51
|
Han Y, Chen JD, Liu ZM, Zhou Y, Xia JH, Du XL, Jin MW. Functional ion channels in mouse cardiac c-kit(+) cells. Am J Physiol Cell Physiol 2010; 298:C1109-17. [PMID: 20130208 DOI: 10.1152/ajpcell.00207.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cardiac c-kit(+) cells are generally believed to be the major population of stem/progenitor cells in the heart and can be used as a cell source for cardiomyoplasty; however, the cellular electrophysiological properties are not understood in this type of cells. The present study was designed to investigate functional ion channels in undifferentiated mouse cardiac c-kit(+) cells using approaches of whole cell patch voltage clamp, RT-PCR, and cell proliferation assay. It was found that three types of ionic currents were present in mouse cardiac c-kit(+) cells, including a delayed rectifier K(+) current (IK(DR)) inhibited by 4-aminopyridine (4-AP), an inward rectifier K(+) current (I(Kir)) decreased by Ba(2+), and a volume-sensitive chloride current (I(Cl.vol)) inhibited by 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB). RT-PCR revealed that the corresponding ion channel genes, Kv1.1, Kv1.2, and Kv1.6 (for IK(DR)), Kir.1.1, Kir2.1, and Kir2.2 (likely responsible for I(Kir)), and Clcn3 (for I(Cl.vol)), were significant in mouse cardiac c-kit(+) cells. The inhibition of I(Cl.vol) with NPPB and niflumic acid, but not IK(DR) with 4-AP and tetraethylammonium, reduced cell proliferation and accumulated the cell progression at G(0)/G(1) phase in mouse cardiac c-kit(+) cells. Our results demonstrate that three types of functional ion channel currents (i.e., IK(DR), I(Kir), and I(Cl.vol)) are present in mouse cardiac c-kit(+) cells, and I(Cl.vol) participates in regulating cell proliferation.
Collapse
Affiliation(s)
- Yi Han
- Dept. of Pharmacology, Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
52
|
Dutta AK, Khimji AK, Sathe M, Kresge C, Parameswara V, Esser V, Rockey DC, Feranchak AP. Identification and functional characterization of the intermediate-conductance Ca(2+)-activated K(+) channel (IK-1) in biliary epithelium. Am J Physiol Gastrointest Liver Physiol 2009; 297:G1009-18. [PMID: 20501432 PMCID: PMC2777461 DOI: 10.1152/ajpgi.00223.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the liver, adenosine triphosphate (ATP) is an extracellular signaling molecule that is released into bile and stimulates a biliary epithelial cell secretory response via engagement of apical P2 receptors. The molecular identities of the ion channels involved in ATP-mediated secretory responses have not been fully identified. Intermediate-conductance Ca(2+)-activated K(+) channels (IK) have been identified in biliary epithelium, but functional data are lacking. The aim of these studies therefore was to determine the location, function, and regulation of IK channels in biliary epithelial cells and to determine their potential contribution to ATP-stimulated secretion. Expression of IK-1 mRNA was found in both human Mz-Cha-1 biliary cells and polarized normal rat cholangiocyte (NRC) monolayers, and immunostaining revealed membrane localization with a predominant basolateral signal. In single Mz-Cha-1 cells, exposure to ATP activated K(+) currents, increasing current density from 1.6 +/- 0.1 to 7.6 +/- 0.8 pA/pF. Currents were dependent on intracellular Ca(2+) and sensitive to clotrimazole and TRAM-34 (specific IK channel inhibitors). Single-channel recording demonstrated that clotrimazole-sensitive K(+) currents had a unitary conductance of 46.2 +/- 1.5 pS, consistent with IK channels. In separate studies, 1-EBIO (an IK activator) stimulated K(+) currents in single cells that were inhibited by clotrimazole. In polarized NRC monolayers, ATP significantly increased transepithelial secretion which was inhibited by clotrimazole. Lastly, ATP-stimulated K(+) currents were inhibited by the P2Y receptor antagonist suramin and by the inositol 1,4,5-triphosphate (IP3) receptor inhibitor 2-APB. Together these studies demonstrate that IK channels are present in biliary epithelial cells and contribute to ATP-stimulated secretion through a P2Y-IP3 receptor pathway.
Collapse
Affiliation(s)
| | - Al-karim Khimji
- 2Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | - Vinay Parameswara
- 2Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Victoria Esser
- 2Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Don C. Rockey
- 2Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | | |
Collapse
|
53
|
Henney NC, Li B, Elford C, Reviriego P, Campbell AK, Wann KT, Evans BAJ. A large-conductance (BK) potassium channel subtype affects both growth and mineralization of human osteoblasts. Am J Physiol Cell Physiol 2009; 297:C1397-408. [PMID: 19776394 DOI: 10.1152/ajpcell.00311.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pharmacology of the large-conductance K(+) (BK) channel in human osteoblasts is not well defined, and its role in bone is speculative. Here we assess BK channel properties in MG63 cells and primary human osteoblasts and determine whether pharmacological modulation affects cell function. We used RT-PCR and patch-clamp methods to determine the expression of BK channel subunits and cell number assays in the absence and presence of BK channel modulators. RT-PCR showed the presence of KCNMA1, KCNMB1, KCNMB2, KCNMB3, and KCNMB4 subunits. The BK channel was voltage dependent, with a mean unitary conductance of 228.8 pS (n = 10) in cell-attached patches (140 mM K(+)/140 mM K(+)) and a conductance of 142.5 pS (n = 16) in excised outside-out and 155 pS (n = 6) in inside-out patches in 3 mM K(+)/140 mM K(+). The selectivity ratio (ratio of K(+) to Na(+) permeability) was 15:1. The channel was blocked by tetraethylammonium (TEA, 0.3 mM), iberiotoxin (5-60 nM), tetrandrine (5-30 microM), and paxilline (10 microM) and activated by isopimaric acid (20 microM). BK channel modulators affected MG63 cell numbers: TEA and tetrandrine significantly increased cell numbers at low concentrations (3 mM and 3 microM, respectively) and reduced cell numbers at higher concentrations (>10 mM and >10 microM, respectively). Neither iberiotoxin (20-300 nM) nor slotoxin (300 nM) affected cell numbers. The increase in cell numbers by TEA was blocked by isopimaric acid. TEA (0.1-3.0 mM) significantly increased mineralization in primary osteoblasts. In conclusion, the BK channel has a distinctive pharmacology and is thus a target for therapeutic strategies aimed at modulating osteoblast proliferation and function.
Collapse
|
54
|
Düfer M, Gier B, Wolpers D, Krippeit-Drews P, Ruth P, Drews G. Enhanced glucose tolerance by SK4 channel inhibition in pancreatic beta-cells. Diabetes 2009; 58:1835-43. [PMID: 19401418 PMCID: PMC2712794 DOI: 10.2337/db08-1324] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 04/22/2009] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Ca(2+)-regulated K(+) channels are involved in numerous Ca(2+)-dependent signaling pathways. In this study, we investigated whether the Ca(2+)-activated K(+) channel of intermediate conductance SK4 (KCa3.1, IK1) plays a physiological role in pancreatic beta-cell function. RESEARCH DESIGN AND METHODS Glucose tolerance and insulin sensitivity were determined in wild-type (WT) or SK4 knockout (SK4-KO) mice. Electrophysiological experiments were performed with the patch-clamp technique. The cytosolic Ca(2+) concentration ([Ca(2+)](c)) was determined by fura-2 fluorescence. Insulin release was assessed by radioimmunoassay, and SK4 protein was detected by Western blot analysis. RESULTS SK4-KO mice showed improved glucose tolerance, whereas insulin sensitivity was not altered. The animals were not hypoglycemic. Isolated SK4-KO beta-cells stimulated with 15 mmol/l glucose had an increased Ca(2+) action potential frequency, and single-action potentials were broadened. These alterations were coupled to increased [Ca(2+)](c). In addition, glucose responsiveness of membrane potential, [Ca(2+)](c), and insulin secretion were shifted to lower glucose concentrations. SK4 protein was expressed in WT islets. An increase in K(+) currents and concomitant membrane hyperpolarization could be evoked in WT beta-cells by the SK4 channel opener DCEBIO (100 micromol/l). Accordingly, the SK4 channel blocker TRAM-34 (1 micromol/l) partly inhibited K(Ca) currents and induced electrical activity at a threshold glucose concentration. In stimulated WT beta-cells, TRAM-34 further increased [Ca(2+)](c) and broadened action potentials similar to those seen in SK4-KO beta-cells. SK4 channels were found to substantially contribute to K(slow) (slowly activating K(+) current). CONCLUSIONS SK4 channels are involved in beta-cell stimulus-secretion coupling. Deficiency of SK4 current induces elevated beta-cell responsiveness and coincides with improved glucose tolerance in vivo. Therefore, pharmacologic modulation of these channels might provide an interesting approach for the development of novel insulinotropic drugs.
Collapse
Affiliation(s)
- Martina Düfer
- From the Institute of Pharmacy, the Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | - Belinda Gier
- From the Institute of Pharmacy, the Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | - Daniela Wolpers
- From the Institute of Pharmacy, the Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | - Peter Krippeit-Drews
- From the Institute of Pharmacy, the Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- From the Institute of Pharmacy, the Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | - Gisela Drews
- From the Institute of Pharmacy, the Department of Pharmacology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
55
|
Sun LY, Hsieh DK, Yu TC, Chiu HT, Lu SF, Luo GH, Kuo TK, Lee OK, Chiou TW. Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells. Bioelectromagnetics 2009; 30:251-60. [PMID: 19204973 DOI: 10.1002/bem.20472] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pulsed electromagnetic fields (PEMFs) have been used clinically to slow down osteoporosis and accelerate the healing of bone fractures for many years. The aim of this study is to investigate the effect of PEMFs on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells (BMMSC). PEMF stimulus was administered to BMMSCs for 8 h per day during culture period. The PEMF applied consisted of 4.5 ms bursts repeating at 15 Hz, and each burst contained 20 pulses. Results showed that about 59% and 40% more viable BMMSC cells were obtained in the PEMF-exposed cultures at 24 h after plating for the seeding density of 1000 and 3000 cells/cm2, respectively. Although, based on the kinetic analysis, the growth rates of BMMSC during the exponential growth phase were not significantly affected, 20-60% higher cell densities were achieved during the exponentially expanding stage. Many newly divided cells appeared from 12 to 16 h after the PEMF treatment as revealed by the cell cycle analysis. These results suggest that PEMF exposure could enhance the BMMSC cell proliferation during the exponential phase and it possibly resulted from the shortening of the lag phase. In addition, according to the cytochemical and immunofluorescence analysis performed, the PEMF-exposed BMMSC showed multi-lineage differentiation potential similar to the control group.
Collapse
Affiliation(s)
- Li-Yi Sun
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Ciba P, Sturmheit T, Petschnik A, Kruse C, Danner S. In vitro cultures of human pancreatic stem cells: Gene and protein expression of designated markers varies with passage. Ann Anat 2009; 191:94-103. [DOI: 10.1016/j.aanat.2008.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/02/2008] [Accepted: 07/18/2008] [Indexed: 01/01/2023]
|
57
|
Park KS, Choi MR, Jung KH, Kim S, Kim HY, Kim KS, Cha EJ, Kim Y, Chai YG. Diversity of ion channels in human bone marrow mesenchymal stem cells from amyotrophic lateral sclerosis patients. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2008; 12:337-42. [PMID: 19967076 DOI: 10.4196/kjpp.2008.12.6.337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human bone marrow mesenchymal stem cells (hBM-MSCs) represent a potentially valuable cell type for clinical therapeutic applications. The present study was designed to evaluate the effect of long-term culturing (up to 10(th) passages) of hBM-MSCs from eight individual amyotrophic lateral sclerosis (ALS) patients, focusing on functional ion channels. All hBM-MSCs contain several MSCs markers with no significant differences, whereas the distribution of functional ion channels was shown to be different between cells. Four types of K(+) currents, including noise-like Ca(+2)-activated K(+) current (IK(Ca)), a transient outward K(+) current (I(to)), a delayed rectifier K(+) current (IK(DR)), and an inward-rectifier K(+) current (K(ir)) were heterogeneously present in these cells, and a TTX-sensitive Na(+) current (I(Na,TTX)) was also recorded. In the RT-PCR analysis, Kv1.1, heag1, Kv4.2, Kir2.1, MaxiK, and hNE-Na were detected. In particular, I(Na,TTX) showed a significant passage-dependent increase. This is the first report showing that functional ion channel profiling depend on the cellular passage of hBM-MSCs.
Collapse
Affiliation(s)
- Kyoung Sun Park
- Division of Molecular and Life Sciences, Hanyang University, Ansan, 426-791, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Hu H, He ML, Tao R, Sun HY, Hu R, Zang WJ, Yuan BX, Lau CP, Tse HF, Li GR. Characterization of ion channels in human preadipocytes. J Cell Physiol 2008; 218:427-35. [PMID: 18942098 DOI: 10.1002/jcp.21617] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ion channels participate in regulation of cell proliferation. However, though preadipocyte (the progenitor of fat cell) is a type of highly proliferating cells, ion channel expression and their role in proliferation is not understood in human preadipocytes. The present study was designed to characterize ion channels using whole-cell patch clamp technique, RT-PCR, and Western blotting. It was found that a 4-aminopyridine- (4-AP) sensitive transient outward K(+) current (I(to)) was present in a small population of (32.0%) cells, and an outward "noisy" big conductance Ca(2+)-activated K(+) current (I(KCa)) was present in most (92.7%) preadipocytes. The noisy current was inhibited by the big conductance I(KCa) channel blocker paxilline (1 microM), and enhanced by the Ca(2+) ionophore A23187 (5 microM) and the big conductance I(KCa) channel activator NS1619 (10 microM). RT-PCR and Western blot revealed the molecular identities (i.e., KCa1.1 and Kv4.2) of the functional ionic currents I(KCa) and I(to). Blockade of I(KCa) or I(to) with paxilline or 4-AP reduced preadipocyte proliferation, and similar results were obtained with specific siRNAs targeting to KCa1.1 and Kv4.2. Flow cytometric analysis showed ion channel blockade or knockdown of KCa1.1 or Kv4.2 with specific siRNA increased the cell number of G0/G1 phase. The present study demonstrates for the first time that two types of functional ion channel currents, I(to) and big conductance I(KCa), are present in human preadipocytes and that these two types of ion channels participate in regulating proliferation of human preadipocytes.
Collapse
Affiliation(s)
- Hao Hu
- Department of Medicine, Research Centre of Heart, Brain, Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Tao R, Lau CP, Tse HF, Li GR. Regulation of cell proliferation by intermediate-conductance Ca2+-activated potassium and volume-sensitive chloride channels in mouse mesenchymal stem cells. Am J Physiol Cell Physiol 2008; 295:C1409-16. [PMID: 18815226 DOI: 10.1152/ajpcell.00268.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bone marrow mesenchymal stem cells (MSCs) are a promising cell source for regenerative medicine; however, their cellular physiology is not fully understood. The present study aimed at exploring the potential roles of the two dominant functional ion channels, intermediate-conductance Ca(2+)-activated potassium (IK(Ca)) and volume-sensitive chloride (I(Cl.vol)) channels, in regulating proliferation of mouse MSCs. We found that inhibition of IK(Ca) with clotrimazole and I(Cl.vol) with 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB) reduced cell proliferation in a concentration-dependent manner. Knockdown of KCa3.1 or Clcn3 with specific short interference (si)RNAs significantly reduced IK(Ca) or I(Cl.vol) density and channel protein and produced a remarkable suppression of cell proliferation (by 24.4 +/- 9.6% and 29.5 +/- 7.2%, respectively, P < 0.05 vs. controls). Flow cytometry analysis showed that mouse MSCs retained at G(0)/G(1) phase (control: 51.65 +/- 3.43%) by inhibiting IK(Ca) or I(Cl.vol) using clotrimazole (2 microM: 64.45 +/- 2.20%, P < 0.05) or NPPB (200 microM: 82.89 +/- 2.49%, P < 0.05) or the specific siRNAs, meanwhile distribution of cells in S phase was decreased. Western blot analysis revealed a reduced expression of the cell cycle regulatory proteins cyclin D1 and cyclin E. Collectively, our results have demonstrated that IK(Ca) and I(Cl.vol) channels regulate cell cycle progression and proliferation of mouse MSCs by modulating cyclin D1 and cyclin E expression.
Collapse
Affiliation(s)
- Rong Tao
- Dept. of Medicine, L8-01, Laboratory Block, FMB, The Univ. of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR China
| | | | | | | |
Collapse
|
60
|
Funk RHW, Monsees T, Ozkucur N. Electromagnetic effects - From cell biology to medicine. ACTA ACUST UNITED AC 2008; 43:177-264. [PMID: 19167986 DOI: 10.1016/j.proghi.2008.07.001] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 07/25/2008] [Indexed: 01/03/2023]
Abstract
In this review we compile and discuss the published plethora of cell biological effects which are ascribed to electric fields (EF), magnetic fields (MF) and electromagnetic fields (EMF). In recent years, a change in paradigm took place concerning the endogenously produced static EF of cells and tissues. Here, modern molecular biology could link the action of ion transporters and ion channels to the "electric" action of cells and tissues. Also, sensing of these mainly EF could be demonstrated in studies of cell migration and wound healing. The triggers exerted by ion concentrations and concomitant electric field gradients have been traced along signaling cascades till gene expression changes in the nucleus. Far more enigmatic is the way of action of static MF which come in most cases from outside (e.g. earth magnetic field). All systems in an organism from the molecular to the organ level are more or less in motion. Thus, in living tissue we mostly find alternating fields as well as combination of EF and MF normally in the range of extremely low-frequency EMF. Because a bewildering array of model systems and clinical devices exits in the EMF field we concentrate on cell biological findings and look for basic principles in the EF, MF and EMF action. As an outlook for future research topics, this review tries to link areas of EF, MF and EMF research to thermodynamics and quantum physics, approaches that will produce novel insights into cell biology.
Collapse
Affiliation(s)
- Richard H W Funk
- Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Institut für Anatomie, Germany.
| | | | | |
Collapse
|
61
|
Russo RE, Reali C, Radmilovich M, Fernández A, Trujillo-Cenóz O. Connexin 43 delimits functional domains of neurogenic precursors in the spinal cord. J Neurosci 2008; 28:3298-309. [PMID: 18367597 PMCID: PMC6670595 DOI: 10.1523/jneurosci.5736-07.2008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 02/14/2008] [Accepted: 02/16/2008] [Indexed: 11/21/2022] Open
Abstract
The cells lining the central canal (CC) of the spinal cord derive from the ventral part of the neural tube and, in some vertebrates, are responsible for the functional recovery after spinal cord injury. The region that surrounds the CC in the turtle contains proliferating cells that seem to generate both glia and neurons. Understanding the biology of spinal progenitors with the potential to generate new neurons "in situ" is important for cell replacement therapies. Here, we aimed to identify and characterize precursor cells in the spinal cord of Trachemys dorbignyi. To evaluate the population of proliferating cells, 5-bromo-2'-deoxyuridine (BrdU) was injected every 4 h (50 microg/g, i.p.) during 24 h. We found BrdU(+) nuclei around the CC with a higher density in the lateral quadrants, in which whole-cell patch-clamp recordings showed extensive dye coupling of cells. Carbenoxolone (100 microM) increased the input resistance, suggesting strong gap junction coupling among precursors. The expression of brain lipid binding protein (a marker of a subtype of radial glia) and Pax6 matched the location of clusters, suggesting these cells belonged to a domain of neurogenic precursors. These domains were delimited by a high density of connexin 43 (Cx43) located on the endfeet of CC contacting cells. Our findings indicate that spinal precursors share basic properties with those in the embryo and neurogenic niches of the adult brain, and support a key role of functional clustering via Cx43 in spinal cord neurogenesis.
Collapse
Affiliation(s)
- Raúl E Russo
- Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, CP 11600 Montevideo, Uruguay.
| | | | | | | | | |
Collapse
|