and number of fights were significantly different to first fight conditions and also differed among families. Therefore, our results suggest that the aggressive behavior of Eriocheir sinensis is different among different families, and the combat experience has a significant effect on the secondary fight. This is the first report of aggressive behavior in Eriocheir sinensis, a reference for crab aquaculture and provides new ideas for genetic breeding work in crab selected breeding programmes. It will be possible to carry out more profound studies of the behavior of these animals.
Collapse
Affiliation(s)
- Yi Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Qiuyue Jiang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Sining Fan
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Na Sun
- Panjin Guanghe Fisheries Co., Ltd, Panjin 124200, China
| | - Xiao Dong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; Panjin Guanghe Fisheries Co., Ltd, Panjin 124200, China.
| | - Yan Zheng
- Panjin Guanghe Fisheries Co., Ltd, Panjin 124200, China
| |
Collapse
|
99
|
To hide or to feed: an evaluation of personality traits in the sand bubbler crab, Dotilla wichmanni, when responding to environmental interference. Behav Processes 2019; 164:123-132. [PMID: 31059765 DOI: 10.1016/j.beproc.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/05/2019] [Accepted: 05/02/2019] [Indexed: 11/23/2022]
Abstract
Behaviour plays a crucial role in a species' ability to cope with environmental challenges. However, this ability may be affected by repeatable individual differences in behaviour, a pattern described as animal personality. The consideration of animal personality is therefore essential when understanding how a species copes with its environmental stressors. For sand bubbler crabs, feeding is often disrupted by environmental interference, in the forms of predatory events and human recreational activities. How these crabs deal with such disruption is, however, not well documented. Here, we characterised the foraging and risk-taking behaviours of Dotilla wichmanni when responding to induced disruption. Whether these are personality traits and if they form part of a behavioural syndrome were also examined. We quantify both behaviours by taking four measures (two per behaviour). All behavioural measures were consistently different among individuals, suggesting that D. wichmanni exhibits personality. Results further suggest that they could cope with some environmental interference, although this is limited. Crabs did not vary the time spent hiding in burrows with each repeated disruption nor did behavioural plasticity differ between individuals. Notwithstanding these, the absence of support for a foraging-risk propensity behavioural syndrome points to possible complexity in the crabs' coping ability.
Collapse
|
100
|
Demin KA, Lakstygal AM, Alekseeva PA, Sysoev M, de Abreu MS, Alpyshov ET, Serikuly N, Wang D, Wang M, Tang Z, Yan D, Strekalova TV, Volgin AD, Amstislavskaya TG, Wang J, Song C, Kalueff AV. The role of intraspecies variation in fish neurobehavioral and neuropharmacological phenotypes in aquatic models. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:44-55. [PMID: 30822702 DOI: 10.1016/j.aquatox.2019.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Intraspecies variation is common in both clinical and animal research of various brain disorders. Relatively well-studied in mammals, intraspecies variation in aquatic fish models and its role in their behavioral and pharmacological responses remain poorly understood. Like humans and mammals, fishes show high variance of behavioral and drug-evoked responses, modulated both genetically and environmentally. The zebrafish (Danio rerio) has emerged as a particularly useful model organism tool to access neurobehavioral and drug-evoked responses. Here, we discuss recent findings and the role of the intraspecies variance in neurobehavioral, pharmacological and toxicological studies utilizing zebrafish and other fish models. We also critically evaluate common sources of intraspecies variation and outline potential strategies to improve data reproducibility and translatability.
Collapse
Affiliation(s)
- Konstantin A Demin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Research Centre of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Polina A Alekseeva
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Maxim Sysoev
- Granov Russian Research Centre of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Murilo S de Abreu
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Bioscience Institute, University of Passo Fundo, Passo Fundo, RS, Brazil
| | | | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | - DongMei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - MengYao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZhiChong Tang
- School of Pharmacy, Southwest University, Chongqing, China
| | - DongNi Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Tatyana V Strekalova
- Department of Neuroscience, Maastricht University, Maastricht, Netherlands; Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | | | - JiaJia Wang
- Research Institute of Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Cai Song
- Research Institute of Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Ural Federal University, Ekaterinburg, Russia; ZENEREI Research Center, Slidell, LA, USA; Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Granov Russian Research Centre of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
| |
Collapse
|